transient r-l circuit example- updated: see page 9, 10-13 and 25 · 2020. 2. 1. · ece 524:...

26
ECE 524: Transients in Power Systems Session 6; Page 1/26 Spring 2018 Transient R-L Circuit Example- Updated: see page 9, 10-13 and 25 Given a 230kV:34kV, D-Ygrounded, 100MVA transformer supplied supplied by a source with a short circuit MVA of 2000. The transformer has a per unit reactance of 0.1pu on its ratings base. Both the transformer and the source impedance have an X/R ratio of 12. Calculate the complete phase A fault current if a fault occurs on the LV side of the transformer at 70 degrees past the voltage peak. Define Units: MVA 1000kW := S BASE 100MVA := pu 1 := Transformer parameters: S rated 100MVA := XoverR 12 := V hv 230kV := V lv 34.5kV := X trans 0.1pu := R trans X trans XoverR := R trans 0.0083 pu = Find the transformer impedances referred to the LV side since the fault occurs on that side. Z BLV V lv 2 S rated := Z BLV 11.9025 Ω = R transLV R trans Z BLV := R transLV 0.0992 Ω = X transLV X trans Z BLV := X transLV 1.19 Ω = L transLV X transLV 2 π 60 Hz := L transLV 3.157 mH =

Upload: others

Post on 28-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • ECE 524: Transients in Power Systems

    Session 6; Page 1/26 Spring 2018

    Transient R-L Circuit Example-Updated: see page 9, 10-13 and 25

    Given a 230kV:34kV, D-Ygrounded, 100MVA transformer supplied supplied by a sourcewith a short circuit MVA of 2000. The transformer has a per unit reactance of 0.1pu on itsratings base. Both the transformer and the source impedance have an X/R ratio of 12.Calculate the complete phase A fault current if a fault occurs on the LV sideof the transformer at 70 degrees past the voltage peak.

    Define Units:

    MVA 1000kW:= SBASE 100MVA:=

    pu 1:=

    Transformer parameters:

    Srated 100MVA:= XoverR 12:=

    Vhv 230kV:= Vlv 34.5kV:=

    Xtrans 0.1pu:=

    RtransXtrans

    XoverR:= Rtrans 0.0083 pu=

    Find the transformer impedances referred to the LV side since the fault occurs on that side.

    ZBLVVlv

    2

    Srated:= ZBLV 11.9025 Ω=

    RtransLV Rtrans ZBLV:= RtransLV 0.0992Ω=

    XtransLV Xtrans ZBLV:= XtransLV 1.19Ω=

    LtransLVXtransLV

    2 π 60 Hz:= LtransLV 3.157 mH=

  • ECE 524: Transients in Power Systems

    Session 6; Page 2/26 Spring 2018

    Source impedance

    MVAsc 2000MVA:= Vpu 1.0pu:=

    MVAsc_puMVAsc

    SBASE:= MVAsc_pu 20 pu=

    mZsourceVpu

    2

    MVAsc_pu:= mZsource 0.05 pu=

    η atan XoverR( ):= η 85.2364 deg=

    Zsource mZsource ej η

    := Zsource 0.0042 0.0498i+( ) pu=

    Source impedance in Ohms referred to LV side:

    Zsource_Ohm Zsource ZBLV:= Zsource_Ohm 0.049 0.593i+( ) Ω=

    Lsource_LVIm Zsource_Ohm( )

    2 π 60 Hz( ):= Lsource_LV 1.5732 mH=

    If we wanted to find source impedance referred to LV side in 1 step:

    Vlv( )2

    MVAsc

    ej atan XoverR( )

    0.049 0.593i+( ) Ω=

    Equivalent circuit (since this is a three phase fault we can use per phase analysis:

    RsrcLsrc

    VLN_LVFault

    RtransLtrans

  • ECE 524: Transients in Power Systems

    Session 6; Page 3/26 Spring 2018

    Transient Current Solution:

    Requiv Re Zsource_Ohm( ) RtransLV+:= Requiv 0.1486 Ω=

    Lequiv Lsource_LV LtransLV+:= Lequiv 4.7304 mH=

    Decay constant:

    αRequiv-

    Lequiv:= α 31.4159- 1

    s=

    τ 1α

    := τ 0.032- s=

    Driving point voltage:

    Vm2

    3Vlv:= Vm 28.1691 kV=

    Fault inception angle:

    If we define our driving voltage as:

    v t( ) Vm sin ω t ϕ+( )=

    ω 2 π 60 Hz:= ω 376.9911 rads

    =

    Since the fault occurs 70 degrees phase the peak of the voltage (for analytical solutionlet fault occur at time t = 0):

    ϕ 90deg 70deg+:= ϕ 160 deg=

    Initial condition:

    i0 0A:= Switch is open

    Equiavlent impedance:

    Zequiv_LV Requiv2 ω Lequiv( )2+:= Zequiv_LV 1.7895Ω=

  • ECE 524: Transients in Power Systems

    Session 6; Page 4/26 Spring 2018

    Create time vector:

    v t( ) Vm sin ω t ϕ+( ):=t 0sec 1 10 4- sec, 460Hz

    ..:=

    iss t( )Vm

    Zequiv_LV

    sin ω t ϕ+ η-( ):=

    itrans t( )Vm

    Zequiv_LV

    sin ϕ η-( ) eα t:=

    0 0.02 0.04 0.064- 10

    4

    2- 104

    0

    2 104

    4 104

    v t( )

    iss t( )

    itrans t( )

    t

    0 0.02 0.04 0.060

    5 103

    1 104

    1.5 104

    2 104

    itrans t( )

    t

  • ECE 524: Transients in Power Systems

    Session 6; Page 5/26 Spring 2018

    i t( ) iss t( ) itrans t( )-:=

    0 0.02 0.04 0.063- 10

    4

    2- 104

    1- 104

    0

    1 104

    i t( )

    t

    Other items of interest: peak current:

    Peak current occurs when the derivative of the current equals 0 (the second timein this case).

    ti

    d

    d

    Vm

    Zequiv_LV

    ω cos ω t ϕ+ η-( ) α sin ϕ η-( ) eα t( )+ =

    Plot this for comparison.....

    di t( )Vm

    Zequiv_LV

    ω cos ω t ϕ+ η-( ) α sin ϕ η-( ) eα t( )+ :=

    0 0.01 0.02 0.031- 10

    7

    5- 106

    0

    5 106

    1 107

    300 i t( )

    di t( )

    0

    t

    Note that the secondzero crossing is at the peak in this case.

  • ECE 524: Transients in Power Systems

    Session 6; Page 6/26 Spring 2018

    Now we want to find the values of t where the derivative is zero.

    tzero 0.01sec:= millisecondsec

    1000:=

    Given

    Vm

    Zequiv_LV

    ω cos ω tzero ϕ+ η-( ) α sin ϕ η-( ) eα tzero( )+ 0=

    tpeak Find tzero( ):= tpeak 9.1986 millisecond=

    di tpeak( ) 3.3555 10 10-A

    s=

    i tpeak( ) 27.09- kA=

    ATP Simulation results:·

    34.5 kV_LL

    VS

    0.149 ohm 4.73 mH

    LV

    0.02407 sec

    I

    V V

    Settings for simulation:

    Δt 5 10 5- sec:= tmax 0.1sec:=

    Vm 28169 V= Requiv 0.149 Ω= Lequiv 4.73 mH=

    Note, ATP uses peak voltage, PSCAD/EMTDC uses RMS line-to-line

    Since the source is a cosine, set phase angle for sine:

    θ 90- deg:=

    Time for fault to occur (let run 1 full cycle and then 70 degrees past positive peak):

    tfault1

    60Hz

    1160

    360+

    := tfault 0.02407 s= This is time that the switch closes.

  • ECE 524: Transients in Power Systems

    Session 6; Page 7/26 Spring 2018

    (f ile Example.pl4; x-v ar t) c:LV -

    0.00 0.02 0.04 0.06 0.08 0.10-30

    -20

    -10

    0

    10

    20

    *103

  • ECE 524: Transients in Power Systems

    Session 6; Page 8/26 Spring 2018

    EMTDC Simulation results:·

    VLN_RMS34.5kV

    3:= VLN_RMS 19.919 kV=

    0.149 [ohm] 0.00473 [H]

    R=

    0

    TimedFaultLogic

    Fa

    ult

    Fault

    I_Fault

    Main : Graphs

    0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 ... ... ...

    -30.0

    -25.0

    -20.0

    -15.0

    -10.0

    -5.0

    0.0

    5.0

    10.0

    15.0

    y (k

    A)

    I_Fault

    Ipk = 27.122kA goes up a little with smaller time step

  • ECE 524: Transients in Power Systems

    Session 6; Page 9/26 Spring 2018

    EMTP-RV Simulation results:·

    +34.5kVRMSLL /_-90 ?v

    AC1

    +0.149

    R1+

    4.73mH

    L1

    +

    0.0

    24

    07

    |10

    |0?

    vi

    Fa

    ult

    Vs Load

    Ipk 27197.7A=

  • ECE 524: Transients in Power Systems

    Session 6; Page 10/26 Spring 2018

    Finding the Worst Case DC Offset

    vs t( ) Vm cos ω t θ+( )=

    if t( )Vm

    Zequiv_LVcos ω t θ+ η-( ) eα t cos θ η-( )-( )=

    We want to find the worst case peak fault current, which occurs when the 60Hzterm and the dc offset term are maximum, so we want

    θ η- 0deg=Note that this maximum should also occur at or close to t = 0, so

    cos ω t θ+ η-( ) 1-= (or +1) as well

    θb 0deg η+:= θb 85.2364 deg=

    Therefore:

    vs t θ, ( ) Vm cos ω t θ+( ):=

    if t θ, ( )Vm

    Zequiv_LVcos ω t θ+ η-( ) eα t cos θ η-( )-( ):=

    Find time for the maximum value:

    0tif t( )

    d

    d= the key part is: 0 ω- sin ω t θ+ η-( ) α eα t cos θ η-( )( )-=

    Use solve block:

    Initial guess:

    tg 0.01sec:=

    Given

    0 ω- sin ω tg θb+ η-( ) α eα tg cos θb η-( )( )-=Set constraints on t: 1

    2 60 Hztg 0sec

    tmax Find tg( ):= tmax 8.1622 ms=

  • ECE 524: Transients in Power Systems

    Session 6; Page 11/26 Spring 2018

    0 0.02 0.043- 10

    4

    2- 104

    1- 104

    0

    1 104

    if t θb, ( )

    t

    if tmax θb, ( ) 27.8895- kA=

    However, the above calculation doesn't account for the variation in the 60Hz term. Instead weneed to find the optimum combination of t and θ to get the most negative solution.

    ifm β θm, ( )Vm

    Zequiv_LVcos β θm+ η-( ) e

    αβ

    376.99rad

    s

    cos θm η-( )-

    :=

    β π:=

    θm 0:=

    Given

    π β> 0>

    0 θm 300deg

    Sol Minimize ifm β, θm, ( ):=

    Sol171.5261

    90

    deg= tmaxaltSol0

    2π 60 Hz:= tmaxalt 7.94102 ms=

    θmax Sol1:= θmax 90 deg=

    if tmaxalt θmax, ( ) 27.9318- kA= Slightly larger than the answer above·based only on the dc offset.

  • ECE 524: Transients in Power Systems

    Session 6; Page 12/26 Spring 2018

    Differenceif tmaxalt θmax, ( ) if tmax θb, ( )-

    if tmaxalt θmax, ( ):= Difference 0.1515 %=

    Note that the worst case usually occurs with the fault happing at 90 degrees past·the peak for most circuits (zero crossing of the voltage)

    Find time to use in simulation cases:·

    tfault901

    60Hz

    1180

    360+

    := tfault90 0.025 s=

    ATP Results with new fault initiation time

    (file SeriesRL.pl4; x-var t) c:LV -

    0.00 0.02 0.04 0.06 0.08 0.10[s]-30

    -20

    -10

    0

    10

    20

    [A]

    27924- A

  • ECE 524: Transients in Power Systems

    Session 6; Page 13/26 Spring 2018

    EMTDC Results with new fault initiation time

    Main : Graphs

    0.000 0.020 0.040 0.060 0.080 0.100

    -30.0

    -25.0

    -20.0

    -15.0

    -10.0

    -5.0

    0.0

    5.0

    10.0

    15.0

    Ipk 27924- A=

    EMTP-RV Results with new fault initiation time

    Ipk 27.932- kA=

  • ECE 524: Transients in Power Systems

    Session 6; Page 14/26 Spring 2018

    Series LC Example

    t 0 0.000001sec, 2

    60sec..:= MVAR MVA:=

    For the system below find the following:

    Worst case inrush current when closing into C1 with C2 open1.

    jXs

    C2C1

    Assume source and capacitorsare Y connected.

    VLL 34.5kV:= RMS

    Capacitor Banks:

    Q1 18MVAR:= at 34.5kV

    Q2 10MVAR:= at 34.5kV

    L1 19.2μH:= between caps

    Source Isc 25kA:=

    Determine circuit parameters:

    Find capacitance using:Q

    VLL( )2

    Xc=

    Xc1VLL

    2

    Q1:= Xc1 66.125 Ω= Xc2

    VLL2

    Q2:= Xc2 119.025 Ω=

    C11

    ω Xc1:= C1 40.1147 μF= C2

    1

    ω Xc2:= C2 22.2859 μF=

    Find source impedance using: IscVln

    Xs=

    Xs

    VLL

    3

    Isc:= Xs 0.797 Ω= Ls

    Xs

    ω:= Ls 2.1134 mH=

  • ECE 524: Transients in Power Systems

    Session 6; Page 15/26 Spring 2018

    Rs 0ohm:= no source resistance

    Equivalent circuit:

    Ls

    C2C1

    L1

    Load

    Neglect load for now.

    1. Worst case inrush current when closing into C1 with C2 open

    Vm VLL2

    3:= Vm 28.1691 kV= ϕ 0deg:=

    vs t( ) Vm cos ω t ϕ+( ):=

    Z0Ls

    C1:= Z0 7.2584 Ω=

    ωn1

    Ls C1:= fn

    ωn2 π

    := fn 546.6066 Hz=

    Initial conditons: Vc1_0 0V:= capacitor is discharged

    iLs_0 0A:= no load current

    Resonant frequency

    fn1

    2 π1

    Ls C1:= fn 546.6066 Hz= approx. 9 times source frequency

    ωn 2 π fn:=

  • ECE 524: Transients in Power Systems

    Session 6; Page 16/26 Spring 2018

    Use biggestpossible voltagedifference for givenVc1(0)

    Homogeneous solution:ih_1 t( )

    Vm Vc1_0-

    Z0

    sin ωn t( ):=

    peak current at resonant frequency Vm Vc1_0-

    Z0

    3880.8905A=

    Rs 1010-

    ohm:= Set to a very small number more numerically stable

    Particular solution: η atanω Ls

    1

    ω C1-

    Rs

    := η 90- deg=

    ip_1 t( )

    2

    3VLL

    1

    ω C1ω Ls-

    cos ω t ϕ+ η-( ):=

    IPrms

    1

    3VLL

    1

    ω C1ω Ls-

    := IPrms 304.9A=

    i1 t( ) ip_1 t( ) ih_1 t( )+:=

    Worst possible current will be when both the 60Hz current and the resonant current peak at thesame time. Since there is no resistance, the resonant response will continue forever. So at somepoint in time they will peak at the same time. Realistically, we would look at the peak in the first60Hz cycle.

    Imax1Vm Vc1_0-

    Z0

    2 IPrms+:= Imax1 4312.0842A=

  • ECE 524: Transients in Power Systems

    Session 6; Page 17/26 Spring 2018

    Capacitor voltage (assume switch at voltage peak)

    vc1 t( )1

    C1

    0sec

    t

    ti1 t( )

    d Vc1_0+:=

    Lets look at this analytically and using the fact that the circuit is linear::

    1

    C1

    0sec

    t

    ti1 t( )

    d

    Vc1_0+1

    C1

    0sec

    t

    tip_1 t( )

    d

    0sec

    t

    tih_1 t( )

    d+

    Vc1_0+=

    1

    C1 0sec

    t

    tip_1 t( )

    d1

    C1 0sec

    t

    t2 IPrms( ) cos ω t ϕ+ η-( )

    d=

    Note that:cos ω t ϕ+ η-( ) = -sin ω t ϕ+( ) since η 90- deg= , so this derivation could be done interms of sine instead, but I will stick with starting from cosine here.

    Vp_c1 t( )1

    C1 0sec

    t

    t2 IPrms( )- cos ω t ϕ+ η-( )

    d=

    Evaluating the integral symbolically results in: ·

    t

    0Vp_c1 t( )

    1

    ω C1

    2 IPrms( ) sin ω t ϕ+ η-( )=

    Simplifying and taking into accout that η 90- deg= results in:

    sin ω t ϕ+ η-( ) cos ω t ϕ+( )=So now:

    t

    0Vp_c1 t( )

    1

    ω C1

    2 IPrms( ) cos ω t ϕ+( )( )=

    Plugging in the limits of integratin results in:

    Vp_c1 t( ) 2 IPrms( ) Xc1 cos ω t ϕ+( ) cos ω 0 ϕ+( )-( )=which reduces to:

    Vp_c1 t( ) 2 IPrms( ) Xc1 cos ω t ϕ+( ) 1-( ):=Note that this will be bigger than Vm due to the source inductance.·

  • ECE 524: Transients in Power Systems

    Session 6; Page 18/26 Spring 2018

    Now for the transient part of the response:

    1

    C1 0sec

    t

    tih_1 t( )

    d Vc1_0+1

    C10sec

    t

    tVm Vc1_0-

    Z0

    sin ωn t( )

    d

    Vc1_0+=

    Evaluting the integral and plugging in the limits of integration:

    Vh_c1 t( )1

    C1

    Vm Vc1_0-

    ωn Z0

    cos ωn t( )- cos ωn 0( )+( ) Vc1_0+=

    Note that: cos ωn 0( ) 1=

    and, in this case: C1 ωn Z0( ) C11

    Ls C1

    Ls

    C1=

    C1 Ls

    C1 Ls= 1=

    Vh_c1 t( ) Vm Vc1_0-( )- cos ωn t( ) cos ωn 0( )-( ) Vc1_0+ :=

    Note that: Vp_c1 0( ) 0 kV= Vh_c1 0( ) 0V=

    vc1 t( ) Vp_c1 t( ) Vh_c1 t( )+:=

    We can also write this out as: ·

    vcap1 t( ) 2 IPrms( ) Xc1 cos ω t ϕ+( ) 1-( ) Vm Vc1_0-( ) cos ωn t( ) 1-( ) Vc1_0+ - :=

    If Ls is small such that: 2 IPrms( ) Xc1 = Vm Vc1_0- we can say:

    vcap1_approx t( ) 2 IPrms cos ω t ϕ+( ) Xc1 Vm Vc1_0-( ) cos ωn t( )-:=

    In this case, we there is an error in this result since:

    2 IPrms( ) Xc1 Vm Vc1_0-( )- 343.5507V=

    Or 2 IPrms( ) Xc1 Vm Vc1_0-( )-

    Vm1.2196 %=

    VcapPK 2 IPrms( ) Xc1 Vm Vc1_0-( )+:= VcapPK 56.6818 kV=

  • ECE 524: Transients in Power Systems

    Session 6; Page 19/26 Spring 2018

    Plotting these out we get:

    0 0.01 0.02 0.031- 10

    5

    5- 104

    0

    5 104

    1 105

    vc1 t( )

    vcap1 t( )

    vcap1_approx t( )

    t

    0 1 104-

    2 104-

    3 104-

    4 104-

    0

    1 104

    2 104

    3 104

    vc1 t( )

    vcap1 t( )

    vcap1_approx t( )

    t

    Zooming in:

    Note that the appoximate curve (green) is higher than the other two which are aligned).

  • ECE 524: Transients in Power Systems

    Session 6; Page 20/26 Spring 2018

    Note the angle on the current (account for multiplying times a capacitive reactance)

    0 0.01 0.02 0.034- 10

    3

    2- 103

    0

    2 103

    4 103

    ip_1 t( )

    ih_1 t( )

    t

    0 1 103-

    2 103-

    3 103-

    4 103-

    6- 103

    2- 103

    2 103

    6 103

    i1 t( )

    t

    Maximum value 4312A

    First positive peak:

    I1stPos 3807.1A:=

    First negative peak:

    I1stNeg 4094.3-:=

    0 2 103-

    4 103-

    6 103-

    8 103-

    1- 105

    5- 104

    0

    5 104

    1 105

    vc1 t( )

    t

    First positive peak:

    V1stPos 54.679kV:=

    First negative peak:

    V1stNeg 6.572- kV:=

  • ECE 524: Transients in Power Systems

    Session 6; Page 21/26 Spring 2018

    ATP Model:

    set time step near 5% of period of resonant freq· μsec 10 6- sec:=

    can use deltaT=100microseconds

    tn1

    fn:= tn 1829.4693 μsec=

    tn

    2091.4735 μsec=

    Vpk=28.169kV

    VS

    2.11mH 19.2uF B2B1

    C1 R2

    40.11uF

    22.29uF

    C2

    CSW1

    T

    ATPDraw schematic

    Peak and RMS steady-state current (C1 inserted for steady-state initialization)

    (f ile Exampl1.pl4; x-v ar t) c:B1 -C1 t: IC1RMS

    0.00 0.02 0.04 0.06 0.08 0.10[s]-500

    -375

    -250

    -125

    0

    125

    250

    375

    500

    Irms 304.89A:=

    Ipk 431.14A:=

    from above·

    IPrms 304.9A=

    ATP results for energizing C1:

    Breaker current ·

    ( f i le E x a m p l1 R . p l4 ; x -v a r t ) c : B 1 -C 1

    0 .0 9 5 0 .1 0 0 0 .1 0 5 0 .1 1 0 0 .1 1 5 0 .1 2 0 0 .1 2 5 0 .1 3 0[s ]- 5 0 0 0

    - 3 7 5 0

    - 2 5 0 0

    - 1 2 5 0

    0

    1 2 5 0

    2 5 0 0

    3 7 5 0

    5 0 0 0

    [A ]

    First positive peak:

    I1stPos 3843.5A:=

    First negative peak:

    I1stNeg 4144.2-:=

  • ECE 524: Transients in Power Systems

    Session 6; Page 22/26 Spring 2018

    Capacitor voltage·

    (f ile Exampl1R.pl4; x-v ar t) v :C1 -

    0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130[s]-60

    -40

    -20

    0

    20

    40

    60

    [kV]

    First positive peak: Some differences·from analytical

    Overall positive peak:V1stPos 55.343kV:=56.876kV

    Overall negative peak: First negative peak:

    57.016- kV V1stNeg 6.592- kV:=

    Repeat if capacitor is storing charge:

    Vc1_0 Vm-:= Charged to negative peak voltage

    Imax1Vm Vc1_0-

    Z0

    2 IPrms+:= Imax1 8192.9748A=

    VcapPK 2 IPrms Xc1 Vm Vc1_0-( )+:= VcapPK 84.8509 kV=

  • ECE 524: Transients in Power Systems

    Session 6; Page 23/26 Spring 2018

    ATP resultsUse the added circuit to precharge the capacitor. The resistor has a very small resistance·and is used to prevent a loop of switches.

    Vpk=28.169kV

    VS

    2.11mH 19.2uF B2B1

    C1 R2

    40.11uF

    22.29uF

    C2

    CSW1

    T

    (f ile Exampl1.pl4; x-v ar t) c:B1 -CSW1 c:B1 -C1

    30 35 40 45 50 55 60 65 70[ms]-9000

    -6000

    -3000

    0

    3000

    6000

    9000

    [A]

    Current response:

    Ipk 8172A:=

    (f ile Exampl1.pl4; x-v ar t) v :C1 - v :VS

    30 35 40 45 50 55 60 65 70[ms]-90

    -60

    -30

    0

    30

    60

    90

    [kV]

    Voltage response:

    Vpk 84.462kV:=

  • ECE 524: Transients in Power Systems

    Session 6; Page 24/26 Spring 2018

    EMTDC Results

    40

    .11

    [uF

    ]

    22

    .29

    [uF

    ]

    R=

    0 BR

    K1

    BRK1

    TimedBreaker

    LogicOpen@t0

    IL1

    BRK2

    BRK2

    TimedBreaker

    LogicOpen@t0

    VS

    VC2

    0.0000192 [H]

    ILS

    IL1

    VC1

    VC2

    VC1

    VS

    RMSILS

    0.002113 [H]

    Main : Graphs

    0.0900 0.0950 0.1000 0.1050 0.1100 0.1150 0.1200 0.1250 0.1300 ... ... ...

    -5.0

    -4.0

    -3.0

    -2.0

    -1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    y (k

    A)

    ILS

  • ECE 524: Transients in Power Systems

    Session 6; Page 25/26 Spring 2018

    Main : Voltages

    0.0900 0.0950 0.1000 0.1050 0.1100 0.1150 0.1200 0.1250 0.1300 0.1350 0.1400 ... ... ...

    -60

    -40

    -20

    0

    20

    40

    60

    y (k

    V)

    VS VC1 VC2

    EMTP-RV Results

    + AC1

    ?v34.5kVRMSLL /_0

    +L1

    2.11mH

    +L2

    19.2uH

    +S

    W2?i

    10

    |10

    |0+S

    W1?i

    0.0

    5|1

    0|0

    + C1?v

    40.11uF + C2?v

    22.29uF

    VS B2B1

  • ECE 524: Transients in Power Systems

    Session 6; Page 26/26 Spring 2018