tracking atmospheric plumes using stand-off sensor data · tracking atmospheric plumes using...

23
Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne Research, Inc. 45 Manning Road Billerica, MA 01821-3976 USA Sensor Data Fusion Working Group 28 October 2005 Albuquerque, NM DTRA CBIS2005.ppt Patrick Heimbach Department of Oceanography Massachusetts Institute of Technology, Cambridge, MA59717-3400 USA Prepared by:

Upload: others

Post on 14-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Tracking Atmospheric Plumes Using Stand-off Sensor Data

Robert C. Brown, David Dussault, and Richard C. Miake-LyeAerodyne Research, Inc.

45 Manning RoadBillerica, MA 01821-3976 USA

Sensor Data Fusion Working Group28 October 2005Albuquerque, NM

DTRACBIS2005.ppt

Patrick HeimbachDepartment of Oceanography

Massachusetts Institute of Technology, Cambridge, MA59717-3400 USA

Prepared by:

Page 2: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

The Inverse Problem

10/31/2005 Aerodyne Research, Inc. 2

Atmospheric transport and dispersion model

Known release Predicted observations?

Actual observations

Release location, magnitude, time?

Inverse model

C. Wunsch, The Ocean Circulation Inverse Problem, Cambridge University Press,1996:

“An inverse problem, is one that is the inverse to a corresponding forward or direct one, interchanging the roles of at least some of the knowns and unknowns”.

Fundamental aspect: the quantitative combination of theory and observation

Page 3: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Adjoint Models

10/31/2005 Aerodyne Research, Inc. 3

Numerical tools which provide the quantitative combination of theory and observations needed for the inverse modeling of physical systems.

Adjoint model applications:Data assimilation: optimize model-to-data fit

Model tuning: optimize model equations

Sensitivity analysis: propagation of anomalies

Page 4: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

What We’re Doing

10/31/2005 Aerodyne Research, Inc. 4

Program components

HPAC/SCIPUFFAutomatic

differentiationtools

Dipole Pride 26

Developing the adjoint model for a state-of-the-art atmospheric transport and dispersion model to characterize the source of a hazardous material release using stand-off detection data.

forward model(theory)

adjoint model(theory-observations)

field data(observations)

Page 5: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Automatic Differentiation

10/31/2005 Aerodyne Research, Inc. 5

Adjoint and tangent-linear models are developed directly from the numerical code for the dynamical model.

( )λδ*....M TMTMTδ* •Λ= 10β( ) ( )βλ •−ΛΛ= MMMt 0.......1

GieringGiering, Ralf and Kaminski, Thomas, Recipes for , Ralf and Kaminski, Thomas, Recipes for AdjointAdjoint Code Code Construction, ACM Trans on Math. Software, 24, 437Construction, ACM Trans on Math. Software, 24, 437--474, 1998.474, 1998.

M compose torulechain use Jacobians elementaryfor code

ationdifferentiordinary for rules use Moperator elementaryan asviewiscodeof lineEach

Λ

Λ

→→→

Page 6: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Second-order Closure Integrated Puff (SCIPUFF)

10/31/2005 Aerodyne Research, Inc. 6

FeaturesLagrangian Gaussian puff model.Ensemble-average dispersion and a measure of the concentration field variability.Second-order turbulence closure techniques

Relates dispersion rates to turbulent velocity statisticsPredicts statistical variance in the concentration field

Complete moment-tensor descriptionWind shear distortionPuff splitting algorithm and multi-grid adaptive merging algorithm

Adaptive time stepping scheme

Sykes, R.I., W.S. Lewellen, and S.F. Parker, “A Gaussian Plume Model of Atmospheric Dispersion Based on Second-Order Closure”, J. Clim. Appl. Met., 25, 322-331, 1986.

Page 7: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

SCIPUFF Adjoint & Tangent-Linear Models

10/31/2005 Aerodyne Research, Inc. 7

IncidentSingle source, instantaneous

Control variablesSingle source latitude & longitudeMassRelease time

DynamicsSingle puffCentroid evolutionTurbulent diffusionBuoyancy

Required codeFile handling and data I/OMeteorology routinesMaterials

Utility codeDriversNewton-Krylov minimization

Not includedPuff splittingAdaptive time stepping

SCIPUFFSCIPUFF

preprocessedSCIPUFF adjoint &

tangent-linear

Gradient testing

Testing & validation

C preprocessing TAF processing

Field tests

Finite difference

Page 8: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Dipole Pride 26 (DP26) Field Tests

10/31/2005 Aerodyne Research, Inc. 8

Defense Special Weapons Agency (DSWA) Transport and Dispersion Model Validation Program Phase II

To acquire data for the validation of integrated mesoscale wind field and dispersion model, in particular the HPAC model suite.Conducted at Yucca Flat on the Nevada Test Site.SF6 tracer gas release with downwind tracer sampling at distances ranging to 20 km, along with extensive meteorological measurements.Lateral and along-wind puff dispersion obtained from tracer concentration measurements.

C.A. Biltoft, “Dipole Pride 26: Phase II of Defense Special Weapons Agency Transport and Dispersion Model Validation,” DPG-FR-97-058, Dugway Proving Ground, Dugway UT, July, 1998.

Page 9: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

DP26 Test Site and Facilities

10/31/2005 Aerodyne Research, Inc. 9

Yucca Flat test siteNorth-south oriented basin30 km long and 12 km wide.Yucca Lake (1195 m above mean sea level (MSL) is lowest point and the basin slopes upward to the north.Basin surrounded by mountains: 1500 m (east) to 1800 m (west/north) MSL).

FacilitiesMEDA: network of meteorological data stations.BJY: Buster-Jangle intersection.

Whole air samplersThree sampling lines; 30 samplers per line; 12 bags per sampler – 15 minute resolution.

37.20

37.15

37.10

37.05

37.00

36.95

36.90

36.85

Latit

ude

(o N)

-116.12 -116.08 -116.04 -116.00

Longitude (oE)

release locations sampling sites MEDA stations

N2 N3

S2 S3

Line 1

Line 2

Line 3

Spatial Domain for DP26 Analysis

BYJ

Page 10: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

10/31/2005 Aerodyne Research, Inc. 10

SCIPUFF Adjoint - Application to DP26

Fixed puff width, fixed wind - not discussedFixed wind

Controls – release latitude and longitudeSamplers – along a given sampling line with concentrations > 90% of the peak concentration.

Variable wind fieldControls – release latitude and longitudeSamplers – along a given sampling line with concentrations > 10% of the peak concentration.

Variable wind field, release time - not discussedControls – release latitude, longitude, and (manual)time.Samplers – a given sampling line with conc’ns > 0.

Page 11: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Fixed Wind Adjoint Model

10/31/2005 Aerodyne Research, Inc. 11

One estimated release location for each sampling line.

37.20

37.15

37.10

37.05

37.00

36.95

36.90

Latit

ude

(o N)

-116.12 -116.08 -116.04 -116.00

Longitude (oE)

release samplers puff centroid release predicted selected sampler

Application to DP26 trial 09

37.20

37.15

37.10

37.05

37.00

36.95

36.90

Latit

ude

(o N)

-116.12 -116.08 -116.04 -116.00

Longitude (oE)

release samplers puff centroid release predicted selected samplers

Application to DP26 trial 11B

Page 12: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Fixed Wind Adjoint Model

10/31/2005 Aerodyne Research, Inc. 12

37.1237.14

37.1637.18

-116.10-116.08

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

37 1237.14

37.1637.18

-116 10-116.08

2

4

6

2

4

6

37.20

37.15

37.10

37.05

37.00

36.95

36.90

Latit

ude

(o N)

-116.12 -116.08 -116.04 -116.00

Longitude (oE)

release release predicted samplers sampler peak conc. puff centroid

Application to DP26 trial 5

Page 13: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Cost Function: Fixed Wind DP26 Trial 11B – Line 2

10/31/2005 Aerodyne Research, Inc. 13

37.19

37.18

37.17

37.16

37.15

37.14

37.13

37.12

Latit

ude

(deg

. N)

-116.14 -116.12 -116.10 -116.08 -116.06 -116.04Longitude (deg. E)

Samplers with concentration > 0

37.18

37.16

37.14

37.12

Latit

ude

(deg

. N)

-116.14 -116.12 -116.10 -116.08 -116.06 -116.04Longitude (deg. E)

Samplers 207 and 218

37.19

37.18

37.17

37.16

37.15

37.14

37.13

37.12

Latit

ude

(deg

. N)

-116.14 -116.12 -116.10 -116.08 -116.06 -116.04Longitude (deg. E)

Sampler with peak concentration

37.19

37.18

37.17

37.16

37.15

37.14

37.13

37.12

Latit

ude

(deg

. N)

-116.14 -116.12 -116.10 -116.08 -116.06 -116.04Longitude (deg. E)

Samplers 208 and 217

Page 14: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

SCIPUFF (Fixed Wind) Adjoint Summary

10/31/2005 Aerodyne Research, Inc. 14

1.0006

1.0004

1.0002

1.0000

0.9998

Latit

ude pr

edic

ted

/ Lat

itude

repo

rted

1.00061.00041.00021.00000.9998

Longitudepredicted / Longitudereported

Scatter in Predicted Source Location(Single puff and fixed wind field)

Page 15: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Fixed Versus Variable Wind Adjoint

10/31/2005 Aerodyne Research, Inc. 15

37.20

37.15

37.10

37.05

37.00

36.95

36.90

Latit

ude

(o N)

-116.12 -116.08 -116.04 -116.00Longitude (oE)

fixed wind surface observations puff centroid puff centroid predicted release predicted release

Application to DP26 trial 06

103

104

conc

entra

tion,

ppt

3.02.52.01.51.00.50.0∆(decimal time), hours

Line1 Line2 Line3

Sampling Line Integrated Tracer Concentrations

Page 16: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Variable Wind Adjoint

10/31/2005 Aerodyne Research, Inc. 16

102

103

104

conc

entra

tion,

ppt

2.52.01.51.00.50.0∆(decimal time), hours

Line1 Line2 Line3

Sampling Line Integrated Tracer Concentrations

37.20

37.15

37.10

37.05

37.00

36.95

Latit

ude

(o N)

-116.15 -116.10 -116.05 -116.00 -115.95

Longitude (oE)

Application to DP26 trial 03

samplers puff centroid predicted release reported release

Page 17: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Future Work, Broad research objectives

10/31/2005 Aerodyne Research, Inc. 17

More fully develop theoretical and numerical foundation for source location approaches, using adjoint model with ‘ideal’ observable data

observational data requirementssensor spatial resolutionthe impact of faulty observational dataatmospheric transport and dispersion spatial range

Incorporate measurement and model uncertaintiesTesting and validation using actual field data to ensure reliability and fully assess performance.

Page 18: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Future Work, Three year effort

10/31/2005 Aerodyne Research, Inc. 18

First year: extend SCIPUFF adjoint to enable source location using ideal observational data. Second year: incorporate measurementuncertainties, begin testing using field data. Third year: treat model uncertainties and continue testing and validation using field data. Successful completion: numerical code, tested against field data,

implements adjoint-based strategies locates hazardous release using observational dataincludes estimated uncertainties in predictions

Page 19: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

First Year Work

10/31/2005 Aerodyne Research, Inc. 19

Focus on adjoint model development extend the SCIPUFF adjoint model for source location applications use ideal or model simulated observational data

Apply adjoint model to ‘ideal’ observable data to be address:

observational data requirements,sensor spatial resolution, the impact of faulty observational dataatmospheric transport and dispersion spatial range.

Compare approaches for applying adjointmodels in source location applications.

Page 20: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Acknowledgments

10/31/2005 Aerodyne Research, Inc. 20

Allan Reiter (DTRA) and Rick Fry (DTRA) –programmatic supportScott Bradley (DTRA) – Dipole Pride 26 dataJim Hurd (Northup Grumman) – technical support and coordinationIan Sykes and Biswanath Chowdhury (Titan) – SCIPUFF Atmospheric Transport and Dispersion Code

Page 21: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

10/31/2005 Aerodyne Research, Inc. 21

Page 22: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

Transformation of Algorithms in Fortran (TAF)

10/31/2005 Aerodyne Research, Inc. 22

Commercial source code – to – source code translatorGiering, Ralf and Kaminski, Thomas, Transformation of Algorithms in Fortran, TAF Version 1.5, FastOpt, http://www.FastOpt.com, July 3, 2003.

FeaturesTangent-linear and adjoint models - 1st derivatives.Hessian code - 2nd derivatives.

Estimating the Circulation and Climate of the Oceans (ECCO)

Large data assimilation effort by MIT, SCRIPPS, NASA\JPL, and international collaborators: http://www.ecco-group.org.Based on the MIT GCM (global, 3-dimensional NS solver): http://www.mitgcm.org.~100,000 lines of code; ~108 control variables.

Page 23: Tracking Atmospheric Plumes Using Stand-off Sensor Data · Tracking Atmospheric Plumes Using Stand-off Sensor Data Robert C. Brown, David Dussault, and Richard C. Miake-Lye Aerodyne

References

10/31/2005 Aerodyne Research, Inc. 23

Biltoft, C., “Dipole Pride 26: Phase II of Defense Special Weapons Agency Transport and Dispersion Model Validation”, DPG-FR-98-001, Dugway Proving Ground, Dugway UT, January 1998.

Bradley, S. and T. Mazzola, “HPAC 3.1 Predictions Compared to Dipole Pride 26 Sampler Data”, June, 2004.

Giering, R. and Kaminski, T., Recipes for Adjoint Code Construction, ACM Trans on Math. Software, 24, 437-474, 1998.

Giering, R. and Kaminski, T., Transformation of Algorithms in Fortran, TAF Version 1.5, FastOpt, http://www.FastOpt.com, July 3, 2003.

Science Applications International Corporation (SAIC), Hazard Prediction and Assessment Capability (HPAC), User’s Guide 4.0, Document HPAC-UGUIDE-02-U-RAC0, August 15, 2001.

Sykes, R.I., W.S. Lewellen, and S.F. Parker, “A Gaussian Plume Model of Atmospheric Dispersion Based on Second-Order Closure”, J. Clim. Appl. Met., 25, 322-331, 1986.

Sykes, R.I. and D.S. Henn, Representation of Velocity Gradient Effects in a Gaussian Puff Model, Journal of Applied Meteorology, volume 34, 2715-2723, 1995.

Sykes, R.I., C.P. Cerasoli, D.S. Henn, The representation of dynamic flow effects in a Lagrangian puff dispersion model, Journal of Hazardous Materials A:64, 223-247, 1999.

Wunsch C., The ocean circulation inverse problem, Cambridge University Press, 1996.