trace ele ments and min eral as sem blage as pa laeoen vi...

22
S T U DIA G E O L O G I C A P O L O NICA Vol. 131, Kraków 2008, pp. 247–268. Geology of the Pieniny Klippen Belt and the Tatra Mts, Carpathians Edited by K. Birkenmajer Part XIX Patrycja WÓJCIK-TABOL 1 Trace elements and mineral assemblage as palaeoenvironmental markers in the Cenomanian/Turonian Magierowa Member (Pieniny Klippen Belt, West Carpathians) 2 (Figs 1–9; Tabs 1, 2) Abstract. The studied sediments of the Magierowa Member corespond to the Cenomanian/Turonian OAE 2. A better understanding of the genesis and palaeoenvironmental setting of this unit was achieved by means of geochemical indicators integrated with mineral composition. It suggests a strong influence of palaeoproductivity/redox cycles. The black shales are characterised by the enhanced accumulation and preservation of marine-derived organic matter. Lamination and enrich- ment of redox-sensitive elements (e.g., Ag, Cd, Mo, V) imply periodic prevalence of anoxic/euxinic conditions within the sediment (pore water) occasionally extending to the sediment/water interface. The bioturbated claystone intervals record periods of low productivity and development of more normal-marine conditions on the bottom. Furthermore, low Mn-contents, broad pyrite size-distribu- tion and presence of marine-origin organic matter suggest that an oxygen minimum zone (OMZ) must have existed within the water column during accumulation. The mineral assemblage of the Magie- rowa Mbr includes clay minerals, quartz, feldspar and iron minerals. Mineralogical data comparing with some gechemical ratios: Ti/Al, K/Al, Rb/Al suggest pelagic regime of deposition. Well-crysta- llised illite corresponding with high kerogen maturation and large iron mineral point to advanced diagenesis. Key words: Trace elements, illite, pyrite, organic matter, redox conditions, Oceanic Anoxic Event, Cenomanian–Turonian, Magierowa Member, Pieniny Klippen Belt, Carpathians. 1 Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland, E-mail: [email protected] 2 Manuscript accepted for publication May 15, 2008.

Upload: others

Post on 30-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

S T U D I A G E O L O G I C A P O L O N I C AVol. 131, Kraków 2008, pp. 247–268.

Ge ol ogy of the Pi en iny Klip pen Belt and the Ta tra Mts, CarpathiansEd ited by K. Birk en ma jer

Part XIX

Pa trycja WÓJCIK- TABOL1

Trace ele ments and min eral as sem blageas pa laeoen vi ron men tal mark ers

in the Ce no ma nian/Tu ro nian Mag ierowa Mem ber(Pi en iny Klip pen Belt, West Car pa thi ans)2

(Figs 1–9; Tabs 1, 2)

Ab stract. The stud ied sedi ments of the Mag ierowa Mem ber co re spond to the Ce no ma nian/Tu ro nianOAE 2. A bet ter un der stand ing of the gene sis and pa laeoen vi ron men tal set ting of this unit wasachieved by means of geo chemi cal in di ca tors in te grated with min eral com po si tion. It sug gests astrong in flu ence of palaeo pro duc tiv ity/re dox cy cles. The black shales are char ac ter ised by theen hanced ac cu mu la tion and pres er va tion of marine- derived or ganic mat ter. Lami na tion and en rich -ment of redox- sensitive ele ments (e.g., Ag, Cd, Mo, V) im ply pe ri odic preva lence of an oxic/eux iniccon di tions within the sedi ment (pore wa ter) oc ca sion ally ex tend ing to the sedi ment/wa ter in ter face.The bio tur bated clay stone in ter vals rec ord pe ri ods of low pro duc tiv ity and de vel op ment of morenormal- marine con di tions on the bot tom. Fur ther more, low Mn- contents, broad py rite size- distribu-tion and pres ence of marine- origin or ganic mat ter sug gest that an oxy gen mini mum zone (OMZ) must have ex isted within the wa ter col umn dur ing ac cu mu la tion. The min eral as sem blage of the Mag ie-rowa Mbr in cludes clay min er als, quartz, feld spar and iron min er als. Min era logi cal data com par ingwith some gechemi cal ra tios: Ti/Al, K/Al, Rb/Al sug gest pe lagic re gime of depo si tion. Well- crysta-llised il lite cor re spond ing with high kero gen matu ra tion and large iron min eral point to ad vanceddia gene sis.

Key words: Trace el e ments, illite, py rite, or ganic mat ter, re dox con di tions, Oce anic Anoxic Event,Cenomanian–Turonian, Magierowa Mem ber, Pieniny Klippen Belt, Carpathians.

1 In sti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity, Oleandry 2a, 30-063 Kraków, Po land,E-mail: [email protected]

2 Manu script ac cepted for pub li ca tion May 15, 2008.

Page 2: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

IN TRO DUC TION

Black shale fa cies have wide spread dis tri bu tion within mid-Cre ta ceous strata.Or ganic car bon-rich sed i ments de pos ited at the Cenomanian–Turonian bound aryare re cog nised as ev i dence of the global Oce anic Anoxic Event 2 (OAE 2; cf.Schlanger & Jenkyns, 1976; Jenkyns, 1980). The black shales which oc cur withinthe mid-Cre ta ceous strata of the Pieniny Klippen Belt (PKB), West ern Carpathians, may be at trib uted to the Cre ta ceous anoxic events (OAEs) in the pre vi ous oce anicPieniny Klippen Ba sin. Con se quently, the Magierowa Mem ber (Birkenmajer &Jednorowska, 1984) may re cord the anoxic event termed as OAE 2 (Birkenmajer &Jednorowska, 1987; Gasiñski, 1988; B¹k & B¹k, 1994, Wójcik & Gasiñski, 2000;Wójcik-Tabol, 2006).

The main aim of this study was re con struc tion of the re dox con di tions un derwhich the Magierowa Mem ber sed i ments were formed, by ex am in ing their min eralcom po si tion, or ganic pe trog ra phy (macerals), and trace el e ment com po si tion.Macerals are an el e men tary mi cro scopic or ganic con stit u ent that can be re cog nisedby their shape, mor phol ogy, reflectance, and flu o res cence (Stopes, 1935). The ter -mi nol ogy used to de scribe or ganic mat ter is based on the Stopes-Heerlen no men -cla ture (Stopes, 1935; Stach et al., 1982), modified by ICCP System 1994.

There are three ba sic groups of macerals: vitrinite – a shiny ho mog e nous ma te -rial de rived from coalified woody tis sue, liptinite – mostly hy dro car bons fromwaxes, res ins, spores, pol lens etc., and inertinite – dull black in ert car bo na ceousma te rial from charred and bio chem i cally al tered plant cell wall material.

The iso to pic com po si tion of or ganic car bon may be ap plied as in di ca tor of or -ganic par ti cles source and depositional con di tions. Most ter res trial plants have d13C val ues rang ing from –24 to –34‰, whereas those of aquatic plants vary from –6 to–19‰. Al gae and li chens form an in ter me di ate group with d13C val ues from –12 to–23‰ (Smith & Ep stein, 1971). The iso tope com po si tion of car bon in the or ganicfrac tion of sed i men tary rocks changes as a func tion of time due to the pref er en tialde struc tion of 13C-rich car bo hy drates and pro teins. In this way the or ganic mat ter ispro gres sively en riched in “light” car bon de rived from lignin and cel lu lose. Hoefs(1997) re ports that sed i men tary rocks of pre-Ter tiary age have av er age d13C val uesof –28‰ re gard less of the or i gin of the or ganic mat ter they con tain.

Sev eral key el e ments were used as prox ies for terrigenous sed i men tary com po -nents, such as Al for clays, K and Rb for feld spars and rutile/ana tase, as well as Tifor sphene. Alu minium con tent may be also used as a kaolinite proxy (Schnei der etal., 1997). High Ti/Al ra tio im plies a greater con tri bu tion of coarse-grained ma te -rial and, there fore, a di rect con tri bu tion from turbidites or de po si tion via eolianprocesses.

The con cen tra tion of el e ments that are fre quently re ported as as so ci ated with or -ganic mat ter were also in ves ti gated. The geo chem i cal be hav iour of trace-el e mentsin mod ern and an cient TOC-rich rocks have been fre quently dis cussed (e.g., B¹k,2006, 2007; Brumsack, 1980; 1986; 1989; Thiede et al., 1982; Ar thur et al., 1990;Jones & Man ning, 1994; Mongenot et al., 1996; Veto et al., 1997). En rich ments of

248 P. WÓJCIK-TABOL

Page 3: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

re dox-sen si tive el e ments should re flect the depositional en vi ron ment of TOC-richsed i ments. Many el e ments, e.g., Co, Cu, Cr, Ni, V, as well as rarer trace-el e mentsel e ments: Ag, As, Cd, Mo, U, can be fixed in high amount in sed i ments un der re -duc ing con di tions. V/Cr and V/V+Ni ra tios have also been ap plied as palaeo-re doxindicators (Lewan & Maynard, 1982; Lewan, 1984).

The tex ture of py rite and framboid-size dis tri bu tion of fers a use ful means of dis -crim i nat ing be tween syngenetic and diagenetic sulphides pre served in both mod ern and an cient sed i men tary rock (Wilkin et al., 1996). Framboids formed in theeuxinic wa ter col umn (syngenetic) are on av er age smaller and less vari able in size

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 249

Fig. 1. Lo ca tion of the area in ves ti gated in the Pol ish part of the Pieniny Klippen Belt (box A) inthe geo log i cal map of the Carpathians sim pli fied and mod i fied from Birkenmajer, 1979 and ̄ ytko etal., 1989; MG – studied section

Page 4: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

than those formed in sed i ments un der ly ing oxic wa ter col umn (diagenetic; Rais-well & Berner, 1985).

OUT LINE OF GE OL OGY

The com plex ge ol ogy of the Pieniny Klippen Belt (PKB) has been a sub ject ofnu mer ous in ves ti ga tions for many years (e.g., Alexandrowicz et al., 1968; Birken-majer, 1979; Andrusov et al., 1973; Sikora, 1971; Ksi¹¿kiewicz, 1972). ThePieniny Klippen Belt is a strongly de formed struc tural zone that sep a rates the Outer and In ner Carpathians (Fig. 1). The Mesozoic Pieniny Ba sin was an east ern branchof the Tethys Ocean dur ing the Cre ta ceous. Sev eral lithostratigraphic-fa cies suc -ces sions are dis tin guished in the cross-sec tion of the belt; they de scribe thepalinspastic vari a tion of the Pieniny Ba sin (e.g., the shal low est Czorsztyn and thebathial Pieniny suc ces sions; Birkenmajer, 1979; Gasiñski, 1991). The MagierowaMem ber was dis tin guished as a lithostratigraphic unit of the Jaworki For ma tion byBirkenmajer & Jednorowska (1984, 1987). The oc cur rence of this unit is lim ited tothe Pieniny Suc ces sion de pos ited in the deep est part of the ba sin. Its stratotype is lo -cated within the Magierowa Ska³ka Klippe near Sromowce Ni¿ne vil lage (Fig. 1A). The foraminifera and stra tig ra phy of this sec tion were stud ied by Morgiel & Sikora(1974) and Jednorowska (1981).

Birkenmajer and Jednorowska (1984, 1987) have made pre cise de scrip tions ofthe bio-and lithostratigraphy of the Magierowa Mem ber. The au thors dis tin guishthree sub units within the Magierowa Mbr. The lower sub unit con sists of green ishmarly shales with di verse plank tonic foraminifera as sem blages, which cor re spondto an early part of the Rotalipora cushmani Zone of the Mid dle Cenomanian(Robaszynski & Caron, 1995). The mid dle sub unit con sists of radiolarian shales,com pletely de void of cal car e ous micro fauna. The up per part of the Magierowa Mbr in cludes marly shales with foraminiferal as so ci a tion in dic a tive of the Early Turo-nian Praeglobotruncana helvetica Zone (Robaszynski & Caron, 1995).

DE SCRIP TION OF STUD IED SEC TION

The Magierowa Ska³ka hill sec tion is sit u ated near the vil lage of SromowceNi¿ne, along a coun try road from Szewców Gronik that leads to the MagierowaSka³ka hill. The lo ca tion of the sec tion and its lith o logic de scrip tion have been pre -sented by sev eral au thors (Morgiel & Sikora, 1974; Birkenmajer & Jednorowska,1984, 1987; Gasiñski, 1988; B¹k, 1999; Wójcik & Gasiñski, 2000, Wójcik-Tabol,2006). The lower part of the mem ber con sists of green weakly cal car e ous shaleswith brown ish black in ter ca la tions of cherty shales (MG 1–8/99; MG 2/00, see Fig.2). The mid dle part of the Magierowa Mem ber con sists en tirely of black and greenradiolarian shales (MG 10–25/99). Dur ing this study only lower and mid dle sub -units of the member were investigated.

250 P. WÓJCIK-TABOL

Page 5: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

AN A LYT I CAL TECH NIQUES

Twenty seven sam ples of the Magierowa Mem ber were col lected from each dis -tin guish able (li thol ogy, col our, hard ness etc.) layer in the sec tion. The sam pleswere dried and pul ver ised for min er al og i cal (XRD), Rock Eval, and iso to pic, aswell as geo chem i cal anal y ses. Min er al og i cal as sem blages were de ter mined us ingX-ray dif frac tion (Philips X-pert diffractometer us ing CuKa ra di a tion, a dif fractedbeam mono chro ma tor) on bulk rock and on the sep a rated clay min er als. The XRDanal y sis of the clay min er als (Brindley & Brown, 1980; Moore & Reynolds, 1997)was per formed us ing mounts of the <2 µm frac tions. The clays were an a lyzed af terair-dry ing and sol va tion with glyc erol, and af ter heat ing to 500°C. Crystallinity in -di ces were mea sured as the width at half height of the first basal re flec tions (001).

Min eral com po si tion and micro struc tures were de ter mined through mi cro -scopic study (Nikon ECLIPSE, E 600 POL; trans mit ted and re flected light). Or -ganic pe trol ogy was ex am ined in pol ished thin sec tions un der flu o res cent light(Olym pus OPl 3, Fl Mk II). Py rol y sis as say of sam ples was con ducted on a DelsiModel II Rock-Eval and Rock Eval 6 in stru ments equipped with an or ganic car bonmod ule. The to tal or ganic car bon (TOC) was mea sured to de ter mine the quan tity of

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 251

Fig. 2. Lithological sec tion of the Magierowa Mem ber and po si tion of col lected sam ples (MG).Lithostratigraphic units af ter Birkenmajer & Jednorowska (1984)

Page 6: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

or ganic mat ter. The hy dro gen in dex (HI), which can be used to as sess kerogen type, cor re sponds to the quan tity of pyrolyzable or ganic com pounds from S2 (hy dro car -bons gen er ated by pyrolytic deg ra da tion of the kerogen in the rock) rel a tive to theTOC in the sam ple mg HC/g TOC. The ox y gen in dex (OI) is in di rectly related tothe quantity of terrestrial organic matter in the sample.

Trace and mi nor el e ments con cen tra tions were mea sured us ing ICP-OES spec -trom e try and INAA anal y sis. The pul ver ized ma te rial was an a lyzed af ter dis so lu -tion in an HCl-HNO3-HClO4-HF so lu tion. Trace-el e ment con tents were shale-nor -mal ized to give an es ti ma tion of their rel a tive en rich ment. Ac cord ing to Wedepohl(1971), the enrichment factor (EF) is: (trace-el e ment con tent/Al con tent) sam ple /(trace-el e ment con tent/Al con tent) shale.

Iso to pic de ter mi na tions (car bon if er ous car bon and or ganic car bon) were car ried out on the MI-1305 mass spec trom e ter with de tect ing sys tem. The sta ble iso topecom po si tion was ex pressed as d13C val ues rel a tive to the PDB stan dard.

RE SULTS AND DIS CUS SION

Sedimentology. The in ves ti gated se quence con sists of two dif fer ent lithotypes:marls and cherty shales. The lower part of the se quence (3–5 m thick) con sists ofpale to green ish cal car e ous claystones and marly shales. The in di vid ual thininterlayers of brown ish sil ica-rich shales ap pears within the marls. These are over -lain by a 5–7 m thick unit of al ter nat ing lam i nated black shales and bioturbated paleto green ish claystones. They prob a bly re flect pro duc tiv ity/re dox cy cles. Blackshale in ter vals dis play fine par al lel lam i na tion, un dis turbed by ben thic ac tiv ity(Fig. 3A), and rep re sent anoxic con di tions. The pale to green ish claystones re cordthe pro duc tiv ity ep i sodes. They con tain many bur rows with black in fill ings (Fig.3B). To ward top of the suc ces sion, the thick ness of light lay ers de creases pro vid ingev i dence for the longer duration of redox periods and anoxic/euxinic bottom water.

252 P. WÓJCIK-TABOL

Fig. 3. Sedimentological microfeatures: A – fine par al lel lam i na tion within black shales; B –green ish claystones con tain ing bur rows with black in fill ings; thin-sec tion im ages, TL, 1N

Page 7: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 253

Fig. 4. Com par i son of the pow der X-ray diffractograms (CuKa ra di a tion) of the MagierowaMem ber sam ples (A); B – pow der X-ray dif frac tion pat terns of the MG clays

Page 8: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

Min er al ogy. Based on XRD stud ies, the min eral com po si tion of the Magierowa Mbr sam ples con sists mainly of quartz and clay min er als. Al kali feld spars are pres -ent in mi nor amounts (Fig. 4A). The sam ples from lower part of the MagierowaMbr are slightly en riched in car bon ate. The sam ples taken above the cherty shales(mid dle part of the mem ber) are min er al og i cally uni form. Re gard less of sed i men -tary fa cies, the sam ples con tain quartz, clay min er als and feld spar. The clay-min -eral as sem blage in cludes illite, kaolinite and chlorite (Fig. 4B). Illite and kaoliniteare well crys tal lized, with crystallinity in di ces of 0.2–0.3 2Q. Chlorite is char ac ter -ized by rel a tive poorer crystallinity (0.45 2Q). The im prov ing illite crystallinity isre lated to in creas ing tem per a tures dur ing burial. Hoffman & Hower (1979) firstpro posed us ing the smectite per cent age in illite–smectite-bear ing shales as apalaeogeothermometer. They con cluded that the on set of illitisation oc curred at60°C, ap pear ance of illite at 210°C and mica at 275°C. Rob ert & Chamley (1982),how ever, sug gest that the clay-min eral com po si tion of Cre ta ceous oce anic sed i -ments is a func tion of pri mary in put, based on their con ten tion that the illite andchlorite were de tri tal in or i gin and in di cated pe ri ods of in tense phys i cal ero sion.Con trary to smectite, which pro vides ev i dence for cli ma tic con di tions suit able forthe neoformation of clay min er als, i.e., with pro nounced dry/hu mid con trast(Chamley, 1989). It is worth men tion ing that the Pieniny Ba sin be longed to theTethys and was sit u ated in the trop i cal cli mate. More over, de po si tion of theMagierowa Mbr sed i ments took place un der pe lagic re gime. For those rea sons, thepres ence of pri mary smectite seems more pos si bly.

The mi cro scopic stud ies re vealed that quartz and feld spar oc cur as grains withina clay ma trix. The ubiq ui tous pres ence of si lici fied micro fauna tests and iron min er -als (haematite, goethite and py rite) was also noted. The iron min er als adopt var i ousforms (Fig. 5), from mas sive to ag gre gated, euhedral (mainly cubes with someoctahedra) and with a sphe roi dal struc ture termed framboidal (Love & Amstutz,1966). Gen er ally, they re place the or ganic ma trix and min eral skel e tons. An ex am -ple of skel e tal remineralisation is a pyritised triakson (built of mas sive py rite) andforaminifera tests (com posed by intergrown crys tals). The framboids dis play aspec trum of sizes that range from sev eral mi crons to sev eral milli metres (Fig. 6).The dom i na tion of the larger forms (>10 µm in di am e ter) is con spic u ous. Most ofthem are partly or com pletely recrystallised. Love and Amstutz (1966) sug gestedthe pos si bil ity that framboids could recrystallise to sin gle py rite grains. The growthof sul phide framboids can lead to spherule for ma tion. Iso lated framboids are un -com mon; in stead, they oc cur as poliframboid or framboidal clus ters. Typ i calpoliframboids con sists of many in di vid ual, dif fer ently sized framboids (sensuSaw³owicz, 2000). In con trast, small (<10 µm in di am e ter) and uni formly sizedframboids form casts of radiolaria – closely packed framboids pre vi ously infilledskel e ton, which later dis solved. Ac cord ing to Saw³owicz (2000), dif fer ent mi cro-en vi ron ments de velop in side the test that pro moted the de com po si tion of or ganic“soft parts” that in duced con di tions suit able for framboid for ma tion. It is worth not -ing that ag gre ga tions of ore min er als may not nec es sar ily be com posed of py rite butmay also con sist of iron ox ides or hy drox ides. They form pseudo morphs af ter, or

254 P. WÓJCIK-TABOL

Page 9: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

rims on, for mer framboidal py rite. The ox ide phases may be the sec ond ary min er als orig i nated by the sul phide ox i da tion. How ever, Mar ti nez Ruiz et al. (1995) assumethe terrestrial or organic derivation of goethite framboids.

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 255

Fig. 5. Iron min er als in the Magierowa Mem ber sam ples; A – large-size framboidal ag gre gatescon tain ing py rite “cubes” (Pr) and recrystallised Fe-ox ide spherule (Gt), sam ple MG 10G/99, EDSim age; B – sponge’s sil ica skel e tal el e ment re placed by mas sive py rite and partly oxi dised tohae ma tite (Hm), sam ple MG 10B/99, RL, 1N; C – or ganic “ma trix” pyritised to poliframboidalag gre gate, py rite (Pr) is partly recrystallised and oxi dised to goethite (Gt), sam ple MG 18/99, RL, 1N;D – hae ma tite (Hm) psudomorphs af ter py rite sur rounded by goethite (Gt), sam ple MG 20/99, RL,XN; E – framboids ag gre gate, sam ple MG 10G/99, TL, 1N; F – large framboid con tain ing py riterelicts in the centre, sample MG 10G/99; RL, 1N

Page 10: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

Tex ture and size-dis tri bu tion of these min er als cor re late with lithotypes of theMagierowa Mbr. The green claystones host many Fe-min er als. This pop u la tion in -cludes mainly large framboidal ag gre gates and recrystallised skel e tons re placed byFe-ox ides or Fe-hy drox ides. Oc ca sion ally, ves tiges or ‘ghosts’ of py rite oc cur inthe cen tres of the framboids. More over, abun dant py ritic casts of radiolaria can befound.

The black shales con tain more fre quent sulphides. They oc cur as framboidal py -rite and euhedral crys tals (10–20 µm in di am e ter), sug gest ing that py rite for ma tiontook place in anoxic porewater rather than in euxinic wa ter col umn (Raiswell &Berner, 1985; Wignall & New ton, 1998). More ad vanced pyritisation ap pearswithin TOC-poor, oxic sed i ments. This sug gests that op ti mum con di tions forpyritisation oc cur near the oxic/anoxic bound ary. Framboids grow more rap idly ineuxinic rather than oxic en vi ron ments (Wilkin et al., 1996).

The min er al og i cal stud ies are in good agree ment with the chem i cal data of thisin ves ti ga tion (Tab. 1). The Magierowa Mbr sam ples dis play very low Ti/Al ra tios – be low 0.1 – that may in di cate pe lagic de po si tion (Dymond et al., 1997). Low Ti/Alra tios cor re spond to low K/Al ra tios (< 0.5). Low K/Al ra tios in di cate an abun dance of kaolinite, whereas high Rb/Al ra tios (>20) are in ter preted as feldspar and illiteindicators.

Or ganic mat ter con tent. The to tal or ganic car bon (TOC) con tent of theMagierowa Mbr sam ples range from 0.13 to 2 wt. % (Tabs. 1, 2). The TOC con tentsof the Magierowa Mem ber black shales are lower than these re ported for CTBEblack shales (Ar thur et al., 1990; Warn ing & Brumsack, 2000) and than the re centBlack Sea sapropel (Brumsack, 1989). The black shales in ter vals are en riched in or -ganic mat ter, whereas the as so ci ated green interlayers gen er ally con tain less than

256 P. WÓJCIK-TABOL

Fig. 6. His to gram show ing the size fre quency of framboids in the Magierowa Mbr sed i ments

Page 11: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

0.5 wt % TOC. Hy dro gen in dex (HI) val ues are 40 mg HC/g TOC in av er age,whereas the ox y gen in dex val ues (OI) yield be tween 30 and 100 mg CO2/gTOC. Aplot of HI vs. OI (Fig. 7) de picts a type IV kerogen – oxi dised or ganic mat ter termed“dead car bon”. These data are also dis played in the di a gram HI vs. OI. The val ues of max i mum py rol y sis tem per a ture ex ceed 460°C and in di cate a high de gree ofmat u ra tion.

Or ganic pe trog ra phy of the sam ples re veals the dom i nance of amor phous or -ganic mat ter (OM) as well as land plant de tri tus. The amor phous OM is black,non-flu o resc ing wispy ma trix in ti mately as so ci ated with the clay ma trix of theshale (see: Fig. 3A). The de tri tal par ti cles of ten dis play their in ter nal struc ture;thus, they are clas si fied as fusinite and sclerotinite be long ing to the inertinite groupof macerals (Fig. 8). Most of this ma te rial is best de scribed as inertodetrinite, small(gen er ally less than 30–40 µm) inertinite frag ments (Fig. 8). The qual ity dif fer encewas noted be tween maceral as sem blages within the black shales and TOC-poorclaystones. The black shales and green claystones dom i nantly con tain amorphousOM and organic detritus, respectively.

The or i gin of struc tured inertinite could in clude ox i da tion dur ing trans port andwithin the wa ter col umn, or rapid ox i da tion of plant ma te ri als as so ci ated withwildfires in ter res trial en vi ron ments. Trans port of wild fire-de rived inertinite intothe ma rine ba sin may have been by wa ter or wind (Premuzic et al., 1982). Stud ies of mod ern windblown char coal sup port ae olian trans port of frag ments smaller than2.5 µm (Grif fin & Goldberg, 1979); how ever, Clark (1988) noted that al though thema jor ity of wind-borne char coal par ti cles are in the 5–20 µm range, par ti cles up to150 µm may be trans ported this way. Many of the inertinite frag ments ob served inthis study are within the 5–110 µm range. Al ter na tively, some of this inertinite maybe ma rine in or i gin. The amor phous OM oc cur ring fre quently within black shalescould be the re cord of high pro duc tiv ity. The ma rine-de rived OM sunk slowly un -

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 257

Fig. 7. Di a gram of hy dro gen in dex vs. ox y gen in dex and types of kerogen es ti mated on Rock Evaldata in the Magierowa Mem ber sam ples (I – alginite, II – liptynite, III – vitrynite, IV – inertynite)

Page 12: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

der pe lagic re gime. It did not oxi dise and was pre served be cause of an oxia withinwa ter column. The OM has become mature due to burial and thermal alternation.

Kerogen d13C val ues range from –23.56 to –23.89 ‰ PDB (Tab. 2). The mostac cepted ex pla na tion for 13C en rich ment is the in creased in put of ter res trial OM(Smith & Ep stein, 1971; Dean et al., 1986). The stud ied or ganic mat ter be longs to

258 P. WÓJCIK-TABOL

Chem i cal com po si tion of the Magierowa Mbr sed i ments com pared with chem i cal

Sample Ag Cd Cu Mn Mo Ni Zn V Bi U

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

MG 2-B/00 0.4 1.8 83 318.4 4 168.5 398.2 483.3 2.2 4.3

Al. norm 0.05 0.2 10.7 41.3 0.5 21.9 51.7 62.7 0.3 0.55

EF 6.5 15.9 2.12 0.5 3.5 2.84 4.81 4.27 0.02 1.65

MG 9/99 0.5 <0.3 127.6 127.6 4.6 120.3 241.7 324.8 <2 5

Al. norm 0.08 20.6 20.6 0.7 19.4 39.00 52.4 0.8

EF 10.2 4.04 0.26 5.05 2.52 3.63 3.56 2.38

MG 10-B/99 0.45 2.3 116.3 243.6 3.2 118.2 356.8 382.6 2.3 4.4

Al. norm 0.07 0.35 17.9 37.5 0.5 18.2 54.9 58.8 0.35 0.68

EF 8.75 24.1 3.5 0.47 3.35 2.36 5.11 4.00 0.02 2.00

MG 18/99 0.6 3.5 136 190.4 3.9 132 520 413 <2 4.9

Al. norm 0.08 0.48 18.6 26.1 0.5 18.1 71.23 56.5 0.67

EF 10.4 32.6 3.6 0.33 3.6 2.35 6.63 3.85 1.98

MG 25-B/99 0.9 5.9 154.2 291.1 3.8 105.8 611 466.6 2.5 4.2

Al. norm 0.15 1 26.1 49.3 0.6 17.9 103.5 79.1 0.42 0.71

EF 19.3 68.1 5.14 0.62 4.4 2.33 9.65 5.38 0.03 2.1

MG 2-G/00 <0.3 <0.3 104.3 330.8 <1 159.9 130.2 128.6 <2 3.1

Al. norm 13.7 43.5 21.00 17.1 16.9 0.41

EF 2.7 0.55 2.7 1.59 1.15 1.2

MG 10-G/99 <0.3 0.8 99.8 204 <1 86.4 140 136.5 2.9 2.9

Al. norm 0.12 15.8 32.4 13.7 22.2 21.6 0.46 0.46

EF 8.64 3.1 0.41 1.78 2.1 1.47 0.03 1.36

MG 20/99 <0.3 <0.3 102 250 <1 103.5 135 130 <2 3

Al. norm 15.2 37.3 15.44 20.15 19.4 0.45

EF 3.00 0.47 2.01 1.88 1.32 1.32

Black Seasapropels1

0.15 1.04 87 n.d 80 96 83 173 n.d 16

Mediter-raneansapropels2

1 14 114 n.d 76 190 91 440 200 17

CTBE blackshales3

2.90 16 188 n.d 145 162121

3739 303 18

n.d – no data; <1 – be low de tec tion level1 Brumsack, 19892 Warn ing & Brumsack, 20003 Ar thur et al., 1990; Warn ing & Brumsack, 2000

Page 13: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

the vitrinite/inertinite group; there fore, it is worth con sid er ing whether ap pre cia bleiso tope frac tion ation take place dur ing coalification (Deines, 1980). Ad di tion ally,some of the or ganic com pounds could be se lec tively de stroyed. The deg ra da tion ofthe 13C-rich car bo hy drates means the 12C en rich ment of or ganic mat ter.

In or ganic geo chem is try. The ab so lute con cen tra tions of se lected ma jor, mi -nor, and trace el e ments are shown in Ta ble 1. They are nor mal ised us ing alu minium as a de tri tal in dex and, then, the Al nor mal ised con cen tra tions are com pared to these en coun tered in “av er age shale” as en rich ment fac tor (after Wedepohl, 1971; 1991).

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 259

Ta ble 1

com po si tion of Black Sea sapropels, Med i ter ra nean sapropels and CTBE black shales

Ba Co Cr Sb V/V+Ni V/Cr Ca K Ti Al Fe S TOC

ppm ppm ppm ppm % % % % % % %

560 27 165 5.5 0.74 2.93 0.9 3.9 0.4 7.7 3.7 0.05 1.3

72.7 3.5 21.4 0.71 0.1 0.38 0.11 0.50 0.05 1 0.48 0.006 0.16

1.1 1.63 2.1 6.32 1.3 2.33 0.66 1.5 0.97 1 0.88 0.28 7.47

490 18 200 6.1 0.72 1.62 0.3 3.00 0.4 6.2 3.96 0.03 1.55

79.00 2.9 32.2 0.98 0.12 0.26 0.05 0.48 0.06 1 0.64 0.005 0.25

1.2 1.35 3.17 8.7 1.59 1.60 0.27 1.43 1.21 1 1.17 0.21 11

502 15 182 5.9 0.76 2.10 0.4 3.2 0.4 6.5 3.8 0.08 1.81

77.2 2.3 28.00 0.9 0.12 0.32 0.06 0.49 0.06 1 0.58 0.012 0.28

1.18 1.07 2.75 8.03 1.58 1.98 0.34 1.46 1.16 1 1.07 0.54 12.3

513.5 20 190 4.9 0.75 2.17 0.3 3.7 0.3 7.3 3.6 0.1 1.5

70.3 2.74 26.00 0.67 0.1 0.29 0.04 0.50 0.04 1 0.49 0.013 0.20

1.07 1.27 2.56 5.94 1.34 1.82 0.23 1.50 0.77 1 0.90 0.60 9.09

530 11 173 4.7 0.81 2.69 0.9 3.6 0.4 5.9 3.41 0.14 2.00

89.8 1.86 29.3 0.79 0.14 0.45 0.15 0.61 0.06 1 0.57 0.02 0.34

1.37 0.87 2.9 7.05 1.86 2.80 0.86 1.80 1.27 1 1.05 1.05 15

580 35 131 2.00 0.45 0.98 1.4 3.7 0.3 7.6 3.59 0.02 0.1

76.3 4.6 17.2 0.26 0.06 0.13 0.18 0.48 0.04 1 0.47 0.002 0.01

1.16 2.14 1.7 2.33 0.79 0.79 1.04 1.44 0.74 1 0.86 0.12 0.58

410 17 133 2.7 0.61 1.02 0.2 3.1 0.3 6.3 3.14 0.01 0.13

65.00 2.7 21.1 0.43 0.1 0.16 0.03 0.49 0.05 1 0.49 0.001 0.02

0.99 1.26 2.07 3.79 1.31 1 0.18 1.45 0.89 1 0.91 0.07 0.91

520 22 130 2.5 0.55 1 0.3 3.2 0.3 6.7 3.3 0.03 0.37

77.6 3.3 19.4 0.37 0.08 0.15 0.04 0.47 0.04 1 0.49 0.004 0.05

1.18 1.53 1.9 3.3 1.12 0.91 0.25 1.41 0.84 1 0.90 0.19 2.44

624 27 70 n.d 0.64 2.47 n.d n.d n.d 9.74 n.d 1.28 6.5

1015

64 108 14.2 0.70 4.07 n.d n.d n.d 3.90 n.d 2.80 5.5

654 33 137 15.4 0.82 5.39 n.d n.d n.d 2.87 n.d 2.10 8.9

Page 14: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

The trace el e ment con cen tra tions of the Magierowa Mem ber sam ples are gen er -ally lower than these re ported for CTBE black shales (Ar thur et al., 1990; Warn ing& Brumsack, 2000) and the re cent Black Sea sapropels (Brumsack, 1989). The sul -phur con cen tra tion in ev ery sam ple an a lyzed is even lower than S con tent ofTOC-poor “av er age shale” (Wedepohl, 1971; 1991). This re sults from ox i da tionpro cesses that al ter sulphidic phases (py rite) into iron-ox ides. Com par ing totrace-el e ments com po si tion of CTBE black shales and the Black Sea TOC-rich sed -i ments, the ab so lute con tents of Mo, Ag, Sb, Ba Cu, Ni and U marked for theMagierowa Mbr sam ples are sig nif i cantly lower. Bis muth con tents are even lowerthan these from the “av er age shales”. Cd, V and Zn con cen tra tions are sim i lar tothese re ported for Black Sea sapropel. Con cen tra tions of Co and Cr are sim i lar/higher than these from CTBE black shales.

The Magierowa Mem ber sam ples are char ac ter ised by low Ca con tents (be low 1 wt. %). Prob a bly, it is an ef fect of car bon ate dis so lu tion un der deep-wa ter con di -tions (be low the CCD). The Al con tent of the sed i ment var ies be tween 5.9 and7.7%, the to tal or ganic car bon con tent be tween 0.13 and 1.9% TOC, sug gest ing ased i ment com po si tion con trolled pri mar ily by or ganic mat ter. Con se quently, traceel e ment com po si tion of sam ples dis plays ev i dent re la tion ship with TOC con cen -tra tion. En rich ment of trace met als rel a tive to av er age shale has been ex pressed asen rich ment fac tor (EF). En rich ment fac tors mea sured for Cd, Ag, Mo, Zn and V inthe black shales of the Magierowa Mem ber are higher than 2, whereas in the greenclaystones val ues of EF ap prox i mate 1 (Fig. 9). En rich ment of re dox-sen si tive trace el e ments can oc cur ei ther in anoxic ba sin, where the sur face sed i ments are in con -tact with euxinic wa ter, or by dif fu sion from sea wa ter to anoxic sed i ments be lowthin oxic ho ri zons at the sed i ment/wa ter in ter face. The above-men tioned el e mentpro files sug gest the ep i sodic pres ence of anoxic bot tom and/or pore wa ter. In con -trast to the trace metal en rich ment, black shales and green claystones are both rel a -

260 P. WÓJCIK-TABOL

Ta ble 2

Rock Eval anal y sis data from sam ples in ves ti gated; S2-hy dro car bonsgen er ated by pyrolitic deg ra da tion of the kerogen

SamplesTOC

[wt %]Tmax[°C]

S2 HI OIKerogen

d13C org. [PDB. ‰]

MG 2-G/00 0.1 ? 0.2 n.d. n.d. -23.58

MG 2-B/00 1.3 464 0.48 48 36 -23.73

MG 9/99 1.55 460 0.4 36 50 -23.59

MG 10-G/99 0.13 ? 0.16 n.d. n.d.

MG 10-B/99 1.81 464 0.94 55 33

MG 18/99 2 469 0.43 27 84 -23.89

MG 20/99 0.37 465 0.1 27 97 -23.56

MG 25/99 1.63 466 0.72 28 45

hy dro gen in dex (HI) – quan tity of pyrolizable or ganic com pounds from S2 rel a tive to TOC (mg HC/g TOC);ox y gen in dex (OI) – quan tity of ter res trial or ganic mat ter (mg OC/g TOC); n.d. – not de tected, ? – un cer tain re sults

Page 15: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

tively de pleted in Mn. Man ga nese is dis solved and re moved from the sed i ment un -der re duc ing con di tions (Dean & Ar thur, 1987; Quiby-Hunt & Wilde, 1994). It ispos tu lated that Mn-de ple tion was caused by a low over all sup ply of man ga nese tothe sea floor. The man ga nese could be removed from settling particles elsewhere inthe water column. The oxygen minimum zone would be a place of effective releaseof Mn.

Nev er the less, low Mn con tents cor re late with low Fe con tents (EF < 1) andV-en rich ment (EF > 1) and may sug gest that the en tire Magierowa Mbr se quencewas de pos ited un der low pH and Eh con di tions (see Quinby-Hunt & Wilde, 1994).Va na dium, as a charged ion [H2VO4]

–1 or [VO]+2, could be in cor po rated into thesed i ment by re duc tion with H2S in euxinic en vi ron ments or by ab sorp tion to or -ganic par ti cles in anoxic sed i ments (Brein & Wanty, 1991). Ni dis plays a roughcor re lates with anoxic conditiona; there fore, in creased V/V+Ni ra tio has been ap -plied as an anoxic in di ca tor (Lewan & Maynard, 1982). The val ues of V/Cr morethan 2 have been also used as palaeoredox pointer (Lewan, 1984). The TOC-rich

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 261

Fig. 8. Mi cro scopic im ages of macerals (OM-or ganic mat ter). A – or ganic de tri tus dis persedwithin min eral ma te rial, sam ple MG 2G/00, EDS im age; B – frag ment of struc tural inertinite ma-ceral, sam ple MG 10B/99, RL, 1N; C – smallpieces of inertinite macerals, sam ple MG 2B/00,RL, 1N; D – large-size frag ment of woody rem -nants, sam ple MG 20/99, TL, 1N; E – sclero-tinite-cel lu lar struc ture within black shale,sam ple MG 25/99, RL, 1N

Page 16: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

sam ples of the Magierowa Mbr show val ues of V/V+Ni ra tios above 0.7 and V/Crra tios ex ceed ing 2 (Tab. 1). This data sug gests a re duc ing en vi ron ment. The samesam ples are en riched in cad mium, sil ver, bis muth and mo lyb de num (Tab. 1). Al -though, EF val ues are vari able (see Fig. 9): for Cd, Ag, Bi, and Mo it av er ages 35,11, 0.05, and 2.8, re spec tively. These trace-met als are S-re lated, be cause their sol u -bil ity dras ti cally de creases across the O2/H2S in ter face (Jacobs et al., 1985). Hence,ac cu mu la tion of Cd, Ag, Bi, Mo and many oth ers re quire euxinic con di tions forpre cip i ta tion (bot tom and/or pore wa ter). A pos si ble ex pla na tion is re lated to fix a -tion mech a nisms. Mo and Zn are fixed onto or ganic mat ter eas ily un der re duc ingcon di tion in the pres ence of H2S. Zinc can form sul phur com pounds and Mo can bere moved from so lu tion as thiosulphate (Korolev, 1958). Sev eral au thors sug gestedthat Mo is as so ci ated with humic ac ids in or ganic sub stances (Nissebaum &Swaine, 1976). A com pet i tive ex pla na tion for Ag en rich ment is its in volve ment inthe biogeochemical cycle of silica (Ndung’u et al., 2001).

All of the Magierowa Mbr sam ples are mod er ately en riched in U and Sb (EF > 1de spite of TOC con tents; Fig. 9). Mangini & Dominik (1979) showed that U insapropels might have a ma rine or i gin and the en rich ment oc curs in sapropels withthe low est sed i ment ac cu mu la tion rate. Sus pended or ganic mat ter is also sig nif i -cantly en riched in Sb (Brumsack, 1989). The re la tion ship be tween U, Sb and OM isman i fested by in creas ing trace-el e ments con cen tra tion with in creas ing OM con -tent. This or der does not act for the Magierowa Mbr samples.

IN TER PRE TA TION

Sed i ments re cov ered from the Magierowa Ska³ka sec tion rep re sent the Magie-rowa Mem ber of the Jaworki For ma tion. It cor re sponds to the R. cushmaniforaminiferal Zone (Birkenmajer & Jednorowska, 1984; Gasiñski, 1988) and,hence, falls into a time pe riod that has been re ported to be equiv a lent to the OAE 2of the Cenomanian/Turonian Bound ary (Jenkyns, 1980). It is char ac ter ized by pe ri -od i cally oc cur ring lam i nated OM-rich black shales al ter nat ing with pale to greenclaystones. The bed ding cy cle mem bers may re flect chang ing pro duc tiv ity and ox -y gen a tion lev els as in di cated by con tent of or ganic car bon, type of kerogen,sedimentology (bioturnbation/lam i na tion) and geo chem is try (re dox-sen si tive el e -ments con tent). The light, bioturbated beds re cord the pe ri ods of low pro duc tiv ity.They con tain terrigenous or ganic com po nents and show geo chem i cal pat terns sim -i lar to the “av er age shale”. There fore, green claystones of the Magierowa Mbr weredeposited in oxic environment associated with oligotrophic conditions.

Black-shale for ma tion took place as a re sult of abun dant or ganic mat ter set tlingand euxinic con di tions. The black shales con tain or ganic mat ter of ma rine-or i ginthat must have sur vived both trans port through wa ter col umn and diagenetic deg ra -da tion. The or ganic mat ter from the Magierowa Mbr is overmature (IV type ofkerogen, Tmax = 465°C). Py rol y sis data sug gest the terrigenous or i gin of or ganicmat ter. The pres ence of plant ma te rial is un ques tion able. Fusinite and funginitehave been re cog nised among macerals. Oth er wise, non-flu o resc ing, brown ish

262 P. WÓJCIK-TABOL

Page 17: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

black amor phous or ganic sub stances were fre quently noted which may be ma -rine-de rived macerals. The plant par ti cles could be oxi dised (due to wildfires) ordur ing trans port in ter res trial en vi ron ment. The ma rine or ganic mat ter was al teredpost-depositionally. It could sur vive the sed i men ta tion stage be cause of high sur -face bioproductivity or ox y gen-de pleted set tling en vi ron ment. The ac cu mu la tionrate was slow, as sug gested by the low Ti/Al ra tio, and suf fi cient to cause se vere ox -y gen de ple tion in the pore wa ter. The chemocline sep a rat ing euxinic and ox y -

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 263

Fig. 9. Shale-nor mal ised con cen tra tions of the trace-el e ments in the Magierowa Mem ber sam ples

Page 18: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

gen-bear ing wa ters may have been at the sed i ment/wa ter in ter face or slightly above it. These cir cum stances po ten tially in hib ited the col o ni za tion of the sed i ment bybot tom-dwell ing fauna and led to sed i ment en rich ment in se lected re dox-sen si tivetrace el e ments (e.g., Cd, Ag, V, Mo). Ex ten sive anoxic bot tom-wa ter can prob a blybe ruled out be cause, based on size anal y sis, most of the framboidal py rite wasformed in anoxic pore wa ter rather than in the sul phide-con tain ing wa ter col umn. Itis likely that mid-wa ter ox y gen min i mum zone (OMZ) ex tended to the sea floordur ing OM-rich sed i ment de po si tion. The in flu ence of the OMZ is sug gested be -cause of pres er va tion of ma rine OM. It must have sur vived the slug gish sinkingtrough deep water column. This process could also explain the relative low Mnconcentrations as it could have been removed from the settling particles.

The trace-el e ment en rich ment of the Magierowa Mbr sed i ment is ex traor di narylow com pared to CTBE black shales and other TOC-rich sed i ment. Pos si bly, thegeo chem is try had been al tered by the strong mat u ra tion of the or ganic mat ter. Theor ganic car bon mat u ra tion in duces a car bon loss, which may reach 40–60%(Raiswell & Berner, 1987). Deep burial and ther mal mat u ra tion of the sed i ments issup ported by the as sem blage of clay min er als. High crystallinity illite and the pres -ence of chlorite sup port sub stan tial diagenetic al ter ation. Si mul ta neously, the or i -gin of the clay min er als has been ad judged. The state ment about eolian in put ofsmectite and its later illitisation appears more probable.

CON CLU SIONS

1. The Magierowa Mem ber can be at trib uted to the global Oce anic AnoxicEvent at the Cenomanian/Turonian bound ary (OAE 2).

2. The Magierowa Mem ber con sists of bed ding cy cles that may re flect chang ing pro duc tiv ity and ox y gen a tion lev els. The black shales are char ac ter ised by the en -hanced ac cu mu la tion and pres er va tion of ma rine-de rived or ganic mat ter. Lam i na -tion and en rich ment of re dox-sen si tive el e ment (Cd, Ag, V, Zn, V/V+Ni, V/Cr) in -di cate pe ri odic prev a lence of anoxic/euxinic con di tions oc cu py ing the sed i ment(pore wa ter) and oc ca sion ally ex tend ing to the sed i ment/wa ter in ter face. Thebioturbated claystones dis play trace-el e ment sig na tures sim i lar to “av er age shale”.Hence, they re cord the pe ri ods of low pro duc tiv ity and development of morenormal-marine condition on the bottom.

3. The ox y gen min i mum zone must have ex isted within wa ter col umn; it oc ca -sion ally ex panded and in flu enced the sea floor.

4. The in vari ant min er al og i cal com po si tion in cludes mainly quartz and claymin er als sug gest ing the dom i nance of pe lagic sed i men ta tion and advanced diage-nesis.

5. Diagenesis pro cesses led to mat u ra tion of kerogen, re sulted in a re duc tion inTOC and trace el e ments; they also af fected the illitisation of smectite-rich clay min -er als as well as the py rite pre cip i ta tion.

264 P. WÓJCIK-TABOL

Page 19: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

Ac knowl edge ments

Pro fes sor A. Gasiñski (In sti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity) is ac knowl ed-ged for sci en tific dis cus sion, Pro fes sor K. Birkenmajer (In sti tute of Geo log i cal Sci ences, Pol ishAcad emy of Sci ences, Kraków) for ed i to rial re marks. This study was sup ported by grants of thePol ish Min is try of Sci en tific Re search and In for ma tion Tech nol ogy (grants no 6 P04D 048 19 and 2P04D 080 29).

REF ER ENCES

Alexandrowicz, S. W., Birkenmajer, K., Scheibner, E. & Scheibnerová, V., 1968. Com par i son ofCre ta ceous stra tig ra phy in the Pieniny Klippen Belt (Carpathians). Bul le tin de l’AcadémiePo lo naise des Sci ences, 16, (2): 77–90.

Andrusov, D., Bystrický, J. & Fusan, O., 1973. Out line of the struc ture of the West Carpathians:Guide book for Ex cur sion. Tenth Con gress of the Carpathian-Bal kan Geo log i cal As so ci a tion,GÚDS Bratislava: 5–44.

Ar thur, M. A., Brumsack, H. J., Jenkyns, H. C. & Schlanger, S. O., 1990. Stra tig ra phy, geo chem is tryand paleoceanography of or ganic car bon-rich Cre ta ceous se quences. In: R. N. Ginsburg, & B.Beaugoin (eds.), Cre ta ceous Re sources, Events and Rhythms, Elsevier; Am ster dam: 75–119.

B¹k, K. & B¹k, M., 1994. Microfaunal as sem blages of the Up per Cenomanian/Lower Turoniananoxic de pos its in the Pieniny Klippen Belt, Carpathians, Po land. Ab stract Book of An nualAs sem bly IGCP Pro ject No. 362, Tethyan and Bo real Cre ta ceous, Smolenice (Slovakia): 73–74.

B¹k, M., 1999. Cre ta ceous Radiolaria from the Pieniny Suc ces sion, Pieniny Klippen Belt, Pol ishCarpathians. Studia Geologica Polonica, 115: 91–115.

B¹k, K., 2006. Sedimentological, geochemical and microfaunal responses to environmental changesaround the Cenomanian–Turonian boundary in the Outer Carpathian Basin; a record from theSubsilesian Nappe, Poland. Palaeogeography,Palaeoecology, Palaeoclimatology, 237: 335–358.

B¹k, K., 2007. En vi ron men tal changes dur ing the Cenomanian–Turonian bound ary event in the Outer Carpathian bas ins: a syn the sis of data from var i ous tec tonic-fa cies units. Annales SocietatisGeologorum Poloniae, 77: 171–191.

Birkenmajer, K., 1979. Przewodnik geologiczny po pieniñskim pasie ska³kowym (Pieniny KlippenBelt of Po land, Geo log i cal Guide – in Pol ish). Wydawnictwa Geologiczne. Warszawa: 236 pp.

Birkenmajer, K., 1986. Stages of struc tural evo lu tion of the Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica, 88: 7–32.

Birkenmajer, K. & Jednorowska, A, 1984. Up per Cre ta ceous stra tig ra phy in the Pieniny Nappe atSromowce Ni¿ne, Pieniny Klippen Belt, Carpathians, Po land). Studia Geologica Polonica, 83:25–50.

Birkemajer, K. & Jednorowska, A., 1987. Late Cre ta ceous foraminiferal biostratigraphy of thePieniny Klippen Belt. Studia Geologica Polonica, 92: 7–28.

Breint, G. N. & Wanty, R. B., 1991. Va na dium ac cu mu la tion in car bo na ceous rocks: a re view ofgeo chem i cal con trols dur ing de po si tion and diagenesis. Chem i cal Ge ol ogy, 91: 83–97.

Brindley, G. W. & Brown, G., 1980. Crys tal struc tures of clay min er als and their X-ray iden ti fi ca tion.Min er al og i cal So ci ety Mono graph, 5, Lon don. 495 pp.

Brumsack, H. J., 1980. Geo chem is try of Cre ta ceous black shales from the At lan tic Ocean (DSDPLegs 11, 14, 36, 41). Chem i cal Ge ol ogy, 31: 1–25.

Brumsack, H. J., 1986. The in or ganic geo chem is try of Cre ta ceous black shales (DSDP 41) incom par i son to mod ern upwelling sed i ments from the Gulf of Cal i for nia. In: C. P. Summerhayes & N. J. Shackle ton (eds), North At lan tic palaeoceanography. Geo log i cal So ci ety, Lon don, Spe cialPub li ca tion, 21: 447–462.

Brumsack, H. J., 1989. Geo chem is try of re cent TOC-rich sed i ments from the Gulf of Cal i for nia andthe Black Sea. In ter na tional Jour nal of Earth Sci ences Geologische Rundschau, 78, (3):1437–3254.

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 265

Page 20: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

Chamley, H., 1989. Clay Sedimentology, Springer-Verlag; Berlin. 623 pp.Clark, J. S., 1988. Par ti cle mo tion and the the ory of char coal anal y sis: source area, trans port,

de po si tion and sam pling. Qua ter nary Re search, 30: 67–80.Dean, W. E. & Ar thur, M. A., 1987. In or ganic and or ganic geo chem is try of Eocene and Cre ta ceous

strata re cov ered from the lower con ti nen tal rise, North Amer i can Ba sin, Site 603, DSDP Leg 93.In: J.H. Blakeslee & E. Whalen (eds), Pro ceed ings of the Ocean Drill ing Pro gram, Sci en tificRe sults, 93: 1093–1137.

Deines, P., 1980. Hand book of En vi ron men tal Iso tope Geo chem is try, Elsevier; Am ster dam: pp.329–406.

Dymond, J., Col lier, R., McManus, J., Honjo, S. & Manganini, S., 1997. Can the alu mi num andti ta nium con tents of ocean sed i ments be used to de ter mine the paleoproductivity of the ocean?Paleoceanography, 12 (4): 586–593.

Gasiñski, M. A., 1988. Foraminiferal biostratigraphy of the Albian and Cenomanian sed i ments inPol ish part of the Pieniny Klippen Belt, Carpathian Moun tains. Cre ta ceous Re search, 9:217–247.

Gasiñski, M. A., 1991. Albian and Cenomanian palaeobathymetry of the Pieniny Klippen Belt Ba sin(Pol ish Carpathians) based on Foraminifers. Bul le tin of the Pol ish Acad emy of Sci ences, EarthSci., 39, (1): 1–10.

Grif fin, J. J. & Goldberg, E. D., 1979. Morphologies and or i gin of el e men tal car bon in theen vi ron ment. Sci ence, 206: 563–565.

Hoefs, J., 1997. Sta ble Iso tope Geo chem is try. Springer Verlag, Berlin. 201 pp.Hoffman, J. & Hower, J., 1979. Clay min eral as sem blages as low grade meta mor phic geothermo-

meters: ap pli ca tion to the thrust-faulted dis turbed belt of Montana, U.S.A. In: J. Slat er & J.Schluger (eds), Diagenesis. SEPM Spe cial Pub li ca tion, 26, pp. 55–79.

In ter na tional Com mit tee for Coal and Or ganic Pe trol ogy 1998. ICCP Sys tem 1994 –The new vitriniteclas si fi ca tion. Fuel, 77: 349–358.

In ter na tional Com mit tee for Coal and Or ganic Pe trol ogy 2001. ICCP Sys tem 1994 – The newinertinite clas si fi ca tion. Fuel, 80: 459–471.

Jacobs, L., Em er son, S. & Skei, J., 1985. Par ti tion ing and trans port of met als across the O2/H2Oin ter face in a per ma nently anoxic ba sin: Framvaren Fjord, Nor way. Geochimica et Cosmo-chimica Acta, 49: 1433–1444.

Jednorowska, A., 1981. Micro fauna and age of the Up per Cre ta ceous Sromowce For ma tions in thetype area, Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica, 70: 37–50.

Jenkyns, H. C., 1980. Cre ta ceous anoxic events: from con ti nents to oceans. Jour nal of the Geo log i calSo ci ety, 137: 171–188.

Jones, B. & Man ning, D., 1994. Com par i son of geo chem i cal in di ces used for the in ter pre ta tion ofpalaeoredox con di tions in an cient mudstones. Chem i cal Ge ol ogy, 93: 111–129.

Korolev, D., 1958. The role of iron sulphides in the ac cu mu la tion of molybdenum in sed i men taryrocks of the re duced zone. Geo chem is try In ter na tional, 4: 452–463.

Ksi¹¿kiewicz, M., 1972. Budowa geologiczna Polski (Ge ol ogy of Po land – in Pol ish), 4 (Tektonika –Tec ton ics), 3 (Karpaty – Carpathians), Wydawnictwa Geologiczne, Warszawa.

Lewan, M., 1984. Fac tor con trol ling the pro por tion al ity of va na dium to nickel in crude oils.Geochimica et Cosmochimica Acta, 48: 2231–2238.

Lewan, M. & Maynard, J., 1982. Fac tors con trol ling en rich ment of va na dium and nickel in thebi tu men of or ganic sed i men tary rocks. Geochimica et Cosmochimica Acta, 46: 2547–2560.

Love, L. G. & Amstutz, G. C., 1966. Re view of mi cro scopic py rite from the De vo nian Chat ta noogaShale and Rammelsberg Banderz. Fortschritte der Mineralogie, 43: 273–309.

Mangini, A. & Dominik, J., 1979. Late Qua ter nary sapropel on the Med i ter ra nean ridge: U-bud getand ev i dence for low sed i men ta tion rates. Sed i men tary Ge ol ogy, 23: 113–125.

Martínez Ruiz, F., Saw³owicz, Z., Ortega-Huertas M. & Palomo, I., 1995. Sig nif i cance of theiron-rich microspherules for the K/T boundarydispute. In: Montanar & Connioni (eds), The roleof Im pacts in the Evo lu tion of the At mo sphere and Bio sphere with Re gard to Short- and LongTerm Changes. Ancona 1995: 117–119.

266 P. WÓJCIK-TABOL

Page 21: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

Mongenot, T., Tribovillard, N., Desprairies, A., Lallier-Verges, E. & Laggoun Defargue, F., 1996.Trace el e ments as palaeoenvironmental mark ers in strongly ma ture hy dro car bon source rocks:the Cre ta ceous La Luna For ma tion of Ven e zuela. Sed i men tary Ge ol ogy, 103: 23–27.

Moore, D. M. & Reynolds, R. C., 1997. X-ray Dif frac tion and the Iden ti fi ca tion and Anal y sis of ClayMin er als. Ox ford Uni ver sity Press. 378 pp.

Morgiel, J. & Sikora, W., 1974. Facje cenomanu w okolicy Sromowiec Ni¿nych, pieniñski passka³kowy (Cenomanian fa cies in the Pieniny Klippen Belt at Sromowce Ni¿ne – in Pol ish).Geo log i cal Quar terly, 18, (2): 439–440.

Nissebaum, A. & Swaine, D., 1976. Or ganic mat ter metal in ter ac tions in re cent sed i ments. The rockof humic sub stances. Geochimica et Cosmochimimica Acta, 40: 809–816.

Ndung’u, K., Thomas. M. A. & Flegal. A. R., 2001. Sil ver in west ern equa to rial and South At lan ticOcean. Deep Sea Re search Part II: Top i cal Stud ies in Ocean og ra phy, 48: 2933–2945.

Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S. & Walsh, J. W., 1982. The na ture and dis tri bu tion ofor ganic mat ter in the sur face sed i ments of world oceans and seas. Or ganic Geo chem is try, 4:63–77.

Quinby-Hunt, M. S. & Wilde, P., 1994. Ther mo dy namic zonation in the black shale fa cies based oniron-man ga nese-va na dium con tent. Chem i cal Ge ol ogy, 113: 297–317.

Raiswell, R. & Berner, R. A., 1985. Py rite for ma tion in euxinic and semi-euxinic sed i ment. Amer i canJour nal of Sci ence, 285: 710–724.

Raiswell R. & Berner, R. A., 1987. Or ganic car bon losses dur ing burial and ther mal mat u ra tion ofnor mal ma rine shales. Ge ol ogy, 15: 853–856.

Robaszynski, F. & Caron, M., 1995. ForaminifÀres planctoniques du Crétacé: commentiare de lazonation Eu rope Méditerranée. Bul le tin de la Société Géologique de France, 166 (6): 681–692.

Rob ert, C. & Chamley, H., 1982. Paleoenvironmental sig nif i cance of clay de pos its in At lan tic blackshales. In: S. O. Schlanger & M. B. Cita (eds), Or i gin and Na ture of Cre ta ceous car bon-richfa cies. Ac a demic Press; Lon don: 101–112.

Saw³owicz, Z., 2000. Framboids: from their or i gin to ap pli ca tion. Prace Mineralogiczne, 88: 80 pp.Schlanger, S. O. & Jenkyns, H. C., 1976. Cre ta ceous oce anic anoxic events: Causes and con se -

quences. Geologie en Mijnbouw, 55: 179–184.Schnei der, R. R., Price, B., Müller, P. J., Kroon, D. & Al ex an der, I., 1997. Mon soon-re lated vari a tions

in Zaire (Congo) sed i ment load and in flu ence of flu vial sil i cate sup ply on ma rine pro duc tiv ity inthe east equa to rial At lan tic dur ing the last 200 000 years. Paleoceanography, 12: 463-481.

Sikora, W., 1971. Esquisse de la tectogénÀse de la zone des Klippen des Pieniny en Pologne d’apres de nouvelles données géologiques. Annales Societatis Geologorum Poloniae, 41, (1): 221–237.

Stach, E., Mackowsky, M. T., Teichmüller, M., Tay lor, G. H. & Chandra, D., 1982. Stach’s Text bookof Coal Pe trol ogy. Gebrüder Borntraeger, Berlin, Stuttgart: 535 pp.

Smith, B, N. & Ep stein, S., 1971. Two cat e go ries of 13C/12C ra tios for higher plants. PlantPhys i ol ogy, 47: 380–384.

Stopes, M. C., 1935. On the pe trol ogy of banded bi tu mi nous coals. Fuel, 14: 4–13.Thiede, J., Dean, W. E. & Claypool, G. E., 1982. Ox y gen-de fi cient depositional palaeoenvironments

in the Mid-Cre ta ceous trop i cal cen tral Pa cific Ocean. In: S.O. Schlanger & M. B. Cita (eds.),Na ture and Or i gin of Cre ta ceous Car bon-rich Fa cies, Ac a demic Press; London: 79–101.

Veto, I., Demeny, A., Hertelendi, E. & Hetenyi, M., 1997. Es ti ma tion of pri mary pro duc tiv ity in theToarcian Tethys – A novel ap proach based on TOC, re duced sul phur and man ga nese con tents.Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 132: 355–371.

Warn ing, B. & Brumsack, H. J., 2000. Trace metal sig na tures of Med i ter ra nean sapropels. Palaeo -ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 158: 293–309.

Wedepohl, K. H., 1971. En vi ron men tal in flu ences on the chem i cal com po si tion of shales and clays.In: L. H. Ahrens, F. Press, S. K. Funcorn & H. C. Urey (eds), Phys ics and Chem is try of the Earth,Pergamon; Ox ford - New York: 305–333.

Wedepohl, K. H., 1991. The com po si tion of the up per Earth’s crust and the nat u ral cy cles of se lectedmet als. Met als in nat u ral raw ma te ri als. Nat u ral sources. In: Met als and Their Com pounds in theEn vi ron ment, VCH. Weinheim: 3–17

TRACE ELEMENTS AND MINERAL ASSEMBLAGES 267

Page 22: Trace ele ments and min eral as sem blage as pa laeoen vi ...sgp.ing.pan.pl/131_pdf/SGP131_247-268.pdf · The iso to pic compo si tion of or ganic carbon m ay be ap plied as in di

Wignall, P. B. & New ton, R., 1998. Py rite framboid di am e ter as a mea sure of ox y gen de fi ciency inan cient mudrocks. Amer i can Jour nal of Sci ences, 298: 537–552.

Wilkin, R. T., Barnes, H. L. & Brantley G. W., 1996. The size dis tri bu tion of framboidal py rite inmod ern sed i ments: An in di ca tor of re dox con di tions. Geochimica et Cosmochimica Acta, 60,(20): 3897–3912.

Wójcik, P. & Gasiñski, M. A. 2000. Cenomanian–Turonian Bound ary Event (CTBE) in the PieninyKlippen Belt (Carpathians, Po land). Slo vak Geo log i cal Mag a zine, 6, (2–3): 229–230.

Wójcik-Tabol, P., 2006. Or ganic car bon ac cu mu la tion events in the mid-Cre ta ceous rocks of the Pieniny Klippen Belt (Pol ish Carpathians) — a pet ro log i cal and geo chem i cal ap proach. Geo lo-g i cal Quar terly (Warszawa), 50, 4: 419-437.

¯ytko, K., Gucik, S., Ry³ko, W., Oszczypko, N., Zaj¹c, R., Garlicka, I., Nemèok, J., Eliáš, M.,Menèik, E., Dvorak, J., Stranik, Z., Rakus, M. & Matejovska, O., 1989. Geo log i cal map of theWest ern Carpathians and their Fore land with out Qua ter nary for ma tion. Scale 1:500 000. In: D.Poprawa & J. Nemèok (eds.), Geo log i cal At las of the West ern Outer Carpathians and theirFore land. Wydawnictwa Geologiczne, Warszawa.

268 P. WÓJCIK-TABOL