todd stockert ieee northcon 2002 october 23, 2002 [email protected][email protected]...

53
Todd Stockert IEEE Northcon 2002 October 23, 2002 todd _ stockert @ agilent .com Physical Layer and RF Testing Overview of Wireless LAN MODEMS

Post on 21-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Todd StockertIEEE Northcon 2002October 23, 2002 [email protected]

Physical Layer and RF Testing Overview of Wireless LAN MODEMS

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 2

For more and updated information…Agilent WLAN & Bluetooth Links:

WLAN & Bluetooth Information

http://www.agilent.com/find/wlan

WLAN & Bluetooth Webcasts & Courses

http://www.get.agilent.com/bluetooth/mi/wc.shtml

WLAN & Bluetooth Resource Library

http://www.get.agilent.com/bluetooth/mi/library.shtml

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 3

WLAN: What and Why

WHAT? • An extension to, or a replacement for, wired LANs that offers:

• Ease of installation• Flexibility• Scalability• Cost savings• Mobility

WHY?• Eliminate physical constraints of wires• Installing wires is expensive, time consuming, and disruptive

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 4

Topics

• Introduction to Wireless LAN Standards

• 802.11b PHYsical layer

• Overview of Spread Spectrum modulation

• 802.11b PPDU Structure

• 802.11a PHYsical layer

• Overview of OFDM

• 802.11a PPDU Structure

• Glance at 802.11g (Draft standard)

• Overview of WLAN Testing and Specification Measurements

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 5

Current WLAN Standards

Approved Standard Throughput

1996 ETSI HIPERLAN/ I 1.47, 23.5 MBit/ sec

1997 IEEE 802.11 1, 2 MBit/ sec

1999 IEEE 802.11b 1, 2, 5.5, 11MBit/ sec

1999 IEEE 802.11a 6 - 54 MBit/ sec

2000 ETSI HIPERLAN/ II 6 - 54 MBit/ sec

2002? IEEE 802.11g 1 - 54 MBit/ sec

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 6

IEEE 802.11b• Incorporates 802.11 1,2 Mbit/sec modes, adds

5.5 and 11 Mbit/sec modes

• Most successful WLAN standard to date

• “Wi-Fi” standard

• 2.4GHz ISM frequency band

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 7

IEEE 802.11b: 2.4GHz Difficulties

802.11b Burst

uWave Ovens

Discrete Tone

uWave OvenSplatter

FHSS(Cordless Phone, Bluetooth...)

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 8

802.11B: Modulation Formats• All modes incorporate “Spread Spectrum” modulation

• 802.11b extends 802.11 data rates to include 5.5 and 11 MBit/sec

• There are three rates to keep track of:Chip Rate: 11 MChip/sec -- always

Bit Rates: 1 MBit/sec DBPSK 11 chip Barker sequence

2 MBit/sec DQPSK 11 chip Barker sequence 5.5 MBit/sec QPSK, 4 8-chip CCK spreading 11 MBit/sec DQPSK, 64 8-chip CCK spreading

5.5 MBit/sec BPSK PBCC (optional) 11 Mbit/sec QPSK PBCC (optional)

Symbol Rates: 1 MHz (11/11) and 1.375 MHz (11/8)

• At all rates, the signal looks like an 11 MHz BPSK or QPSK waveform

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 9

Spread Spectrum Concepts: Simple Spreading 802.11B -- 1 MBit/Sec

Map

Barker Sequence+1, –1, +1, +1, –1, +1, +1, +1, –1, –1, –1

1 Bit In

Data Phase Change(deg)

0 01 180

DBPSKFor each single input bit, there are two possible 11 chip sequences that can be transmitted

+1, –1, +1, +1, –1, +1, +1, +1, –1, –1, –1–1, +1, –1, –1, +1, –1, –1, –1, +1, +1, +1

One sequence is simply the inverse of the other

11 Complex Chips Out

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 10

Spread Spectrum Concepts: Simple Spreading 802.11B -- 2 MBit/Sec

Map

Barker Sequence+1, –1, +1, +1, –1, +1, +1, +1, –1, –1, –1

2 Bits In

For every two input bits, there are four possible 11 chip sequences that can be transmitted

+1, –1, +1, +1, –1, +1, +1, +1, –1, –1, –1+j, –j, +j, +j, –j, +j, +j, +j, –j, –j, –j–1, +1, –1, –1, +1, –1, – 1, –1, +1, +1, +1–j, +j, –j, –j, +j, –j, – j, –j, +j, +j, +j

11 Complex Chips Out

Data (Dibit) Phase Change (deg)

00 0

01 9011 18010 -90

DQPSK

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 11

802.11B -- 11 MBit/Sec ??

Map

Barker Sequence+1, –1, +1, +1, –1, +1, +1, +1, –1, –1, –1

11 Bits In

11 Complex Chips Out

D2048PSK?

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 12

Spread Spectrum Concepts: Simple Spreading 802.11B -- 5.5 and 11 MBit/Sec

4 Bits In

1 of 4 8-chip sequence

Selector

DQPSKRotate

8 Complex Chips Out

8 Bits In

1 of 64 8-chip sequence

Selector

DQPSKRotate

8 Complex Chips Out

d0-d3d0,d1

d2-d7

d0-d7

d0,d1

d2,d3

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 13

IEEE 802 Protocol Acronyms

*From Agilent 802.11b WLAN Signal Studio Software Product Note

Physical Medium Dependent(PMD)

PHY Convergence Layer Procedure(PLCP)

MAC sublayer Protocol Data Units (MPDU)

PHY Protocol Data Units (PPDU)

PLCP Service Data Units (PSDU).

*See IEEE802 standards for more detail

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 14

802.11B: Long PLCP PPDU Format

*From Agilent 802.11b WLAN Signal Studio Software Product Note

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 15

Structure of IEEE802.11b CCK Frame (= Burst)PLCP Preamble PSDUPLCP Header

144 bits Fn(LENGTH,SIGNAL) bits48 bits

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 16

Structure of IEEE802.11b CCK Frame (= Burst)PLCP Preamble PSDUPLCP Header

PLCP Preamble• 144 usec, (72 for ShortPLCP)• 1MBit/s modulation• Scrambled 1’s + SFD• Signal detect, AGC,timing synchronization,frequency estimation.

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 17

Structure of IEEE802.11b CCK Frame (= Burst)PLCP Preamble PSDUPLCP Header

PLCP Header•1MBit/s modulation (2MBit/s for ShortPLCP)•CCITT CRC-16 Protects these fields

SIGNAL

- - b2b3 - - - b7SERVICE

b2: Locked clocks 0: Not Locked 1: Lockedb3: Modulation Selection 0:CCK 1:PBCCb7: Length extension bit Solves LENGTH ambiguity

0x0A 1Mbps0x14 2Mbps0x37 5.5Mbps0x6E 11 Mbps

LENGTH

16bit Length of PSDU in µsec (Special Rounding)

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 18

Structure of IEEE802.11b CCK Frame (= Burst)PLCP Preamble PSDUPLCP Header

PSDU• Format varies with data rate• Max symbols varies with data rate• MAC layer starts here.

•MAC Header•Payload Data•FCS

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 19

802.11B: Short PLCP PPDU Format (Optional)

*From Agilent 802.11b WLAN Signal Studio Software Product Note

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 20

Significant differences from 802.11b

• 5-6 GHz Frequency Bands (Less interference, more spectrum)

• OFDM Modulation

• 54 MBits/Sec in the same bandwidth

RF Characteristics

• More precise RF design (<1/2 the wavelength)

• Much Higher Peak-to-Average Power Ratio

• More Sensitive to Phase Noise

IEEE 802.11a

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 21

OFDM – Basic Concepts

• Slower symbol rate x multiple carriers = similar bits/sec/Hz

• Carrier spacing creates orthogonality.

• Less susceptible to:- single freq.

interference- multipath

dropouts- impulse noise

• IEEE 802.11a and HiperLAN/2

- 52 carriers- 250 kHz symbol

rate- 312.5 kHz

spacing- 18 MHz

bandwidth

. . . . . .

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 22

Generating OFDM

-2 +2

+1

0-1-3 +3.. ..-24

-25

+25

+26

+24

....-26

carrier number:

bits

encode, interleave,map onto

constellationload complex values

into frequency bins.29 + j.85

1011

do inverse FFT tocreate time waveform

add guard interval,clock out at 20

MSa/sectransmit as 1

symbol

repeat 52 times

repeat untildata

finished

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 23

OFDM vs. Single Carrier ModulationFrequency Domain View

1 carrier 52 carriers

BW = Sym(1+)

BW = #carriers x spacing

Adj Chan =Distortion

Adj Chan =Normal Rolloff

Carrier #0 always null

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 24

OFDM vs. Single Carrier ModulationFrequency Domain View

1 carrier 52 carriers

BW = Sym(1+)

BW = #carriers x spacing

Pilot Carriers• -21, -7, +7, +21• always BPSK• same amplitude, phase• used as reference for vector demod.

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 25

OFDM vs. Single Carrier ModulationTime Domain View

Data rate = 54 Mbits/sec @ ¾ coding = 72 Mbits/sec @ 64QAM = 12 MSym/sec

1 symbol = one point in time1 point in time = 1 symbol

SCM: OFDM:

Data rate = 54 Mbits/sec @ ¾ coding = 72 Mbits/sec @ 48 carriers= 1.5 Mbits/sec @ 64QAM = 250 kSym/sec1 symbol = 1 point in frequency and time1 point in time = ~meaningless

1 Sym = .083 usec 1 Sym = 4.0 usec

This is a sample;FFT(64 samples) gives64 freq bins (48 carriers + 4 pilots + 12 zeros)

This is a symbol = 6 bits

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 26

Structure of IEEE802.11a OFDM Frame (= Burst)

Short Training …Data NSIGNALData 1 Data 2Chan. Estimation

8 4 4 4 4 usec. . .

8

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 27

Structure of IEEE802.11a OFDM Frame (= Burst)

Short Training …Data NSIGNALData 1 Data 2Chan. Estimation

Short Training Seq.• 8 uSec length• Every 4th carrier,equal amplitude/phase• Signal detect, AGC,timing synchronization,coarse freq. estimation.

. . .

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 28

Structure of IEEE802.11a OFDM Frame (= Burst)

Short Training …Data NSIGNALData 1 Data 2Chan. Estimation

Channel Estimation• 8 uSec length• Every carrier, equalamplitude and phase.• Channel equalization,fine freq. estimation.

. . .

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 29

Structure of IEEE802.11a OFDM Frame (= Burst)

Short Training …Data NSIGNALData 1 Data 2Chan. Estimation

SIGNAL Symbol• 4 uSec length• Always BPSK.• Describes this frame’s rate, length.

These parametersare read from signalunder test.

. . .

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 30

Structure of IEEE802.11a OFDM Frame (= Burst)

Short Training …Data NSIGNALData 1 Data 2Chan. Estimation

Data Symbols• 1 symbol = 4 uSec length 1 FFT 52 carriers (48 + 4) 52 constellation dots• Format varies• Coding varies• Max 4096 octetsper frame.• MAC layer starts here.3/4

2/3

3/4

1/2

3/4

1/2

3/4

1/2

Coding Rate

216

192

144

96

72

48

36

24

Bits per Symbol

Mod. Format

Data Rate

64QAM54

64QAM48

16QAM36

16QAM24

QPSK18

QPSK12

BPSK9

BPSK6 Mbits/sec

= 48 x 6 x .75

. . .

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 31

IEEE 802.11a Payload Structure

Address 4Address 2Address 3SequenceControlAddress 1Frame

ControlDuration/

ID

Frame ChkSequenceUser DataTail Bits Pad Bits

2 2 6 6 6 2 6 bytes

40-4061 bytes

MAC Header

. . .

. . .

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 32

IEEE802.11a versus HiperLAN/2

Similarities:• 5-6 GHz frequencies• 18 MHz bandwidth• 52 subcarriers• 250 kHz symbol rate• BPSK, QPSK, 16/64QAM• 6-54 MB/sec

Differences:• More choice of data services• Preamble contents• MAC contents• Sync procedure• Length of Guard Interval

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 33

IEEE 802.11g• Mandatory:

• All mandatory 802.11b modes

• 802.11b ShortPLCP packet format

• All mandatory 802.11a modes using 802.11b channels

• Goals:

• Puts 802.11a rates into 2.4GHz band

• Creates 1-54 Mbit/sec variable rate WLAN standard

• Completely backward compatible to 802.11b

• Many implementation choices

CCK-OFDM, PBCC-22, PBCC-33

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 34

802.11G: Rates and ModulationType Rates (MBit/ sec) Modulation Type Specified

802.11b Mandatory 1, 2, 5.5, 11 DBPSK-Barker,DQPSK-Barker, CCK

Mandatory

802.11b Optional 5.5, 11 PBCC Optional

802.11a Mandatory 6, 12, 24 OFDM Mandatory

802.11a Optional 9, 18, 36, 48, 54 OFDM Optional

CCK-OFDM 6, 12, 24 OFDM + 802.11bPreamble

Optional

CCK-OFDM Optional 9, 18, 36, 48, 54 OFDM + 802.11bPreamble

Optional

PBCC-22 22 PBCC-22 (8PSK) Optional

PBCC-33 33 PBCC-33 (8PSK) Optional

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 35

802.11G: Draft CCK-OFDM Packet formats

Long PLCP PPDU Packet

Short PLCP PPDU Packet

LongPLCP

OFDM LONG SYNCOFDM SIGNALOFDM PSDUSignal Extension

PSDU

8 µsec 8 µsec Nsym x 4 µsec 6 µsec

192 µsec

ShortPLCP

OFDM LONG SYNCOFDM SIGNALOFDM PSDUSignal Extension

PSDU

8 µsec 8 µsec Nsym x 4 µsec 6 µsec

96 µsec

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 36

WLAN Measurements• IEEE Specification Measurements

• Verify compliance of OEM components• Grade components for different price-points• Carry design-for-test from simulation to prototype to

production

• Transient capture• Troubleshoot conversation traffic• Detect sources of interference• Determine subtle DSP or analog impairments• Analyze DUT without test mode requirements

• Multi-domain measurements• Analysis in Demodulation/Time/Frequency domains

required• Most impairments have preferences for where they can

be diagnosed• Interactions exist between PvT/Spectral

Mask/Modulation Quality

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 37

IEEE802.11b Transmitter Testing

Measurement Specified by the 802.11B Standard

18.4.6.8 – TX spurious

18.4.7.1 – TX power level

18.4.7.3 – TX spectrum mask

18.4.7.4 – TX center freq. tolerance

18.4.7.5 – Symbol clock freq. tolerance

18.4.7.6 – TX power-time mask

18.4.7.7 – TX carrier leakage

18.4.7.8 – TX modulation accuracy

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 38

802.11B: TX Spectral Mask

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 39

802.11B: TX power-time mask : Power-Up Ramp

2 usec

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 40

802.11B: Power-Down Ramp

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 41

EVM: A Model For Signal Errors

Ideal Signal Generator

Error Signal Generator(e.g. noise, distortion, spurious, phase noise)

Transmitter

Ideal(t)

error(t)

actual(t)

Ideal(t)Act

ual(t

) Error(t)

Magnitude Error(t)

Error Vector Magnitude(t)

Phase Error(t)I

Q

Carrier Leakage

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 42

IEEE802.11b Modulation Accuracy

1000..1:35.0))(( nnVMax err

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 43

IEEE802.11a Transmitter Testing

Measurement Specified by the 802.11A Standard

17.3.9.1 – TX power level

17.3.9.2 – TX spectrum mask

17.3.9.3 – TX spurious

17.3.9.4 – TX center freq. tolerance

17.3.9.5 – Symbol clock freq. tolerance

17.3.9.6.1 – TX carrier leakage

17.3.9.6.2 – TX spectral flatness

17.3.9.6.3 – TX constellation error

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 44

802.11A: Measuring Center Frequency Leakage With Time Gating, Band Power, C/N Marker

Time Gating selects justthe short sync sequence.

Band Power measures powerduring the short sync.

C/N marker computes leakage at carrier #zero.

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 45

802.11A: Measuring Modulation Quality

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 46

802.11A: Modulation Quality

Data Rate (Mbit/sec) Relative Constellation Error (dB) EVM (%RMS)6 -5 56.29 -8 39.8

12 -10 31.618 -13 22.324 -16 15.836 -19 11.248 -22 7.954 -25 5.6

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 47

802.11A: Measuring Peak-to-Average StatisticsWith Time Gating, CCDF Plot

CCDF results reveal the P.A. designer’s nightmare.

Time Gating selects justthe data portion of theframe (no preamble).

Use appropriate trigger setup, delay, time length, etc.

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 48

802.11A: Channel Freq Response (Spectral Flatness)Equalizer-based

Display as Amplitude Response,Phase Response,Impulse Response,or Group Delay.

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 49

802.11A: Transmit Spectral Mask

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 50

IEEE802.11 Receiver TestingMeasurement Specified by the 802.11A Standard (Packet Error Ratio (PER) testing)

•17.3.10.1 Receiver minimum input level sensitivity•17.3.10.2 Receiver adjacent channel rejection•17.3.10.3 Receiver non-adjacent channel rejection•17.3.10.4 Receiver maximum input level

Measurements for Receiver Troubleshooting•Quality of the test signal used for RX Sensitivity Testing•Receiver Spurious•Receiver Phase Noise•Receiver EVM (distortion, noise, etc)•Measurements at RF, IF and IQ Baseband

Measurement Specified by the 802.11B Standard (Frame Error Ratio (FER) testing)

•18.4.8.1 Receiver minimum input level sensitivity•18.4.8.2 Receiver maximum input level•18.4.8.3 Receiver adjacent channel rejection

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 51

IEEE802.11 Receiver Testing802.11B : Uses FER (Frame Error Ratio)802.11A : Uses PER (Packet Error Ratio)•DUT uses demodulated CRC(11b) or FCS(11a) to determine failures.•Ratio of unsuccessful frames to total is the FER or PER•Requires software testpoint in receiver•802.11B Provides Test Mode to simplify legal transmit signals (Currently no 802.11A provision exists, but probably should).

“Golden” TX Signal Level Adjust

Interfering TX

DUT

Test Software

Signal Level Adjust

May substitute Source Instrument for this block (e.g. E4438C).

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 52

Summary• Wireless LAN Standards - Interoperability is

key to success. IEEE 802.11 standards are leading the way.

• 802.11b PHY

• Described the mandatory Spread Spectrum modulation formats

• Explored the 802.11b PHY packet structure

• 802.11a PHY

• Described some details about OFDM modulation

• Explored the 802.11a PHY packet structure

• Took a glance at 802.11g (Draft standard)

• Discussed WLAN testing methods and 802.11b/a Specification measurements

Physical Layer and RF Testing Overview if Wireless LAN MODEMS23 October, 2002

Copyright Agilent Technologies 2002 Page 53

WLAN Measurement Setup