today - electrical, computer & energy...

13
Today 1 Final Exam posted today, due in one week Takehome, opennotes exam Absolutely no collaboration allowed in any form Instructors will not answer any questions related to exam solutions or solution approaches Questions for clarification should be sent directly to the instructors via email, not posted to the blog Any clarifications of problem statements or corrections will be posted promptly on the course blog Review angle calculation in AC motor Last lecture today: conclusions

Upload: others

Post on 12-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Today

1

• Final Exam posted today, due in one week• Take‐home, open‐notes exam

• Absolutely no collaboration allowed in any form

• Instructors will not answer any questions related to exam solutions or solution approaches

• Questions for clarification should be sent directly to the instructors via email, not posted to the blog

• Any clarifications of problem statements or corrections will be posted promptly on the course blog

• Review angle calculation in AC motor

• Last lecture today: conclusions

Page 2: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

PMSM: steady‐state solution

2

abc

n

Tmrmrm

ia

ib

ic

PMSM+ va

+ vb

+ vc

0

1d

q

r

c

b

a

ii

Kiii

0

1d

q

r

c

b

a

vv

Kvvv

Trig identity: 

cossincos 22 baba

0if,0if0

arctanaa

ab

13

2sin3

2cos

13

2sin3

2cos

1sincos1

rr

rr

rr

rK

idqa

vsdqa

Iiii

Vvvv

cossincos

cossincos

rMdrqq LIrIV

qrdd LIrIV

qMm IPT 22

3

Page 3: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Power Electronics for Electric Drive Vehicles

3

Charger

Active balancing DC‐DC

DrivetrainDC‐DC

HV‐to‐LV DC‐DC

12V battery,Lights, Electronics, …

AC motor drive

Options (U.S.)AC Level 1: 120Vrms ACAC Level 2: 240Vrms AC

DC

Architectures, modeling and simulations of electric drivetrainsAnalysis, modeling, control, and design of vehicle power electronics

• Battery systems• DC‐DC: drivetrain converter, battery cell balancing, chargers• AC motor drive: machine and 3‐phase inverter

Page 4: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

System Architectures, Modeling and Simulations

4

Top-level model of EV for use in ECEN 5017 course. Drivingcycle is a velocity-vs-time profile for the vehicle, operating on

flat ground. Driver uses gas pedal to track the reference velocity.

Top-Level EV Model

m

Vref

speeds

Forces

Iinv

Ebat

dist

Unit Conversion Scope

Electric VehicleDriver model

Driv ing cy cleRef erence Speed

Torque command(Gas & brake pedals)

Vehicle Monitoring

Vehicle Speed

• Vehicle dynamics, MATLAB/Simulink modeling• Hybrid (HEV), plug‐in hybrid (PHEV) and electric vehicles (EV)• Rating and sizing of drivetrain components

Page 5: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Energy Storage System (Battery)

5

• An introduction to battery electro‐chemistry

• Types and characteristics of battery cells, energy, power, cycle life, calendar life, cost

• Cell charge/discharge characteristics, electrical circuit modeling

• Battery management system, cell balancing

• Modeling and simulations of battery systems

Battery dynamic modeling and control are covered in IDEATE courses at UCCSECE 5710: Modeling, Simulation, and Identification of Battery Dynamics (Fall)ECE 5720: Battery Management and Control (Spring)

Page 6: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Bidirectional DC‐DC Converter

6

• Introduction to switched‐mode power converters

• Steady‐state operation, analysis and simulations

• Introduction to power semiconductor switching devices: diodes, IGBTs, MOSFETs

• Modeling of losses and efficiency• Averaged dynamic models• Control techniques: current and voltage control loops

• Simulations

Page 7: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

AC Motor Drive

7

• An introduction to AC machine operation and models

• Permanent magnet synchronous machine

• Induction machine• 3‐phase DC‐to‐AC inverter operation and sinusoidal modulation

• Modeling and control in rotating reference frame, Park transformation

• Simulations

Page 8: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Complete System Model and Simulations

8

Top-level model of EV for use in ECEN 5017 course. Drivingcycle is a velocity-vs-time profi le for the vehicle, operating on

flat ground. Driver uses gas pedal to track the reference velocity.

Top-Level EV Model

m

Vref

speeds

Forces

Iinv

Ebat

dist

Unit Conversion Scope

Electric VehicleDriver model

Driv ing cy cleRef erence Speed

Torque command(Gas & brake pedals)

Vehicle Monitoring

Vehicle Speed

• Integration of developed subsystem models into a complete vehicle model

• System evaluation and design considerations

Speed

Forces

Inverter current

Battery energy

Page 9: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

US06 drive cycle complete system simulation

9

Page 10: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

EV Model Components

10

Timing Battery DC‐DC Electric Drive Vehicle

Physical limits /switching transitions

Switching period

Control loops / drive cycles

Page 11: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Control loops• Battery: BMS

• DC‐DC: current and voltage loops

• Electric Drive: DQ control – current loop compensators, ID and IQ reference generation

• Driver: Speed control

• Charger: Current and voltage loops

11

Page 12: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Model versions

• Hierarchical modeling and control• More detailed models used to validate functional models and analyze component interactions

• Controller designs typically de‐couple interactions between multiple control loops; detailed models can be used to analyze local stability

12

Model Battery DC‐DC Electric Drive

Functional ‐ Ideal SOC integrator Conversion ratio,integral controller

Ideal inverter and motor

Functional – loss model

Averaged steady‐state, conduction and switching losses, bi‐directional

Efficiency contours for motor, constant efficiency for inverter

Detail Li‐ion model, losses, hysteresis, time constants

Averaged, dynamic (LC), current and voltage loops

PMSM model with DQ control, averaged inverter model

Page 13: Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L43_slides.pdf · 12V battery, Lights, ... Park transformation • Simulations. Complete System

Vision: Renewable Sources + Battery Electric Vehicles

13

• Zero GHG emissions, no petroleum• High efficiencies are feasible: >80% grid‐to‐wheel• Challenges

• Battery technology: cost, cycle life, power and energy density• Efficient, reliably and cost‐effective drivetrain components• Need for charging infrastructure• Limited Pchg, long charge‐up times

Pchg