today: battery pack modeling and bmsecee.colorado.edu/~ecen5017/lectures/cu/l15_slides.pdf ·...

24
Today: Battery pack modeling and BMS Battery pack: Stack battery cells in parallel and series BMS: Monitor battery state (voltage, SOC, SOH), perform cell balancing, communicate with vehicle controller 1 DC bus DC-DC converter Battery Management System (BMS) Control bus V bat + _ V DC + _ Electric drive propulsion components Vehicle controller n cells (+protection) in series Conventional Battery System

Upload: dotu

Post on 29-Jul-2018

223 views

Category:

Documents


4 download

TRANSCRIPT

Today: Battery pack modeling and BMS

• Battery pack: Stack battery cells in parallel and series• BMS: Monitor battery state (voltage, SOC, SOH), perform cell balancing, communicate with vehicle controller

1

DC busDC-DC

converter

BatteryManagementSystem (BMS)

Control bus

Vbat

+

_

VDC

+

_

Electric drivepropulsioncomponents

Vehiclecontroller

ncells

(+protection)in

series

Conventional Battery System

Packaging: Single Cylindrical Cells

2

Packaging: Prismatic Cells

3

Battery Packs

4

Nissan LeafFord C‐Max Energi

Temperature Effects: Cell Characteristics

5

Cnom = 20 Ah cell tested at 0.5C charge/discharge rate

Reference: S. Chackoa, Y. M. Chunga, Thermal modeling of Li‐ion polymer battery for electric vehicle drive cycles, Journal of Power Sources, Volume 213, 1 September 2012, Pages 296–303

Temperature effects: aging and cycle life

6

• Crystal formation around the electrodes, reduces the effective surface area

• Passivation: growth of a resistive  layer that impedes the chemical reactions

• Corrosion consumes some of the active chemicals

Aging leads to:• Increased series resistance, reduced power rating• Reduced capacity

End of life: drop to 80% of the original power or capacity rating

All of aging processes are accelerated with increased temperature

Battery system electrical circuit modelassumption: identical cells

7

Battery Simulink Model

8

ECEN5017Battery Model (D)

Mp = number of cells in parallelNs = number of cells in series

SOC

Open-circuit voltageas a function of SOC

Series resistances

Diffusion

2SOC

1Vbat

positive Ibat

output voltage

loop

negative Ibat

1-D T(u)

Voltage-vs-SOCCharacteristic

>= 0

Switch

Rp/Mp

Series resistance for Ibat>0

Rn/Mp

Series resistance for Ibat<0

R1

R1 (diffusion)

100

PercentConversion

Ns

Number ofcells in series

1s

IntegratorLimited

Ibat Vh

Hysteresis

1

tau1.s+1Diffusionlow-pass

etaC

Coulombefficiency

-1/(Mp*Cnom*3600)

Cnom(capacity in Ah)

1Ibat

SOCVz VOC_cell

Vsp

Vsn

Vr

Vcell

Vh

Ibat

Vbat

R1/Mp

Battery Simulink Model

9

Scope

RepeatingSequence

Stair

Product

Ibat

Vbat

SOC

Li-ion battery

1s

Integrator

-1

Gain

Ibat

Vbat

SOC

Ebat

Example:  Mp = 2, Ns = 100

Ro+ = Ro‐ = 10 m, SOC(0) = 50%, Cnom = 5 Ah, VM = 20 mV, tH = 50 s, R1 = 10 m, 1 = 100 s

Battery waveforms (an example)

10

300

350

400

0 10 20 30 40 50 600

50

100

-10

0

10

0

2

4x 106

92.3%

Charging

11

CCCV Charging example

12

360

370

380

390

0 10 20 30 40 50 600

50

100

-10

0

10

Effects of cell mismatches and the need for battery management system (BMS)

13

Reference: Davide Andrea, Battery Management Systems for Large Lithium‐IonBattery Packs, Artech House 2011, http://book.liionbms.com/

Mismatches in cell characteristics• Capacity• Leakage (self‐discharge) current• Other parameters: series resistance, …Mismatches in cell SOC’s during operation

Animations at: http://liionbms.com/balance/index.html

Cell versus system capacity [Ah]

14

Discharge, assuming equal starting SOC=100%

ii SOCCQ min,1

iCC minmin

01min CQ

minCCsystem

Charging and discharging a system with mismatched cells

15

System must sense individual cell voltages or (better) employ individual cell SOC estimators

16

Discharge, assuming unequal starting SOC’s

iioi SOCSOCCQ min,,

minCCsystem

System capacity with unbalanced SOC’s

iioisystem SOCSOCCCQ min,,min

0min, iSOC

Passive “top” balancing

17Animated example: http://liionbms.com/balance/index.html

Example: TI bq76PL536A

18

19

20

21

Active balancing

22

Example: switched‐capacitor charge shuttling

Active balancing architectures

23

http://liionbms.com/php/wp_passive_active_balancing.php

Cell versus system capacity [Ah] with charge re‐distribution

24

Discharge, assuming equal starting SOC=100%

isystem CC