time series financial econometrics

40
1 TimesSeries Financial Econometrics Brian Bannon

Upload: bbannon89

Post on 18-Aug-2015

29 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Time Series Financial Econometrics

1    

 

Times-­‐Series  Financial  Econometrics    

 

Brian  Bannon  

 

 

 

 

 

 

 

 

 

 

 

 

Page 2: Time Series Financial Econometrics

2    

Table  of  Contents  

Introduction  ...........................................................................  3  

Data  Selection  ........................................................................  3  

Exploratory  Data  Analysis  .......................................................  3  

Unit  Root  Testing  ...................................................................  6  

Testing  for  white  noise  ...........................................................  9  

Testing  for  correlation  ..........................................................  10  

Potential  Models  ..................................................................  12  

Testing  for  Independence  .....................................................  13  

Assessing  the  Density  plot  ....................................................  14  

Fitting  AR,  MA,  and  ARMA  models  .......................................  15  Autoregressive  Model  with  Order  3  ...................................  15  Moving  Average  Model  with  Lag  3  .....................................  19  Fitting  an  ARCH  (1)  Model  ..................................................  32  Fitting  an  GARCH  (1,1)  Model  .............................................  35  

Conclusions  ..........................................................................  39  

Sources  ................................................................................  40  

References  ...........................................................................  40    

   

Page 3: Time Series Financial Econometrics

3    

 

Introduction  In  this  report  we  have  tried  to  bring  a  number  of  time-­‐series  econometric  methods  together  to  

analyze  a  ten  year  historical  share  price.  Some  of  the  techniques  we  employ  include  analyzing  

data   via   exploratory   data   analysis   to   help   us   select   suitable   transformations   for   our   data,  

various   tests   and   observations   that   allow   us   to   select   appropriate   statistical   models   for   our  

sample  and  testing  the  fit  and  forecasting  power  of  these  models  of  these  models.  Our  goal  is  

to  expand  on  the  techniques  that  we  have  developed   in  past  weeks  and  combine  our  chosen  

model  with  a  volatility  model  such  as  ARCH(1)  or  GARCH(1,1).  This  will  allow  us  to   form  solid  

conclusions   and   find   the   most   appropriate   model   which   will   give   realistic   insight   about   the  

behavior  of  the  variable  of  interest.  

Data  Selection  For  our  variable  of   interest,  our  selected  historical  data   is   the  ten-­‐year  weekly  stock  price   for  

Astra-­‐Zeneca.  Our  data   is   sourced   from  https://uk.finance.yahoo.com/  and   covers   the  period  

from  14/03/2005  until  09/03/2015.  We  have  used   the   software  STATA  13   for   the  purpose  of  

analyzing  this  data  in  a  variety  of  ways.  

 

Exploratory  Data  Analysis  The   first   step   in   our   exploratory   data   analysis   is   to   generate   the   summary   statistics   for   our  

variable.  However  without   any  other   variables   to   compare   to,  we  gain   little   knowledge   from  

these  figures.  

Page 4: Time Series Financial Econometrics

4    

 

Table  1  summary  statistics  

Variable   Obs                   Mean           Std.  Dev.                 Min   Max  

             Close   522   50.2663         9.307929               30.65               81.02  

 

To  achieve  a  greater  level  of  insight  on  this  data  we  have  plotted  the  Astra-­‐Zeneca  share  price  

against  time  for  the  last  ten  years  (Figure  1.).  Our  first  observation  is  that  this  time-­‐series  data  is  

non-­‐stationary   therefore  we  know  that   in   its  current   form   it   is  not  suitable   to  work  with  and  

that  we  will   have   to   attempt   to   transform   it   before  we   can  proceed   to   any   greater   in-­‐depth  

analysis.    

Figure  1.  Historical  share  price  

   

3040

5060

7080

Close

2005w1 2010w1 2015w1Date

Page 5: Time Series Financial Econometrics

5    

In  an  attempt  to  transform  it  into  a  stationary  state  that  we  can  work  with,  we  generate  both  

the   percentage   returns   and   the   log   returns   of   this   data.   To   do   this   we   take   the   one   period  

change  of  each  of  these  variables  using  log  transformation  (1)  and  percentage  returns  (2).  

log  𝑅𝑒𝑡𝑢𝑟𝑛𝑠  (i)  =  ln(𝑝𝑟𝑖𝑐𝑒)  −  ln  𝑝𝑟𝑖𝑐𝑒  𝑛  −  1  ×100       (1)                                                                  

                                               Percentage  returns  =  (price/price[_n-­‐1]  -­‐  1)  X  100                            (2)  

 

Figure  2.  Percentage  returns  and  log  returns  

 

Both   these   transformations   produce   a   stationary   series   that   are   similar   in   appearance   and  

which   are   acceptable   for   modeling.   Both   transformations   are   display   similar   patterns   in  

volatility  and  both  have  similar  standard  deviations  that  fluctuate  about  the  mean  zero.  We  do  

-20

-10

010

20

Close_pret

2005w1 2010w1 2015w1Date

-20

-10

010

20

Close_lret

2005w1 2010w1 2015w1Date

Page 6: Time Series Financial Econometrics

6    

not  have  a  preference   for  one  model  over   another.   This   gives  us   incentive   to  pursue   further  

transformations.  

Unit  Root  Testing  The  early  and  pioneering  work  on  testing  for  a  unit  root  in  time  series  was  done  by  Dickey  and  

Fuller   (Dickey  and  Fuller  1979,   Fuller  1976).   The  basic  objective  of   the   test   is   to   test   the  null  

hypothesis  that  φ  =1  in:  

                                                                  Pt  =  φPt-­‐1  +  et                                                                      (3)  

                                                                                                                 Pt  =  φ0  +  φ  Pt-­‐1  +  et                                                      (4)        

Against  the  one-­‐sided  alternative  φ<1.  So  we  have;  

H  0:  series  contains  a  unit  root  

H1:  series  is  stationary.  

The  series  we  use  in  the  augmented  Dickey-­‐Fuller  test  is  given  by;  

 

Unit  root  testing  allows  us  to  test  weather  the  log  price  of  an  asset  follows  a  random  walk  or  a  

random  walk  with  a  drift.  

 

 

Page 7: Time Series Financial Econometrics

7    

Table  2  Unit  root  test  with  0  lags  

Dickey-­‐Fuller   test  

for  unit  root        

                                                                                                                               Number  of  obs      =              521  

  Test  Statistic     1%  Crit.  Val   5%  Crit.  Val   10%  Crit.  Val  

Z  (t)   -­‐1.858   -­‐3.430   -­‐2.860   -­‐2.570  

MacKinnon  approximate  p-­‐value  for  Z(t)  =  0.3522  

 

Given   the   above   p-­‐value   (Table   .   2)   we   do   not   reject   the   null   hypothesis,   hence   the   series  

requires  further  transformation  as  in  this  state  we  cannot  fit  our  usual  models.  Using  zero  lags  

we  are  essentially  using  the  simple  Dickie-­‐Fuller  model.  

 

Table  3  Unit  root  test  with  1  lags  

Dickey-­‐Fuller   test  

for  unit  root        

                                                                                                                               Number  of  obs      =              520  

  Test  Statistic     1%  Crit.  Val   5%  Crit.  Val   10%  Crit.  Val  

Z  (t)   -­‐1.746   -­‐3.430   -­‐2.860   -­‐2.570  

MacKinnon  approximate  p-­‐value  for  Z(t)  =  0.4076  

Increasing  the  lags  to  one  we  view  very  little  change  to  our  results  and  we  still  cannot  reject  the  

null  hypothesis.  Taking  a  new  approach  we  create  the  difference  of  the  log  of  the  share  price  

and  input  that  into  the  Augmented  Dickey-­‐Fuller  unit  root  test.  

Page 8: Time Series Financial Econometrics

8    

Table  4  Unit  root  test  with  0  lags  (With  log  difference)  

Dickey-­‐Fuller   test  

for  unit  root        

                                                                                                                               Number  of  obs      =              520  

  Test  Statistic     1%  Crit.  Val   5%  Crit.  Val   10%  Crit.  Val  

Z  (t)   -­‐24.252   -­‐3.430   -­‐2.860   -­‐2.570  

MacKinnon  approximate  p-­‐value  for  Z(t)  =  0.0000  

 

Finally  using  this  method  we  achieve  a  result  that  allows  us  to  reject  the  null  hypothesis.  A  p-­‐

value   of   0.0000   tells   us   that   the   under-­‐lying   series   is   not   a   unit   root   and   that   we   have   the  

possibility  of   applying   the  AR(P),  MA(P)   and  ARMA(P)  models.   Plotting   the   log  difference  will  

help  us  compare  this  transformation  with  the  previous  efforts.  

Figure   3.  

 

-20-10

010

20

Close_pret

2005w1 2010w1 2015w1Date

-20-10

01020

Close_lret

2005w1 2010w1 2015w1Date

-10 -5051015

Closed

2005w1 2010w1 2015w1Date

Page 9: Time Series Financial Econometrics

9    

 

Comparing  the  log  difference  to  the  log  returns  and  percentage  returns  and  we  decide  to  use  

the  log  difference  as  our  series  going  forward.  Again  the  log  difference  shows  similar  patterns  

to   the   previous   transformations.   However   the   log   difference   demonstrates   much   lower  

volatility   than   both   the   previous   transformations.   This   can   be   shown   by   isolating   the  major  

deviations  from  the  mean  such  as  2008/9  and  late  2014.  It  is  clear  from  these  examples  that  the  

log   difference   is   comparatively   less   volatile   than   both   the   log   returns   and   the   percentage  

returns.  

Testing  for  white  noise  A   time   series   is   said   to   be  White  Noise  when   there   is   no   correlation   between   the   variables,  

meaning   all   autocorrelations   are  equal   to   zero.   If   a   series   is   not  white  noise   it   indicates   that  

there  is  dependency  between  the  past  lags  of  the  series.  However,  a  white  noise  series  suggests  

that  the  movement  of  the  series  is  random  and  the  future  does  not  depend  on  past.  To  test  this  

formally,  we  have  constructed  Portmanteau  test  of  White.  

 

Ho:  ρ1=ρ2=...=ρm=0  

 HA:  at  least  one  autocorrelation  is  different  from  0  

We  can  use  the  first  lags=ln  (T)  2,  which  in  our  case  is  lags=ln  (522)  2      =  39.325  or  39(rounded)  

lags.  

 

Page 10: Time Series Financial Econometrics

10    

Table  5.  

Portmanteau  test  for  white  noise  

Portmanteau  (Q)  statistic  =        64.9624  

Prob  >  chi2(39)                      =          0.0056  

 

From  the   table  above,  we   find   that   the  p-­‐value   is  0.0056,   so  we  reject   the  null  hypothesis  of  

zero  autocorrelations  at  all  10%,  5%  and  1%   levels  of  significance.  This   indicates   that   there   is  

correlation  between  the  past  lags  of  Astra-­‐Zeneca’s  returns.  Therefore  we  can  say  that  the  price  

changes  for  Astra-­‐Zeneca’s  stock  price  is  not  random  and  excess  returns  can  be  made  by  trend  

analysis.  Therefore,  the  price  of  Astra-­‐Zeneca  is  reflective  of  historical  information.  

Testing  for  correlation  When  we  fit  a  model,  we  aim  to  check   if   the  residuals  are  uncorrelated.   If   they  are,  then  the  

model  does  a  good  job.  However,  if  the  residuals  are  serially  correlated  then  there  is  a  level  of  

persistence   in   the   original   series   which   is   not   captured   by   the  model.   By   plotting   the   Auto-­‐

correlation   and   partial   auto   correlations   we   hope   to   identify   any   existing   correlation.   The  

autocorrelation   function   verifies   if   there   is   any   linear   dependency   of   the   variables   with  

themselves.   The  partial   autocorrelation   function   is   a   conditional   correlation   and   it   is   used   to  

identify   the  order  of   the   autoregressive  model.   In   the   following   graphs,  we  have  plotted   the  

first  fifty  ACFs  and  PACFs  for  each  variable.  

 

Page 11: Time Series Financial Econometrics

11    

Figure  4.  ACF  &  PACF  for  log  difference  of  Astra-­‐Zeneca  share  price  

 

On   first   inspection  our   series   appears   to   be   significantly   uncorrelated.   From   the   correlogram  

above  we  can  see  that  in  both  the  auto-­‐correlation  and  the  partial  auto-­‐correlation  on  the  third  

lag  produces  a  result  that  demonstrates  an  explanatory  effect  well  outside  the  95%  confidence  

boundary.  The  partial  however  also  produces  a  significant  result  on  the  18th  lag  and  results  on  

the  95%  confidence  boundary  for  lags  28  and  31.  The  18th  lag  result  for  the  auto-­‐correlation  is  

close  to  the  95%  boundary.  

-0.2

0-0

.10

0.00

0.10

Aut

ocor

rela

tions

of C

lose

d

0 10 20 30 40 50Lag

Bartlett's formula for MA(q) 95% confidence bands

-0.2

0-0

.10

0.00

0.10

Par

tial a

utoc

orre

latio

ns o

f Clo

sed

0 10 20 30 40 50Lag

95% Confidence bands [se = 1/sqrt(n)]

Page 12: Time Series Financial Econometrics

12    

Potential  Models  The  commonly  used  models  for  forecasting  are  Autoregressive  (AR),  Moving  Average  (MA)  and  

Autoregressive  Moving  Average  Models  (ARMA).    To  identify  which  specific  models  we  should  

use  we  need  to  look  again  at  the  ACF  and  PACF  values.  

Table  6.  ACF  &  PACF  for  log  difference  of  Astra-­‐Zeneca  share  price  

LAG   AC   PAC   Q   Prob>Q   [Autocorrelation]  

[Partial  

Autocor]  

1   -­‐0.0634   -­‐0.0634   2.103   0.147   |   |  2   0.0385   0.0349   2.8799   0.2369   |   |  3   -­‐0.2055   -­‐0.203   25.087   0   -­‐|   -­‐|  4   0.0112   -­‐0.0142   25.153   0   |   |  5   -­‐0.0009   0.0116   25.154   0.0001   |   |  6   0.0144   -­‐0.0269   25.263   0.0003   |   |  7   -­‐0.0035   -­‐0.0068   25.269   0.0007   |   |  8   -­‐0.0476   -­‐0.0475   26.473   0.0009   |   |  9   0.0394   0.034   27.301   0.0012   |   |  10   -­‐0.0137   -­‐0.0095   27.401   0.0022   |   |  *ACF  for  higher  lags  provides  the  same  qualitative  conclusion  

The  correlogram  (Table.6)  suggests  that  we  should  fit  an  MA  (3)  model  (based  on  the  ACF)  and  

an  AR  (3)  model  (based  on  the  PACF).  Despite  significant  results  being  expected  at  later  lags,  we  

find  on  these  more  accurate  that  this  is  not  the  case.  To  further  elaborate  on  this  we  need  to  

calculate   and   graph   the   AIC   values,   however   we   will   leave   this   stage   until   a   later   time.  

Unfortunately,   we   cannot   use   the   ACF/PACF   methods   for   selecting   the   order   of   the   ARMA  

model.  However  we  may  find  in  later  testing  that  the  ARMA  model  is  a  good  fit  for  this  series.  

Page 13: Time Series Financial Econometrics

13    

Testing  for  Independence  If  a  series  is  independent  then,  the  absolute  series  or  the  squared  series  will  be  uncorrelated  as  

well.  So,  if  we  want  to  have  a  graphical  illustration  of  dependency,  we  can  generate  the  squared  

(or  absolute)  series,  calculate  their  ACF  and  compare.    

 

Figure  5.  Residuals  and  Squared  residuals    

 

These   plots   suggest   that   the   weekly   returns   are   serially   not   independent.   It   seems   that   the  

returns  are   indeed  serially  uncorrelated,  but  dependent.  They   fluctuate  above  and  below  the  

mean  with  little  correlation.  The  only  slight  pattern  exists  as  the  residuals  do  register  readings  

outside  the  95%  confidence  boundaries  in  two  of  the  first  three  readings  before  they  somewhat  

converge   on   the  mean   suggesting   that   it   is   not   independence   that   exists   in   the   series.   This  

presents  a  good  opportunity  to  do  the  Ljung-­‐Box  test  on  the  squared  residuals  series  to  test  if  

there  are  ARCH  effects  present.  

-0.2

0-0

.10

0.00

0.10

Aut

ocor

rela

tions

of a

_Clo

sed

0 10 20 30 40 50Lag

Bartlett's formula for MA(q) 95% confidence bands

Astra-Zeneca Residuals

-0.1

00.

000.

100.

200.

30

Aut

ocor

rela

tions

of a

_Clo

sed2

0 10 20 30 40 50Lag

Bartlett's formula for MA(q) 95% confidence bands

Astra-Zeneca SQ. Residuals

Page 14: Time Series Financial Econometrics

14    

Table  7.    

Portmanteau  test  for  white  noise  

Portmanteau  (Q)  statistic  =        63.5077  

Prob  >  chi2(5)                        =          0.0000  

This  test  allows  us  to  identify  that  there  are  ARCH  effects  present  in  our  model.  We  will  come  

back  to  this  finding  later  on  when  we  will  deal  with  this  and  adjust  our  model  accordingly.  

Assessing  the  Density  plot  Figure  6.  

 

 

0.1

.2.3

Den

sity

-10 -5 0 5 10 15Closed

Astra-Zeneca Returns

Page 15: Time Series Financial Econometrics

15    

Our   density   plot   provides   evidence   of   quite   a   normal   distribution.   Almost   now   skewness   is  

visible  on  the  plot,  and  slightly  higher  kurtosis  than  the  normally  distributed  model.  Our  density  

plot  demonstrates  not  particularly  fat  tails  but  there  are  some  problematic  readings;  the  left  tail  

does   extend   further   than  would   be   anticipated   under   normal   distribution.   Also   on   the   right  

hand  side  we  can  identify  as  a  value  of  12.36.  From  looking  at  our  data  we  identify  this  anomaly  

as  a  price  jump  of  18%  in  April  2014  during  speculation  of  a  buyout  by  Pfizer.  On  the  hole  the  

tails  provide  a  reading  as  close  to  the  normal  distribution  as  one  could  expect.  

Fitting  AR,  MA,  and  ARMA  models    In  order  to  find  the  most  appropriate  model  we  have  analyzed  the  significance  of  the  constant  

and  coefficients  of   the  higher  order   terms   for  each  of   the  models.  Additionally,  we  have  also  

looked  at  the  behavior  of  the  residuals  and  the  forecast  errors.  A  model  is  good  if  the  residuals  

follow  White  Noise,  has  lowest  value  in  terms  of  Akike’s  Information  Criteria  (AIC)  and  lowest  in  

terms  of  forecasting  error.  These  are  discussed  in  detail  below.  From  the  correlogram(Table.6)  

it  suggests  that  we  should  fit  an  AR(3)  model  based  on  the  PACF  and  a  MA(3)  model  based  on  

the  ACF.  

 

Autoregressive  Model  with  Order  3  

As  mentioned   above   the   best   model   to   fit   for   this   series   is   an   AR   (3)   model.   However,   the  

estimate  of  the  coefficient  of  the  lag  1  term  is  significantly  different  from  zero.  This  means  that  

we  can  suppress  the  model  further  by  excluding  the  constant  term.  

 

Page 16: Time Series Financial Econometrics

16    

Table  8.    

AR(3)  output  

Sample:    2005w14  -­‐  2015w14         Number  of  obs            =   521  

        Wald  chi2(1)              =   54.38  

Log  likelihood  =  -­‐1013.945         Prob  >  chi2                =   0.0000  

                          Coef.   Std.  Err.   z   P>z          [95%  Conf.   Interval]  

           Closed            

Closed      _cons        0.0511514   0.0610654   0.84   0.402        -­‐.0685347   0.1708375  

           ARMA                              

ar              

L1  -­‐0.0538921   0.0297749   -­‐1.81   0.070        -­‐.1122499   0.0044657  

L2   0.0228   0.0356767   0.64   0.523        -­‐.0471251   0.0927251  L3  

-­‐0.202343   0.0298566   -­‐6.78   0.000        -­‐.2608608   -­‐0.1438252              /sigma           1.694057   0.029064   58.29   0.000          1.637093   1.751022    

On  estimating  this  model  without  the  constant  term  we  get  the  following  output  

 

 

 

 

Page 17: Time Series Financial Econometrics

17    

Table  9.    

AR(3)  output  

Sample:    2005w14  -­‐  2015w14         Number  of  obs            =  521  

        Wald  chi2(1)              =   53.52  Log  likelihood  =  -­‐1014.303         Prob  >  chi2                =  

0                             Coef.   Std.  Err.   z   P>z          [95%  Conf.   Interval]  

           Closed            

ARMA                              

ar              

L1  -­‐0.0527719   0.0295026   -­‐1.79   0.074          -­‐.110596   0.0050521  

L2   0.0240851   0.0356122   0.68   0.499        -­‐.0457135   0.0938836  L3  

-­‐0.2012067   0.0299621   -­‐6.72   0.000        -­‐.2599313   -­‐0.1424822              /sigma          

1.695221   0.0290356   58.38   0.000          1.638313   1.75213    

So  the  model  that  we  have  now  is  

P𝑡  =  𝜑1P𝑡−1  +  𝑎𝑡  (2)                                                     (5)  

Here   the   coefficient   estimate   of   p𝑡−1   is   -­‐5.27%   and   is   negatively   related   to   P𝑡   indicating   a  

negative  relation  between  past  and  future  growth  of  Astra-­‐Zeneca.  

We  have  also  extracted  the  residuals  from  the  above  model.  Figure  7  represents  the  plot  of  

the  residuals,  their  ACF  and  PACF.  

 

Page 18: Time Series Financial Econometrics

18    

Figure  7.  

 

Table  10:  Correlogram  of  ACF  and  PACF  for  the  Series  of  AR  (3)  Residuals  

LAG   AC   PAC   Q   Prob>Q   [Autocorrelation]   [Partial  Autocor]  

1   -­‐0.0042   -­‐0.0042   0.00922   0.9235   |   |  

2   0.0015   0.0015   0.01044   0.9948   |   |  

3   -­‐0.0084   -­‐0.0084   0.04758   0.9973   |   |  

4   -­‐0.0125   -­‐0.0126   0.12974   0.998   |   |  

5   0.0006   0.0006   0.12996   0.9997   |   |  

6   -­‐0.0178   -­‐0.0181   0.29818   0.9995   |   |  

7   -­‐0.0078   -­‐0.0082   0.3304   0.9999   |   |  

8   -­‐0.0438   -­‐0.0447   1.3514   0.9949   |   |  

9   0.036   0.0365   2.0416   0.9908   |   |  

10   -­‐0.002   -­‐0.0029   2.0438   0.996   |   |  

-10-

50

510

15AR

(3) R

esdiu

als

2005w1 2010w1 2015w1Time Period

-0.10-0

.050.000

.050.10

Autoc

orre

lation

s of a

r1re

s

0 10 20 30 40 50Lag

Bartlett's formula for MA(q) 95% confidence bands

-0.10-0

.050.000

.050.10

Partia

l auto

corre

lation

s of a

r1re

s

0 10 20 30 40 50Lag

95% Confidence bands [se = 1/sqrt(n)]

Page 19: Time Series Financial Econometrics

19    

*ACF  for  higher  lags  provides  the  same  qualitative  conclusion  

Evidently   from  Figure  7,   the   series  of   the   residuals  of   the  AR   (3)  model   is   stationary  and  has  

correlation  between   the  past   lags.  However,   the   correlogram  above  clearly   suggests   that   the  

residuals   are   uncorrelated.   For   further   clarity,   we   have   conducted   formal   test   known   as  

Portmanteau   White   Noise   test   over   past   50   lags   with   the   following   hypotheses.   The   null  

hypothesis   𝐻𝑜   implies   that   the   residuals   follow   White   Noise   whereas   𝐻𝑎   is   the   alternate  

hypothesis.  

𝐻0=𝜌1=𝜌2=⋯  =𝜌𝑚=  0      Otherwise,  

𝐻a≠0              Table  11:    Portmanteau  test  for  white  noise  

Portmanteau  (Q)  statistic  =        31.6403  

Prob  >  chi2(39)                      =          0.7926  

The  corresponding  AIC  value  for  this  model  is  2036.606  and  we  will  use  this  value  to  compare  the  

models  in  the  later  part  of  the  report.  

Moving  Average  Model  with  Lag  3  

We  start  by  estimating  an  MA  (1)  model  for  the  series  of  ‘Closed’.        

Page 20: Time Series Financial Econometrics

20    

Sample:    2005w14  -­‐  2015w14         Number  of  obs            =   521  

        Wald  chi2(1)              =   47.75  

Log  likelihood  =  -­‐1013.949         Prob  >  chi2                =   0.0000  

              Coef.   Std.  Err.   z   P>z          [95%  Conf.   Interval]  

           Closed            

Closed      _cons         0.0512192   0.0574343   0.89   0.373        -­‐.0613498   0.1637883              ARMA                              

ma              

L1   -­‐0.0562672   0.0307972   -­‐1.83   0.068        -­‐.1166287   0.0040943  L2  

0.0237827   0.0360276   0.66   0.509            -­‐.04683   0.0943954  L3   -­‐0.2033278   0.0317403   -­‐6.41   0.000        -­‐.2655377   -­‐0.1411178              /sigma          

1.694002   0.0292425   57.93   0.000          1.636688   1.751317    

The  regression  output  highlights  that  the  constant  term  of  this  model  is  statistically  insignificant  

and  hence  tends  to  zero.  Thus,   it   is  not  required  to  keep  the  constant  term  in  the  regression.  

However,  as  the  estimate  of  the  coefficient  of  the  first  lag  term  is  significant,  we  will  now  the  

regress  the  model  as  follows.  

P𝑡  =𝑎𝑡  −  𝜃1𝑎𝑡−1                               (6)      

             

Page 21: Time Series Financial Econometrics

21    

Table  13:  Regression  Output  without  constant  term    Sample:    2005w14  -­‐  2015w14         Number  of  obs            =   521  

        Wald  chi2(1)              =   46.34  

Log  likelihood  =  -­‐1014.352         Prob  >  chi2                =   0.0000  

              Coef.   Std.  Err.   z   P>z          [95%  Conf.   Interval]  

           Closed            

ARMA                              

ma              

L1   -­‐0.0544332   0.0304528   -­‐1.79   0.074        -­‐.1141195   0.0052531  L2  

0.0256605   0.0360028   0.71   0.476        -­‐.0449037   0.0962247  L3   -­‐0.2014943   0.0318589   -­‐6.32   0.000        -­‐.2639366   -­‐0.1390519    

         /sigma          1.69532   0.0292759   57.91   0.000            1.63794   1.752699  

 

Consequently,  the  coefficient  estimate  of  𝜃1  is  significantly  different  from  zero  as  the  p-­‐value  of  this  

term  is  less  than  the  10%  level  of  significance  and  equals  -­‐5.44%.  

We  will  now  verify  how  the  residuals  of  this  model  behave.  According  to  the  first  graph  of  Figure  8,  

the  extracted  series  of  residual  terms  is  stationary  and  fluctuates  vigorously  around  zero.  To  ensure  

if  there  is  any  association  between  the  series  of  the  remaining  terms  of  MA  (3)  model,  it  is  vital  to  

concentrate  on  the  ACF  and  PACF  plot  of  the  residuals.  

 

 

 

Page 22: Time Series Financial Econometrics

22    

Figure  8:  

 

A   dependency   of   the   residual   terms   implies   that   there   are   extractions   within   the   series   of  

‘Closed’  which  are  not  being  captured  by  this  model.   In  such  a  case,  AR  (3)  will  prove  to  be  a  

better   model.   Graphically,   the   ACF   and   PACF   of   the   residual   series   is   a   hint   of   existence   of  

dependency  between  the  terms  and  we  can  see  that  for  some  lags  like  16  and  35,  the  ACF  and  

PACF   are   not   within   the   bounds   of   95%   confidence   intervals   (Figure   8).   Hence,   correlation  

exists.  On   the  contrary,  according   to   the  correlogram  below,   there   is  no  association  between  

the   past   lags   of   the   series   of   residual   terms   and   they   should   follow   White   Noise   process.  

Perhaps  there  is  weak  dependency  and  this  should  be  tested  formally.  

Table  14:  Correlogram  of  ACF  and  PACF  for  the  Series  of  MA  (3)  Residuals  

-10-5

051

015

resid

ual, o

ne-s

tep

2005w1 2010w1 2015w1Date

MA(3) Residuals

-0.1

0-0.0

50.000

.050.

10Au

toco

rrelat

ions o

f ma1

res

0 10 20 30 40Lag

Bartlett's formula for MA(q) 95% confidence bands

-0.1

0-0.0

50.000

.050.

10Pa

rtial

auto

corre

lation

s of m

a1re

s

0 10 20 30 40Lag

95% Confidence bands [se = 1/sqrt(n)]

Page 23: Time Series Financial Econometrics

23    

LAG   AC   PAC   Q   Prob>Q   [Autocorrelation]   [Partial  Autocor]  

1  -­‐0.0031   -­‐0.0031   0.0049   0.9442  

|   |  

2  0.0008   0.0008   0.0052   0.9974  

|   |  

3  -­‐0.0093   -­‐0.0093   0.05036   0.997  

|   |  

4  0.008   0.0079   0.08371   0.9991  

|   |  

5  -­‐0.0077   -­‐0.0077   0.11508   0.9998  

|   |  

6  0.0213   0.0215   0.3545   0.9992  

|   |  

7  -­‐0.0063   -­‐0.0062   0.37556   0.9998  

|   |  

8  -­‐0.045   -­‐0.0457   1.4529   0.9935  

|   |  

9  0.0379   0.0389   2.217   0.9876  

|   |  

10  -­‐0.0035   -­‐0.004   2.2236   0.9943  

|   |  *ACF  for  higher  lags  provides  the  same  qualitative  conclusion  

By  means  of  the  Portmanteau  test  for  White  Noise  with  the  same  hypotheses  we  do  not  reject  

null  hypothesis  that   is  there  is  no  correlation  between  past   lags  of  the  series  of  the  residuals.  

Thus  again,  MA  (3)  does  seem  to  be  appropriate  for  modeling  the  series  of  ‘Closed’  This  value  of  

0.7279  proves  that  the  moving  average  model  is  influenced  by  white  noise  to  a  greater  extent  

than  the  auto  regressive  model.  

Table  15:    Portmanteau  test  for  white  noise  

Portmanteau  (Q)  statistic  =        34.2049  

Prob  >  chi2(39)                      =          0.7279  

Page 24: Time Series Financial Econometrics

24    

 

The   AIC   value   for   this   model   is   2036.705.   Comparing   this   to   the   figure   for   the   AR   model  

(2036.606),  we  learn  that  the  AR  model  may  be  a  more  appropriate  selection  as  it  has  a  lower  

AIC  value.  

AR,  MA  FORECASTING  

In  this  section  we  will  discuss  about  the  forecasting  abilities  of  the  models  mentioned  earlier.  

We  may  have  a  model,  which  provides  good  fit  of  series  of  ‘Closed’,  but  does  not  forecasts  well  

or  the  other  way  round.  This  can  be  determined  by  examining  the  movement  of  the  series  of  

forecasts  and  the  actual  series  together.  For  a  model  to  be  able  to  provide  accurate  forecasts,  

both  the  series  of  ‘Closed’  that  is  the  actual  growth  of  the  share  price  and  the  estimated  growth  

that  is  the  one  period  ahead  forecast  should  move  together.  In  the  graphs  to  follow,  we  have  

analyzed  the  movements  of  one  period  ahead  prediction  along  with  the  original  series  for  the  

entire   sample   size,   the   actual   values   to   one   period   ahead   forecast   after   2007   crisis   and   the  

predictions  for  the  future  three  weeks.  

Page 25: Time Series Financial Econometrics

25    

Figure9:  

 

It   is  clear  from  the  first  graph  of  figure  9  that  AR  (1)  model  is  good,  as  there  is  not  that  many  

outliers  during  the  periods  2005  and  2015.  Also,  the  model  is  very  effective  in  forecasting  after  

2007   up   until   2010.   Finally,   the   three   weeks   future   forecast   looks   like   a   cyclic   line;   the  

movement   of   growth   series   seems   to   be   taking   an   up   and   down   trend.   Thus,   AR   (3)   is   very  

efficient  for  forecasting.  

 

 

 

 

-10-505

1015

2005w1 2010w1 2015w1Date

Closed y prediction, one-step

Series of Price Growth and Forecast under AR(3)

-10-5

05101

5

2007w1 2009w1 2011w1 2013w1 2015w1Date

Closed y prediction, one-step

-10-5

05101

5

2013w13 2013w40 2014w13 2014w40 2015w13Date

Closed y prediction, one-step

Page 26: Time Series Financial Econometrics

26    

 

Figure  10:  

 

Finally,   the   three  weeks   future   forecast   looks   like   a   straight   line;  however,   the  movement  of  

growth   series   seems   to   be   taking   a   upward   trend.   Thus,   MA   (3)   is   not   very   efficient   for  

forecasting.  

From   the   above   graphs,   it   is   difficult   to   decipher   the  model   in  which   the   variation   between  

actual  values  of  growth  of  index  and  their  estimate  is  the  closest.  Therefore,  as  part  of  further  

investigation,  we  have  generated   forecast  errors  and   their   corresponding   root  mean   squared  

errors.  The  purpose  here  is  to  obtain  the  model  in  which  the  difference  between  the  forecasts  

and  actual  values   is   lowest.  The   lower  the  difference,  the  closer   is  the  estimated  value  to  the  

-10-505

1015

2005w1 2010w1 2015w1Date

Closed y prediction, one-step

Series of Price Growth and Forecast under MA(3)

-10-5

05101

5

2007w1 2009w1 2011w1 2013w1 2015w1Date

Closed y prediction, one-step

-10-5

05101

5

2013w13 2013w40 2014w13 2014w40 2015w13Date

Closed y prediction, one-step

Page 27: Time Series Financial Econometrics

27    

actual   value.   In   the   following   table,  we  have   looked  at   the   forecast  errors,   their   squares  and  

root  mean  squares  for  this  objective.  

Table  16:  Forecast  Errors    

Variable   Obs   Mean   Std.  Dev.   Min   Max  

           AR(3)  Forecast  Erros   521   0.0001151   1.695708   -­‐8.080543   12.18697  MA(3)  Forecast  Errors   521   0.0002903   1.695728   -­‐8.071345   12.12439    

Table  17:  Forecast  Errors  Squares    

Variable   Obs   Mean   Std.  Dev.   Min   Max  

           AR(3)  Forecast  Errors  Squared   257   0.9862074   0.4941834   0.0702771   3.490985  MA(3)  Forecast  Errors  Squared   256   0.9872578   0.493353   0.0575543   3.482009  

     Table  18:  Root  Mean  Squared  Forecast  Errors    Model   Root  Mean  Squared  Forecast  Error  AR(3)     0.993079755  MA(3)     0.9936084742      

Therefore,  based  on  the  above  table,  AR  (3)  is  good  for  forecasting  as  it  has  the  lowest  value  of  

forecast  error.  This  follows  on  as  above  as  the  AR  (3)  model  had  the  lowest  AIC  and  was  best  

fitted.   It   is   possible   to   accomplish   better  models   through   further   research;   however,  we   are  

going  to  focus  only  on  the  models  that  we  have  talked  about  so  far.  

 

Page 28: Time Series Financial Econometrics

28    

IMPULSE  RESPONSE  ANALYSIS  

Till   now   we   have   analyzed   AR   and   MA   models   both   in   terms   of   their   goodness   of   fit   and  

forecast   errors.   Another   important   topic   in   time   series   analysis   is   the   Impulse   Response  

Analysis.  In  signal  processing,  the  impulse  response  function  of  a  dynamic  system  is  its  output  

when  infused  with  an  input  signal,  called  an  impulse.  Moreover,  an  impulse  response  refers  to  

the   reaction   of   any   dynamic   system   in   response   to   some   external   change.   The   objective   for  

analyzing   the   Impulse  Response  Function   (IRF)   is   to  have  an   idea  of   the  number  of  periods  a  

system  requires  to  return  to  its  equilibrium  state  following  an  external  shock.  The  IRF  allow  us  

to   observe   exogenous   factors   that  may   have   an   effect   over   the   variable   under   observation,  

which  are  the  returns  on  Share  Price  of  Astra-­‐Zeneca  (Closed)  in  this  case.  The  downside  of  this  

approach   is  of  model  misspecification  as  the   impulse  responses  are  derived  from  the  models,  

which  we  choose.  Although,  it  is  possible  to  minimize  the  problem  of  misspecification  by  using  

models  with  the  significant  lag  factors,  this  problem  cannot  be  eliminated  completely.  

From  our  analysis  above  the  model  we  have  chosen  with  the  best  model  fit  and  best  forecasting  

errors  was  the  AR  (3)  model.  Now  we  are  going  to  conduct   Impulse  Response  Forecasting  on  

our  AR  (3)  model.  

Using  the  regression  output  in  for  AR(3)  above,  we  can  calculate  the  IRF.  The  model  that  we  are  

using  here  is  simply  AR(3)  with  coefficient  estimate  of  lag  3  AR  parameters.  We  have  calculated  

the  IRF’s  for  AR  (1)  model  over  a  horizon  of  50  periods.  Each  period  represents  a  week  in  this  

case  as  our  data  is  weekly.  We  have  represented  the  IRF’s  graphically.  

 

Page 29: Time Series Financial Econometrics

29    

 

Figure  11:  Impulse  Response  Function  for  AR  (3)  Model  

 

Conducting  an  IRF  analysis  we  find  that  after  an   initial  shock  an  AR(3)  model  will  return  to   its  

equilibrium  within   the   first  5   steps.  We   find   that   this   readjustment   is   steady  and  stable,  as   it  

fluctuate   about   the   mean   but   stabilizes   once   it   reaches   it.   Even   though,   this   model   does  

generate  a  negative  AR  parameter  we  see  that  the  response  to  the  shock  is  fast  and  the  model  

returns  to  equilibrium  quickly.  As  the  constant  term  of  AR  (3)  model  is  statistically  insignificant.  

We   now   repeat   the   AR   (3)   estimation   for   IRF   but   suppressing   the   constant   term   to   get   the  

graph  below.  

 

-.5

0

.5

1

0 50

asymp, Closed, ClosedImpulse Response Function

95% CI impulse-response function (irf)

step

Graphs by irfname, impulse variable, and response variable

Page 30: Time Series Financial Econometrics

30    

Figure  12:  Impulse  Response  Function  for  AR  (3)  Model  without  constant  

 

Conducting   the   same   analysis   for   an  AR   (3)  model   but  with   the   constant   suppressed  we  

find  almost  no  change   in  our  result.  For   this  model  we   identify   the  half-­‐life   to  be  2  steps  

(weeks).The  model  is  quite  adequate  for  dealing  with  shocks  to  the  system  as  the  model  is  

able   to   handle   the   perturbation.   Therefore   as   long   as   the   constant   does   not   affect   the  

estimation   of   the   model   parameters,   the   IRF’s   do   not   change   dramatically.   This   model  

therefore  absorbs  the  shock  very  efficiently  and  returns  to  equilibrium  quickly.  

 

 

 

-.5

0

.5

1

0 50

asymp, Closed, ClosedImpulse Response Function without Constant

95% CI impulse-response function (irf)

step

Graphs by irfname, impulse variable, and response variable

Page 31: Time Series Financial Econometrics

31    

 

VOLITILITY  MODELING  

In  econometrics,  autoregressive  conditional  heteroskedasticity  (ARCH)  models  are  used  to  

characterize  and  model  observed  time  series.  They  are  used  whenever   there   is  reason  to  

believe   that,   at   any   point   in   a   series,   the   error   terms   will   have   a   characteristic   size   or  

variance.   In   particular   ARCH   models   assume   the   variance   of   the   current   error   term   or  

innovation   to  be  a   function  of   the  actual   sizes  of   the  previous   time  periods'   error   terms:  

often  the  variance  is  related  to  the  squares  of  the  previous  innovations.  

ARCH  models  are  employed  commonly  in  modeling  financial  time  series  that  exhibit  time-­‐

varying   volatility   clustering,   i.e.   periods   of   swings   followed   by   periods   of   relative   calm.  

ARCH-­‐type  models  are  sometimes  considered  to  be  part  of  the  family  of  stochastic  volatility  

models   but   strictly   this   is   incorrect   since   at   time   t   the   volatility   is   completely   pre-­‐

determined  (deterministic)  given  previous  values.  

The   basic   idea   of   ARCH   models   is   that;   the   shock   at   of   an   asset   return   is   serially  

uncorrelated,  but  the  dependence  of  at  can  be  described  by  a  simple  quadratic  function  of  

its  lagged  values.  

An  ARCH  (m)  model  assumes  that  

                                                                                                                                       𝑎! =  𝜎! ∈!             (7)  

𝜎!! =  𝛼! + 𝛼!𝑎!!!! +⋯+ 𝛼!𝑎!!!!  

Page 32: Time Series Financial Econometrics

32    

where  ∈!   is  a  sequence  of   independent  and  identically  distributed  (iid)  random  variables  with  

mean  zero  and  variance  1,  α0>0,  and  αi≥0  for  i>0.  In  practice,  ∈!  is  often  assumed  to  follow  the  

standard  normal  or  a  standardized  Student-­‐t  distribution  or  a  generalized  error  distribution.  

From   the   structure   of   the   model,   it   is   seen   that   large   past   squared   shocks   imply   a   large  

conditional  variance  σt2  for  the  innovation  at.  Under  the  ARCH  framework,  large  shocks  tend  to  

be   followed  by  another   large   shock.  Note   that   large  variance  does  not  necessarily  produce  a  

large   realization.  The  probability  of  obtaining  a   large  variate   is   greater   than   that  of  a   smaller  

variance.  

Fitting  an  ARCH  (1)  Model  

Lets  take  a  look  at  the  ARCH(1)  model,  the  ARCH(1)  model  assumes  that:  

                                                                                                                                       𝑎! =  𝜎! ∈!             (8)  

𝜎!! =  𝛼! + 𝛼!𝑎!!!!  

where  α0>0  and  α1≥0.  

The  unconditional  mean  of  at  remains  zero  

                                                                                                                                           𝐸 𝑎! =  0                                                                                                                                              (9)  

The  unconditional  variance  of  at  can  be  obtained  as  

                                                                                                                                           𝑉𝑎𝑟 𝑎! =  𝛼! + 𝛼!𝐸(𝑎!!!! )                                                                            (10)  

The  variance  of  αt  must  be  positive,  we  require  0  ≤  α1  <1.  In  some  applications,  we  need  higher  

order  moments  of  at   to  exist  and,  hence,  α1  must  also  satisfy   some  additional   constraints.   to  

study  its  tail  behavior,  we  require  that  the  fourth  moment  of  at  is  finite.  

The  unconditional  kurtosis  of  at  is  

Page 33: Time Series Financial Econometrics

33    

                                                                                                                    !(!!!)[!"# !! ]

= 3 !!!!!

!!!!!!                                                                                                  (11)  

Where  the  fourth  moment  of  at  is  positive,  we  see  that  α1  must  also  satisfy  the  condition    

1−3α12  >  0;  that  is,  0  ≤  α1

2<  1/3.  

Thus,  the  excess  kurtosis  of  at  is  positive  and  the  tail  distribution  of  at  is  heavier  than  that  of  a  

normal   distribution.  Heavy   tails   are   a   common  aspect   of   financial   data,   and  hence   the  ARCH  

models   are   so   popular   in   this   field.   The   ARCH  model   does   not   provide   any   new   insight   for  

understanding   the   source   of   variations   of   a   financial   time   series.   It   merely   provides   a  

mechanical   way   to   describe   the   behavior   of   the   conditional   variance.   It   gives   no   indication  

about  what  causes  such  behavior  to  occur.  ARCH  models  are  likely  to  over  predict  the  volatility  

because  they  respond  slowly  to  large  isolated  shocks  to  the  return  series.  

 

 

 

 

 

 

 

 

 

 

 

Page 34: Time Series Financial Econometrics

34    

Table  19:  ARCH  (1)  Estimation  Output  

 Sample:    2005w14  -­‐  2015w14         Number  of  obs            =   521  

Distribution  :  Gaussian           Wald  chi2(1)              =   .  

Log  likelihood  =  -­‐994.2243         Prob  >  chi2                =   .  

                          Coef.   Std.  Err.   z   P>z          [95%  Conf.   Interval]  

               Closed                

Closed  

   _cons        0.0898433   0.0677598   1.33   0.185        -­‐.0429634   0.22265  

           ARCH                            

ARCH  L1.           0.3742778   0.0488602   7.66   0.000          .2785136   0.470042                  _cons        

1.969609   0.1010184   19.5   0.000          1.771617   2.167601    

This  means  that  the  series  “Closed”  is  not  statistically  significant  at  10%  level  but  the  ARCH  (1)  

model   coefficients   are   statistically   significant   at   1%   level.   Next   we   must   estimate   the  

conditional  variance  of  the  ARCH  model.  

 

 

 

 

 

Page 35: Time Series Financial Econometrics

35    

Figure  13:  

 

Fitting  an  GARCH  (1,1)  Model  

Although  the  ARCH  model  is  simple,  it  often  requires  many  parameters  to  adequately  describe  

the   volatility.   Bollerslev   (1986)   proposes   a   useful   extension   known   as   the   generalized   ARCH  

(GARCH)  model.  Then  at  follows  a  GARCH  (m,  s)  model  if  

                                                                                                                                       𝑎! =  𝜎! ∈!             (12)  

𝜎!! =  𝛼! + 𝛼!𝑎!!!! +!

!!!

𝛽!𝜎!!!!!

!!!

 

 

020

4060

Cond

itiona

l var

iance

, one

-step

2005w1 2010w1 2015w1Date

Astra-Zeneca ARCH(1)

Page 36: Time Series Financial Econometrics

36    

Here  it  is  understood  that  αi  =0  for  i  >m  and  βj=0  for  j  >s.  The  αi  and  βj  are  referred  to  as  ARCH  

and  GARCH  parameters,  respectively.  Thus,  a  GARCH  model  can  be  regarded  as  an  application  

of   the   ARMA   idea   to   the   squared   series   at2.   The   next   step  we   do   is   to   try   and   improve   the  

estimates   of   the   conditional   variance   series   adding   GARCH   terms   in   the   variance   equation,  

which  means  that  the  variance  equation  depends  on  the  past  lags  of  the  squared  return  series.  

Similar  to  ARCH  models  the  tail  distributions  of  the  GARCH  (1,1)  process  are  heavier  than  that  

of  a  normal  distribution.  The  model  provides  a  similar  parametric  function  that  can  be  used  to  

describe  the  volatility  evolution.  

Table  20:  GARCH  (1,1)  Estimation  Output  

 Sample:    2005w14  -­‐  2015w14         Number  of  obs            =   521  

Distribution  :  Gaussian           Wald  chi2(1)              =   .  

Log  likelihood  =  -­‐-­‐984.1383         Prob  >  chi2                =   .  

                          Coef.   Std.  Err.   z   P>z          [95%  Conf.   Interval]  

               Closed                

Closed  

   _cons         0.1173372   0.067619   1.74   0.083        -­‐.0151936   0.249868              ARCH                            

ARCH  L1.           0.292738   0.0381123   7.68   0.000          .2180392   0.3674367  GARCH            GARCH  L1  

0.5052603   0.046864   10.78   0.000          .4134085   0.5971121                  _cons         0.6693727   0.111963   5.98   0.000          .4499293   0.888816    

Page 37: Time Series Financial Econometrics

37    

Figure  14:  

 

 

In  comparing  the  two  volatility  models  we  find  that  the  GARCH(1,1)  is  a  comparatively    better  

model  than  the  ARCH(1),  it  reacts  better  to  shocks  in  the  market,  this  can  be  shown  in  the  late  

2014   where   the   ARCH(1)   model   displayed   a   variance   of   60   while   the   GARCH(1,1)   model  

displayed   a   variance   of   50.   Other   than   that   the   performance   between   the   two   models   is  

extremely  close  and  we  don’t  find  much  difference  between  the  two.  

 

 

 

 

010

2030

4050

Con

ditio

nal v

aria

nce,

one

-ste

p

2005w1 2010w1 2015w1Date

Astra-Zeneca GARCH(1,1)

Page 38: Time Series Financial Econometrics

38    

Running  now  an  ARCH,  GARCH  model  with  the  AR(3)  model.  

Table  21  

 Sample:    2005w14  -­‐  2015w14         Number  of  obs            =   521  

Distribution  :  Gaussian           Wald  chi2(1)              =   9.18  

Log  likelihood  =  -­‐979.5783         Prob  >  chi2                =   0.027  

                          Coef.   Std.  Err.   z   P>z          [95%  Conf.   Interval]  

               Closed                

Closed  

   _cons        

0.1118747   0.0632937   1.77   0.077        -­‐.0121786   0.235928  

ARMA            

ar            

L1   0.0685083   0.0528641   1.3   0.195        -­‐.0351035   0.1721201  

L2   -­‐0.0186734   0.0501418   -­‐0.37   0.710        -­‐.1169494   0.0796027  

L3   -­‐0.1176937   0.0478222   -­‐2.46   0.014        -­‐.2114234   -­‐0.0239639  

ARCH                            

ARCH  L1.           0.2973271   0.0404083   7.36   0.000          .2181283   0.376526  

GARCH            GARCH  L1   0.4601386   0.0507347   9.07   0.000          .3607004   0.5595767  

               _cons         0.7610978   0.1265116   6.02   0.000          .5131395   1.009056  

 

 

 

 

 

Page 39: Time Series Financial Econometrics

39    

Conclusions    

In    conclusion  we  find  that  AR(3)   is  the  best  modeling  for  fitting  to  this  times  series,  as   it  has  

produced   the  best   fit  with   low  AIC  numbers  and   the  best   forecasting  ability  with  a   low  Root  

Mean  Square  of  the  forecasted  errors.  In  terms  of  the  Impulse  Response  Function  we  found  the  

AR(3)  model  dealt  well  with   shocks   to   the  market   and   returned   to  equilibrium  within  5   time  

step(weeks).    

Lastly  with  the  comparison  of  the  ARCH  and  GARCH  models  with  our  desired  model  AR(3)  we  

found  that  the  GARCH(1,1)  model  captured  the  best  analysis  of  volatility.  It  performed  slightly  

better  in  comparison  to  the  ARCH(1)  model  but  there  was  only  slight  variation  between  the  two  

models.  

 

 

   

Page 40: Time Series Financial Econometrics

40    

Sources  1. https://uk.finance.yahoo.com/    

References  1. Becketti,  S.  (2013).  “Introduction  to  Time  Series  using  Stata”,  Stata  Press  

2. Box,   Jenkins,   and   Gwilym  M.   Jenkins.   "Reinsel.   Time   Series   Analysis,   Forecasting   and  

Control."  (1994).  

3. Tsay,  R.  (2010).  “Analysis  of  Financial  Time  Series”,  Third  Edition,  Wiley