thomas steinhauser - foundry-planet.com

26
Inorganic binders benefits state of the art actual use 02/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Upload: others

Post on 03-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thomas Steinhauser - Foundry-planet.com

Inorganic binders – benefits –state of the art – actual use

02/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 2: Thomas Steinhauser - Foundry-planet.com

History

- 1995 start of development, University of Duisburg

- 1996 first patents

~ 2000 first serial production (cylinder heads)

~ 2005 several producers with similar systems in the market

- 2017 serial production of automotive parts (BMW, VW, Mercedes Benz, etc.)

02/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 3: Thomas Steinhauser - Foundry-planet.com

Benefits

Eliminate emissions, increase productivity/quality :• core production,

• casting

• decoring / shake-out

• sand reclamation

Cost efficiency:• lower/no costs for waste disposal

• reduced costs for exhaust air treatment

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 4: Thomas Steinhauser - Foundry-planet.com

Inorganic binder system

Sodium silicate: x SiO2 • y Na2O • z H2O

Additives to optimize the process/ casting surface

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 5: Thomas Steinhauser - Foundry-planet.com

Inorganic process

Main process differences vs. existing technologies

1. Hardening by physical elimination of water

2. Tool temperature 280° – 360°F (140° – 180°C)

3. Microwave drying/ hot air gassing

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 6: Thomas Steinhauser - Foundry-planet.com

Inorganic binding processes

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

solvent: waterSodium silicate binder

DT

AWB-binder-bridges

Page 7: Thomas Steinhauser - Foundry-planet.com

Inorganic process

Main process differences vs. existing technologies

1. Hardening by physical elimination of water

2. Tool temperature 280° – 360°F (140° – 180°C)

3. Microwave drying

4. Cores storable for several weeks when fully dried

5. Less core gas, less casting defects

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 8: Thomas Steinhauser - Foundry-planet.com

Cogas-Test

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300

measurment duration [sec]

Gasm

en

ge [

g p

ro 1

00g

Kern

gew

ich

t]

Coldbox AWB Hotbox

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

IOB

Measurement duration [sec]

Gasm

enge

[g pr

o 100

g Ker

ngew

icht]

Page 9: Thomas Steinhauser - Foundry-planet.com

Inorganic process

Main process differences vs. existing technologies

1. Hardening by physical elimination of water

2. Tool temperature 280° – 360°F (140° – 180°C)

3. Microwave drying

4. Cores storable for several weeks when fully dried

5. Less core gas, less casting defects

6. Good shakeout

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 10: Thomas Steinhauser - Foundry-planet.com

Bending strength subject to temperature

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

T=100 bis 200°C => free water evaporates

T=200 bis 600°C => bonded water (OH) disappears => shrinking + cracking of binder bridges

T >750°C => secondary glas melt

Page 11: Thomas Steinhauser - Foundry-planet.com

Inorganic process

Main process differences vs. existing technologies

1. Hardening by physical elimination of water

2. Tool temperature 280° – 360°F (140° – 180°C)

3. Microwave drying

4. Cores storable for several weeks when fully dried

5. Less core gas, less casting defects

6. Good shakeout

7. reclaimable

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 12: Thomas Steinhauser - Foundry-planet.com

Reclamation

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Vibramill

deagglomeration

dedusting

Page 13: Thomas Steinhauser - Foundry-planet.com

Comparison bending strength reclaimed new sand

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 14: Thomas Steinhauser - Foundry-planet.com

mixing

Core shooting

Microwave drying

castingdecoring

Sand reclamation Core storage

Inorganic – Process flow chart

Page 15: Thomas Steinhauser - Foundry-planet.com

Improvement of the surface properties

Page 16: Thomas Steinhauser - Foundry-planet.com

Prevention of sand adhesion

• Coating

• Addition of a gas former

• Substitution of silica sand by non wettable material

• Modification of sand wettability by additives

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 17: Thomas Steinhauser - Foundry-planet.com

Wettability

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 18: Thomas Steinhauser - Foundry-planet.com

SEM-picture: Surface lotus leaf

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 19: Thomas Steinhauser - Foundry-planet.com

SEM-picture: Surface silica sand

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 20: Thomas Steinhauser - Foundry-planet.com

SEM-picture: nano particles

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 21: Thomas Steinhauser - Foundry-planet.com

SEM-picture: silica sand with nanoparticles

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 22: Thomas Steinhauser - Foundry-planet.com

Casting without / with nano particles

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

without nano-particles With nano-particles

Page 23: Thomas Steinhauser - Foundry-planet.com

Castings

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 24: Thomas Steinhauser - Foundry-planet.com

Selection of Cores produced with AWB

01/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 25: Thomas Steinhauser - Foundry-planet.com

02/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser

Page 26: Thomas Steinhauser - Foundry-planet.com

Thank you very much for your attention !

02/03/2017 Prof. Dr.-Ing. Thomas Steinhäuser