thesis report final - simple search825049/fulltext01.pdf · v!...

65
Object OrientedFailure Mode & Effect Analysis (OOFMEA) Analysis of Cooling system in Hybrid Vehicles Objektorienterade FMEA Anique Ur Rehman Faculty of Health, Science and Technology Master’s Program in Electrical Engineering Degree Project of 30 credit points Handledarens namn: Jorge Solis (KAU), Chowa Choo (Volvo Cars Corporation), Khosro Zabihi (VCC) Examinatorns namn: Magnus Mossberg (KAU) Date: June 22, 2015 Löpnummer: 19870213T437

Upload: duongmien

Post on 06-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

 

 

 

   

Object  Oriented-­‐Failure  Mode  &  Effect  Analysis  (OO-­‐FMEA)  Analysis  of  Cooling  system  in  Hybrid  Vehicles  

Objektorienterade  FMEA  

 Anique  Ur  Rehman  

Faculty  of  Health,  Science  and  Technology  

Master’s  Program  in  Electrical  Engineering  

Degree  Project  of  30  credit  points    

Handledarens  namn:  Jorge  Solis  (KAU),  Chowa  Choo  (Volvo  Cars  Corporation),  Khosro  Zabihi  (VCC)  

Examinatorns  namn:  Magnus  Mossberg  (KAU)  

Date:  June  22,  2015  

Löpnummer:  19870213-­‐T437  

 

  I  

Preface    

This  work  is  done  under  Research  and  Development  (R&D),  Electrical  Electronics  System  Engineering   Department   (EESE)   at   Volvo   Cars   Corporation   (VCC),   Sweden   and  Department  of  Electrical  Engineering  at  Karlstad  University,  Sweden.  I  would  like  to  thank  my  external  supervisors  Mr.  Chowa  Choo,  Khosro  Zaibihi  and  Climate  Department  Team  at  VCC,   who  made   this   research   possible.   Their   ardour   and   novel   ideas   encouraged  me   to  bring  new  trend  for  analysing  products  in  development  phase,  which  enhances  reliability  and  efficiency  in  early  phase  of  system  designing.    

I  would  also   like   to   thank  my  examiner  at  Karlstad  University,  Mr  Magnus  Mossberg   for  providing  valuable  guidelines  to  complete  my  work.    

 

  II  

Abstract    

Development  of  fault  free  systems  and  their  risk  assessment,  in  early  phase  of  development  were  set  in  1950s,  which  later  on  used  as  standardise  techniques  for  safety  and  reliability  issues   in  products.   Failure  Modes  and  Effect  Analysis   (FMEA)   introduced  as  one  of   them  and  still  considers  a  much  reliable  technique  to  identify  and  mitigate  risks  in  early  phase  of  system  designing  even  though  systems  become  complex  now  days.    

This   report  presents  an  extension   to  Failure  Mode  and  Effect  Analysis   (FMEA),   in   such  a  way  that  it  can  be  applied  for  safety  analysis  of  complex  systems;  both  for  hardware  and  software   development   using   object   oriented   approach.   A   systematic   approach   for  validation   and   identification   of   failure   modes   were   used   in   this   method   using   system  architecture;   a   complete  boundary  diagram  with   the  behaviour  of   the   system   in   logical,  physical   and   attribute   objects.   Behaviour   of   selected   objects  were   analysed   using   FMEA  methodology  with   the   help   of   system   designing   team,  where   validation   and   verification  processes   highlights   possibility   of   redesigning   or   modifying   component.   Cabin   cooling  system  for  hybrid  vehicle  is  used  as  a  case  study  for  this  purpose.    

   

 

  III  

Symbols  and  Abbreviations    

AC         Air  Condition/Conditioning  ACCM         Air  Conditioning  Control  Module  AQS         Air  Quality  Sensor  AWD         All-­‐Wheel  Drive  BCU         Battery  Control  Unit  BECM         Battery  Energy  Control  Module  CAN         Controller  Area  Network  CCM         Climate  Control  Module  CCSM         Central  Console  Switch  Module  CEM         Central  Electronic  Module  CISG         Crank  Integrator  Starter  Generator    CPM         Combustion  Preheater  Module  CPSR         Charge  Power  Sustain  Relay  DIM         Driver  Information  Module  ECM         Engine  Control  Module  ECU         Electronic  Control  Unit  FMEA         Failure  Modes  and  Effects  Analysis  FOH         Fuel  Operated  Heater  HBMF/R       HVAC  Blower  Module  Front/Rear  HMI         Human  Machine  Interface    HS  CAN         High  Speed  Controller  Area  Network  HUS         Humidity  Sensor  HVAC         Heat  Ventilation  and  Air  Conditioning  HVCH         High  Voltage  Coolant  Heater  IHU         Infotainment  Head  Unit  LIN         Local  Interconnect  Network  OO-­‐FMEA       Object  Oriented  Failure  Modes  and  Effects  Analysis  PT         Power  Train  PTC         Positive  Temperature  Coefficient  RPN         Risk  Priority  Number  SHML/R/FL/FR     Seat  Heating  Module  Left/Right/Front  Left/Front  Right  SPA         Scalable  Product  Architecture  SUS         Sun  Sensor  TEM         Telematics  Module  TPS         Transaction  Processing  System  TXV         Thermal  expansion  Valve  VDDM         Vehicle  Dynamics  Domain  Master  Vlv.         Valve  VMM         Vehicle  Modes  Management    

 

  IV  

List  of  Figures    

Figure  1-­‐1:  Ariel  View  of  Volvo  Cars  Torslanda  Plant,  Gothenburg  .................................................  3  

Figure  1-­‐2:  Defining  Complex  Systems  ...............................................................................................  4  

Figure  2-­‐1:  Difference  between  FMEA  and  Physical  Testing  ............................................................  8  

Figure  2-­‐2:  V  Diagram  of  process  development  .................................................................................  9  

Figure  2-­‐3:  Scope  of  FMEA  ...................................................................................................................  9  

Figure  2-­‐4:  FMEA  implementation  on  WT  system  [11]  ...................................................................  11  

Figure  2-­‐5:  Decomposition  of  Software-­‐based  System  by  Haapanen  &  Helminen.  .......................  12  

Figure  3-­‐1:  Air  conditioning  comfort  in  the  vehicle  .........................................................................  15  

Figure  3-­‐2:  High  Voltage  electrical  components  in  Hybrid  Vehicles  ..............................................  18  

Figure  3-­‐3:  Hierarchy  of  Thermal  Management  System  at  VCC  .....................................................  19  

Figure  3-­‐4:  Diagram  of  Coolant  flow  in  Engine  ................................................................................  20  

Figure  3-­‐5:  Diagram  of  ERAD  Coolant  flow  ......................................................................................  20  

Figure  3-­‐6:  Diagram  of  Battery  Coolant  flow  ...................................................................................  21  

Figure  3-­‐7:  Air  Conditioning  system  .................................................................................................  22  

Figure  3-­‐8:  Cooling  system  for  battery  and  Passenger  compartment  in  Hybrid  Vehicles  ............  23  

Figure  3-­‐9:  Working  of  cooling  system  for  hybrid  vehicles  ............................................................  23  

Figure  3-­‐10:  Thermal  Expansion  Valve  ............................................................................................  25  

Figure  3-­‐11:  Orifice  tube  ....................................................................................................................  26  

Figure  4-­‐1:  Iterative  loop  of  Object  Oriented  Failure  Mode  and  Effect  Analysis  ...........................  27  

Figure  4-­‐2:  Flow  Chart  of  Object  Oriented  Failure  Mode  and  Effect  Analysis  ...............................  28  

Figure  4-­‐3:  Difference  Between  Interaction  and  Interfacing  in  OO-­‐FMEA  ....................................  29  

Figure  4-­‐4:  Physical  (Blue),  Logical  (Red)  and  Attribute  (Green)  Objects  in  OO-­‐FMEA  ...............  29  

Figure  4-­‐5:  Generation  of  Failure  Modes  in  terms  of  Negation  &  Deviation  ..................................  31  

Figure  4-­‐6:  OO-­‐FMEA  Template  ........................................................................................................  31  

Figure  4-­‐7:  FMEA  methodology  used  in  OO-­‐FMEA  template  ..........................................................  32  

 

  V  

Figure  4-­‐8:  Identifying  potential  failure  modes  using  OO-­‐FMEA  ...................................................  33  

Figure  4-­‐9:  Meaning  of  design  Prevention  and  design  detection  in  OO-­‐FMEA  ..............................  33  

Figure  5-­‐1:  System  Boundary  of  the  cooling  system  .......................................................................  35  

Figure  5-­‐2:  Network  topology  mostly  used  by  automation  industry  .............................................  36  

Figure  5-­‐3:  Compressor  Speed  with  fixed  fan  speed  while  vehicle  is  in  Steady  State  ...................  41  

Figure  5-­‐4:  Evaporator  temperature  with  fixed  fan  speed  while  vehicle  is  in  Steady  State  .........  41  

Figure  5-­‐5:  Measured  evaporator  temperature  with  fixed  fan  speed  while  vehicle  is  moving.  ...  43  

Figure  5-­‐6:  Compressor  Speed  while  fixed  fan  speed  while  vehicle  is  moving.  ............................  43  

Figure  5-­‐7:  Evaporator  temperatures  measured  at  auto  fan  &  climate  setting  .............................  44  

Figure  5-­‐8:  Compressor  speed  measured  with  auto  fan  &  climate  setting  ....................................  44  

Figure  5-­‐9:  FMEA  methodology  on  compressor  control  logical  objects  ........................................  45  

Figure  5-­‐10:  Distribution  of  risk  priority  numbers  for  cooling  system  .........................................  45  

Figure  6-­‐1:  Evaporator  temperature  and  Set  point  temperature  ...................................................  46  

Figure  6-­‐2:  System  Architecture  cooling  system  .............................................................................  47  

Figure  6-­‐3:  Overview  of  Inputs,  Output  and  Control  system  from  cooling  system  .............................  48  

Figure   6-­‐4:   Decomposition   of   Thermal   Management   Climate   System   before   and   after   OO-­‐FMEA  Implementation  ...........................................................................................................................  48  

Figure  6-­‐5:  Pie  chart  showing  engineers  response  on  OO-­‐FMEA  under  a  survey  .........................  49  

Figure   6-­‐6:   Pie   charts   showing   OO-­‐FMEA   Usability,   Time   Efficiency   and   Handling   complex  system  .........................................................................................................................................  50  

 

  a  

Contents  Preface  ....................................................................................................................................................  I  

Abstract  .................................................................................................................................................  II  

Symbols  and  Abbreviations  ...................................................................................................................  III  

List  of  Figures  ........................................................................................................................................  IV  

1   Introduction  ....................................................................................................................................  3  

1.1   Motivation  ................................................................................................................................  3  

1.2   Problem  Definition  ...................................................................................................................  4  

1.3   Aims  and  Objective  ...................................................................................................................  5  

1.4   Outline  ......................................................................................................................................  5  

2   Failure  Mode  and  Effect  Analysis  ....................................................................................................  7  

2.1   FMEA  by  Defination  ..................................................................................................................  7  

2.2   Literature  Review  (Traditional  FMEA)  ....................................................................................  10  

2.2.1   The  Flame  System:  ..........................................................................................................  10  

2.2.2   FMEA  on  Wind  Turbines  (WT)  .........................................................................................  11  

2.2.3   FMEA  for  Software  Based  Automation  System:  ..............................................................  12  

2.2.4   FMEA  based  on  Unified  Modelling  Language  (UML)  .......................................................  13  

3   System  Overview  ...........................................................................................................................  14  

3.1   Introduction  ...........................................................................................................................  14  

3.2   Climate  Comfort  in  Conventional  Vehicles:  ............................................................................  15  

3.3   Climate  Comfort  in  Hybrid  Vehicles  .......................................................................................  16  

3.3.1   Micro  &  Mild  Hybrid  Vehicles:  .........................................................................................  16  

3.3.2   Full  Hybrid  Vehicles:  ........................................................................................................  16  

3.4   Electrical  Components  for  Climate  comfort  ...........................................................................  17  

3.4.1   Storage  Evaporator  .........................................................................................................  17  

3.4.2   High  Voltage  PTC  .............................................................................................................  17  

3.4.3   Silent  HVAC  Module:  .......................................................................................................  17  

3.4.4   Silent  Blower:  ..................................................................................................................  17  

3.5   Electrical  Architecture  Hybrid  Vehicles  at  Volvo  ....................................................................  17  

3.6   System  Overview  ....................................................................................................................  18  

3.6.1   Thermal  Management  Powertrain  ..................................................................................  19  

3.6.2   Thermal  management  climate  ........................................................................................  21  

4   Methodology  .................................................................................................................................  27  

 

  b  

4.1   Identifying  Structure  ..............................................................................................................  28  

4.2   Identify  the  Behaviour.  ...........................................................................................................  29  

4.3   Priorities  the  object  and  enter  the  information.  ....................................................................  30  

4.4   Generate  failure  modes.  ........................................................................................................  30  

4.5   Completion  of  FMEA  ..............................................................................................................  32  

5   Implementation  .............................................................................................................................  35  

5.1   Structure  .................................................................................................................................  35  

5.1.1   CAN  (Controlled  Area  Network)  ......................................................................................  36  

5.1.2   LIN  (local  Interconnected  Network)  ................................................................................  37  

5.1.3   FLEXRAY  ...........................................................................................................................  37  

5.1.4   MOST  (Media  Oriented  Systems  Transport)  ...................................................................  37  

5.2   Behaviour  ...............................................................................................................................  37  

5.2.1   Logical  Objects  .................................................................................................................  37  

5.2.2   Physical  Object  ................................................................................................................  39  

5.2.3   Attribute  Object  ..............................................................................................................  39  

5.3   Prioritization  ...........................................................................................................................  39  

5.4   Failure  Modes  .........................................................................................................................  40  

5.5   FMEA  Methodology  ................................................................................................................  40  

6   Results  and  Recommendations  .....................................................................................................  46  

6.1   Comparison  between  traditional  FMEA  &  OO-­‐FMEA  .............................................................  47  

7   Conclusion  and  Future  Work  .........................................................................................................  51  

7.1   Future  Work  ...........................................................................................................................  51  

8   Glossary  .........................................................................................................................................  53  

9   Bibliography  .....................................................................................................................................  I  

Appendix  A  ............................................................................................................................................  III  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  3  

 Chapter  1

1 Introduction  Volvo  Car  Group  (VCG)  is  one  of  the  most  well-­‐known  and  respected  car  brands  with  sales  in  more  than  100  countries.  The  first  car  from  VCG  was  produced  in  1927  at  Gothenburg,  since  then   they  have  delivered  several   reliable  cars  equipped  with   the  world-­‐leading   innovations.  Today   they   have   produced   some   premium   cars   as   well,   with   different   body   types:   Sedans,  Estates/Sports  wagons,  Cross  Country  vehicles,  SUVs,  Convertibles  etc.  [1]  and  still  committed  to  bring  top   level  satisfaction  to  customers  with  premium  products  and  services,  containing  high   quality   standards.   In   2012,   Volvo   Cars   sold   a   total   of   421,951   cars.   Relative   to   the  strength   of   the   brand,   Volvo   Cars   is   a   small   producer,   with   a   global   market   share   of   1–2  percent.  The  largest  market,  the  United  States,  represented  some  16  per  cent  of  the  total  sales  volume   in   2012,   followed   by   Sweden   (12%),   China   (10%),   Germany   (7.5%)   and   the   UK  (7.5%).    

 

Figure  1-­‐1:  Ariel  View  of  Volvo  Cars  Torslanda  Plant,  Gothenburg  

Quality   was   of   paramount   importance   to   the   men   who   founded   Volvo.   This   basic   concept,  which  was  formulated  back  in  1926,  still  applies  to  Volvo's  way  of  making  cars.    

1.1 Motivation  Today,  demand  of  reliable  and  high  quality  vehicles  from  the  customers  are  one  of  the  biggest  challenges  car  industries  are  facing,  because  of  rise  in  capabilities  and  functionality  of  modern  vehicles.  They  somehow,  directly  or   indirectly  affects   their  quality  and  reliability   standards.  Conventionally,  reliability  has  been  accomplished  through  widespread  testing  and  applies  of  method  such  as  probabilistic  reliability  modelling  [2]  but  the  problem  with  these  techniques  is  that  they  are  performed  in  the  delayed  phase  of  improvement.  The  challenge  is  to  devise  in  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  4  

quality  and  reliability  early  in  expansion  phase,  where  it  is  simpler  to  acquire  actions,  which  overcome   these  matters  with   the   help   of   improved   consistency   in   design  methods.   Failure  mode   and   effect   analysis   (FMEA)   plays   an   important   role   here;   it   evaluates   the   possible  reliability   troubles   (failures)   in   the   early   hours   of   the   progress   cycle.   Steady   use   of   this  technique   in   design   process   let   the   engineer   to   drawing   out   the   failures   in   manufacture  dependable,   protected,   and   customer   satisfying   goods.   It   also   carries   the   chronological  information,  which  can  be  used  in  upcoming  product  development  [3].    

1.2 Problem  Definition  Modern  automotive  sub-­‐systems  are  basically  built  within  an  extensive  electrical  architecture,  where  linked  components  interact  and  share  abundant  software  and  hardware  resources.  In  a  sub-­‐system,   the  elements  or  components  perform  their   tasks  by   interacting  with  each  other  and  sharing  information  with  other  sub-­‐systems  in  the  distributed  environment  which  results  interdependencies  and  as  a  result  of  these  interdependencies  between  multiple  sub-­‐systems,  emergence  will  occurs.  

Performing   failure   mode   analysis   of   these   systems   becomes   a   tedious   task.   The   individual  sub-­‐systems  have  overlaps  and   their  boundaries  are  often  unclear.   So   the   transmission  and  computations  of  information  between  different  components  are  very  extensive  as  show  from  the  figure  1.2.    

 

Figure  1-­‐2:  Defining  Complex  Systems  

Object  Oriented  approach  in  Failure  Mode  and  Effect  Analysis  (OO-­‐FMEA)  resolve  these  issues  by   first   identifying   the  system  structure;  and  then  decomposes   its   functions  and  behaviours  into   separable   information   packages   called   physical,   logical   and   attribute   object,   which  consists  of  different  design  intents.  Special  attention  is  given  to  these  design  intents  of  every  object,  in  order  to  enhance  failure  mode  identification  later  on.  Objects  are  then  theoretically  assessed,  according  to  the  logical  reasoning  of  the  FMEA  methodology.  

A  B  

C  External   Shared  Resources  

Overlaps  System  Boundary  

Communication  Network  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  5  

1.3 Aims  and  Objective  The   electrical   architecture   of   Thermal   management-­‐climate   system   is   very   extensive   and  complex.   In   this   thesis   work   we   will   analyse   the   current   system   of   thermal   management-­‐climate  using  OO-­‐FMEA  methodology,  which  will  help  in  decomposing  the  current  system  into  sub-­‐systems   with   a   well-­‐defined   system   boundary   and   different   logical,   physical   and  attributes  objects  which  states  the  design  intents  for  the  system.  Later  on  we  will  identify  the  failure  modes  and  theoretically  assess  the  derived  objects  with  the  help  of  logical  reasoning  of  FMEA  methodology.  

The  purpose  of  this  master  thesis  is  to  study  how  this  new  approach  of  Object  Oriented  FMEA  is   useful   enough   in   terms   of   effectiveness   and   reliability   as   compared   to   traditional  approaches  while  analysing  complex  system  designs   in  early  phase  of  product  development  and  present  the  following  assessments  while  analysing  Thermal  Management  climate  System  at  VCC:  

• The   advantages   and   disadvantages   of   using   OO-­‐FMEA   instead   of   the   traditional  approach.  

• The   capability   of   the   approach   to   handle   failure   mode   analysis   for   complex  systems.  

• The   capability   of   the   approach   to   identify   incomplete   design,   ambiguous  requirements,   unmotivated   complex   solutions,   external   sub-­‐system   interactions  and  interfaces.  

• Ease  of  reuse  and  update.  • Reduction  of  engineering  time  waste.  

“Thermal  management  climate  system  (for  hybrid  vehicles)”  is  considered  as  an  example  that  consists   of   cooling   and   heating   system,   used   for  maintaining   climate   comfort   in   passenger  compartment.      

1.4 Outline  This  thesis  report  is  consist  of  7  chapters,  overview  from  each  chapter  is  provided  below  

Chapter  2  gives  introduction  to  FMEA  and  its  traditional  approach  for  different  systems.  

Chapter   3   describes   the   overview   of   thermal   management   system   and   the   electrical  architecture  of  SPA  hybrid  vehicles.  The  components  involved  in  maintaining  the  cooling  and  heating   comfort   level   in   the   hybrid   vehicles   are   also   described   here;   it   also   includes   the  additional  features  for  user  comfort  like  seat  heating,  parking  climate  etc.      

Chapter   4   describes   the  methodology   of   Object   Oriented   Failure  Mode   and   Effect   Analysis  (OO-­‐FMEA),  which  includes  the  basic  five  steps  involved  in  completion  of  this  analysis.  

Chapter  5  states  the  implementation  of  OO-­‐FMEA  on  the  given  system  and  gives  a  complete  system   boundary   and   behaviour   of   thermal   management   cooling   system   consist   of   logical,  physical  and  attribute  objects.  It  also  describes  prioritize  objects  through  which  failure  modes  are  generated.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  6  

Chapter  6  discusses  the  generated  results  and  recommended  actions  highlighted  after  doing  analysis  on  the  current  cooling  system  design  for  SPA  hybrid  vehicles  and  a  small  comparison  between  OO-­‐FMEA  and  traditional  approach  of  FMEA  conducted  through  a  survey.  

Chapter  7  describes  the  final  conclusion  from  the  system  analysis  and  future  work.    

    Object  Oriented  FMEA:  Climate  Cooling  System    

  7  

 Chapter  2

2 Failure  Mode  and  Effect  Analysis  FMEA   is   an   offshoot   of   Military   Procedure  MIL-­‐P-­‐1629,   titled   Procedures   for   Performing   a  Failure   Mode,   Effects   and   Analysis,   dated   November   9,   1949.   It   was   originally   used   as   a  reliability   technique   to   determine   the   effect   of   system   and   equipment   failures.   FMEA   was  further  developed  and  applied  by  NASA   in  1960's   to   improve  and  verify   reliability  of   space  program  hardware  [4].  The  procedures  called  out   in  MIL-­‐STD-­‐1629A  are  probably   the  most  widely   accepted   methods   throughout   the   military   and   commercial   industry,   although   SAE  J1739   is   a   very   prevalent   FMEA   standard   used   in   the   automotive   industry.   Today,   FMEA   is  universally  used  by  many  different  industries.  It  is  a  classical  system  safety  analysis  technique  which   is   currently   widely   used   in   the   automotive,   aerospace   and   other   safety   critical  industries.  In  the  process  of  an  FMEA,  analysts  compile  lists  of  component  failure  modes  and  try  to  infer  the  effects  of  those  failure  modes  on  the  system  [5].  

Following  are   standards  used  usually  when  FMEA   is   carried  out.  MIL-­‐STD-­‐1629   is   the  most  adopted/proposed   standard   by   Automotive   Industry   Action   Group   (AIAG)   for   risk  assessment.  

GPR  7120.4A   Risk  Management  

MIL-­‐STD-­‐1629     Procedures  for  Performing  a  Failure  Modes,  Effects,  and  Criticality  Analysis  

SAE  J1739   Potential  Failure  Mode  and  Effects  Analysis  in  Design  (Design  FMEA),  Potential  Failure  Mode  and  Effects  Analysis  in  Manufacturing  and  Assembly  Processes  (Process  FMEA),  and  Potential  Failure  Mode  and  Effects  Analysis  for  Machinery  (Machinery  FMEA)  

P-­‐302-­‐720   Performing  a  Failure  Mode  and  Effects  Analysis    

2.1 FMEA  by  Defination    According   to   AIAG,   FMEA   is   considered   as   an   analytical   methodology,   which   ensures   the  consideration   and   results   of   the   potential   problems   during   the   product   or   process  development.   It   is   stated   as   an   effective   tool,  where   risks   can   easily   be   analysed,   prioritise,  mitigate  or  eliminate  by  the  users.  In  general  FMEA  helps  in  anticipating  the  possible  failure  from  a  product  or  system  before  its  implementation.  In  addition  to  just  anticipating  possible  failure,   FMEA   also   records   the   cause   and   effect   of   that   failure   in   a   spreads-­‐sheet   with   the  likelihood  of   failures  being  detected  before  occurrence.   It   is  known   to  be   theoretical   testing  method.  Figure  2.1  shows  the  difference  between  physical  testing  and  simple  FMEA  where  a  box  is  making  a  drumming  sound  when  the  user  hits  it.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  8  

 

Figure  2-­‐1:  Difference  between  FMEA  and  Physical  Testing  

Physical  testing  end  up  with  OK  or  NOT  OK  means  either  product  is  as  per  expectations  or  not  whereas  in  FMEA  the  potential  failures  were  identified  with  their  cause  mechanism.  Potential  failure   modes   for   above   mentioned   example   are   identified   as   no   sound,   other   sound   or  unexpected   sound.   In   a   same   way   casuse   mechanism   for   each   potential   failure   mode   is  identified  with  the  liklihood  of  failure  being  detected  before  occurance  and  marked  down  in  the  FMEA  template  (see  appendix  A).     IMCA  [6]  compares  it  with  Murphy’s   law  which  states  “Everything  that  can  fail,  shall  fail”,  which  triggers  the  exisestence  of  such  methods.  Desginer  must  take  following  points  while  designg  a  system.  

• Possibilities  of  failure  that  what  might  go  wrong  with  the  system  • How  badly  it  affects  the  system  • And  what  measures  need  to  be  taken  to  prevent  failures    

FMEA   methods   are   considered   to   be   applicable   by   both   manufactures   and   service  organizations,  where  a  cross-­‐functional  team  helps  during  product  and  development  process.  Ideally   it   should   be   started   as   early   as   possible   during   conceptual   phase   with   the   help   of  system   or   product   requirement   and   specifications.   As   time   is   most   crucial   element   in  designing,  production  and  testing  of  a  product  due  to  continuous  modifications  or  changes  in  the  product,  questions  arises   from  FMEA  study  helps  designers  or   team  member  to  work   in  right  direction.  Figure  2.1  shows  modern  product  development  cycle/process  also  known  as  V  cycle   for   product   development.   FMEA   comes   in   the   design   phase   of   the   production   with  simulation  and  physical  testing  depending  upon  the  product.    It  can  be  of  concept,  system  or  hardware/software  components.    

No  Sound  

Other  Sound  

Unexpected  Sound  

Deviation  

Deviation  

Negation  

Design  Intent  

The  Box  makes  drumming  sound  when  it  is  hit  

Test  

OK  

Not  Ok  

Potential  Failures  Modes  

End  of  Test  

FMEA  Physical  Testing  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  9  

 

Figure  2-­‐2:  V  Diagram  of  process  development  

It  also  facilitates  the  identification  of  potential  problems  in  a  design  or  process  by  analyzing  the  effect  of  lower  level  of  failures.  Recommendations  are  then  made  to  reduce  the  likelihood  of  the  problem  facing  and  mitigate  the  risk,  if  it  still  occurs.  FMEAs  are  categorized  in  design,  process  and  conceptual  or   functional  FMEAs,  during  design  FMEA  the  analysis  will   look  at  a  combination   of   functions   and   hardware.   Sometimes   it   will   include   just   hardware,   and  sometimes   the   analyst   will   take   a   detailed   look   at   the   system   down   to   a   piece-­‐part   level,  especially  when  critical  functions  or  hardware  are  involved  [7].    

 

Figure  2-­‐3:  Scope  of  FMEA  

Figure  2.2  shows  the  recommended  areas  to  focus  in  FMEA.  Design  engineers  generally  start  working  between  the  defined  phases,  in  which  they  adapt  the  scope  for  analysis  to  reality  like,  if   FMEA   is   started   between   the   concept   and   system   phase,   focus   will   be   given   to   design  

Concept  

Function  and  Architecture  

Sub-­‐System  

Vehicle  Testing  &  Validation    

Implementation  

HW  and  SW  Components  

Unit  Testing  &  Verification  

Integration  Verification  &  Validation  

Sub-­‐System  Verification  &  Validation  

Too  Slow  

DESIGN   VERIFICATION  

Project  Time  line    

Level  of  A

bstractio

n  

Simulation  

FMEA  

Physical  

Component  Design  

Concept  Design  

System  Design  

Legal  requirement  

High  Level  attributes  

Technology   Use  cases  Functions  

Scope  of  a  concept  FMEA  (Add  quality  history,  system  overlaps  and  cost)  

Functional  Design  

Software  design  

Electrical  +  I/O  design  

Assembly  design  

Mechanical  Design  

Robustness  Design  

Scope  of  a  Component  Design  FMEA  

Software  functions  

Hardware  functions  

System  attributes  

ECU  I/O  interfaces  

Communication  

Scope  of  a  system  FMEA   Input/Outputs   Signal  Logics  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  10  

including  functions,  use  cases  and  the  legal  requirements  from  the  concept  phase.  Use  cases,  including  the  behaviour  of  all  users  can  never  be  neglected  [8].  It  is  very  dificult  to  implement  a  highly  manual   FMEA   (i.e.   a   report   that   is   keyed   in  manually   on   to  paper  or   into   a   spread  sheet).  A  manual  method  is  hardly  found  to  be  user  friendly  and  hard  to  understand  with  also  very   limited   access.   Many   companies   use   FMEA   merely   to   satisfy   the   contractual  requirements   of   their   customers   [9],   some   how   users   may   find   FMEA   a   tedious   and   time-­‐consuming   activity.   It   is   often   carried   out   early   in   the   design   cycle   of   a   product.   As   after   a  prototype   has   been   built,   changes  made   in   later   stages   will   be   very   costly.   Hence,   there   is  considerable  research  that  attempts  to  improve  FMEA  usage  in  the  earlier  stages  of  the  design  process,   such   as   the   conceptual   design   stage,  which   can  be   confirmed  with   the   information  available  online  but  most  of  which  are  untested  concepts.  

Generally  FMEA  requires  the  identification  of  the  followings  from  the  system  and  is  properly  documented.  

• Item(s)/Component(s)  • Function(s)  • Failure(s)  • Effect(s)  of  Failure  • Cause(s)  of  Failure  • Current  Control(s)  • Recommended  Action(s)  • Plus  other  relevant  details  

All  this  information  is  carried  out  with  the  help  of  expert  engineers  from  the  system.  In  other  words   this   method   of   theoretical   testing   focuses   on   generated   potential   failures   and   then  provide  their  solution  as  recommended  actions.    

A   typical   FMEA   incorporates   some   methods,   to   evaluate   the   risks   associated   with   the  potential   problems   identified   through   the   analysis.   The   two   most   common   methods,   Risk  Priority  Numbers   (RPN)  and  Criticality  Analysis   (CA).  RPN   is  a  decision   factor  based  on   the  product   of   three   ratings:   occurrence,   severity   and   detection.   These   ratings   are   scaled   with  numbers   between   1   and   10   (see   Appendix   A).   Failure   modes   with   high   RPN   values   are  selected.  The  corresponding  current  controls   (i.e.   the  solutions)  will  be   implemented  on  the  basis  of  the  selected  failures  [10].  

2.2 Literature  Review  (Traditional  FMEA)  

2.2.1 The  Flame  System:  Price,   Pugh,   Wilson   and   Snooke   [11]   discussed   an   automated   FMEA   for   electrical   design  circuits   for   which   they   took   automobile   wash-­‐wipe   system   as   an   example.   They   described  automated  FMEA   in   three   different   steps,  model   building,   FMEA  generation   and   Interactive  FMEA  examination.    

Model  building   is  considered  as  the  key  element  for  automated  FMEA,  it  includes  two  basic  levels:   functional   level;   that   includes   the   purpose   and   behaviour   of   the   system,   structural  level;   which   consists   of   electrical   circuit   and   their   descriptions.   According   to   the  authors/researchers   Flame   system   describes   a   system   in   four   categories   system  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  11  

decomposition,  electrical  circuit  definitions,   input  devices  and   functional  descriptions  and   is  being  implemented  on  wash-­‐wipe  system  in  section  3  of  this  research  work.  Now  together  all  this  information  is  used  in  step  2  for  FMEA  generation.  It  includes  the  effect  generation  and  then  assessment  of  occurrence,  detection  and  severity  numbers  using  FMEA  standards.  The  effect  generation  part   includes  the   identification  of  states/levels   in  which  a  system  operates  for   example   in  wash-­‐wipe   case;   turn   intermittent  wipe   ON,   turn   slow  wipe   ON   etc   are   the  operational   states,   and   then   comes   the   comparison   part   where   the   result   of   each   applied  failure  mode  on  a  system  is  compared  with  the  correct  working  of  system.  This  gives  the  effect  of  failure  mode  on  system,  described  in  terms  of    

• State:  that  is  different,    • Function:  which  fails  to  operate  and    • Component  within  a  circuit:  which  is  in  different  state  then  expected.    

These   short   descriptions   will   help   then   in   assigning   RPN   numbers   using   FMEA   Standards.    Flame  system  experts  suggests  two  ways  of  assigning  RPNs  in  this  paper  either  by  taking  help  from  the  past  retrieval  cases  means  if  an  FMEA  exists  for  a  same  system  but  of  different  model  or  year,  possibility  of  same  effect  can  be  found  therefore  same  values  for  severity,  detection  and  occurrence  can  be  used  there.  Or  the  RPNs  are  extracted  from  the  component  databases  if  a  past  case  doesn’t  exist.  Then  comes  the  analysing  part,  which  gives  engineers  an  opportunity  to   review   results,   order   them   according   to  RPNs,   alter   them   and  publish   them   as   an   FMEA  report.  

2.2.2 FMEA  on  Wind  Turbines  (WT)  Hoseynabadi,   Oraee   and   Tavner   in   [12]   studied   the   existing   design   of   2  MW  wind   turbine  incorporating   with   Doubly   Fed   Induction   Generator   (DFIG)   and   compare   it   with   Brushless  Doubly  Fed  Generator  (BDFG)  (commonly  knows  as  R80  in  RELIAWIND)  of  same  rating  using  FMEA.  This  analysis  was  done  for  reliability  purpose,  using  Relax  reliability  studio  2007  V2  as  a  software  tool.  In  this  research  paper  they  categorized  WT  system  in  four  different  levels  for  starting   FMEA,   by   keeping   in  mind   that   it  wouldn’t   be   complex.   Following   figure   shows   its  division.    

 

Figure  2-­‐4:  FMEA  implementation  on  WT  system  [12]  

They   considered  11   assemblies,   consist   of   40   sub-­‐assemblies   and  107  parts   through  whose  failure   modes   are   generated   and   then   categorized   them   in   three   different   states   e.g.  Mechanical,   electrical   and   Material.   Further   on   they   relate   a   failure   mode   with   their   root  causes   categorized   in   structural,  wear   and   electrical   issues   and   calculate   RPNs   accordingly.  Now  in  section  eight  of  [12],  they  compare  FMEA  RPN  results  of  11  assemblies  with  their  field  failure   rates   extracted   from   available   reliability   data   of   recent   years.   They   find   some  similarities   and   it   was   concluded   that   product   of   occurrence   &   detection   and   Failure   rates  

Level  1  

Level  2  

Level  3  

Level  4    

Wind  Turbine  

Assembly  

Sub-­‐assembly  

Part  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  12  

data  gives  such  a  close  comparison  that  one  can  use  FMEA  for  predicting  failure  rates  for  new  turbines.   However   FMEA   analysis   on   new   wind   turbines   (BDFG   R80*)   was   also   done,   to  extract  the  RPN  and  failure  rate  and  it  was  it  was  concluded  that  R80*  WT  are  more  reliable  due  to  reliable  generator  and  gearbox  assemblies.  They  stated  FMEA  as  a  potential  reliability  tool  for  WT  systems.  

2.2.3 FMEA  for  Software  Based  Automation  System:  Haapanen  and  Helminen  [13]  apply  FMEA  on  software  based  automation  system  they  found  FMEA   on   electrical   &  mechanical   systems  more   state   forward   compared   to   software-­‐based  systems.  As  mechanical  &  electrical  components  are  mostly  supposed  to  fail,  whose  reasons  or  consequences  are  known  easily  or  studied.  While  failure  modes  on  software-­‐based  system  are  generally   unknown   as   they   displays   result,   which   might   be   correct   or   incorrect   you   don’t  know.   They   followed   initial   steps   from   IEC   60812   standard,   which   defines   the   followings  while  handling  software-­‐based  systems.  

• System  boundary  for  analysis  • Understanding  function  and  system  requirement  • Criteria  for  failure/success    • Elements  by  breaking  down  a  system  • Failure  mode  and  cause  effects  of  each  element  

They   insist   of   identifying   the   correct   level   of   analysis   by   decomposing   the   software-­‐based  systems  and  start  the  analysis  from  bottom  level,  as  FMEA  in  general  is  a  bottom-­‐up  method  for   conducting   any   system   analysis.   Figure   shows   their   way   of   software-­‐based   system  decomposition.  

 

Figure  2-­‐5:  Decomposition  of  Software-­‐based  System  by  Haapanen  &  Helminen.  

However   after   decomposing   the   system,   they   find   it   little   hard   to   start  with   the   functional  level  as   in  most  cases   they  say   it   leads  to  rather  extensive  or  complicated  analyses  and  also  due  to  the  unknown  failure  modes  of  functional  block  this  procedure  seems  unfeasible.  

They  concluded  an  FMEA  is  only  applicable  to  some  extent  for  software-­‐based  systems  but  a  total  verification  and  validation  process  of  software-­‐based  safety  critical  application  includes  software  FMEA  of   the  system  at  proper   level.   It   also  gives   the  guidance   for  other  validation  and  verification  efforts  by  revealing  the  possible  weak  points  which  helps  in  creating  the  test  cases  for  system  testing.  They  also  proposed  combination  of  FMEA  with  fault  tree  analysis  of  

Software-­‐Based  System  

System  Software   Application  Software  

System  Services   Software-­‐Based  System  

Application  Function  

System  Kernel  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  13  

Maskunitty  &  Pulkkinen  [14]  similar  to  Bi-­‐directional  analysis  (BDA)  method.  Using  this  fault  tree  method  before  applying,  FMEA  helps   in  determining  most   significant   failure  modes   for  system  reliability.  

2.2.4 FMEA  based  on  Unified  Modelling  Language  (UML)  Hou  and  Wang  [15]   in  2011  presented  their  assessment  by  using  unified  modelling  language  (UML)  for  software  interface  FMEA.  They  stated  it  an  effective  approach  for  quality  engineers  to   understand   software   design   complexity   like   in   flight   control   system   of   aircraft.   They  highlighted  following  six  basic  steps  to  construct  UML  based  FMEA.    

• Choice  of  software  interface  needs  to  analyse.  • Determining  analysis  grade  and  assumptive  conditions.  • Possible  failure  modes.  • Analysis  of  failure  reason  and  effects.    • Severity  of  failure.  • Filling  of  FMEA  table.  

Whereas   Herbert,   Xuegao   and  Myron [16]   highlighted   some   important   features   of   UML   for  conducting   software   FMEA   on   the   UML   based   system.   They   took   an   example   of   use   case  diagram   for   active/standby   role   in   a   plant   communication   system,   which   operates   when  components  automatically  switched  from  active  to  standby  status.  After  specifying  the  control  system,  program,  external  events,  specific  methods  for  which  failure  modes  are  identified  and  their   flow   in  use   case  diagram,   they  extract   the  potential   failures  and   their   causes   from   the  system.   All   this   information   is   carried   out   in   FMEA   worksheet   of   MIL-­‐STD-­‐1629   standard,  from   where   designers   or   decision   makers   concentrate   on   failure   modes   with   highest  importance.   Severity,   detection   method   and   remarks   column   helps   in   this   regard   and  considered  to  be  the  output  from  the  FMEA.  They  consider  following  four  important  features  of  UML  for  this  process  

• Requirement  formats  in  every  phases    • Verity  of  automatically  generated  development  products,    • Allowed  actions  based  on  class  specifications  and  the    • Ability  to  highlight  product  assessment  for  FMEA.  

The   procedure   applied   in   [11] [12]   for   hardware   and   [13]   for   software   have   one   thing   in  common,  all  of   them  talked  about  breaking  down   the  complete  system   in  different   levels   to  start  FMEA  from  bottom  to  up.  Where  as  Haapanen  and  Helminen  [13]  didn’t  find  FMEA  alone  enough   for   software   based   automation,   they   emphasis   to   use   some   other   technique   with  FMEA   for   critical   analysis  of  a   system  as   they  used   fault   tree  analysis   (FTA)   technique  with  FMEA.  Where  as  Price,  Pugh,  Wilson  and  Snooke  [11]  talked  about  generation  of  failure  modes  with  building  system  models  and  then  emphasis  more  on  assigning  the  risk  priority  numbers  (RPN)  and  similarly  in  [15]  [16]  authors  talked  about  the  system  developed  in  UML  with  tools  like  Rational  Rose  and  Rhapsody.  They  have  their  own  working  environment  such  as  “use  case  diagram”,  which  is  applicable  to  those  who  had  knowledge.  It’s  quite  ok  for  small  systems  or  components  but  for  complex  systems  it  seems  to  be  a  tedious  task  to  identified  the  flow  of  a  system  with  just  use  case  diagrams.  On  the  other  hand  every  one  talked  about  system  analysis  but  didn’t  mentioned  about  defining  the  system  boundary.  We  are  presenting  to  solve  these  issues  with  Object  Oriented  approach  in  FMEA  analysis.    

    Object  Oriented  FMEA:  Climate  Cooling  System    

  14  

 

 Chapter  3

3 System  Overview  

3.1 Introduction  A   vibrant   trend   towards  making   smaller   and   fuel-­‐efficient   vehicles   is   functioned   now  days,  where  special  efforts  are  also  made  to  reduce  carbon  di  oxide  emission.  This  leads  to  upgrade  the  internal  combustion  engines  for  low  consumption  vehicles,  which  brings  a  new  era  in  car  industry   by   introducing   electrical   and   Hybrid   vehicles.   Although   the   first   hybrid   car   was  supposed  to  be  built   in  1899  by  Ferdinand  Porsche  known  as  System  Lohner-­‐Porsche  Mixte  and  later  on  Henry  Ford  also  establish  first  automobile  assembly  line  in  1904.  But  at  that  time  due   to   less   power   and   high   prices,   compared   to   gasoline   vehicles   they   unable   to   attract  customers.  Then  in  1960,  United  States  took  initiative  and  encouraged  use  of  electric  vehicles  to   curb   air   pollution   and   over   the   next   25   years,   spent   billions   of   dollars   in   research   and  development.   While   modern   automotive   hybrid   technology   was   then   well   spread   in   late  1990s,  when  first  mass-­‐produced  hybrid  vehicle  Toyota-­‐Prius  was  launched  in  Japan  (1997).  Later  on  in  1999  Honda  Insight  also  releases  its  first  hybrid  electric  vehicles  in  United  States  but  with   release   of   Toyota-­‐Prius   in   United   States   (2000),   this   hybrid   technology  was   given  recognition  and  acceptance  from  the  users  [17].  

Right  from  the  early  days,  when  combustion  engines  were  introduced  methods  for  controlling  the   heat   transfer   through   different   metals   was   taken   into   consideration;   special   measures  were  also  taken  to  avoid  excessive  metal  temperature.  Liquid  cooling  was  one  of  them  used  in  automotive   applications,   however   different   solutions   were   presented   over   the   years   for  cooling.  In  early  days  water  was  used  as  the  standard  cooling  fluid  in  automobiles  due  to  its  low  cost,  ease  availability  and  good  thermo-­‐physical  properties  but  later  on  due  to  relatively  high   freezing   and   boiling   point,   which   results   in   engine/radiator   block,   a   percentage   of  ethylene  glycol  was  mixed  with  water,  which  bring   the   freezing  point   form  0  degree   to   -­‐37  degree   [18].  This  cooling   fluid  was   then  pumped   in   the  engine  and   later  on  passed   through  the  heat   exchanger,  which   transfers   the   engine  heat   to   atmosphere.   In  modern  vehicles   the  concept  remain  almost  same  for  managing  engine  heat,  while  little  improvements  have  been  made  in  design  and  efficiency  of  the  system/components  (like  radiators,  pumps,  Fans  etc).  

In  hybrid   vehicles,  waste  heat   generated   from  electric   powertrain   system   is   very   small   and  are   better   controlled   through   thermal   management   system.   Coolant   flow   and   energy   from  exhaust   gas   are   used   as   an   additional   source   of   power   for   hybrid   vehicles.   It   then   leads  improved   designs   for   air   conditioning   systems,   which   also   guarantees   good   level   of   cabin  comfort  without  affecting  the  vehicle  driving  capability/range  [18].    

    Object  Oriented  FMEA:  Climate  Cooling  System    

  15  

 

Figure  3-­‐1:  Air  conditioning  comfort  in  the  vehicle  [18]  

Climate   comfort   level   due   to   air   conditioning   system   are   of   great   concerned   and   more  challenging   in  modern   vehicle   designs   like   variable   air   flows,   thermal   satisfaction,  multiple  climate  zones,  pleasant  odours  etc  as  shown  in  figure  3.1.  

If  you  have  experience,  A/C  comfort  directly  affects  the  potential  range  in  electrical  vehicles;  energy  must  be  saved   for  auxiliary  equipment  during  air  conditioning  through  new  designs,  efficient   systems   and   special   additional   function   like   pre   and   post   air   conditioning   etc.  Similarly  cooling  and  heating  (at  low  temperature)  systems  are  required  for  maintaining  the  performance  and  life  span  of  lithium-­‐ion  batteries  in  hybrid  vehicles.    

3.2 Climate  Comfort  in  Conventional  Vehicles:  Strict   requirement   are   placed   on   air-­‐conditioning   acoustics   in   conventional   vehicles   with  combustion   engines   and   to   some   extent   they   were   masked   by   the   noise   of   internal  combustion   engine.   Recently   in   past   few   years   several   improvements   have   been  made,   like  use   of   silent   HVAC   (Heating,   Ventilation,   Air-­‐Conditioning)  modules   and   low   noise   blowers  etc.   But   the   basic   principle   was   to   reduce   increased   fuel   consumption   caused   by   air  conditioning  system.  ECO-­‐A/C  and  ECO-­‐Heat  systems  were  then  introduced  for  this  purpose  with   conventional   refrigerant   based   air   conditioning   system.   ECO-­‐A/C  makes   it   an   efficient  system  with  introduction  of  highly  efficient  internal  heat  exchangers  within  refrigerant  circuit  with   an   addition   of   energy   saving   adjustment   by   refrigerant   expansion   valve   at   evaporator  unit.  Similarly  in  ECO-­‐Heat,  highly  efficient  internal  heat  exchangers  within  refrigerant  circuit  were  used  and  partial   recirculated  air  mode  was   introduced   for  eliminating   risk  of  window  misting.  Heat   from  exhaust   gas  was   recovered   for   cabin   heating   or   engine  warm  up,  which  reduces  the  functionality  of  air  conditioning  system  and  fuel  consumption  in  hybrid  vehicles  [19].  

Draft-­‐free  Ventilation  

Zone  Based  air  conditioning  

Acoustics  

Stratification  

Cool  Head  

Warm  feet  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  16  

3.3 Climate  Comfort  in  Hybrid  Vehicles  Hybrid  vehicles  were  further  consists  of  two  main  types:  Full  and  Micro  Mild  Hybrid  Vehicles.  

3.3.1 Micro  &  Mild  Hybrid  Vehicles:    Micro   hybrids   are   built   with   conventional   combustion   engines   having   extra   feature   of  start/stop  automation,  where  as  Mild  hybrids  were  equipped  with  a  small  electric  engine  with  powerful  battery  unit.  Electric  engine  drive  in  mild  hybrid  is  used  for  fast  acceleration  when  required  and  recovering  their  brake  energy  helps  in  charging  the  battery.  

Heating  and  Cooling:  Air  conditioning  system  is  power  by  the  belt-­‐driven  compressor  just  like  conventional  combustion  engines  vehicles,  which  stops  the  compressor  when  engine  is  idle.  A  cold  storage  device  called  storage  evaporator  is  used  for  providing  cooling  in  summer  when  the  engine  is  briefly  stops  at  traffic  lights  etc.  where  as  engine  waste  heat  with  residual  heat  during   brief   stop   and/or   electric   heater   is   used   for   maintaining   climate   comfort   in   cold  climate.    

A/C   system   acoustics:   Noise   of   A/C   is   easily   heard   when   engine   is   idle   therefore  improvements  are  required  in  system  acoustic  here.  It  is  considered  to  be  the  weak  system  so  far  for  micro  &  mild  hybrid  vehicles.  

Fuel  Saving  via  Start/Stop:  In  urban  traffic  environment  with  the  used  of  storage  evaporator  functionality   fuel   consumption   is   cut   down   up   to   8   approximately.   As   without   storage  evaporator  for  cooling  battery,  engine  must  be  re-­‐engaged  way  before  the  end  of  the  period  of  inactivity,  therefore  start/stop  fuel  saving  potential  cut  by  half  roughly  [19].  

3.3.2 Full  Hybrid  Vehicles:      These   vehicles   are   not   only   capable   of   boosting   but   in-­‐fact   they   can   cover   some   serious  distance  using  electricity  as  a  sole  energy  source.  Hybrid  vehicles  are  equipped  with  complete  electric  powertrain  with  a  powerful  battery  system.  Currently   lithium-­‐ion  batteries  are  used  for  this  purpose,  which  are  completely/partially  recharged  while  the  vehicle   is   in  motion  by  converting  brake  energy  into  electric  power.  

Cooling:  Electric  compressors  are  used  here  to  cool  down  the  passenger  cabin,  either  driving  with   combustion   engine   or   electric   drive  mode.   Even   though   if   engine   is   idle   or   during   the  necessary  vehicle  stop.  Additional  features  like  pre  cooling  (cooling  passenger  cabin  through  remote  like  before  entering  etc)  is  also  possible  in  full  hybrids,  which  certainly  enhances  the  comfort   level,   as   temperature   normally   rises   above   50   C   to   60   C   during   heating,   which  discomfort   passengers   in   the   cabin.   But   cooling   through   engine-­‐independent   system   is  dependent  upon  the  available  battery  capacity.  

Heating:   Internal  combustion  engine  are  one  of   the  source   for  heating   in   full  hybrids  on  the  other  hand  high  voltage  PTC  (Positive  Temperature  Coefficient)  heaters  are  also  used,  when  internal  combustion  engine  fails  to  deliver  the  required  amount  of  heat.  

Acoustics:   Due   to   the   long   inactivity   of   the   internal   combustion   engine,   air   conditioning  system   acoustics   are   important   part   to   address   therefore   improved   silent   HVAC   and   silent  blower  are  used  in  full  hybrid  vehicles.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  17  

Battery   Cooling:   Temperature   regulation   for   lithium-­‐ion   batteries   must   be   done   in   hybrid  vehicles  as  they  operated  in  a  narrow  temperature  range.  Battery  is  cooled  by  the  refrigerant  cooling   circuit,  where   battery   itself   and   on-­‐board   comfort   compete   for   energy.   Therefore   a  choice/priority  must  be  set  between  cooling  passenger  cabin  and  electric  drive  unit.  

Battery  charging  is  done  using  external  electric  outlets  in  plug-­‐in  hybrids,  which  helps  in  full  electric  drive.  Additional  functionalities  of  pre-­‐heating  or  pre-­‐cooling  cabins  are  also  available  in  these  vehicles,  which  over  come  the  use  of  energy-­‐intensive  heating  or  cooling  [19].    

3.4 Electrical  Components  for  Climate  comfort  

3.4.1 Storage  Evaporator    It’s  basically  consists  of  two  cores:  one  known  as  main  evaporator  core  and  the  other  storage  evaporator  core.  Cooling  refrigerant  is  passed  in  parallel  through  both  these  cores  during  air  conditioning.  A  latent  medium  inside  storage  core  is  cooled  to  freeze  and  helps  it  in  becoming  cold   storage.   This   latent   medium   now   starts   melting   once   the   A/C   system   in   inactive   for  instance  like  during  vehicle  stop  at  traffics  signals  etc.  Vehicle  cabin  airflow  through  battery  cooling  unit  draws  an  amount  of  thermal  energy,  which  helps  the  storage  core  to  do.    

3.4.2 High  Voltage  PTC  These   heaters   were   installed   as   insufficient   waste   heat   is   produced   for   heating   purpose  during   electric   drive   in   full   or   plug-­‐in   hybrids.   PTC   technology   [20]   helps   in   ensuring   on-­‐board  comfort  level;  they  are  high  voltage  auxiliary  heater  integrated  in  HVAC  module,  which  also  saves  the  crucial  packaging  space  for  hybrid  vehicles.  PTC  semiconductor  is  used  as  the  heating  element  in  these  heaters,  which  gives  significant  increase  to  their  electrical  resistance,  having   temperatures   above   threshold   and  maintain   a   constant   heating   temperatures   to   its  element  during  change  in  supply  voltages  or  loads.    

3.4.3 Silent  HVAC  Module:    Using   new   soundproof/transparent   material   like   resonance/interference   sound   absorbers  airflow  noises  are  optimises  through  air  ducts.  

3.4.4 Silent  Blower:    Blower  motor  with   improved  decupling   arrangements   acoustically   enhanced;   therefore   low  noise  blowers  are  made  to  over  come  the  noise  of  blowers.  

3.5 Electrical  Architecture  Hybrid  Vehicles  at  Volvo  Electrical  architecture  of  the  V60  plug-­‐in  Hybrid  vehicle  is  divided  in  high  voltage  and  12  volts  system.   12V   section   is   more   likely   the   same   as   of   conventional   cars   with   an   internal  combustion  engines  but  without  an  alternator  used  in  hybrid  vehicles.  These  12V  are  supplied  from  the  high  voltage  section  in  hybrid  vehicles.  

High   voltage   section   is   mainly   used   for   driving   electric   A/C   compressor   having   voltage  capacity  of  230V  to  400V.  It  consists  of  both  alternating  (AC)  and  direct  currents  (DC),  as  the  battery  stores  DC  but  generators/motors  are  operated  with  3-­‐phase  AC.  The  charge  current  form  the  main  power  circuit   is  AC.  High  voltage  components  are  also  connected  to   the  12  V  circuit  for  control  signal.  Figure  3.2  shows  the  high  voltage  components  for  Hybrid  vehicles.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  18  

 

Figure  3-­‐2:  High  Voltage  electrical  components  in  Hybrid  Vehicles [21]  

1   shows   the   Integrated   Starter   Generator   (ISG),   which   is   used   for   starting   the   internal  combustion  engine  and  current  generation  for  the  high-­‐voltage  section.  Sub-­‐figure  2,  in  figure  3.2  shows  the  Control  Module  for  DC/DC  converter  that  converts  the  high-­‐voltage  DC  to  12V  DC.  Sub-­‐figure  3  shows  the  charging  cables  with  ground  fault  circuit   interrupter  and  control  unit  for  setting  the  charge  current.  4  show  the  high  voltage  battery  for  driving  ERAD  (electric  rear  axle  drive)  and  other  high  voltage  components.  Sub-­‐figure  5  states   the   Inverter  System  Controller   (ISC),   which   contains   two   separate   voltage   converters;   IGM   (Inverter   Generator  Module)   for   direct   current   to   high   voltage   battery   and   IEM   (Inverter   ERAD  Module)  which  uses   3-­‐phase   alternating   current   for   different   components.   IGM   and   IEM   also   include   the  software   to  control   the   ISG  and  ERAD  respectively.  On  board  charger   (OBC)  control  module  (battery  charger)  is  shown  in  sub-­‐figure  6  of  figure  3.2.  It  converts  the  main  AC  power  of  230V  to  400V  DC  for  charging  high-­‐voltage  battery,  and  operating  electrical  A/C  and  DCDC  during  main  power   recharging.   7   show   the  ERAD  motor,  which   is   usually  mounted  directly   on   the  rear  axle.  It  also  works  as  a  generator  with  energy  recovery  during  braking.  Charging  socket  is  used  for  connection  to  main  power  230V  shown  in  sub-­‐figure  8  whereas  sub-­‐figures  9  show  the  electric  A/C  compressor  used  for  cooling  in  the  compartment  and  HV  battery.  

3.6 System  Overview  Thermal  Management   system   for  hybrid  vehicles   at  Volvo  Car  Corporation   (VCC)   is  divided  into   two   departments;   one   deal   in   thermal  management   powertrain   (Engine   side)   and   the  other   take   care   of   the   thermal   management   climate   (Passenger   compartment/cabin).  Powertrain   side   deals   with   the   airflow   and   coolant   flow   system   of   cars   while   climate   side  deals  with  cooling,  heating  and  battery  cooling  system  for  hybrid  vehicles.  Figure  3.3  shows  the  hierarchy  system  of  thermal  management  system  at  VCC.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  19  

 

Figure  3-­‐3:  Hierarchy  of  Thermal  Management  System  at  VCC  

3.6.1 Thermal  Management  Powertrain  

3.6.1.1 Airflow  This   system   is   responsible   for   providing   the   desired   flow   of   air   to   different   parts/system,  when  the  request  has  been  made.  Airflow  is  required  usually  during  the  high  load  or  for  Air  conditioning   system  (condenser).    Engine  cooling   fan  helps   in   this   regard  as   the  key   source  element.  But  it  has  a  significant  current  consumption  and  noise  level  therefore  it  is  only  active  when  absolutely  required  by  the  system.  Upper  and  lower  shutters  further  help  in  this  regard  that   is   they  must   be   closed   to   reduce   the   aerodynamic   drag.   Typically   the   shutters  will   be  closed   during  winter,   but   during  warmer  months   they  may   not   close   until   high   speeds   are  attained.  In  hybrid  vehicle  case  a  fan  can  be  used  to  avoid  the  electric  drivetrain  temperature  exceeding  the   threshold   that   is   the  peak   temperature   for  electric  drivetrain,   it   is   triggered  by   the  high  voltage  battery  system.  Following  are   the   listed  electrical  components  used   in  obtaining   the  desired  airflow.  

• Active  Grill  Shutter  Module  (AGSM)  • Active  Spoiler  Shutter  Module  (ASSM)  • Engine  Control  Module  (ECM)  • Cooling   fan   for   standard   cooling   pack   (e.g.   Engine   coolant   radiator   and   air-­‐

conditioning  condenser  (FCM))  • Cooling   fan   for   hybrid   cooling   pack   (Electric   drivetrain   coolant   radiator   and   HV  

battery  coolant  radiator  (EDF)).  

3.6.1.2 Coolant  Flow  Coolant  flow  section  in  divided  in  three  different  loop  for  hybrid  vehicles  as  cooling  for  high  voltage   battery   and   ERAD   system   are   additional   coolant   loops   as   compared   to   the  conventional  vehicles.    

Engine   loop:   Petrol   engines   usually   have   a   quick  warm   up   phase   by   having   a   low   or   no  coolant  flow  at  the  start  of  driving  cycle.  Once  engine  has  attained  adequate  temperature,  the  pump   shall   be   controlled   nominally   to   provide   coolant   flow   through   engine   block  while   its  surrounding  components  depend  upon  the  set  points.  If  high  load  is  detected,  then  to  provide  

Thermal  Management  

Powertrain  

Airflow  

Coolant  flow  

Climate    

Heahng  system  

Cooling  system    

Baiery  cooling  system  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  20  

maximum   power   from   engine,   the   coolant   set-­‐point   temperature   is   lowered.   Electrical  warming  of  thermostat  and  secondary  control  of  the  coolant  flow  via  the  pump  attain  this.  

In   combustion   engines,   cooling   circuit   includes   CISG   component   that   operates   a   starter  moment   and   generates   400V   for   high   voltage   system.   CISG   has   a   coolant   flow   request   to  electrical  pump,  which  obtains  an  adequate   flow  rate.  Figure  3.4  shows   the  coolant   flow   for  combustion  engines.  

 

Figure  3-­‐4:  Diagram  of  Coolant  flow  in  Engine  

ERAD   loop :  For  the  electric  drivetrain  (low  temperature)  circuit,  the  flow  rate  is  based  on  a  minimum   requirement   from  electric   propulsion   that   depends   on   ambient   temperature.   The  electric  drivetrain  components  can  also  increase  coolant  flow  rate  via  dedicated  CAN  signals.  Figure  3.5  shows  the  coolant  flow  of  ERAD  system.  

 

Figure  3-­‐5:  Diagram  of  ERAD  Coolant  flow  

This  cooling  circuit  works  in  three  phases.  Cooling:  Thermostat  is  used  to  reduce  the  pressure  drop  and  allows  a  minimum  flow  under  all  driving  conditions  and  all  external  temperatures.  When  thermostat  is  open  the  coolant  travels  to  electric  water  pump  through  ERAD  radiator  and  recirculates  to  cool  down  CIDD,  OBC  and  ERAD  circuits.  Bypass:  It  works  when  coolant  is  at   low  temperature  and  the  cooling  is  not  required.  In  this  mode,   thermostat  does  not  open   to   the   radiator   so   the   coolant   travels  directly   to   the  water  pump,  which  recirculates  the  coolant  in  the  ERAD  cooling  system.    Connecting   to   the   engine’s   cooling   system:   Pure   electric   power   operates,  when   the   coolant  temperature   (engine   oil)   of   the   combustion   engine   is   0   degC   in   hybrid   vehicles.   At   low  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  21  

temperatures   there   is   a   risk   of   combustion   engine   to   not   start   quickly   enough  when   extra  power   is   required   like   in   quick   accelerations.   If   the   combustion   engine   is   cold   and   the   low  temperature   cooling   circuit   is  warm,   a  3-­‐way  valve  opens   so   that   the   coolant   travels   to   the  engine   block   to   heat   up   combustion   engine  more   quickly.   This   connection   is   also   used   for  filling   and   bleeding   the   low   temperature   circuits.   Filling   is   carried   out   with   the   help   of  expansion  tank  used  for  engine  coolant  flow  system  where  as  bleeding  through  this  expansion  tanks  requires  two  3  way  valves.    Battery  loop:  Similarly  the  battery  coolant  circuit  is  basically  a  low  coolant  circuit  operating  at  a  maximum  temperature  of  35degC.  It  maintains  the  temperature  of  the  battery  cells  during  driving  between  25degC  and  32degC,  which  is  optimal  for  battery’s  service-­‐life  and  capacity.  This  loop  has  its  own  radiator  used  to  cool  down  the  coolant  with  the  help  of  an  electric  water  pump.  Chillier  with  A/C  system  further  enhance  cooling  for  this  battery  cooling   loop.  Figure  3.6  shows  the  coolant  flow  in  battery  cooling  circuit.  

 

Figure  3-­‐6:  Diagram  of  Battery  Coolant  flow  

Following  are  the  listed  electrical  components  used  in  coolant  flow  system  for  hybrid  vehicles.  • Engine  Control  Module  (ECM)  • Engine  Coolant  Pump  Module  (ECPM)  • Electric  Drivetrain  Coolant  Pump  (EDCP)  • Vehicle  Dynamics  Domain  Master  (VDDM)  • Coolant  level  Sensor  • Coolant  Temperature  Sensor  for  Electric  Drivetrain  • Electrical  Thermostat  actuator  • Engine  Coolant  Temperature  Sensor  

3.6.2 Thermal  management  climate  Thermal   management   climate   system   divided   in   three   basic   subsystems   responsible   for  making   comfort   level   for   users   in   passenger   compartment/Cabin.   Airflow   and   coolant   flow  also  plays  an  important  role  here  with  them  to  obtain  desired  comfort  levels.  

3.6.2.1 Cooling  System  Cooling  system  is  responsible  for  cooling  passenger  cabin  and  high  voltage  battery  in  hybrid  vehicles.   It   holds   the   basic   Air   conditioning   system   in   the   car   where   key   elements   are  compressor,   condenser   and   Evaporator.   Compressor   is   the   main   source   in   this   system   for  providing  cooling.  Principle   of   Air   Conditioning:   A   low-­‐pressure   vapor   entering   the   compressor   is  compressed   and   becomes   a   high   pressure/temperature   vapor,   which   is   then   injected   to  condenser.   This   condenser   condenses   the   vapor   into   high   pressure/temperature   liquid   as  heat   is   released   due   to   cooler   ambient   air   passing   through   it.   High   pressure/temperature  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  22  

liquid  is  then  travels  through  the  Thermal  expansion  valve  (TXV)  where  small  variable  orifice  provide   some   restriction,   against  which   compressor  pushes  and   suction   side  of   compressor  pull  the  high  pressure/temperature  liquid.  In  result  it  gives  a  low-­‐pressure  liquid,  which  then  passes   through   the   evaporators   coil.   Heat   has   removed   from  warm   air,   blowing   across   the  evaporator   fins   into  cooler  refrigerant,   from  where  this  cooled   is  ducted   into  cabin  with  the  help   of   blowers.   The  A/C   cycle   begins   again   as   this   low-­‐pressure   refrigerant   is   compressed  and  discharge  under  pressure  [22].  Figure  3.7  shows  the  general  principle  of  A/C  system  in  vehicles.  

 

Figure  3-­‐7:  Air  Conditioning  system [22]  

In   hybrid   vehicles   Internal   heat   exchanger   (IHX)   is   used   as   an   enhancer   to   increase   the  cooling  capacity  as  shown  in  figure  3.8.  It  uses  the  cold  vapor  from  the  evaporator  to  cool  the  hot  liquid  before  it  enters  the  expansion  device,  resulting  an  increase  in  cooling.  Evaporators  are  the  part  of  Heating,  Ventilation  and  Air  Conditioning  (HVAC)  system.  Small  vehicles  with  2  rows  have  only  front  evaporator  whereas  vehicles  with  3  rows  are  separated  in  front  and  rear  evaporators.   Similarly   an   additional   loop   is  defined   in   the  hybrid   vehicles   to   cool  down   the  high  voltage  battery  with  the  help  of  chiller  attached  after  the  condenser  in  A/C  circuit.  This  chiller   is   designed   for   efficiently   transferring   the   waste   heat   from   secondary   circuit   to  evaporated  refrigerant  as  shown  below  in  figure  3.8.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  23  

 

Figure  3-­‐8:  Cooling  system  for  battery  and  Passenger  compartment  in  Hybrid  Vehicles  

Working   of   Cooing   system   for   hybrid   vehicles:   In   hybrid   vehicles   one  might   know  cooling   is   needed   for   passenger   compartment,   electric   drive   components   and   High   voltage  battery   system.   Cooling   of   electric   drive   components   have   its   own   cooling   system   with   a  separate  cooling  radiator  as  discussed  before  in  section  3.6.1.2  where  as  A/C  system  helps  in  enhancing  the  cooling  for  battery  loop.  Figure  3.9  shows  the  working  of  cooling  system.    

 

Figure  3-­‐9:  Working  of  cooling  system  for  hybrid  vehicles  

Cooling  Passenger  Compartment  and  High  Voltage  Battery:  When  cooling   the  passenger  compartment   only,   the   solenoid   valve   (7)   for   the   climate   control  module   evaporator   (9)   is  open  and  the  solenoid  valve  (13)  for  Battery  Climate  Unit  (BCU  12)  is  closed.  This  is  the  A/C  system's  normal  operating  condition  where  none  of   the  solenoid  valves  are  powered.  When  cooling   the   passenger   compartment   and   high   voltage   battery,   the   solenoid   valve   (7)   of   the  climate  control  module  evaporator  (9)  and  solenoid  valve  (13)  for  BCU  (12)  is  open.  Solenoid  valve  for  BCU  is  powered  and  the  A/C  compressor  (2)  in  this  case  works  in  the  entire  speed  range  of  800-­‐8500  rpm  [21].  

Battery R

ad

1

0

EXP TANK Electric valve Temp sensor Electric water pump

Battery!

Condenser

C

Chiller

Rea

r eva

pora

tor

Fron

t eva

pora

tor

IHX

Chiller Shutoff Valve

Orifice

Orifice TXV

AC / Front HVAC Shutoff Valve

Rear HVAC Shutoff Valve

Temp Sensor

    Object  Oriented  FMEA:  Climate  Cooling  System    

  24  

Cooling  high  Voltage  Battery:  When  cooling  the  high  voltage  battery  only,  the  solenoid  valve  (7)  for  the  climate  control  module  evaporator  (9)  is  closed.  Solenoid  valve  (13)  for  BCU  (12)  is  open.  During  this  operating  condition  both  solenoid  valves  are  powered.  The  A/C  compressor  (2)  works  in  the  speed  range  2000-­‐4000  rpm  [21].  

Compressor   is   considered   to   be   the   key   source   for   the   providing   cooling   to   the   system.   In  hybrid   vehicles,   electric   compressor   is   used   instead   of   mechanical   (as   in   conventional  vehicles),  which  is  powered  by  direct  current  (DC)  from  high  voltage  battery.  They  had  a  built-­‐in   voltage   converter   that   converts   direct   current   to   3-­‐phase   alternating   current   for  compressor’s  electric  motor.  This  electric  motor   is  a  3-­‐phase  400V  synchronous  motor  with  an  output  of  4.6  kW  and  it  operates  at  a  rotational  speed  from  800  to  8500  rpm.  Air  condition  control   module   (ACCM)   controls   the   motor   and   communicates   with   the   Engine   control  module  (ECM)  with  a  communication  bus.  BCU  and  CCM  are  the  control  units  for  the  battery  management   system   and   climate   management   system   (cooling,   heating   and   component  heating/cooling).  

3.6.2.2 Heating  System  Heating   system   includes   the   heating   of   passenger   compartment/Cabin   with   additional  services  of  pre-­‐heating  during  winters.  As   the  waste  heat   in  electric  and  hybrid  vehicles  are  not  or   temporarily  produced   through  their  engines,  electric  heating  system  with   the  help  of  air  and  water  heating  system  were  introduced.  It  is  done  with  addition  of  fuel  operated  heater  (FOH)  and  auxiliary  electric  heaters   commonly  known  as  high  voltage  PTC  heaters.  PTC  Air  heaters   (Low   Voltage   heaters),   mostly   used   in   pure   electric   vehicles   and   are   commonly  controlled  by  HVAC  control  panels.  They  boost  up  the  required  amount  of  temperature  inside  the   cabin   as   they   directly   heat   the   ambient   air.   Hybrid   vehicles   on   the   other   hand   are  equipped  with  high  voltage  PTC  water  heaters,  placed  inside  the  coolant  circuit,  which  makes  use  of  engine  waste  heat  for  heating.    PTC  heater  then  becomes  the  additional  heat  source  for  heating,  which  also  helps  in  improving  energy  efficiency  [23].    

Mean  while   this   thermal  management   climate   section   provides   some   additional   luxuries   to  passengers  as  stated  below  

Pre-­‐conditioning/Parking  Climate:  This  function  is  used  while  engine  is  OFF  in  both  cold  and  warm  climate   to  pre  climatise   the  passenger  cabin  usually  when  the  vehicle   is  parked.  High  Voltage  Coolant  Heater  (HVAC)  is  used  as  a  heat  source  while  Electrical  Compressor  (ELAC)  is  used  as  a  cooling  source.  Vehicles  can  be  either  plugged  (connected  to  main  as  power  supply)  or  unplugged  where  as  high  voltage  battery  is  used  as  the  power  supply.  Pre-­‐conditioning  is  activated  by  direct  start  or  timer  functions.  Direct  start  climatise  passenger  compartment  for  a  maximum  duration  with  the  available  actuators,  depends  upon  the  car  configuration.  Timer  start   function   climatise   the   compartment   up   to   a   specific   time   configured   by   the   user.  Following  systems/actuators  are  possibly  control  during  preconditioning.  

• High  Voltage  Coolant  Heater  (HVAC)  • Positive  Temperature  Coefficient  (PTC)  • Seat  Heating  • Steering  wheel  Heating  • Electrical  Windscreen  Defroster  • Electrical  Rear  Window  Defroster  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  25  

• Mirrors  Heaters  • Electrical  AC  

Seat  heating:  This  function  is  mostly  installed  in  luxury  vehicles,  which  helps  in  comfort  level  for  passenger.  They  are  individually  controlled  with  four  different  levels  (off,  1,  2,  3)  through  IHU.    

Defrosting:  This   function   is   required   to  de-­‐ice  or  demist   the  windscreen  as   fast   as  possible.  Electrical  heated  windscreen  and  hot  air  flow  through  defroster  outlet  helps  in  fulfilling  this  function.  It  holds  both  automatic  and  manually  handling  facilities  through  IHU.  

Head  level  estimation  for  providing  Heating/Cooling  etc:  In  VCC  comfort  level  is  said  to  be  OK,  when   the   (Drivers)   head   level   temperature   is   similar   to   the   set   temperature,   therefore   a  mapping  technique  is  used  which  gives  the  estimated  head  level  temperature  depending  upon  the   air-­‐flow,   ambient   temperature   and   INCAR   sensor   reading.   Climate   control   system   is  responsible  for  providing  this  information  correctly  as  all  calculations  have  been  done  there.  While   cooling   and   heating   managers   are   responsible   for   providing   heating   and   cooling  comfort  level  in  the  passenger  cabin  with  the  help  of  this  head  level  estimation.  

Thermal  Expansion  Valve  (TXV):  Its  basic  principle  is  to  ensure  the  complete  evaporation  of  liquid   refrigerant   from   the   evaporator,   so   that   maximum   cooling   is   achieved.   Figure   3.10  shows  both  open  and  close  version  of  TXV.  TXV  allows  more  refrigerant  to  enter  evaporator  inlet,  when  it  is  said  to  be  open.  Refrigerant  in  the  capillary  tube  expands  with  the  increase  in  temperature  at  evaporator  outlet,  it  then  forces  the  diaphragm  downwards  which  pushes  the  spring  and  hence   the  ball  valve   is  open.  Similarly   the  cooler  evaporator  outlet   tube  helps   in  contracting   capillary   tube,   pressure   compensation   tube   and   spring   force.   It   will   then   help  diaphragm   and   pin   to   move   upward   which   allows   the   ball   valve   to   close   the   path   for  refrigerant.  

 

Figure  3-­‐10:  Thermal  Expansion  Valve [22]  

 

 

1.  From  Filler  Drier  2.  To  Evap.  Inlet  3.  Capillary  tube  4.  Metering  Orifice  5.  Ball  valve  6.  Spring  7.  Diaphragm  8.  Refrigerant  9.  Pressure  tube  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  26  

Orifice:   Its  basic  principle   is   to  drop   the  pressure  and   temperature  of   the   refrigerant,  when  refrigerant   flows   through   it.   It   is   done   with   the   helps   of   fine   restriction   placed   inside   the  orifice   tube   as   shown   in   figure   3.11.     The   rate   of   flow   depends   on   the   pressure   difference  across  the  restriction.  

 

Figure  3-­‐11:  Orifice  tube [22]  

   

    Object  Oriented  FMEA:  Climate  Cooling  System    

  27  

 Chapter  4

4 Methodology    Object   oriented   approach   is   basically   an   iterative   loop   that   begins   and   concludes   with   the  requirement  description  and  specifications  as  shown  below  in  figure  4.1.  The  first  two  steps  of  OO-­‐FMEA  distinguish   it   from  the   traditional  approach.  Every  step  comes  up  with  defined  inputs  and  outputs;  while  the  combined  output  from  the  first  two  steps  is  an  object  oriented  system   analysis   consisting   of   a   boundary   diagram   with   a   group   of   objects   illustrates   the  overall  behaviour  of  the  system.    

 

 

Figure  4-­‐1:  Iterative  loop  of  Object  Oriented  Failure  Mode  and  Effect  Analysis  

 

In   general   terms   the   process   of   designing   any   concept,   system   or   component   in   a   defined  operational   environment,   no   matter   either   its   hardware,   software   or   combined   together,  results   in   creation   of   a   structure.   Then   the   structure   is   allocated   certain   behaviours   or  functions.   This   is   a   simple   view   of   the   outcome   of   a   design   engineering   process.   OO-­‐FMEA  theoretically  tests  the  design  by  first  finding  its  structure  and  then  identifying  its  behaviours  or   function.   Structure   and  behaviour   are   two  keywords  obtained  before   starting   traditional  FMEA  methodology  in  Object-­‐Oriented  approach.  Figure  4.2  shows  the  flow  chart  of  the  object  oriented  failure  mode  and  effect  analysis  (OO-­‐FMEA).  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  28  

 

Figure  4-­‐2:  Flow  Chart  of  Object  Oriented  Failure  Mode  and  Effect  Analysis  

4.1 Identifying  Structure    Step  one  asked  for  finding  conceptual  or  system  structure  means  a  complete  system  boundary  diagram   that   consists   of   the   interacting   models;   software/hardware   components,  input/output  components  and  external  shared  resources  which  helps  in  performing  a  certain  function.   The   purpose   of   identifying   complete   structure   is   to   have   complete   operational  environment,   which   includes   communication   networks   and   the   external   shared   resources.  Mechanical   elements   can   also   be   taken   into   consideration   for   designing   an   appropriate  boundary.   But   one   should   be   quite   clear   among   the   difference   between   interfaces   and  interaction  in  order  to  determine  the  system  boundary  figure  4.3  shows  the  difference  among  them,  which   is   set   to   be   the   criteria   for   identifying   the   system   elements   in   object   oriented  approach   for   FMEA.   Any   element,   which   is   unique,   or   having   an   interaction   with   system  considered   to   the   part   of   system   boundary,   whereas   elements   with   only   interfaces   is   not  necessary  for  system  boundary.  

1.  Find  the  Conceptual  or  system  structure  

2.  Identify  the  objects  and  their  behaviors.  

3.  Prioritize  objects,  enter  names  &  design  intents  in  

FMEA  template.  

4.  Generate  Failure  modes,  based  on  design  intents  

5.  Complete  FMEA  according  to  FMEA  methodology  

SCOPE  Boundary  Diagram  

FMEA  OBJECT  Physical,  Logical  &  attribute  objects  with  design  intents  

INITIAL  FMEA  INPUTS  Partial  risks  

POTENTIAL  FAILURE  MODES  

FMEA  RESULTS  More  reliable  designs,  improved  specifications  &  knowledge  gains  

Concep

t  or  system  

specificatio

n  &  expertise  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  29  

 

Figure  4-­‐3:  Difference  Between  Interaction  and  Interfacing  in  OO-­‐FMEA  

4.2  Identify  the  Behaviour.    From  the  confines  of   the  system  boundary,  a  process  of   identifying  objects  and   their  design  intents  will  start.  The  output  from  this  step  highlights  complete  system  behaviour  comprises  of   physical,   logical   and   attribute   objects.   An   object   is   an   information   package   containing   a  name  and  a  brief  but  accurate  description  of  design  intent  for  a  separable  part  of  the  system.  Physical   objects   represent   separable   hardware   or   tangible   components   in   a   system   like  electronic   control   units,   relays,   switches,   sensors,   actuators   etc.   whereas   logical   objects  represent   separable,   coherent   functions   or   behaviours;   they   are   often   realized   by   software.  While  attribute  objects  are  tricky  ones,  they  represent  the  intangible  characteristics  and  can  be   implemented   by   other   objects   (physical   &   Logical)   like   Noise   Vibration   Harness,  serviceability,  driveability,  tolerance  etc.  It  is  considered  to  be  the  most  important  and  crucial  one  for  improving  reliability  and  enhancing  perceive  quality  in  a  system,  one  need  to  be  smart  enough   and   creative   for   identifying   attribute   objects.   There   is   no   intention   to   imitate  nomenclature   from  other  methodologies,  but   the  same  object  structure   in   the  design  can  be  adopted  [8].  Figure  4.4  shows  an  example  of  these  objects  having  design  intents.  

 

Figure  4-­‐4:  Physical  (Blue),  Logical  (Red)  and  Attribute  (Green)  Objects  in  OO-­‐FMEA  

The  design   intent  of  an  object   is  defined   from  the  perception  of  what   it  does   in   the  system.  The   motivations   for   its   actions   can   also   be   included   to   enhance   effect   identification.   The  information   shall   answer   the   question   of  what   the   object   does,   where   applicable   and  why.  Correctly   formulated   design   intents   enhance   the   identification   of   the   failure   modes   in   a  system;   therefore   it’s   important   to   be   precise   and   accurate,   always   start  with   the   verb   and  define  targets  of  action,  in  the  end  answer  when  and  why  [8].  Good  design  intent  must  fulfil  all  these  properties.  

Interface:  One-­‐way  effect/communication  

Interface:   Two-­‐way   effect/communication,  but  no  feedback  

Interaction:   Interdependent   effect,   should  belong  to  the  same  system  

Windshield  Wiper  Motor  

Supplies  rotational  mechanical  force  to  a  linkage  system  for  moving  two  windshield  wipers  back  and  forth  across  the  shield  

Rain-­‐Sensor  Control  

Activates  windshield  wiper  at  set  wiping  speeds  and  intervals  base  on  sensor  input  information  

NVH   Compatibility   (Noise-­‐Vibration-­‐Hardness)  

Limits  perceived  wiper  noise  to  prevent  annoyance  to  passenger.  

Physical  Object   Logical  Object   Attribute  Object  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  30  

This  step  further  helps  in  identifying  the  relationship  between  different  system  elements  and  also  captures  the  dependencies  between  system  and  external  shared  resources,  which  gives  a  complete  picture  as  a  whole.  

4.3 Priorities  the  object  and  enter  the  information.    Complex  systems  usually  contain  both  complicated  and  simple  elements,  where  complicated  elements  perform  varying  and  simple  elements  perform  highly   repetitive   tasks.  Therefore  a  key  is  to  choose  only  right  but  fewest  objects  to  analysis,  which  are  crucial  for  the  system.  It  exploits   the   principle   of   efficient   compatibility   rather   than   unmotivated   completeness.   In  other  words,   the   analysis   targets   on   the   significant   issues.   Due   to   interactions   between   the  objects  usually  the  high  priority  objects  will  include  the  effects  of  the  low  priority  objects.  As  focus   is   set   to  perform  qualitative  analysis   instead  of   a  quantitative  analysis,  which  enables  focus   on   significant   objects   only,   especially   those   having   key   impact   on   system   behaviour.  After  prioritization,  simply  transfer  the  information  in  the  objects  to  the  FMEA-­‐template  (see  appendix  A).  Reused  objects  that  are  derived  from  stable  standard  components,  regulated  by  proven  design  guidelines,   can  be  exempt   from  transfer   to   the  FMEA,   if   their  designs   intents  and  operation  environments  are  not  changed.    

4.4 Generate  failure  modes.    A  failure  mode  in  general  is  the  way  things  fail,  but  this  may  create  confusions  when  working  with  designs  at  different  level  of  development  phase.  In  OO-­‐FMEA,  failure  modes  are  defined  as   the   negation   or   deviations   of   design   intents.   The   outputs   of   each   object   are   expected   to  conform  to  the  design  intent.  Any  deviation  is  a  failure  mode.  Two  types  of  non-­‐conformance  are  possible  negation  or  deviation  from  the  design   intent.   In  other  words,   failure  modes  are  things   not   working   at   all   (negation)   or   not   working   as   intended   or   expected   (deviations).  Thus,  formulating  the  negation  and  deviations  of  the  design  intent  generates  potential  failure  modes.  Note  that  this  is  a  golden  rule  to  be  followed  in  object  oriented  FMEA.  It  is  principally  important   to   strictly   abide   by   this   rule   when   performing   analysis   for   software.   Figure   4.5  shows  an  example  of  generating  failure  modes.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  31  

 

Figure  4-­‐5:  Generation  of  Failure  Modes  in  terms  of  Negation  &  Deviation  

FMEA  process  is  evaluated  and  documented  in  a  form  of  template  as  shown  in  figure  4.6.  It  is  divided   in   two   parts   Theoretical   testing   and   Risk   Analysis.   Prioritization   and   generation   of  failure   modes   from   the   design   intents   comes   under   theoretical   testing   in-­‐fact   they   are  consider  as  the  inputs  to  the  FMEA  template.    

 

Figure  4-­‐6:  OO-­‐FMEA  Template  

Objects  (A)  holds  the  prioritised  objects  while  Item/Function  (B)  are  the  Design  intents  of  the  prioritised  objects   in  FMEA   template   and   then   comes   the  Potential   Failure  Modes   (C)  derived  from  the  design  intents  as  discussed  in  section  4.4.  

No  Sound  

Other  Sound  

Unexpected  Sound  

Deviation  

Deviation  

Negation  

Design  Intent  

The  Box  makes  drumming  

sound  when  it  is  hit  

Test  

OK  

Not  Ok  

Potential  Failures  Modes  

FMEA  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  32  

4.5 Completion  of  FMEA  After  generating  all  the  failure  modes  from  the  design  intents  of  prioritized  objects,  process  of  logical   reasoning   will   start.   Logical   reasoning   is   provided   for   identified/generated   failure  modes,   which   contains   the   potential   effect   of   those   identified   failures,   cause   mechanisms,  preventive   measures   and   then   the   verification   methods   for   physical   testing.   Figure   4.7  illustrates  the  flow  chart  of  it.  

 

Figure  4-­‐7:  FMEA  methodology  used  in  OO-­‐FMEA  template  

A  potential  failure  effect  holds  the  consequences  of  identified  failure  mode  for  the  end  user,  as  well  as  all   the  design  aspects  to  create  a  robust  system.  Details  of  these  potential  effects  are  considered  as  a  decisive  factor  for  the  choice  of  design  solutions,  therefore  it  is  recommended  to  be  concise  but  precise  that  is  as  specific  as  possible.  Every  failure  then  must  have  the  cause  mechanism,  which  is  categorised  in  emergent  occurrences,  noise  factors  and  communication  medium.   In   complex   systems   emergence   is   the   most   common   phenomenon.   Lets   take   an  example   of   a   malfunctioned   actuator   controlled   by   a   sensor   to   understand   the   difference  between  the  categories.  Figure  4.8  shows  this  phenomenon,  here  red  text  shows  the  emergent  occurrences,   green   text   is   the   noise   factor   where   as   blue   text   shows   the   communication  medium  error.  

Failure  Effects  

Cause  or  failure  

mechanism  (O)  

Prevention  Prevention  (requirement  or  spec.)  

Detection  (D)  

Recommended  Action  

Responsible   Action  taken  

YES  

NO  

Verifies  

S2  

O2  

D2  

RPN  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  33  

 

Figure  4-­‐8:  Identifying  potential  failure  modes  using  OO-­‐FMEA  

Preventive  measure   section   includes   all   the   documented   requirements   used   for   eliminating  the   causes   or   identified   potential   failure   modes.   First   time,   it   usually   consists   of  recommendations  set  by  the  team/group  of  engineers  performing  FMEA  and  also  considered  as   one   of   the   vital   steps   for   addressing   identified   failure  modes.   Then   comes   the   validation  methods,  some  time  people  get  confused  about  the  difference  between  Design  Prevention  and  design  detection,  validation  methods  are  considered  as  the  part  of  design  detections,  where  as  specification  or  requirements  are  part  of  design  preventions.  Figure  4.9  below  illustrates  the  relationship  between  them.  

 

Figure  4-­‐9:  Meaning  of  design  Prevention  and  design  detection  in  OO-­‐FMEA  

In  the  end  risk  assessment  is  done  with  the  help  of  risk  priority  number  (RPN),  which  is  the  part   of   risk   evaluation.   RPN   is   basically   a   product   of   Severity,   Occurrence   and   Detection  ranking   numbers,   based   on   standardized   evaluation   criteria.   The   acceptance   level   of   RPN  depends   on   the   ambition   of   the   design   team,   but   generally   an   item   scoring  more   than   100  

Sensor   Control   Actuator  Activate   Request   Apply  

21

Timing  

Unexpected  user  behaviour  

Conflict  with  other  sub-­‐system  or  function  

21

External  shared  resource  errors  

Incorrect  inputs  parameters  

21

Error  states  from  other  subsystems  of  function  

21

Noise  from  operational  environment  

Abuse  

2

 

1

Communication  error  

Cable  Harness  

Design  Prevention  

 

Requirements  

OR  

Specifications  

Design  Detection  

 

Validation  method  

OR  

Verification  method  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  34  

requires  recommended  actions.  After  the  implementation  of  an  action,  a  lower  RPN  will  be  the  outcome.  It  is  a  challenge  to  judge  the  level  of  Occurrence  for  the  failure  modes.  Knowledge  on  quality   history,   Software   and   hardware   reliability   data,   component   specification,   system  design,  and  the  type  of  technology  applied,  contributes   in  accuracy  of  choosing  a  reasonable  value.  Although   there  are  general   ranking   tables   commonly  used  but   systems  designers  are  urged   to   create   ranking   that   are   appropriate   for   their   system.   Rankings   are   categorised  between  numbers  from  1  to  10.  

Severity  ranking  encompasses  what  is  important  to  the  industry,  company  or  customers  like  safety  standards,  environment,   legal,  production  continuity,  scrap,  loss  of  business,  damaged  reputation  etc.  A  low  number  reflects  a  low  impact  of  severity  while  high  impact  is  highlighted  with  high  numbers.  

Occurrence   ranks   the  probability   of   a   failure   occurring  during   the   expected   lifetime  of   the  product  or  service.  A  high  number  reflects  the  inevitable  occurrence  and  vice  versa.    

Detection  ranks  the  probability  of  the  problem  being  detected  and  acted  upon  before  it  has  happened.  Low  numbers  reflects  the  detection  is  very  likely  to  be  happen  while  high  number  shows  not  likely  to  be.    

The   ranking   tables   of   Severity,   Occurrence   and   Detection   based   on   Automotive   Industry  Action  Group  (AIAG)  are  given  in  appendix  A.    

After   the   first   run   through,   FMEA   achieves   Loop   1   status.   The   team   continues   to   schedule  work  session   to   solve  problems  and   follow-­‐up   the   recommended  actions  and  document   the  subsequent  measures  taken.  Critical  or  significant  items  are  tagged  with  classifications  YC  and  YS.  Those  that  cannot  be  handled  in  the  product  development  phase  must  be  transferred  to  a  Control  Plan  that  addresses  the  issues  correctly  in  production.  YC  denotes  a  potential  Critical  characteristics,   derived   from   the   severity   ranking   9-­‐10   where   as   YS   denotes   a   potential  Significant  characteristics,  derived  from  a  combination  of  severity  ranking  in  the  interval  5-­‐8  and  occurrence  ranking  4-­‐10.  FMEA  achieves  the  final  status,  when  all  recommended  actions  are  appropriately  taken  and  documented  [8].  

   

    Object  Oriented  FMEA:  Climate  Cooling  System    

  35  

 Chapter  5

5 Implementation  This  chapter   includes  the   implementation  of  OO  FMEA  on  climate  cooling  system  for  hybrid  vehicles   at   Volvo   Cars.   It   comprises   of   five   steps   mentioned   in   chapter   4.   Climate   cooling  system   consists   of   passenger   compartment   cooling,   high   voltage   battery   cooling   and   ERAD  cooling   system.  Electrical   Compressor   and  HVAC   system   installed   in  mostly   hybrid   vehicles  plays  an  important  role  for  this.    

5.1 Structure  Figure  5.1  shows  the  structure  of  the  cooling  system,  where  the  dotted  green  line  shows  the  system   boundary.   The   elements,   which   are   inside   the   system   boundary,   include   all   those  control  modules  and  actuators  that   interact  with  each  other   in  order  to  maintain  or  provide  cooling  to  the  system.  

 

Figure  5-­‐1:  System  Boundary  of  the  cooling  system  

Electronic  Control  Module  (ECM)  is  considered  to  be  the  back  bone  for  cooling  system,  as  one  can  see  from  the  figure  5.1,  all  the  sensors  and  actuators  like  shutoff  valves  (for  chiller  and  AC  ON/OFF),   coolant  water  pumps   (for  ERAD  and  AC   loop),  Coolant  Thermostat,  ACCM  (which  holds  the  AC  compressor)  and  Fan  Control  Module  (FCM)  are  controlled  by  ECM  with  the  help  of  different  control  units  present  inside  ECM.  Then  comes  the  Battery  Energy  Control  Module  (BECM),  which  is  connected  with  Battery  Coolant  Pump  and  Shutoff  valve  for  maintaining  the  temperature   of   battery.   Central   Electronic   Module   (CEM)   and   TEM   are   used   for  inputs/requests  with   the  help  of   sensors/users  here  while   climate   control  module   (CCM)   is  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  36  

used  to  cool  down  rear  end  (third  seat  row;  if  available)  with  the  help  of  rear  Heat-­‐Ventilation  AC   (HVAC)  system.  Control  modules  either   communicate   through  CAN  (spotted  by  bold   red  lines)  or  Flex-­‐Ray  buses  (Bold  blue  lines),  while  communication  among  actuators  are  control  units  are   through  LIN  buses  (brown  dotted   lines)  or  hardwire  (usually  only  having  ON/OFF  function).   Similarly   actuators   or   control   units   having   only   the   interfaces   didn’t   come   inside  the  system  boundary  as  per  the  rule  stated  in  section  4.1  like  power  relays  etc.  

Number  of  electronic  components   like  actuators,  sensors,   there  control  units,  entertainment  and  navigation  systems  are  developed  in  recent  years  to  make  passengers  feel  safer  and  make  travel  more  comfortable.  Several  new  bus  systems  are  developed  or  improved  to  meet  these  design  challenges,  depending  upon  the  operational  requirements.  These  Bus  systems  create  a  Topology,  Reza  Esmaeeli  states   it  as  an  architecture   focuses  on   the  relationship  between   its  elements   and   internal   structures,   rather   than   the   characteristics   of   it’s   elements;   when  internal   relationships  between   the  elements  of  architecture  are  capable  of   change   [24].  Bus  system   is   the  most   important   system   currently   used   in   cars;   LIN,   CAN,  MOST   and   FlexRay,  where  LIN,  CAN  and  FlexRay  are  commonly  used  for  control  systems  and  MOST  for  telemetric  applications.  

 

Figure  5-­‐2:  Network  topology  mostly  used  by  automation  industry  

5.1.1 CAN  (Controlled  Area  Network)  CAN   is   the   most   important   and   commonly   used   bus   system   in   automotive   industry   as   a  message-­‐based   protocol.   But   still   it   is   not   considered   for   very   fast   or   low   data  rates/transmissions   (where   only   few   parts   are   used   for   data   transmission),   new   buses   are  designed  for  that  purpose  [25].  CAN  was  started  in  1983  at  Robert  Bosh  GmbH  and  is  one  of  five  protocols  used   in  on-­‐board  diagnostics   (OBD)  vehicles  diagnostics  standard,  mandatory  for  all  vehicles  sold   in  European  Union  Since  2004  [26].  Control  units  are  able   to  share  and  exchange  data  through  it,  its  message  signal  consists  of  a  sequence  of  binary  digits  or  bits  and  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  37  

operates  at  data  rate  of  up  to  1Mbit/s.  A  CAN  message  may  vary  between  44  and  108  bits  in  length  [27].  It  is  shown  with  bold  red  colour  in  figure  5.2.  

5.1.2 LIN  (local  Interconnected  Network)  LIN  (shown  in  figure  5.2  with  brown  dotted  lines)  is  usually  developed/used  for  less  complex  networks,  where  use  of  CAN  make  it  too  expensive.  It  is  a  serial  bus  designed  for  networking  intelligent   devices   like   sensors   and   actuators   within   a   subsystem   like   sunroof   or   heating  control  etc,  which  do  not  require  high  transmission/data  rates  or  complex  fault  management.  LIN   specification   was   first   defined   by   joint   venture   among   BMW,   DaimlerChrysler,   Audi,  Volvo,  Motorola,  Volcano  and  VW,  Later  on  in  2001  Atmel  also  joined  this  group  in  developing  LIN  2.0  specifications.  LIN  supports  the  data  rate  of  up  to  19.6  kBit/s  for  which  a  12V  single  wire  is  sufficient  enough  [25].  

5.1.3 FLEXRAY  FlexRay  is  considered  as  the  fast  and  fault-­‐tolerant  bus  system  in  automation  industry.  It  was  designed   for   car   control   application,   requires   high   bandwidths.   Therefore   it   supports   data  transmission   with   a   bandwidth   of   up   to   10Mbit/s,   which   is   quite   acceptable   for   real   time  operations   [27].   BMW   and   DaimlerChrysler   introduced   FlexRay   in   1999,   while   Atmel   also  joined   them   on   the   latest   development   of   FlexRay   2.0   in   June   2004.   It   was   especially  developed   for   X   by   wire   systems,   such   as   steer-­‐by-­‐wire   systems   or   brake-­‐by-­‐wire   where  robust   error  management   and  data   transmission   is   required   and   is   based  on   “byteflight”;   a  communication   system   earlier   developed   by   BMW   [25].   Flexray   is   shown   with   bold   blue  colour  in  figure  5.2.  

5.1.4 MOST  (Media  Oriented  Systems  Transport)  MOST  is  used  for  all  kinds  of  multimedia  applications;  navigation,   telecommunication,  audio  and   video   systems,   due   to   its   high   data   rate   in   synchronous   (up   to   24.8Mbit/s)   and  Asynchronous  (up  to  14.4Mbits/s)  transmission  modes.    Additional  control  channel  with  data  rate  of  700kBits/s  is  also  available  there  for  boosting  the  transmission.  It  was  first  developed  by   BMW   and   DaimlerChrysler   in   1998   and   later   on   in   August   2004   releases   the   latest  specification  MOST   2.3.   Furthermore   Plastic   Optic   Fiber   (POF)   is   used   as   physical   layer   to  ensure  safe  data  transfer,  which  is  not  vulnerable  to  EMC  [25].  

As   stated  earlier  hybrid  vehicles   consists  of  high  voltage  and  conventional  12  volts   circuits.  These   12V   section   contains   the   LIN   (Local   Interconnect   Network),   CAN   (Controller   Area  Network)  and  MOST  (Media  Oriented  System  Transport)  for  communication  within  electrical  control  units  (ECU)  and  actuators.  

5.2 Behaviour  Second   step   of  OO-­‐FMEA  extracts   system  behaviour   categorized   in   objects;   logical,   physical  and   attribute   objects   as   stated   in   section   4.2.   Combining   all   these   information   gives   a  complete   behaviour   of   a   system.   We   have   extracted   this   information   from   system  requirement  descriptions   of   climate   cooling   system.   Following   three   sections   illustrates   the  investigated  behaviour  of  climate  cooling  system.    

5.2.1 Logical  Objects  Logical   objects   usually   contain   information   (in   form   of   design   intents)   regarding   electrical  control  units  used   in   the  system.  Table  5.1  shows   the   logical  objects  extracted   from  climate  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  38  

cooling   system.   Some   of   them   are   later   on   prioritized   and   then   evaluated   using   FMEA  methodology.  

Table  5-­‐1:  Logical  Objects  and  their  deployment  in  identified  using  OO-­‐FMEA  in  cooling  system  

Logical  Objects   Deployment  Cooling  Manager   ECM  Compressor  Control   ECM  Compressor   ACCM  Air  Flow  for  Cooling   ECM  Valve  Manager   ECM  HV  Battery  Cooling  Valve  Control   ECM  A/C  Shutoff  Valve  Control   ECM  HV  Energy  Storage   BECM  Climate  Control  Function   CCM  Vehicle  Mode  Management  (VMM)   CEM  Compressor  Power  Limitation  Function   ACCM    

Cooling  Manager:  This  control  unit  plays  an  important  role  in  providing  cooling  to  passenger  compartment.   It   is   located   inside   the   Engine   control   module   (ECM)   and   interacts   with  different   logical   units   upon   a   request  made   for   cooling   from   the   user.   It   is   responsible   for  maintaining  the  desired  cooling  to  passenger  cabin.  

Compressor   Control:   It   is   also   located   inside   the   Engine   control   module,   which   helps   in  maintaining   climate   comfort   while   communicating   with   electrical   compressor   and   cooling  manager.   It   estimates   the   required   compressor   speed  with   the   help   of   designed   algorithms  where   in   this   case   it’s   a   feed   forward   PID   control   loop.   PID   part   tries   to   reduce   the   error  between  the  evaporator  temperature  and  set  point  temperature  while  feed  forward  part  has  number   of   maps   that   calculates   compressor   speed   based   on   the   inputs   from   sensors   like  recirculation  degree,   in-­‐car  temperature,  evaporator  set-­‐point   temperature,  mass  air   flow  in  front  HVAC  and  ambient  temperature.    

Compressor:  It  is  the  control  part  of  the  actuator,  which  drives  the  electrical  compressor  with  the  help  of  compressor  control  unit  defined  above.  It  also  holds  the  status  of  the  compressor,  which  includes  the  current  speed,  ON/OFF,  pressure  at  the  discharge  side  of  the  compressor,  voltage  and  power  consumption  etc.    It  is  basically  located  inside  the  Air  Conditioning  control  module  (ACCM)  shown  in  figure  5.1.  

Airflow   for   Cooling:   It   estimates   and   provides   the   required   airflow   to   condense   the   air  conditioning  refrigerant.    

Valve  Manager:  It  controls  the  refrigerant  flow  in  A/C  loop  towards  the  chillier,  front  and  rear  shutoff   valves   (ON/OFF)   and   holds   their   status   in   order   to   communicate   with   different  subsystems.    

HV  Battery  Cooling  Valve  Control:  It  controls  the  refrigerant  flow  either  to  pass  or  bypass  the  battery  radiator.  Its  deployment  is  also  in  ECM.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  39  

5.2.2 Physical  Object  As   from   its   name   it   is   quite   obvious   that   it   includes   all   those   physically   present  objects/actuators   which   helps   in   providing   or   maintaining   the   cooling   comfort   level   for  passenger   cabin   like   shutoff   valves,   water   pumps,   Fan   Control   Module,   LIN   etc.   Table   5.2  shows   all   those   physical   objects   highlighted   in   this   regard.   Figure   5.1   also   shows   all   these  actuators   in   the   system   boundary,   as   they   interact  with   control   units   for   providing   cooling  comfort.  

Table  5-­‐2:    Physical  object  and  their  functions  identified  using  OO-­‐FMEA  in  cooling  system  

Physical  Objects   Function  LIN   Communication  Bus  Flex  ray   Communication  Bus  Cable  Harness   Assembly  of  power  cables  Fan  Control  Module   Helps  in  providing  cooling  Coolant  Thermostat   Passes  or  by  pass  the  engine  coolant  from  Radiator  A/C  Shutoff  valve   Open/Close  front  HVAC  for  cooling  Rear  Shutoff  valve     Open/Close  rear  HVAC  for  cooling  Chiller  Shutoff  valve   Open/Close  chiller  valve  for  enhancing  battery  cooling  HV  Battery  Shutoff  valve   Passes  or  by  passes  coolant  from  battery  radiator  Coolant  water  Pump   Pumps  coolant  in  engine  cooling  circuit  LT  Coolant  water  Pump   Pumps  coolant  in  ERAD  cooling  circuit  (low  temperature  circuit)  Battery  Coolant  water  Pump  

Pumps  coolant  in  Battery  Cooling  circuit  

5.2.3 Attribute  Object  As  we  have  discussed  earlier  in  chapter  4  that  attribute  objects  includes  those  conditions  or  events,   which   should   be   taken   under   consideration   while   developing/writing   the   different  products/functions.  Similarly  Table  5.3  shows  the  highlighted  attribute  objects   from  climate  cooling  system,  which  is  taken  under  consideration  while  designing  this  system.  

Table  5-­‐3:  Table  of  Attribute  objects  and  their  functions  identified  in  cooling  system  

Attribute  Objects   Function  Noise  Vibration  Harness  Handling      Coolant  Temperature  Limits   Define  the  upper  and  lower  limits  for  coolant  temperatures  Cooling  Prioritization   Prioritize  battery,  ERAD  and  Compartment  cooling  De-­‐Gas/  Filling  Balance   How  to  set  the  coolant  level  if  it  goes  beyond  threshold  Component  Protection   From  high/low  voltage,  high/low  pressure  etc  Assembly  and  Service   Define  the  time  duration  Electrical  Noise  Handling   Handle  electrical  radiations,  define  insulations  type/kind    

5.3 Prioritization  Prioritization   has   been   done   from   the   logical   objects,   whose   design   intents   are   then   taken  under   consideration   for   further   investigation.   As   from   the   definition,   the   purpose   behind  prioritization  is  to  analyse  fewest  objects,  which  targets  significant  issues  or  some  how  over  come   the  design   intents  of  other  objects   as  well.   So  here   focus   is  given   to   the  control  units,  which  directly  affect  the  cooling  comfort  level.  Following  are  the  six  prioritize  objects,  used  in  the  next  step  of  OO-­‐FMEA.    

 

    Object  Oriented  FMEA:  Climate  Cooling  System    

  40  

• Cooling  Manager    • Compressor  Control    • Compressor    • Airflow  for  Cooling    • Valve  Manager    • HV  Battery  Cooling  Valve  Control    

These  prioritised  objects,  having  system  behaviour  are  taken  as  inputs  to  FMEA  process.  

5.4 Failure  Modes  Each  design-­‐intent  of  prioritised  logical  objects  were  then  critically  analysed  with  engineering  team  of   climate   system,  and  any  possible  negation  or  deviation  was  highlighted  as  a   failure  mode.   Those   failure   modes   are   further   analysed   using   traditional   FMEA   methodology  discussed  in  section  5.5.  Compressor  control  object  is  discussed  as  a  case  study  in  this  report,  which  is  known  to  be  the  source  for  maintaining  cooling  comfort  level.  

5.5 FMEA  Methodology  In  FMEA  methodology   the   template  of  FMEA   is   filled  with   the  help  of   theoretical   study  and  risk  analysis  as   illustrated   in  chapter  4.  Following  are   the  design   intents  extracted   from  the  compressor  control  function,  which  are  discussed  using  FMEA  methodology.  

• Implements   gain   scheduling   (feedback   loop)   with   dependencies   of   ambient  temperature  and  mass  airflow  through  Front  HVAC  for  improving  the  performance  of  compressor.  

• Improves   controller   performance   by   a   feed   forward   control   as   a   complement   to  normal   control   algorithm.   Contribution   elements   include   Evaporator   set   points,  ambient  Temperature,  estimated  head  level  temperature  and  recirculation  degree.  

Above  mentioned  design  intents  suggest  that  a  PID  control  with  feed  forward  function  is  used  to   control   the   speed   of   the   compressor  which   have   dependencies   on   ambient   temperature,  evaporator   set   point   (set   temperature   by   the   user),   recirculation   degree   and   an   estimated  head   level   temperature.  Now  besides   an   inefficient   implementation   of   the   controller   one   of  the   cause  mechanism   includes   the  wrong   estimation  of   head   level   temperature.  Head  Level  estimation   involves   different   parameters   like   INCAR   sensor   and   temperature   measured  across  HVAC  outlets  etc.    This  estimation  is  considered  to  be  the  most  complex  estimation  and  is  currently  under  investigation  therefore  currently  they  don’t  have  any  design  prevention  for  it  but  suggests  to  be  detected  while  performing  a  complete  simulation.    

To  understand  further  behaviour  of  the  compressor  control  function  in  hybrid  vehicles  three  different   test   scenarios   were   also   created,   where   data   from   In-­‐Car   temperature   sensor,  Evaporator  Temperature  sensor,  Ambient  Temperature  sensor,  Coolant   temperature  sensor,  total  mass  air  flow,  recirculation  degree  and  vehicle  speed  was  recorded.  But  the  focus  was  to  obtain  the  compressor  speed  with  change  in  evaporator  temperature.    

Case   1:   At   15:00Hrs,   certain   day   of   September   in   Gothenburg,   compressor   speed   and  evaporator   temperature  were  measured  when   the   car  was   parked.  Air   conditioning   system  was   not   disturbed   initially,   with   a   set   temperature   of   15degC   (low)   while   the   ambient  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  41  

temperature   was   recorded   11degC.   Figure   5.3   and   5.4   shows   the   compressor   speed   and  evaporator  temperature  values  respectively.    

Evaporator  temperature  =  INCAR  Temperature  –  Heat  load  inside  the  cabin  

 

Figure  5-­‐3:  Compressor  Speed  with  fixed  fan  speed  while  vehicle  is  in  Steady  State  

 

Figure  5-­‐4:  Evaporator  temperature  with  fixed  fan  speed  while  vehicle  is  in  Steady  State  

Note:  Evaporator  temperature  regulates  from  2degC  to  20degC  on  varying  temperature  nob  from   15degC   to   25degC   by   the   user   .The   sensor   attached   after   the   evaporator   measures  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  42  

evaporator   temperature   or   it   is   roughly   equivalent   to  measured   INCAR   temperature  minus  heat  load  inside  the  vehicle.  

Case   2:   Same   day   later   on   compressor   speed   and   Evaporator   temperature  were  measured  while  car  was  moving  with  a  constant  speed  of  50  km/h  approximately  outside  the  hilly  areas  in   Gothenburg,   Sweden.   Air   conditioning   system  was   not   disturbed  while   temperature  was  adjusted  to  minimum  at  15degC  and  ambient  temperature  was  recorded  as  16degC.  Figure  5.5  and  5.6  shows  the  measured  evaporator  temperature  and  compressor  speed  respectively.    

    Object  Oriented  FMEA:  Climate  Cooling  System    

  43  

 

Figure  5-­‐5:  Measured  evaporator  temperature  with  fixed  fan  speed  while  vehicle  is  moving.  

 

Figure  5-­‐6:  Compressor  Speed  while  fixed  fan  speed  while  vehicle  is  moving.  

Case  3:  Later  on  in  the  evening  compressor  speed  and  evaporator  temperature  was  measured  with  auto  fan  and  climate  settings.  Vehicle  was  moving  with  constant  speed  of  50km/h  with  an   ambient   temperature   of   16degC.   Compressor   speed   and   evaporator   temperature   were  shown  in  figure  5.7  and  5.8.  Set  temperature  was  change  with  time  to  time  as  shown  in  figure  5.7.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  44  

 

Figure  5-­‐7:  Evaporator  temperatures  measured  at  auto  fan  &  climate  setting  

 

Figure  5-­‐8:  Compressor  speed  measured  with  auto  fan  &  climate  setting  

These  user   cases  give  better  understanding  over  dependencies   among  different   estimations  and  sensors.  On  behalf  of  which  all   information  was   first   carried  out   in  FMEA  template  and  Risk  Priority  Number  (RPN)  was  generated  across  them  by  doing  risk  analysis  with  the  help  of  severity,  occurrence  and  detection  level  as  shown  in  figure  5.9.  Similarly  it  has  been  done  for  each  and  every  design-­‐intent  of  prioritised  objects  mentioned  in  section  5.3.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  45  

 

Figure  5-­‐9:  FMEA  methodology  on  compressor  control  logical  objects  

After   doing   assessment   on   all   prioritised   objects,   OO-­‐FMEA   template   gives   the   following  histogram   shown   in   figure   5.10.   It   shows   the   distribution   of   risk   among   prioritised   objects  with   the   number   of   design   intents   in   each   object.   Here   y-­‐axis   shows   the   number   of   design  intents  in  each  prioritised  object  while  X-­‐axis  shows  those  prioritised  objects.  Whereas  dark  colours  show  risk  seriousness  among  the  objects,  which  must  be  addressed  properly  or  those  design  intent  needs  to  be  review.  

 

Figure  5-­‐10:  Distribution  of  risk  priority  numbers  for  cooling  system  

 

 

   

0

2

4

6

8

10

12

Compressor Control:

Compressor (Cmprlf)

Cooling Manager

Valve Manager

Air Flow for Cooling

Cou

nts

151-200 101-150 51-100 1-50

    Object  Oriented  FMEA:  Climate  Cooling  System    

  46  

 Chapter  6

6 Results  and  Recommendations  After  reviewing  all  design  intents  from  prioritise  objects  using  FMEA  methodology  following  assessment  has  been  made  to  robust  current  thermal  management  climate  cooling  system:  

Ø In  compressor  control  function  compressor  starts  switching  speed  from  0  to  800  rpm  once  the  evaporator  temperature  is  reached  to  the  comfort  level,  this  behaviour  leads  to   loss   the   function   that   is   compressor   can   be   damage   due   to   this   on/off   function.  Figure  6.1  shows   the  set  point  set  by   the  user  as  one  can  see   in  between  850  sec   to  1100  sec  when  evaporator  temperature  reached  the  level  of  set-­‐point  and  similarly  in  time  period  of  1300  to  1500Sec,  during  these  time  periods  compressor  is  continuously  switching  between  zero  and  800  rpm,  this  can  damage  the  compressor  or  effects  the  life  time  of  compressor.  

 

Figure  6-­‐1:  Evaporator  temperature  and  Set  point  temperature  

Ø We   have   seen   that   more   emphasize   is   given   to   cool   down   HV   battery   in   extreme  conditions  apart  from  which  a  suggestion  has  also  been  made  for  heating  HV  battery  during  too  long  parking  in  cold  weather  conditions  like  at  airports  etc.  

Ø After  reviewing  the  designs,  we  came  to  know  that  Flap  actuators  design  (more  then  12  in  total),  which  helps  in  maintaining  climate  comfort  level  are  very  weak  as  all  the  these  flaps  were  connected  in  series.  Means  failure  of  any  flap  will  lead  to  a  complete  loss  of   function.  These  flaps  actuators  have  open  and  close   function  dependent  upon  the  request  made  by  the  user.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  47  

Ø Similarly  as  you  can  see  from  the  figure  6.2,  rear  HVAC  valve  is  connected  to  CCM  but  is   controlled   function   according   to   the   specifications   lies   in   Engine   control   module  through  valve  manager.  This  makes   it  a   little  complex  as  the  decision   is   taken   inside  ECM  and  then  directed  to  CCM,  which  further  take  action.  A  suggestion  has  been  made  to  connect  it  with  ECM  to  have  a  robust  design.    

 

Figure  6-­‐2:  System  Architecture  cooling  system  

Ø Similarly   threshold   for   opening   the   chiller   shutoff   valve,   coolants   flow   and   water  coolant  temperature  was  not  mentioned,  which  help  in  battery  cooling.  

Ø It  was  not  cleared  from  the  requirements/specifications  that  is  their  any  temperature  control   system   exist   for   second/third   seat   row   in   SPA   Hybrid   vehicles   as   at   some  places  it  was  found  that  a  user  sitting  behind  in  third  row  can  set  the  temperature  by  his/her   choice.   If   that   is   the   case   then   head   level   estimation   for   all   users   must   be  required,  while  at   some  places   it   is  mentioned   that   temperature   is  adjusted   through  first  row  and  rest  are  adjust  accordingly  means  have  dependencies  on  first  row.  

Ø There  are  rooms  of   improvements   in  the  system  requirement  descriptions  (SRD)  for  example   some  words  are  not   standardized   like  a  word  mass  airflow   is  used  as   total  mass  airflow,  airflow,  total  airflow.  Do  you  think  is  their  any  difference  between  them?  

6.1 Comparison  between  traditional  FMEA  &  OO-­‐FMEA  Ø While  comparing  Object  Oriented  approach  with  traditional  FMEA  approach,  one  can  

easily  identify  the  inputs  and  outputs  of  the  system.  Figure  6.3  shows  those  identified  objects,  highlighted   in   step  2  of  OO-­‐FMEA   for   cooling   system.  Sensors  and  actuators  represent  inputs  and  outputs  respectively  to  the  cooling  control  system  (controllers).  While  traditional  FMEA  approach  didn’t  have  system  elements  at  one  place.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  48  

 

Figure  6-­‐3:  Overview  of  Inputs,  Output  and  Control  system  from  cooling  system  

Ø Similarly   as   these   identified   objects   holds   complete   behaviour   of   that   particular  function,   it’s   easy   to   reuse   them   in  other  design   if   required.  There   is  no  need   to  dig  into   entire   system   requirement   again.   It   fulfils   the   reusability   issue   and   in   same  manner  easily  upgraded  with  new  functions   like   in  software  upgrades.  Whereas   it   is  uncertain  in  traditional  FMEA  approach.    

Ø Object   Oriented   approach   of   FMEA   also   helps   us   in   solving   unnecessary   complex  solutions  like  after  doing  this  thesis  work  we  came  up  with  the  new  decomposition  of  the  thermal  management  climate  system  as  shown  in  figure.  Where  cooling  system  is  responsible   for   cooling   at   compartment,   battery   and   ERAD,   Heating   System   is  responsible   for   providing   heating   to   compartment   and   climate   control   system  responds  to  component  heating/cooling  like  seat  heating,  pre  conditioning,  defrosting,  demisting   etc.   Figure   6.4   shows   the   before   and   after   dependencies   of   the   thermal  management  climate  system.  

 

Figure  6-­‐4:  Decomposition  of  Thermal  Management  Climate  System  before  and  after  OO-­‐FMEA  Implementation  

Ø Object   Oriented   approach   consider   to   be   most   suitable   for   lean   and   agile   processes  whereas  traditional  approach  is  not  adapted  for  modern  processes  

Ø It   also   reduces   the  product  development   time  and  contributes   to  better  prototypes  and  testing  methods  as  compared  to  traditional  FMEA  approach.    

Cooling  Manager  

Climate  Control  

Airflow  

Valve  Manager  

HV  Energy  Storage  

A/C  shutoff  Valve  

Cooling  Thermostat  

B-­‐  coolant  water  Pump  

HV  Battery  Shutoff  Valve  

Fan  Control  Module  

ACCM  

Ambient  Temperature  

Sensor  

A/C  coolant  water  Pump  

Actuators/Output  Controllers/system  Sensors/Input  

Coolant  Temperature  

Sensor  

A/C  Pressure  Sensor  

Heating  System  

Climate  System  

Cooling  System  

Battery  &  ERAD  Cooling  System  Th

ermal  

Man

agem

ent  

Clim

ate  

Heating  System  

Battery  cooling  system  

Cooling  System  

Thermal  

Man

agem

ent  

Clim

ate  

Before   After  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  49  

A   small   survey   was   also   conducted   in   Volvo   Car   Corporation   (VCC),   to   get   opinions   from  different  people  who  did  analysis  using  both  the  techniques  that  are  Object  Oriented-­‐  Failure  Mode  and  Effect  Analysis  (OO-­‐FMEA)  and  traditional  Approach  of  FMEA.  It  gives  a  brief  idea  that  how  well  OO-­‐FMEA  works  in  

• Handling  complex  systems  • Ease  to  use  and  update  • Time  Efficient    • Identifying    

o Ambiguous  requirements  o Incomplete  designs  o Unmotivated  solutions  o Interactions  and  Interfaces  

 

Figure  6-­‐5:  Pie  chart  showing  engineers  response  on  OO-­‐FMEA  under  a  survey  

67%  people  believe   that  OO-­‐FMEA   is  quite   capable  of   identifying   Interaction  and   interfaces  between  different  systems  and  subsystems,  whereas  72%  says  OO-­‐FMEA  is  good  enough  for  identifying  incomplete  designs,  while  7%  rated  OO-­‐FMEA  very  good  and  14%  fair  enough  in  identifying  incomplete  designs.  74%  in  total  suggests  that  OO-­‐FMEA  is  fair  or  good  enough  in  identifying  unmotivated  solution  on  the  other  hand  93%  supports  in  favour  of  OO-­‐FMEA  for  identification  of  ambiguous  requirement  in  system  designs.    

0%   7%  14%  

72%  

7%  

Idenbfy  Incomplete  Design  

13%  0%  

20%  

67%  

0%  

Idenbfy  Interabons  &  Interfaces  

7%   0%  

40%  53%  

0%  

Idenbfy  Ambigious  Requirements  

13%  13%  

27%  

47%  

0%  

Idenbfy  Unmobvated  Solubon    

    Object  Oriented  FMEA:  Climate  Cooling  System    

  50  

 

Figure  6-­‐6:  Pie  charts  showing  OO-­‐FMEA  Usability,  Time  Efficiency  and  Handling  complex  system    

The   key   advantage   of   OO-­‐FMEA   over   traditional   method   is   its   ease   and   reusability,   time  efficiency  and  the  object  oriented  way  of  handling  complex  designs.  When  it  was  asked  in  VCC,  80%  marked   it   fair   and   good   for   easy   use   and   upgrade,   while   13%   says   its   too   good   and  endorsed  OO-­‐FMEA  over   traditional  approach.   In  case  of   time  efficient  80%  rated  OO-­‐FMEA  good  and  fair  enough  (the  average  time  an  FMEA  of  a  system  took  1  year  approximately).  27%  believe  OO-­‐FMEA  is  very  good  in  handling  complex  system  designs  while  80%  favour  it  good  and  fair  enough  as  compared  to  traditional  approach  of  FMEA.  Figure  6.5  and  6.6  shows  the  pie  charts  of  these  analyses  conducted  through  a  survey  inside  Volvo  Cars  Corporation.  

 

   

7%  0%  

40%  40%  

13%  

Ease  to  Use  and  Update  

0%   13%  

13%  

47%  

27%  

Handle  Complex  Systems  

7%  13%  

33%  

47%  

0%  

Time  Efficient  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  51  

 Chapter  7

7 Conclusion  and  Future  Work  If  a  method  or  tool   is  not  easy  to  use  or  understand,   it  always  discourages  the  user  and   if   it  does   not   conform   the   real   world,   it   will   consider   being   short-­‐lived.   This   report   shows   an  Object   Oriented   approach   for   Failure  Mode   and   Effect   Analysis   (FMEA)   to   handle   complex  system   in   terms  of   time,  ease   to   reuse  and  capability   to   identify   incomplete  and  ambiguous  requirements  etc.    

FMEA  is  qualitative  analysis,  which  is  achieved  here  by  quality  inputs  provided  by  OO-­‐FMEA  approach.  It  is  concluded  that  OO-­‐FMEA  requires  the  practitioner  to  have  basic  knowledge  of  complex   systems.   Performing  OO-­‐FMEA   for   complex   systems   is  more   feasible,   relevant   and  effective  because  of   their  dependences  on  other  components,  highlighted  by   interaction  and  interfaces,  whereas  it’s  hard  to  find  dependencies  in  traditional  FMEA  approach  while  dealing  in  complex  systems.  Some  authors  mentioned  it  to  over  come  it   in  addition  with  some  other  reliability   tools   but   then   traditional   approach   become   more   time   consuming.   OO-­‐FMEA   is  applied   to   climate   cooling   system   in   this   thesis   work,   which   solves   the   problem   of  unnecessary   complexity   to   the   system   by   splitting   battery   and   ERAD   cooling   system   from  main   cooling   system.   Another   benefit   of   OO-­‐FMEA   approach   is   of   getting   separable  behaviours  of  different  units,  which   can  easily  be  utilized   in  other  analysis  or  while   system  enhancement.   System  boundary   gives   a   clear  overview  of   the   system  achieved   in  OO-­‐FMEA  whereas   traditional   FMEA   didn’t   hold   system   boundary.   Over   all   from   this   analysis   we  concluded  that  OO-­‐FMEA  cover  all  the  vital  aspects  of  a  system  designing  first  by  providing  a  structure   that   is   transparent   and   accessible   and   then   focusing   on   critical   issues   while  prioritization   step   which   confines   the   principles   of   modern,   lean   product   development  process.    

7.1 Future  Work  Usually   an   FMEA   took   1.5   to   2   years   to   complete   therefore   due   to   time   constraints   this  analysis   is   done   considering   only   proposed   logical   objects   of   cooling   system,   physical   and  attributes  objects  are  not  considered  in  FMEA  methodology  so  far.  This  process  will  acquire  loop   one   status   once   FMEA   methodology   is   also   implement   on   highlighted   physical   and  attribute   objects   of   thermal   management   cooling   system.   After   which   process   of  recommended   action   taken   place   and   modified   set   of   specifications   and   requirements   are  published.   This   needs   to   be   done   as   a   part   of   future   work.     On   the   other   hand   Thermal  Management  System  also  holds   the  heating  part,   a  partial  work  on  heating  system  was  also  done   that   is   its   structure   and   logical   objects   was   highlighted   and   it   is   recommended   to  perform   OO-­‐FMEA   on   heating   system   to   get   the   complete   picture   of   Thermal  Management  Climate  system.    

Secondly  we  have  seen  in  general  three  different  kinds  of  systems:  

• Data  Processing  Systems  • Transaction  Processing  Systems    • Control  systems    

    Object  Oriented  FMEA:  Climate  Cooling  System    

  52  

This   report   illustrates   OO-­‐FMEA   approach   for   controller-­‐based   systems   where   different  components  or  processes  are  interconnected  for  a  specific  goal  in  edition  with  some  defined  inputs  to  get  some  defined  outputs.  Whereas  it  is  also  applicable  for  Data  Processing  Systems  [28],  where  compilation,  recovery,  correction  and  storage  of  data  is  key  and  must  be  correct  in  certain  time  period  as  being  a  real  time  system.  Data  base  management  systems  in  libraries,  banks,   job  portals  etc.  are  the  best  example  in  this  regard.  Similarly  it  can  also  be  applied  to  Transaction  Processing   System   [29],  where  detailed   information   is   captured   and  processed,  necessary   to   update   data   after   validating.   If   they   are   not   correct   system   a   simple   error  message   is   generated   for   the   user.   Like   in   bank   accounts,   shopping   malls   etc.   All   this  information  must  be  secure  and  reliable,  as  any  failure  will  leads  to  big  setback.  Although  both  of   these   kinds   are   not   complex   as   of   control   units   but   failure   among   them  will   leads   some  serious  problem.  OO-­‐FMEA  will  give  an  opportunity  to  make  them  more  reliable  and  efficient  systems.      

    Object  Oriented  FMEA:  Climate  Cooling  System    

  53  

8 GlossaryAttribute  object  

It’s   an   information   package,   containing   a  name   and   design   intents   of   an   intangible  characteristic   related   to   system   or  component   like   electromagnetic  compatibility,   corrosion   tolerance,  maintainability,   drivability   etc.   they   are  dependent   upon   logical   and   physical  objects.  

Behavior  

It   refers   the   functional   and  non-­‐functional  activities  carried  out  by  a  certain  system  in  an  operational  environment.  

CAN  

It’s  a  standard  communication  bus  used  in  vehicles   as   a   communication   medium  among   microcontrollers   and   deferent  devices   without   a   host   computer.     CAN  stands   for   controller   area   network   having  data  rate  of  1Mbit/s.  

Design  Intent  

It   refers   to   the   motivation   behind   its  creation.   Design   intent   of   an   object   holds  the   reason   behind   their   creation   having  functions,  behavior  or  states.    

External  Shared  Resources  

External   shared   resources   usually   don’t  interact  with  system  but  have  an  interface  which  for  significant  for  the  system.  

Emergence  

It   is  the  way  complex  system  behaves  as  a  result   of   interaction,   dependencies   and  other  exchanges  or   influences   that  may  or  may  not  be  intended.  

 

 

Flex  Ray  

It   is  a   little  expensive  but   faster  and  more  reliable   automotive   communication  protocol   developed   after   CAN   and   LIN.   It  supports  high  data  rate  of  up  to  10Mbit/s  

FMEA    

FMEA   is   one   of   the   most   widely   used  procedures  for  analysis  of  potential  failure  modes.   It’s   applied   to   reduce   or   eliminate  failures   with   higher   priorities   from   a  system.   Actions   are   taken   after   applying  FMEA  to  reduce  risks  of  system  failures.  It  stands   for   Failure   Mode   and   Effect  Analysis.  

Interaction  

In   simple   words   it’s   a   two-­‐way  communication   among   two   different  systems  or  elements  with  feedback.  

Interface  

Interface  is  when  data  is  transmitted  from  one  entity  to  another  without  any  feedback  between   the   connected   entities.   The  transfer   of   data   can   be   one   or   two   ways,  but  is  independent  of  each  other.  

LIN  

LIN  stands   for   local   interconnect  network,  used   for   communication   among   different  components  in  vehicle.    It  is  based  on  serial  network   protocol   with   data   rate   of  20kbit/s.  

Logical  objects  

It   is   information  package  containing  name  and  design  intent  of  a  separable  part  of  the  software,  mostly  a   coherent   functions   in  a  control   unit.   Functions   can   be   realized   by  combination  of  hardware  and  software  like  electric  motor   control,   voltage-­‐monitoring  unit  etc.  

    Object  Oriented  FMEA:  Climate  Cooling  System    

  54  

MOST  

Media   Oriented   System   Transport   is   used  as   a   high-­‐speed   multimedia   medium   for  inside  /outside   communication   in  modern  vehicles.   It’s   a   serial   bus,   which   transport  audio,   video,   voice   and   data   signals   using  plastic  optical  fiber  (POF).  

Object  

Here  in  this  report  or  in  OO-­‐FMEA  object  is  referred   as   an   information   package  representing  a  separable  part  of  a   system.  It   consists   of   name   and   description   of   its  design  intents.    

Physical  Objects  

Physical   object   is   an   information   package  containing  the  name  and  design  intent  of  a  separable  hardware  or  tangible  element  in  a   system   like   relay,   switches,   sensors,  pumps  etc.  

Risk  Priority  Number  (RPN)  

Risk   priority   number   extracted   from   the  product   of   severity,   occurrence   and  detection   level   of   failure   modes,   which  highlights  the  seriousness  of  risk.  

Special  Characteristics  

It   tags   critical   or   significant   items.   Those  that   cannot   be   handled   in   product  development  phase  must  be  transferred  to  a  control  plan.  

• YC   is   a   potential   critical  characteristic,   derived   from  severity  ranking  9-­‐10  

• YS   is   a   potential   significant  characteristic,   derived   from   a  combination  of   severity   ranking  5-­‐8  and  occurrence  ranking  4-­‐10.  

 

 

 

System  

A   number   of   interconnected   elements,  components   or   abstractions   capable   of  receiving   specified   inputs   and   generating  outputs   makes   a   system   or   sub-­‐system.  Usually   system   consists   of   a   number   of  sub-­‐systems.  

System  Overlaps    

It   defines   a   common   are   of   design  responsibilities   for   two   or   more   sub-­‐systems.    

System  Structure  

It   is   an   overview   diagram   showing   the  construction   of   interdependent  components   and   interfaces   to   other   sub-­‐systems   in   the   operational   environment,  including  external  shared  resources  and  an  appropriate  sub-­‐system  boundary.    

Topology  

Topology   is   the   geometrical   arrangement  of   modules   and   units   in   the   networ

 

    I      

9 Bibliography  [1]  Volvo   Cars   Corporation.   [Online].  

http://www.volvocars.com/intl/top/corporate/pages/default.aspx  

[2]  Igor  Ushakov,  Probabilistic  Reliability  Models.:  WILEY,  2012.  

[3]  Sultan  Lipol  and  Jahirul  Haq,  "Risk  Analylsis  method:  FMEA/FMECA  in  the  Orginization,"  Basic  &  Applied  Sciences,  vol.  11,  no.  05,  2011.  

[4]  Sellappan  Narayanagounder   and  Karuppusami  Gurusami,   "A  new  approch   for   prioritization  of  failure   mode   in   design   using   ANOVA,"   in   World   Academy   of   Science,   Engineering   and  Technology,  2009.  

[5]  Yiannis  Papadopoulos,  David  Parker,  and  Christian  Grante,  "Automating  the  Failure  Modes  and  Effects  Analysis  of  Safety  Critical  Systems,"  in  High  Assurance  Systems  Engineering,  2004.  

[6]  The  International  Marine  Contractors  Association  (IMCA),  "Guidance  on  Failure  Modes  &  Effect  Analaysis,"  Marine  Division  Management  Committee,  IMCA,  2002.  

[8]  Volvo  Car  Corporation,  "Object-­‐Oriented  Design  Failure  Mode  and  Effect  Analysis,"  Electrical  &  Electronics  System  Engineering  ,  Göteborg,  2013.  

[7]  K   Crow.   (2002)   Failure   Mode   and   Effects   Analysis   (FMEA).   [Online].   www.npd-­‐solutions.com/fmea.html.  

[9]  Barrie  Dale   and  Peter   Shaw,   "Failure  mode   and  effects   analysis   in   the  U.K.  motor   industry:  A  state   of   the   art   study,"  Quality   and   Reliability   Engineering   International,   vol.   6,   pp.   179-­‐188,  1996.  

[10]  P   C   Teoh   and   K   Case,   "Modelling   and   reasoning   for   failure   modes   and   effects   analysis  generation,"  Engineering  Manufacture,  vol.  218,  pp.  289-­‐300,  2004.  

[11]  Christopher   J   Price,   David   R   Pugh,   Myra   S   Wislon,   and   Neal   Snooke,   "The   Flame   System:  Automating   Electrical   Faliure   Mode   &   Effects   Analysis   (FMEA),"   in   Annual   Reliability   and  Mantainability,  1995.  

[12]  Hooman   Arabian   Hoseynabadi,   Hashem   Oraee,   and   Peter   Tavner,   "Failure  Modes   and   Effect  Analysis   (FMEA)   for  Wind   Turbines,"   Electrical   Power   and   Energy   Systems,   vol.   7,   no.   32,   pp.  871-­‐824,  June  2010.  

[13]  Haapanen   Pentti   and   Helminen   Atte,   "Filure   Mode   and   Effects   Analysis   of   Sofware-­‐Based  Automation   System,"   VTT   Industrial   System,   Säteilyturvakeskus   Strålsäkerhetscentralen  Radiation  and  Nuclear  ,  Helsinki,  2002.  

[14]  M  Maskunitty   and  U   Pulkkinen,   "Fault   tree   and   failure  mode   and   effects   analysis   of   a   digital  

 

   II      

safety  function,"  Industrial  Automation,  VTT  Automation,  Helsinki,  Report  1994.  

[15]  Chenguang  Hou  and  Qihua  Wang,  "Software  Interface  Failure  Modes  and  Effect  Analysis  Based  on   UML,"   in   International   Conference   of   Information   Technology,   Computer   Engineering   and  Management  Sciences,  Beijing,  2011.  

[16]  Herbert   Hehct,   Xuegao   An,   and   Myron   Hecht,   "Computer   Aided   Software   FMEA   for   Unified  Modeilng  Language  Based  Software,"  in  Software  Engineering,  California,  2004.  

[18]  DELPHI,  "Powertrain  Thermal  Managment,"  2007.  

[17]  (2013,   Nov.)   Cars   Direct.   [Online].   http://www.carsdirect.com/green-­‐cars/a-­‐brief-­‐history-­‐of-­‐hybrid-­‐cars  

[19]  Peter   Kroner,   "Thermal   Management   for   Hybrid   Vehicles,"   Advance   Engineering,   Air  Conditioning,  Behr  GmbH  &  Co.  KG,  Stuttgart,  Germanay,  Technical  Press  2009.  

[20]  Edward  Dulzer.  PTC  Electric  Immersion  Heaters.  

[21]  Volvo  Car  Corporation,  "Hybrid  Climate  and  Cooling  System,"  Electrical  and  Electronics  System  Engineering,  Volvo  Cars  Corporation,  2010.  

[22]  Ariazone  Automotive  &  Industrial  Refrigerant  Services  Equipment.  Automative  Air  Conditioning  Training  Manual.  

[23]  Eberspächer,   "PTC   heating   Systems   for   Vehicle   Body  Manfactures   and   Small   OEMS,"   Climate  Control,  Eberspächer  GmbH  &  Co.  KG,  Germany,  2013.  

[24]  Reza  Esmaeeli.  (2007)  Topology-­‐from  Mathematics  to  Architecture.  

[25]  Atmel  Markus  Schmid,  "Automotive  Bus  System,"  Atmel  Applications,  vol.  VI,  winter  2006.  

[26]  Sidorenko,  Alex.  ObdDiag.net.  [Online].  http://www.obddiag.net/adapter.html  

[28]  Sushant.  S.  Sundikar,  "Database  System  Concepts  and  Architecture,"  in  Introduction  to  Database  Management  System.  

[27]  Tom  Denton,  "Multiplexing,"  in  Automobiles  Electrical  and  Electronic  Systems.  Oxon:  Routledge,  2012,  vol.  IV,  pp.  133-­‐144.  

[29]  Christie   Rowe.   Study.com.   [Online].   http://study.com/academy/lesson/transaction-­‐processing-­‐systems-­‐tps-­‐manual-­‐and-­‐automated-­‐systems.html  

[30]  Mark  A  Morris,  Failure  Mode  and  Effect  Analysis  based  on  FMEA,  November  30,  2011.  

   

   

 

   III      

Appendix  A    

FMEA   Template   for   AIAG:   AIAG   is   the   Automotive   Industry   Action   Group,   which   currently  compiles  the  FMEA  standards  for  the  North  American  Auto  Industry    

 

Figure  0-­‐1:  FMEA  template  according  to  AIAG [30]  

 

Severity   ranking   encompasses  what   is   important   to   the   industry,   company  or   customers   like  safety   standards,   environment,   legal,   production   continuity,   scrap,   loss   of   business,   damaged  reputation   etc.   AIAG   sets   the   following   criteria   for   judging   severity  while   doing   risk   analysis.  (AIAG   is   the  Automotive   Industry  Action  Group,  which   currently   compiles   the  FMEA  standards  for  the  North  American  Auto  Industry)  

Table  0-­‐1:  Severity  ranking  according  to  AIAG  standards  [30]  

Effect   Criteria:  Severity  of  Effect  on  Product  (Customer  Effect)   Rank  

Failure  to  Meet  Safety  and/or  Regulatory  

Requirements  

Potential  failure  mode  affects  safe  vehicle  operation  and/or  involves  noncompliance  with  government  regulation  without  warning.   10  

Potential  failure  mode  affects  safe  vehicle  operation  and/or  involves  noncompliance  with  government  regulation  with  warning.   9  

Loss  or  Degradation  of  Primary  Function  

Loss  of  primary  function  (vehicle  inoperable,  does  not  affect  safe  vehicle  operation).   8  

Degradation  of  primary  function  (vehicle  operable,  but  at  reduced  level  of  performance).   7  

Loss  or  Degradation  of  Secondary  Function  

Loss  of  secondary  function  (vehicle  operable,  but  comfort  /  convenience  functions  inoperable).   6  

Degradation  of  secondary  function  (vehicle  operable,  but  comfort  /  convenience  functions  at  reduced  level  of  performance).   5  

!

Item! Function!Potential!Failure!Mode!

Potential!Effects!of!failure!

S!Potential!Causes!of!Failure!

O!Current!Controls!for!Prevention/!Detection!

D!R!P!N!

Recommended!Action!

Responsibility!&!Target!Completion!

Date!

Action!Taken!

S!2!

O!2!

D!2!

R!P!N!2!

Action!Results!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

 

   IV      

Annoyance  

Appearance  or  Audible  Noise,  vehicle  operable,  item  does  not  conform  and  noticed  by  most  customers  (>75%).   4  

Appearance  or  Audible  Noise,  vehicle  operable,  item  does  not  conform  and  noticed  by  many  customers  (50%).   3  

Appearance  or  Audible  Noise,  vehicle  operable,  item  does  not  conform  and  noticed  by  discriminating  customers  (<25%).   2  

No  effect   No  discernible  effect   1  

 

Occurrence   ranks   the   probability   of   a   failure   occurring   during   the   expected   lifetime   of   the  product   or   service.   AIAG   sets   the   following   criteria   for   ranking   occurrence   in   risk   analysis  methods.    

Table  0-­‐2:  Occurrence  ranking  according  to  AIAG  standards [30]  

Likelihood  of  Failure  

Criteria:  Occurrence  of  cause  

Design  life/reliability  of  item/vehicle  

Criteria:    Occurrence  of  Cause  –  

DFMEA    (Incidents  per  item/vehicle)  

Rank  

Very  High   New  technology/new  design  with  no  history.   ≥100  per  thousand    ≥  1  in  10   10  

High  

Failure  is  inevitable  with  new  design,  new  application,  or  change  in  duty  cycle/operating  conditions.  

50  per  thousand    1  in  20   9  

Failure  is  likely  with  new  design,  new  application,  or  change  in  duty  cycle/operating  conditions.  

20  per  thousand    1  in  50   8  

Failure  is  uncertain  with  new  design,  new  application,  or  change  in  duty  cycle/operating  conditions.  

10  per  thousand    1  in  100   7  

Moderate  

Frequent  failures  associated  with  similar  designs  or  in  design  simulation  and  testing.  

2  per  thousand    1  in  500   6  

Occasional  failures  associated  with  similar  designs  or  in  design  simulation  and  testing.  

.5  per  thousand    1  in  2,000   5  

Isolated  failures  associated  with  similar  designs  or  in  design  simulation  and  testing.  

.1  per  thousand    1  in  10,000   4  

Low  

Only  isolated  failures  associated  with  almost  identical  design  or  in  design  simulation  and  testing.  

.01  per  thousand    1  in  100,000   3  

No  observed  failures  associated  with  almost  identical  design  or  in  design  simulation  and  testing.  

≤.001  per  thousand    1  in  1,000,000   2  

Very  Low   Failure  is  eliminated  through  preventive  control.   Failure  is  eliminated  through  preventive  control.   1  

Note:   AIAG   is   the   Automotive   Industry   Action   Group,   which   currently   compiles   the   FMEA  standards  for  the  North  American  Auto  Industry      

 

   V      

Detection   ranks   the   probability   of   the   problem   being   detected   and   acted   upon   before   it   has  happened.   Following   table   illustrates   AIAG   standard   for   ranking   detection   level,   while  performing  risk  analysis.  

Table  0-­‐3:  Detection  ranking  according  to  AIAG  standards [30]  

Opportunity  for  Detection  

Criteria:  Likelihood  of  Detection  by  Design  Control   Rank   Likelihood  of  

Detection  

No  detection  opportunity  

No  current  design  control;  Cannot  detect  or  is  not  analyzed   10   Almost  

Impossible  

Not  likely  to  detect  at  any  stage  

Design  analysis/detection  controls  have  a  weak  detection  capability;  Virtual  Analysis  (e.g.,  CAE,  FEA,  etc.)  is  not  correlated  to  expect  actual  operation  conditions.  

9   Very  Remote  

Post  Design  Freeze  and  prior  to  launch  

Product  verification/validation  after  design  freeze  and  prior  to  launch  with  pass/fail  testing  (Subsystem  or  system  testing  with  acceptance  criteria  such  as  ride  and  handling,  shipping  evaluation,  etc.).  

8   Remote  

Product  verification/validation  after  designs  freeze  and  prior  to  launch  with  test  to  failure  testing  (Subsystem  or  system  testing  until  failure  occurs,  testing  of  system  interactions,  etc.).  

7   Very  Low  

Product  verification/validation  after  design  freeze  and  prior  to  launch  with  degradation  testing  (Subsystem  or  system  testing  after  durability  test,  e.g.,  function  check).  

6   Low  

Prior  to  Design  Freeze  

Product  validation  (reliability  testing,  development  validation  tests)  prior  to  design  freeze  using  pass/fail  testing  (e.g.,  acceptance  criteria  for  performance,  function  checks,  etc.).  

5   Moderate  

Product  validation  (reliability  testing,  development  validation  tests)  prior  to  design  freeze  using  test  to  failure  (e.g.,  until  leaks,  yields,  cracks,  etc.).  

4   Moderately  High  

Product  validation  (reliability  testing,  development  validation  tests)  prior  to  design  freeze  using  degradation  testing  (e.g.,  data  trends,  before/after  values,  etc.).  

3   High  

Virtual  Analysis  –  Correlated  

Design  analysis/detection  controls  have  a  strong  detection  capability.  Virtual  analysis  (e.g.,  CAE,  FEA,  etc.)  is  highly  correlated  with  actual  or  expected  operating  conditions  prior  to  design  freeze.  

2   Very  High  

Detection  not  applicable;  Failure  

Prevention  

Failure  cause  or  failure  mode  cannot  occur  because  it  is  fully  prevented  through  design  solutions  (e.g.,  proven  design  standards,  best  practice  or  common  material,  etc.).  

1   Almost  Certain  

Note:   AIAG   is   the   Automotive   Industry   Action   Group,   which   currently   compiles   the   FMEA  standards  for  the  North  American  Auto  Industry