thesis hassan3-1

259
1 Faculty of Engineering and Material Science Bachelor Thesis Structural design of a Research Centre ASubmitted by: Hasan Ahmed Gamal El-din Submitted to Department of Civil Engineering Major Structure Registration Number: 25-0294 Date of submission: 24/5/2015 Supervisor: Dr. Amr Shaat

Upload: hassan-gamal

Post on 15-Apr-2017

74 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: THESIS HASSAN3-1

1

Faculty of Engineering and Material Science

Bachelor Thesis

“Structural design of a Research Centre A”

Submitted by:

Hasan Ahmed Gamal El-din

Submitted to Department of Civil Engineering Major Structure

Registration Number: 25-0294

Date of submission: 24/5/2015

Supervisor: Dr. Amr Shaat

Page 2: THESIS HASSAN3-1

2

Abstract

The structural engineering has an essential role in the construction of a steel structure as Research Center. Project includes five main phases, which are proposing a general layout, assuming reasonable loads, structural analyzing, designing, drawing and detailing. After that building could be constructed. Assumption of the loads is done with the aid of Egyptian code. Normally, the structural analysis is performed utilizing computer software. Afterwards, the designing is carried out as per standard codes. Last but not least, drawing and detailing are done to present the designs on sheets to be implemented later on. The purpose of this paper is to design and implement a research center steel structure with all information and provide all details need to construct the project.

Key words: Structure, Design, Steel, Research center

Page 3: THESIS HASSAN3-1

3

Contents Abstract ................................................................................................................................................... 2

Chapter 1 ................................................................................................................................................. 9

Introduction ............................................................................................................................................. 9

1.1 Aim and motivation ....................................................................................................................... 9

1.2 Background ................................................................................................................................... 9

Chapter 2 ............................................................................................................................................... 12

Glass types and application .................................................................................................................... 12

2.1Glass types and production overview: ........................................................................................... 12

2.2Glass usage and applications: ........................................................................................................ 14

Chapter 3 ............................................................................................................................................... 15

Structural design of Research ................................................................................................................ 15

3.1 Building loads .............................................................................................................................. 15

3.1.1 Dead load .............................................................................................................................. 15

3.1.2 Live Load ............................................................................................................................. 15

3.1.3 Wind Load ............................................................................................................................ 15

3.1.3.1 Wind West ..................................................................................................................... 15

3.1.3.2 Wind East....................................................................................................................... 15

3.1.3.3 Wind North .................................................................................................................... 15

3.1.3.4 Wind South .................................................................................................................... 16

3.2 Structural analysis ........................................................................................................................ 16

3.2.1 Defining Sections and Assigning Loads ................................................................................. 16

3.2.2 Straining Actions .................................................................................................................. 22

3.2.2.1 Secondary Beams ........................................................................................................... 22

3.2.2.1.1 Secondary Beams B1 ............................................................................................... 22

3.2.2.1.2 Secondary Beams B2 ............................................................................................... 22

3.2.2.2 Main Girders .................................................................................................................. 23

3.2.2.2.1 Main Girders G1 ...................................................................................................... 23

3.2.2.2.2 Main Girders G2 ...................................................................................................... 23

3.2.2.2.3 Main Girders G3 ...................................................................................................... 24

3.2.2.2.4 Main Girders G4 ...................................................................................................... 24

3.2.2.3 Vertical Bracing ............................................................................................................. 25

Page 4: THESIS HASSAN3-1

4

3.2.2.3.1 Vertical Bracing Column 5m.................................................................................... 25

3.2.2.3.2 Vertical Bracing Column 6.25m ............................................................................... 26

3.2.2.3.2.1 Diagonal member .............................................................................................. 26

3.2.2.3.2.2 Horizontal member ........................................................................................... 26

3.2.2.3.3 Vertical Bracing Column 7.5m ................................................................................. 27

3.2.2.3.3.1 Diagonal member .............................................................................................. 27

3.2.2.3.3.2 Horizontal member ........................................................................................... 27

3.2.2.3.4 Vertical Bracing for Column 8.75m ......................................................................... 28

3.2.2.3.4.1 Diagonal member .............................................................................................. 28

3.2.2.3.4.2 Horizontal member ........................................................................................... 28

3.2.2.4 Horizontal Bracing ......................................................................................................... 29

3.2.2.5 Columns ......................................................................................................................... 29

3.2.2.5.1 Columns 5m edge C5 ............................................................................................... 29

3.2.2.5.2 Columns 5m not edge C6 ......................................................................................... 30

3.2.2.5.3 Column 6.25 edge C1 .............................................................................................. 31

3.2.2.5.4 Column 6.25 not edge C2 ......................................................................................... 32

3.2.2.5.5 Column 7.5 edge C2’ ............................................................................................... 33

3.2.2.5.6 Column 7.5 not edge C4........................................................................................... 34

3.2.2.5.7 Column 8.75m edge C7 ........................................................................................... 35

3.2.2.5.8 Column 8.75m not edge C3 ...................................................................................... 36

3.2.2.5.9 Column 6.25m between 10m spans .......................................................................... 37

3.2.2.5.10 Column 8.75m between 10m spans ........................................................................ 38

3.2.2.5 Space Truss .................................................................................................................... 39

Chapter 4 ............................................................................................................................................... 40

Design and Calculation sheet ................................................................................................................. 40

4.1 Building Loads ............................................................................................................................ 40

4.2 Design of Secondary Beams and Main Beams .............................................................................. 44

4.3 Design of Columns ...................................................................................................................... 66

4.4 Design of Bracing ...................................................................................................................... 106

4.5 Design of Space Truss................................................................................................................. 120

4.6 Design of Connections ............................................................................................................... 124

Chapter 5 ............................................................................................................................................. 147

Page 5: THESIS HASSAN3-1

5

Drawing and implementation ............................................................................................................... 147

Chapter 6 ............................................................................................................................................. 194

Additional Project ............................................................................................................................... 194

6.2 Background ............................................................................................................................... 194

6.2.1 Loads .................................................................................................................................. 194

6.2.2 Structural Analysis .............................................................................................................. 194

6.2.2.1 Portal frame with mezzanine floor ................................................................................ 194

6.2.2.2 Portal frame with crane ................................................................................................. 195

Chapter 7 ............................................................................................................................................. 197

Design and Calculation Sheet for Additional Project ............................................................................ 197

7.1 Design of Secondary Beam and Main Beam Mezzanine ............................................................. 197

7.2 Loads and Design of Portal Frame of Mezzanine ........................................................................ 205

7.3 Design of Portal Frame with Crane ............................................................................................ 216

7.4 Design of Connections ............................................................................................................... 223

7.6 Design Of Crane Girder ............................................................................................................. 238

7.7 Design of Purlins ........................................................................................................................ 245

Chapter 8 ............................................................................................................................................. 250

Drawings and detailing for additional project ....................................................................................... 250

Chapter 9 ............................................................................................................................................. 257

Conclusion .......................................................................................................................................... 257

References........................................................................................................................................... 258

Page 6: THESIS HASSAN3-1

6

Table of Figures

Figure 1-Location Building.................................................................................................................... 10 Figure 2-3D view .................................................................................................................................. 10 Figure 3-Sky Light ................................................................................................................................ 11 Figure 4-Define Sections ....................................................................................................................... 16 Figure 5-Define Load Patterns ............................................................................................................... 17 Figure 6-Define Load Combinations ...................................................................................................... 18 Figure 7-3D modeling ........................................................................................................................... 19 Figure 8- Plan 0 level ............................................................................................................................ 20 Figure 9-Vertical Bracing ...................................................................................................................... 20 Figure 10-D.L on Secondary Beam ........................................................................................................ 21 Figure 11-Wind West ............................................................................................................................ 21 Figure 12-Straining action B1 ................................................................................................................ 22 Figure 13-Straining Action B2 ............................................................................................................... 22 Figure 14-Straining Action G1............................................................................................................... 23 Figure 15-Straining Actions G2 ............................................................................................................. 23 Figure 16-Straining Action G3............................................................................................................... 24 Figure 17-Bending moment & Shear Stress G4 ...................................................................................... 24 Figure 18-Axial Force G4 ...................................................................................................................... 25 Figure 19-Axial Force column 5m ......................................................................................................... 25 Figure 20-Diagonal member Column 6.25m .......................................................................................... 26 Figure 21-Horizontal member Column 6.25m ........................................................................................ 26 Figure 22-Diagonal member 7.5m ......................................................................................................... 27 Figure 23-Horizontal member Column 7.5m .......................................................................................... 27 Figure 24-Diagonal member Column 8.75m .......................................................................................... 28 Figure 25-Horizontal member Column 8.75m ........................................................................................ 28 Figure 26-Axial Force Horizontal Bracing ............................................................................................. 29 Figure 27-Bending moment C5 .............................................................................................................. 29 Figure 28-Axial Force C5 ...................................................................................................................... 30 Figure 29-Bending Moment C6 ............................................................................................................. 30 Figure 30-Axial Force C6 ...................................................................................................................... 31 Figure 31-Bending Moment C1 ............................................................................................................. 31 Figure 32-Axial Force C1 ...................................................................................................................... 31 Figure 33-Bending Moment C2 ............................................................................................................. 32 Figure 34-Axial Force C2 ...................................................................................................................... 32 Figure 35-Bending Moment C2' ............................................................................................................. 33 Figure 36-Axial Force C2' ..................................................................................................................... 33 Figure 37-Bending Moment C4 ............................................................................................................. 34 Figure 38-Axial Force C4 ...................................................................................................................... 34

Page 7: THESIS HASSAN3-1

7

Figure 39-Bending Moment C7 ............................................................................................................. 35 Figure 40-Axial Force C7 ...................................................................................................................... 35 Figure 41-Bending Moment C3 ............................................................................................................. 36 Figure 42-Axial Force C3 ...................................................................................................................... 36 Figure 43-Bending Moment C 6.25m between 10m spans ...................................................................... 37 Figure 44-Axial Force C 6.25m between 10m spans .............................................................................. 37 Figure 45-Bending Moment C 8.75m between 10m spans ...................................................................... 38 Figure 46-Axial Force C 8.75m between 10m spans .............................................................................. 38 Figure 47- Space Truss .......................................................................................................................... 39 Figure 48- Axial force of chords ............................................................................................................ 39 Figure 49-3D model "Tekla" ................................................................................................................ 147 Figure 50-Vertical Bracing "Tekla" ..................................................................................................... 148 Figure 51-Connections "Tekla" ............................................................................................................ 148 Figure 52-Create drawings "Tekla" ...................................................................................................... 149 Figure 53-Drawing List ....................................................................................................................... 150 Figure 54-Base Plate............................................................................................................................ 151 Figure 55-Level +0 .............................................................................................................................. 152 Figure 56-Level +5m ........................................................................................................................... 153 Figure 57-Level +6.25m ...................................................................................................................... 154 Figure 58-Level +7.5m ........................................................................................................................ 155 Figure 59-Level +8.75m ...................................................................................................................... 156 Figure 60-Level +10m ......................................................................................................................... 157 Figure 61-Level +11.25m .................................................................................................................... 158 Figure 62-Level +12.5m ...................................................................................................................... 159 Figure 63-Level +13.75m .................................................................................................................... 160 Figure 64-Level +15m ......................................................................................................................... 161 Figure 65-Level +16.25m .................................................................................................................... 162 Figure 66- Level +17.5m ..................................................................................................................... 163 Figure 67-Level +18.75m .................................................................................................................... 164 Figure 68-GRID A .............................................................................................................................. 165 Figure 69-GRID B ............................................................................................................................... 166 Figure 70-GRID C ............................................................................................................................... 167 Figure 71-GRID D .............................................................................................................................. 168 Figure 72-GRID E ............................................................................................................................... 169 Figure 73-GRID F ............................................................................................................................... 170 Figure 74-GRID H .............................................................................................................................. 171 Figure 75-GRID I ................................................................................................................................ 172 Figure 76-GRID J ................................................................................................................................ 173 Figure 77-GRID K .............................................................................................................................. 174 Figure 78-GRID L ............................................................................................................................... 175 Figure 79-GRID M .............................................................................................................................. 176 Figure 80-SIDE VIEW 13 ................................................................................................................... 177 Figure 81-SIDE VIEW 1 ..................................................................................................................... 178 Figure 82-HORIZONTAL BRACING ................................................................................................. 179

Page 8: THESIS HASSAN3-1

8

Figure 83-COLUMN HEA320 C (5).................................................................................................... 180 Figure 84-COLUMN HEA360 C (1).................................................................................................... 181 Figure 85-COLUMN HEA400 C (6).................................................................................................... 182 Figure 86-COLUMN HEA 450 C (2) @ EDGE ................................................................................... 183 Figure 87-COLUMN HEA 450 C (2)................................................................................................... 184 Figure 88-COLUMN HEA 500 C (4)................................................................................................... 185 Figure 89-COLUMN HEA 550 C (7)................................................................................................... 186 Figure 90-COLUMN HEA 650 C (3)................................................................................................... 187 Figure 91-COLUMN HEA 650 PL400*10 C (3') ................................................................................. 188 Figure 92-IPE240 ................................................................................................................................ 189 Figure 93-IPE270 ................................................................................................................................ 190 Figure 94-IPE300 ................................................................................................................................ 191 Figure 95-IPE600 ................................................................................................................................ 192 Figure 96-IPE360 ................................................................................................................................ 193 Figure 97-Portal Frame with mezzanine ............................................................................................... 194 Figure 98-Maximum positive moment on Rafter .................................................................................. 195 Figure 99-Portal Frame with crane ....................................................................................................... 195 Figure 100-Load combinations ............................................................................................................ 196 Figure 101-Bending moment on column .............................................................................................. 196 Figure 102-Straining action on Rafter .................................................................................................. 197 Figure 103-3D of factory "Tekla" ........................................................................................................ 250 Figure 104-General Layout .................................................................................................................. 251 Figure 105- General layout 2 ............................................................................................................... 252 Figure 106- Portal Frame with Crane ................................................................................................... 253 Figure 107- Rafter of PF with Crane and Connection ........................................................................... 254 Figure 108- Portal Frame with mezzanine ............................................................................................ 255 Figure 109- Rafter in PF with mezzanine ............................................................................................. 256

Page 9: THESIS HASSAN3-1

9

Chapter 1

Introduction

1.1 Aim and motivation To construct a research center requirements have to be taken in consideration. First of all architectural plans done by engineers should take care that type of these buildings need large areas for labs, decrease number of columns to allow researchers moving from one office to the other easily, provide a place for eating and drinking where it is away from offices and labs. Also a research center need to be located in area with less pollution and sky lights to allow sun light from entering building. In addition, structural engineering choose best way and criteria for design to combine and gather information from plans of architecture and any of imagination of architectural engineering. Also, structural designer have to take care of electricity such as lightings and mechanical devices in the building. Finally, implementation done by forming drawings and details of design which help to build and construct any building.

The purpose of this paper to design and implement a research center steel structure with all information taken from architectural plans and draw all details needed after that to construct that building if needed. Also, share information and experience gained from this project to other engineers.

1.2 Background The structure is steel frame to cover area of 60m*60m of a managerial building “Research Center”. The structure located in Cairo. Research Center consists of ground floor and 3 floors. Each floor has 4 levels with difference 1.25m between them except ground floor that has one level. The floors are typical in design as they are replicate from ground floor. In addition, the structure contains large areas especially in labs which better way for design is to use frame structure than beam-column. Moreover, outer area of building covered by glass façade to allow sun light to go into the building. There is a void in center of the building while offices and labs are around this void. The total height of building is 18.75m and a space truss for a sky light at roof. Frame type is used and other direction vertical bracing. Horizontal bracing used in building for wind load till pouring of concrete. Columns reached level -3m for garage usage. In columns will find that normal force and buckling length is the critical in design. Designs of columns in edge differ than between spans due to normal force. In labs main beams have high largest section due to its span. Also, the largest section of secondary beam found in cafeteria area. In this project hot rolled sections used in design except in one types of columns. The code used for loads ECP 2008 and for design ECP 205-2001. Steel used in design is Steel 37 mild steel. In this structure analysis are done using SAP2000 by adding load (Dead, Live and Wind) according to Egyptian code. After that designs using Egyptian code and calculation sheets are formed.

Page 10: THESIS HASSAN3-1

10

Research Center found in Cairo “Tagamo Elkhames” (Figure 1). Also building is characterized by its large areas and outer are is a square shape with 4 levels in each floor with sky light at roof and glass façade at the outer areas, void at center of building with a cafeteria inside that void with also a square shape.

Figure 1-Location Building

Figure 2-3D view

Page 11: THESIS HASSAN3-1

11

Figure 3-Sky Light

General layout formed with main elements and secondary elements, analysis using SAP2000 V16 where straining actions are taken and deflections, calculation sheets with design in it according Egyptian Code, 3D modeling, drawings and detailing using Tekla and Autocad programs.

Page 12: THESIS HASSAN3-1

12

Chapter 2

Glass types and application

2.1Glass types and production overview: Over decades, glass productions in terms of types and ingredients have witnessed great

evolution. Including various compositions such as; Fused silica glass, Sodium borosilicate glass,

Lead-oxide glass, Alumino-silicate glass, Oxide glass and the Soda-lime-silica glass and Soda-

lime glass, also called soda-lime-silica glass. These types are considered to be the most known

types of glass that are usually used for glass containers, windowpanes and other commodity

items. Moving to the most common type of glass that have been developed over time to become

the most important type of glass used in today's constructions which is the float glass.

Float glass manufacturing consumes some of the earth’s most rich raw materials which are the

silica sand, counting for 60 % (by weight) of the materials that are called the batch. Minerals and

dolomite are added to assist in the enduring and weathering properties of the finished glass,

while other components are added to help melting the sand such as soda ash and sulfate. The

following figure illustrates the production process of the float glass including all the stages that

the glass goes through for manufacturing.

Moreover, there are many types of glass final products in terms of physical properties and

appearance. First, the extra clear glass which is a final product derived from melted glass (float

glass). This specific type of glass is made of very low quantities of iron component in order to its

properties of sun and heat reflection. It is considered the most applicable option to use for solar

energy applications where the heat is needed to be absorbed and reach the solar cells.

Page 13: THESIS HASSAN3-1

13

Another product is the mirrored glass which is coated with a metal layer to one of the sides of the

glass the coating is mostly made of aluminum, silver, chrome or gold. Mirrored glass is widely

used for architectural purposes and may be used for essential functional reasons as well as for the

visual effect and even for privacy purposes.

There is also the coated glass which is made to adjust its appearance and provide it with several

advanced features and functions available in flat glass products, such as special reflection, scratch

resistance, transmission and low maintenance. On the other hand there is the tinted glass which is

made by small metal additions to the float glass in order to give the glass some colors such as

green, bronze, grey or blue, however it does not affect the basic functions of the glass excluding

some modifications in the solar energy transmission. Finally, the frosted or sandblasted glass,

which is manufactured by acid engraving or sandblasting of clear sheet glass. It has the effect of

sprinkling of light transmission, thus blurring images while still diffusing light.

Page 14: THESIS HASSAN3-1

14

2.2Glass usage and applications: There is a very specific design of glass that is commonly used for structural and architectural

purposes which is "Glass-fiber-reinforced concrete (GFRC) panels". This system is light weight

system that includes various colors and textures which make these panels very adaptable for many

designs and architectural applications. GFRC can also be designed similarly to the precast

concrete panels. These lightweight systems like GFRC, stone facings and thin brick are very

beneficial as they are easy to construct and do not involve heavy steel structural support in the

principal structure of the building. Therefore, GFRC and other lightweight systems are more cost-

effective and reasonable steel frames.

GFRC systems usually weight among 9 and 25 psf depending on the type of the panel shape and

size, external finish, and back-up frame structure. Usual wall systems are embraced of the panel

skin, anchors fastening the skin to the back-up frame, while the panel back-up frame and

connectors are attaching the panel frame to the main building structure. GFRC generally are not

load bearing and are not deliberated as a part of the lateral load resisting system. Thereby, the

primary structure of the building must be designed with separate lateral force resisting system and

requires the support for the weight and lateral loads from the panel system. So that it could be

transferred from the panel skin to the main building structure. This system mechanism and

components are illustrated in the following figure in more details.

Page 15: THESIS HASSAN3-1

15

Chapter 3

Structural design of Research

3.1 Building loads

3.1.1 Dead load Use R.C thickness 0.12m, specific weight for concrete 2.5t/m2 (ECP Table (3-1) P17), floor cover 0.2 t/m’ and spacing between secondary beams is 1.67m.

Wd.l= (0.12*2.5+0.2)-1.67= 0.84t/m’

3.1.2 Live Load Use Live load= 0.4t/m2 (ECP Table (4-1) P32)

Wl.l= 0.4*1.67= 0.67t/m’

3.1.3 Wind Load The building located at Cairo q=70kg/m2 and spacing between frames are 5m

Ww= C*K*q*s

3.1.3.1 Wind West Ww1= 0.8*1*0.07*5= 0.28t/m’

Ww2= 0.5*1*0.07*5= 0.175t/m’

Ww3= -0.7*1*0.07*5= -0.245t/m’

Ww4= -0.7*1*0.07*5= -0.245t/m’

Ww5= -0.8*1*0.07*5= -0.28t/m’

3.1.3.2 Wind East Ww1= -0.8*1*0.07*5= -0.28t/m’

Ww2= -0.5*1*0.07*5= -0.175t/m’

Ww3= -0.7*1*0.07*5= -0.245t/m’

Ww4= -0.7*1*0.07*5= -0.245t/m’

Ww5= -0.8*1*0.07*5= -0.28t/m’

3.1.3.3 Wind North Ww1= 0.8*1*0.07*5= 0.28t/m’

Page 16: THESIS HASSAN3-1

16

Ww2= 0.5*1*0.07*5= 0.175t/m’

Ww3= -0.7*1*0.07*5= -0.245t/m’

Ww4= -0.7*1*0.07*5= -0.245t/m’

Ww5= -0.8*1*0.07*5= -0.28t/m’

3.1.3.4 Wind South Ww1= 0.8*1*0.07*5= 0.28t/m’

Ww2= 0.5*1*0.07*5= 0.175t/m’

Ww3= -0.7*1*0.07*5= -0.245t/m’

Ww4= -0.7*1*0.07*5= -0.245t/m’

Ww5= -0.8*1*0.07*5= -0.28t/m’

3.2 Structural analysis In step of structural analysis, SAP2000 V16 used to find out all straining actions needed for design and check for deflection. First of all, define material used in project which is St37, all sections needed in projects as I use hot rolled section as show in (Figure 4). Define load patterns which are Dead load, Live load and Wind load as in (Figure 5).

3.2.1 Defining Sections and Assigning Loads

Figure 4-Define Sections

Page 17: THESIS HASSAN3-1

17

Figure 5-Define Load Patterns

Load combinations used in this project are

D.L

D.L+L.L

D.L+L.L+W.E

D.L+L.L+W.W

D.L+L.L+W.S

D.L+L.L+W.N

D.L+W.E

D.L+W.W

D.L+W.S

D.L+W.N

MAX “Envelope”

Page 18: THESIS HASSAN3-1

18

Figure 6-Define Load Combinations

3D modeling and draw frames with all its aspects and importing 3D from Autocad (Figure 7)

Page 19: THESIS HASSAN3-1

19

Figure 7-3D modeling

Page 20: THESIS HASSAN3-1

20

Figure 8- Plan 0 level

Figure 9-Vertical Bracing

Page 21: THESIS HASSAN3-1

21

Assign frame loads, dead load and live load on secondary beams and wind load on columns (Figure 9 & Figure 10)

Figure 10-D.L on Secondary Beam

Figure 11-Wind West

Page 22: THESIS HASSAN3-1

22

3.2.2 Straining Actions Axial force, bending moment, shear stress and deflection are gained

3.2.2.1 Secondary Beams

3.2.2.1.1 Secondary Beams B1 B1 is found in all frames of building with span 5 meters except in cafeteria

Figure 12-Straining action B1

3.2.2.1.2 Secondary Beams B2 B2 is found in cafeteria area with span 10m

Figure 13-Straining Action B2

Page 23: THESIS HASSAN3-1

23

3.2.2.2 Main Girders

3.2.2.2.1 Main Girders G1 G1 is not at edges and found in frames not having horizontal bracing.

Figure 14-Straining Action G1

3.2.2.2.2 Main Girders G2 G2 is found at edges of frames, these girders have negative moment greater than other due to continuity of moment.

Figure 15-Straining Actions G2

Page 24: THESIS HASSAN3-1

24

3.2.2.2.3 Main Girders G3 G3 are beams with span 10m long found at edges, these long members are for labs area, where negative moment value is close to positive moment value.

Figure 16-Straining Action G3

3.2.2.2.4 Main Girders G4 G4 found in middle of frames of horizontal bracing where we find a great value of normal force which is formed due to wind load.

Figure 17-Bending moment & Shear Stress G4

Page 25: THESIS HASSAN3-1

25

Figure 18-Axial Force G4

3.2.2.3 Vertical Bracing

3.2.2.3.1 Vertical Bracing Column 5m In Column 5m long there is vertical bracing which is cross designed as double angle.

Figure 19-Axial Force column 5m

Page 26: THESIS HASSAN3-1

26

3.2.2.3.2 Vertical Bracing Column 6.25m In column 6.25m long bracing divide into two parts both 3.125m

3.2.2.3.2.1 Diagonal member

Figure 20-Diagonal member Column 6.25m

3.2.2.3.2.2 Horizontal member

Figure 21-Horizontal member Column 6.25m

Page 27: THESIS HASSAN3-1

27

3.2.2.3.3 Vertical Bracing Column 7.5m In column 6.25m long bracing divide into two parts both 3.75m

3.2.2.3.3.1 Diagonal member

Figure 22-Diagonal member 7.5m

3.2.2.3.3.2 Horizontal member

Figure 23-Horizontal member Column 7.5m

Page 28: THESIS HASSAN3-1

28

3.2.2.3.4 Vertical Bracing for Column 8.75m In column 6.25m long bracing divide into two parts both 4.375m

3.2.2.3.4.1 Diagonal member

Figure 24-Diagonal member Column 8.75m

3.2.2.3.4.2 Horizontal member

Figure 25-Horizontal member Column 8.75m

Page 29: THESIS HASSAN3-1

29

3.2.2.4 Horizontal Bracing Horizontal bracing designed as its maximum compression force

Figure 26-Axial Force Horizontal Bracing

3.2.2.5 Columns Columns in this building have tall spans which increase value of buckling length. Also, normal forces are critical with highest value while bending moments doesn’t affect too much on design.

3.2.2.5.1 Columns 5m edge C5 These columns are found at edges of building with tall 5m

Figure 27-Bending moment C5

Page 30: THESIS HASSAN3-1

30

Figure 28-Axial Force C5

3.2.2.5.2 Columns 5m not edge C6 These columns are found inside building not at edge with tall 5m.

Figure 29-Bending Moment C6

Page 31: THESIS HASSAN3-1

31

Figure 30-Axial Force C6

3.2.2.5.3 Column 6.25 edge C1 These columns are found at edge of building with tall 6.25m

Figure 31-Bending Moment C1

Figure 32-Axial Force C1

Page 32: THESIS HASSAN3-1

32

3.2.2.5.4 Column 6.25 not edge C2 These types of columns are found inside building not at edge with tall 6.25m.

Figure 33-Bending Moment C2

Figure 34-Axial Force C2

Page 33: THESIS HASSAN3-1

33

3.2.2.5.5 Column 7.5 edge C2’ These columns are found in the edge of building with tall 7.5m.

Figure 35-Bending Moment C2'

Figure 36-Axial Force C2'

Page 34: THESIS HASSAN3-1

34

3.2.2.5.6 Column 7.5 not edge C4 These Columns are found inside building not at edge with tall 7.5m.

Figure 37-Bending Moment C4

Figure 38-Axial Force C4

Page 35: THESIS HASSAN3-1

35

3.2.2.5.7 Column 8.75m edge C7 These columns are found at edge of research center with tall 8.75m

Figure 39-Bending Moment C7

Figure 40-Axial Force C7

Page 36: THESIS HASSAN3-1

36

3.2.2.5.8 Column 8.75m not edge C3 These types of column found inside building of research center not at edge between 5m spans.

Figure 41-Bending Moment C3

.

Figure 42-Axial Force C3

Page 37: THESIS HASSAN3-1

37

3.2.2.5.9 Column 6.25m between 10m spans These types of column with tall 6.2m are found in labs area which has span 10m.

Figure 43-Bending Moment C 6.25m between 10m spans

Figure 44-Axial Force C 6.25m between 10m spans

Page 38: THESIS HASSAN3-1

38

3.2.2.5.10 Column 8.75m between 10m spans These types of column with tall 8.75m are found in labs area which has span 10m.

Figure 45-Bending Moment C 8.75m between 10m spans

Figure 46-Axial Force C 8.75m between 10m spans

Page 39: THESIS HASSAN3-1

39

3.2.2.5 Space Truss Space truss used to hold double laminated glass at roof to allow sun light to enter building with area 30*30m2 and columns support it every 10m.

Figure 47- Space Truss

Figure 48- Axial force of chords

Page 40: THESIS HASSAN3-1

40

Chapter 4

Design and Calculation sheet

4.1 Building Loads

Page 41: THESIS HASSAN3-1

41

Page 42: THESIS HASSAN3-1

42

Page 43: THESIS HASSAN3-1

43

Page 44: THESIS HASSAN3-1

44

4.2 Design of Secondary Beams and Main Beams

Page 45: THESIS HASSAN3-1

45

Page 46: THESIS HASSAN3-1

46

Page 47: THESIS HASSAN3-1

47

Page 48: THESIS HASSAN3-1

48

Page 49: THESIS HASSAN3-1

49

Page 50: THESIS HASSAN3-1

50

Page 51: THESIS HASSAN3-1

51

Page 52: THESIS HASSAN3-1

52

Page 53: THESIS HASSAN3-1

53

Page 54: THESIS HASSAN3-1

54

Page 55: THESIS HASSAN3-1

55

Page 56: THESIS HASSAN3-1

56

Page 57: THESIS HASSAN3-1

57

Page 58: THESIS HASSAN3-1

58

Page 59: THESIS HASSAN3-1

59

Page 60: THESIS HASSAN3-1

60

Page 61: THESIS HASSAN3-1

61

Page 62: THESIS HASSAN3-1

62

Page 63: THESIS HASSAN3-1

63

Page 64: THESIS HASSAN3-1

64

Page 65: THESIS HASSAN3-1

65

Page 66: THESIS HASSAN3-1

66

4.3 Design of Columns

Page 67: THESIS HASSAN3-1

67

Page 68: THESIS HASSAN3-1

68

Page 69: THESIS HASSAN3-1

69

Page 70: THESIS HASSAN3-1

70

Page 71: THESIS HASSAN3-1

71

Page 72: THESIS HASSAN3-1

72

Page 73: THESIS HASSAN3-1

73

Page 74: THESIS HASSAN3-1

74

Page 75: THESIS HASSAN3-1

75

Page 76: THESIS HASSAN3-1

76

Page 77: THESIS HASSAN3-1

77

Page 78: THESIS HASSAN3-1

78

Page 79: THESIS HASSAN3-1

79

Page 80: THESIS HASSAN3-1

80

Page 81: THESIS HASSAN3-1

81

Page 82: THESIS HASSAN3-1

82

Page 83: THESIS HASSAN3-1

83

Page 84: THESIS HASSAN3-1

84

Page 85: THESIS HASSAN3-1

85

Page 86: THESIS HASSAN3-1

86

Page 87: THESIS HASSAN3-1

87

Page 88: THESIS HASSAN3-1

88

Page 89: THESIS HASSAN3-1

89

Page 90: THESIS HASSAN3-1

90

Page 91: THESIS HASSAN3-1

91

Page 92: THESIS HASSAN3-1

92

Page 93: THESIS HASSAN3-1

93

Page 94: THESIS HASSAN3-1

94

Page 95: THESIS HASSAN3-1

95

Page 96: THESIS HASSAN3-1

96

Page 97: THESIS HASSAN3-1

97

Page 98: THESIS HASSAN3-1

98

Page 99: THESIS HASSAN3-1

99

Page 100: THESIS HASSAN3-1

100

Page 101: THESIS HASSAN3-1

101

Page 102: THESIS HASSAN3-1

102

Page 103: THESIS HASSAN3-1

103

Page 104: THESIS HASSAN3-1

104

Page 105: THESIS HASSAN3-1

105

Page 106: THESIS HASSAN3-1

106

4.4 Design of Bracing

Page 107: THESIS HASSAN3-1

107

Page 108: THESIS HASSAN3-1

108

Page 109: THESIS HASSAN3-1

109

Page 110: THESIS HASSAN3-1

110

Page 111: THESIS HASSAN3-1

111

Page 112: THESIS HASSAN3-1

112

Page 113: THESIS HASSAN3-1

113

Page 114: THESIS HASSAN3-1

114

Page 115: THESIS HASSAN3-1

115

Page 116: THESIS HASSAN3-1

116

Page 117: THESIS HASSAN3-1

117

Page 118: THESIS HASSAN3-1

118

Page 119: THESIS HASSAN3-1

119

Page 120: THESIS HASSAN3-1

120

4.5 Design of Space Truss

Page 121: THESIS HASSAN3-1

121

Page 122: THESIS HASSAN3-1

122

Page 123: THESIS HASSAN3-1

123

Page 124: THESIS HASSAN3-1

124

4.6 Design of Connections

Page 125: THESIS HASSAN3-1

125

Page 126: THESIS HASSAN3-1

126

Page 127: THESIS HASSAN3-1

127

Page 128: THESIS HASSAN3-1

128

Page 129: THESIS HASSAN3-1

129

Page 130: THESIS HASSAN3-1

130

Page 131: THESIS HASSAN3-1

131

Page 132: THESIS HASSAN3-1

132

Page 133: THESIS HASSAN3-1

133

Page 134: THESIS HASSAN3-1

134

Page 135: THESIS HASSAN3-1

135

Page 136: THESIS HASSAN3-1

136

Page 137: THESIS HASSAN3-1

137

Page 138: THESIS HASSAN3-1

138

Page 139: THESIS HASSAN3-1

139

Page 140: THESIS HASSAN3-1

140

Page 141: THESIS HASSAN3-1

141

Page 142: THESIS HASSAN3-1

142

Page 143: THESIS HASSAN3-1

143

Page 144: THESIS HASSAN3-1

144

Page 145: THESIS HASSAN3-1

145

Page 146: THESIS HASSAN3-1

146

Page 147: THESIS HASSAN3-1

147

Chapter 5

Drawing and implementation In this chapter will talk about steps for drawing and implantation. First of all, I used Tekla program to draw actual section that I designed according to Egyptian code. 3D modeling using Tekla help to see building with its section and connections needed for building and if there any clash could happen. In Tekla one could draw and implement building as it will be constructed in reality (Figure 49). In addition, Tekla program helps to create drawings and import it to Autocad for any changes I want. Moreover, detailing and sections done easily with only some steps. Assembly and drawing parts for all section could be done easily, these drawing parts used to manufacturing of sections with its actual dimensions and actual connections with more details in factory. Also, Tekla doesn’t stop in those parts but they can calculate total weight of building from all parts and section. Engineers used this program for implementing and create drawings in easily way. In Autocad changes are done by adding some additional information and changing template box needed. Also, Autocad helps to add lines and erase it easily.

Figure 49-3D model "Tekla"

Page 148: THESIS HASSAN3-1

148

Figure 50-Vertical Bracing "Tekla"

Figure 51-Connections "Tekla"

Page 149: THESIS HASSAN3-1

149

Figure 52-Create drawings "Tekla"

Numbering and naming of drawings is important for good arrangement of drawings. Also, doing a drawing list is a key to facilitate process of searching and finding of drawings.

Page 150: THESIS HASSAN3-1

150

DWG LIST

MADE BYHassan Ahmed

Number Name NotesST-0 BASE PLATEST-1 PLAN LEVEL +0ST-2 PLAN LEVEL +5mST-3 PLAN LEVEL +6.25mST-4 PLAN LEVEL +7.5mST-5 PLAN LEVEL +8.75mST-6 PLAN LEVEL +10mST-7 PLAN LEVEL +11.25mST-8 PLAN LEVEL +12.5m ST-9 PLAN LEVEL +13.75mST-10 PLAN LEVEL +15mST-11 PLAN LEVEL +16.25mST-12 PLAN LEVEL +17.5mST-13 PLAN LEVEL +18.75mST-14 ELEVATION GRID AST-15 ELEVATION GRID BST-16 ELEVATION GRID CST-17 ELEVATION GRID DST-18 ELEVATION GRID EST-19 ELEVATION GRID FST-20 ELEVATION GRID GST-21 ELEVATION GRID HST-22 ELEVATION GRID IST-23 ELEVATION GRID JST-24 ELEVATION GRID KST-25 ELEVATION GRID LST-26 ELEVATION GRID MST-27 SIDE VIEW GRID 13ST-28 SIDE VIEW GRID 1ST-29 HORIZONTAL BRACINGST-30 IPE 240 A3ST-31 IPE 270 A3ST-32 IPE 300 A3ST-33 IPE 600 A2ST-34 IPE 360 A2ST-35 COLUMN HEA 320 C(5) A3ST-36 COLUMN HEA 360 C(1) A2ST-37 COLUMN HEA 400 C(6) A2ST-38 COLUMN HEA 450 C(2) @ EDGE A2ST-39 COLUMN HEA 450 C(2) A2ST-40 COLUMN HEA 500 C(4) A2ST-41 COLUMN HEA 550 C(7) A2ST-42 COLUMN HEA 650 C(3) A2ST-43 COLUMN HEA 650 PL400*10 C(3') A3

PROJECT : RESEAECH CENTER

Figure 53-Drawing List

Page 151: THESIS HASSAN3-1

151

Figure 54-Base Plate

Page 152: THESIS HASSAN3-1

152

Figure 55-Level +0

Page 153: THESIS HASSAN3-1

153

Figure 56-Level +5m

Page 154: THESIS HASSAN3-1

154

Figure 57-Level +6.25m

Page 155: THESIS HASSAN3-1

155

Figure 58-Level +7.5m

Page 156: THESIS HASSAN3-1

156

Figure 59-Level +8.75m

Page 157: THESIS HASSAN3-1

157

Figure 60-Level +10m

Page 158: THESIS HASSAN3-1

158

Figure 61-Level +11.25m

Page 159: THESIS HASSAN3-1

159

Figure 62-Level +12.5m

Page 160: THESIS HASSAN3-1

160

Figure 63-Level +13.75m

Page 161: THESIS HASSAN3-1

161

Figure 64-Level +15m

Page 162: THESIS HASSAN3-1

162

Figure 65-Level +16.25m

Page 163: THESIS HASSAN3-1

163

Figure 66- Level +17.5m

Page 164: THESIS HASSAN3-1

164

Figure 67-Level +18.75m

Page 165: THESIS HASSAN3-1

165

Figure 68-GRID A

Page 166: THESIS HASSAN3-1

166

Figure 69-GRID B

Page 167: THESIS HASSAN3-1

167

Figure 70-GRID C

Page 168: THESIS HASSAN3-1

168

Figure 71-GRID D

Page 169: THESIS HASSAN3-1

169

Figure 72-GRID E

Page 170: THESIS HASSAN3-1

170

Figure 73-GRID F

Page 171: THESIS HASSAN3-1

171

Figure 74-GRID H

Page 172: THESIS HASSAN3-1

172

Figure 75-GRID I

Page 173: THESIS HASSAN3-1

173

Figure 76-GRID J

Page 174: THESIS HASSAN3-1

174

Figure 77-GRID K

Page 175: THESIS HASSAN3-1

175

Figure 78-GRID L

Page 176: THESIS HASSAN3-1

176

Figure 79-GRID M

Page 177: THESIS HASSAN3-1

177

Figure 80-SIDE VIEW 13

Page 178: THESIS HASSAN3-1

178

Figure 81-SIDE VIEW 1

Page 179: THESIS HASSAN3-1

179

Figure 82-HORIZONTAL BRACING

Page 180: THESIS HASSAN3-1

180

Figure 83-COLUMN HEA320 C (5)

Page 181: THESIS HASSAN3-1

181

Figure 84-COLUMN HEA360 C (1)

Page 182: THESIS HASSAN3-1

182

Figure 85-COLUMN HEA400 C (6)

Page 183: THESIS HASSAN3-1

183

Figure 86-COLUMN HEA 450 C (2) @ EDGE

Page 184: THESIS HASSAN3-1

184

Figure 87-COLUMN HEA 450 C (2)

Page 185: THESIS HASSAN3-1

185

Figure 88-COLUMN HEA 500 C (4)

Page 186: THESIS HASSAN3-1

186

Figure 89-COLUMN HEA 550 C (7)

Page 187: THESIS HASSAN3-1

187

Figure 90-COLUMN HEA 650 C (3)

Page 188: THESIS HASSAN3-1

188

Figure 91-COLUMN HEA 650 PL400*10 C (3')

Page 189: THESIS HASSAN3-1

189

Figure 92-IPE240

Page 190: THESIS HASSAN3-1

190

Figure 93-IPE270

Page 191: THESIS HASSAN3-1

191

Figure 94-IPE300

Page 192: THESIS HASSAN3-1

192

Figure 95-IPE600

Page 193: THESIS HASSAN3-1

193

Figure 96-IPE360

Page 194: THESIS HASSAN3-1

194

Chapter 6

Additional Project

6.2 Background In this chapter a new project designed and implemented. The factory accommodates machine hall, welding area and end products. There is an overhead crane 20t capacity. This project is a factory with area 22*48m2 with height 10m. In this factory there is a mezzanine floor in first span then the others span used for factory. The factory designed as a portal frame with span 6m and inaccessible roof. The factory located in Egypt.

6.2.1 Loads In mezzanine floor a concrete slab with thickness 10cm, dead load is 0.85t/m’ and live load 0.8t/m’. There is a wind load with q=70kg/m2. Horizontal bracing and vertical bracing in structure to resist wind load.

6.2.2 Structural Analysis In this portal frame SAP2000 program used to analysis. 2D frames used for analysis by assigning frame loads. Egyptian code used for design from straining action found from max load combinations. All frames are designed as hot rolled and haunch attached in negative bending moment.

6.2.2.1 Portal frame with mezzanine floor By designing secondary beams and main beams of mezzanine floor and convert reaction of frames on them.

Figure 97-Portal Frame with mezzanine

Page 195: THESIS HASSAN3-1

195

Figure 98-Maximum positive moment on Rafter

Normal force on column is 13.78t

6.2.2.2 Portal frame with crane In the frames with crane girders on it, bending moment on column and rafter increase due to loads of crane and wind. Load combinations in this frame increase and scenarios could happen (Figure 100).

Figure 99-Portal Frame with crane

Page 196: THESIS HASSAN3-1

196

Figure 100-Load combinations

Figure 101-Bending moment on column

Page 197: THESIS HASSAN3-1

197

Figure 102-Straining action on Rafter

Chapter 7

Design and Calculation Sheet for Additional Project

7.1 Design of Secondary Beam and Main Beam Mezzanine

Page 198: THESIS HASSAN3-1

198

Page 199: THESIS HASSAN3-1

199

Page 200: THESIS HASSAN3-1

200

Page 201: THESIS HASSAN3-1

201

Page 202: THESIS HASSAN3-1

202

Page 203: THESIS HASSAN3-1

203

Page 204: THESIS HASSAN3-1

204

Page 205: THESIS HASSAN3-1

205

7.2 Loads and Design of Portal Frame of Mezzanine

Page 206: THESIS HASSAN3-1

206

Page 207: THESIS HASSAN3-1

207

Page 208: THESIS HASSAN3-1

208

Page 209: THESIS HASSAN3-1

209

Page 210: THESIS HASSAN3-1

210

Page 211: THESIS HASSAN3-1

211

Page 212: THESIS HASSAN3-1

212

Page 213: THESIS HASSAN3-1

213

Page 214: THESIS HASSAN3-1

214

Page 215: THESIS HASSAN3-1

215

Page 216: THESIS HASSAN3-1

216

7.3 Design of Portal Frame with Crane

Page 217: THESIS HASSAN3-1

217

Page 218: THESIS HASSAN3-1

218

Page 219: THESIS HASSAN3-1

219

Page 220: THESIS HASSAN3-1

220

Page 221: THESIS HASSAN3-1

221

Page 222: THESIS HASSAN3-1

222

Page 223: THESIS HASSAN3-1

223

7.4 Design of Connection

Page 224: THESIS HASSAN3-1

224

Page 225: THESIS HASSAN3-1

225

Page 226: THESIS HASSAN3-1

226

Page 227: THESIS HASSAN3-1

227

Page 228: THESIS HASSAN3-1

228

Page 229: THESIS HASSAN3-1

229

Page 230: THESIS HASSAN3-1

230

Page 231: THESIS HASSAN3-1

231

Page 232: THESIS HASSAN3-1

232

Page 233: THESIS HASSAN3-1

233

Page 234: THESIS HASSAN3-1

234

Page 235: THESIS HASSAN3-1

235

Page 236: THESIS HASSAN3-1

236

Page 237: THESIS HASSAN3-1

237

Page 238: THESIS HASSAN3-1

238

7.6 Design of Crane Girder

Page 239: THESIS HASSAN3-1

239

Page 240: THESIS HASSAN3-1

240

Page 241: THESIS HASSAN3-1

241

Page 242: THESIS HASSAN3-1

242

Page 243: THESIS HASSAN3-1

243

Page 244: THESIS HASSAN3-1

244

Page 245: THESIS HASSAN3-1

245

7.7 Design of Purlins

Page 246: THESIS HASSAN3-1

246

Page 247: THESIS HASSAN3-1

247

Page 248: THESIS HASSAN3-1

248

Page 249: THESIS HASSAN3-1

249

Page 250: THESIS HASSAN3-1

250

Chapter 8

Drawings and detailing for additional project In step of create drawing and detailing, general layout are formed using Autocad. After that Tekla is used for modeling structure as 3D (Figure 103) then create elevation drawings and detailings with some changes using Autocad.

Figure 103-3D of factory "Tekla"

Page 251: THESIS HASSAN3-1

251

Figure 104-General Layout

Page 252: THESIS HASSAN3-1

252

Figure 105- General layout 2

Page 253: THESIS HASSAN3-1

253

Figure 106- Portal Frame with Crane

Page 254: THESIS HASSAN3-1

254

Figure 107- Rafter of PF with Crane and Connection

Page 255: THESIS HASSAN3-1

255

Figure 108- Portal Frame with mezzanine

Page 256: THESIS HASSAN3-1

256

Figure 109- Rafter in PF with mezzanine

Page 257: THESIS HASSAN3-1

257

Chapter 9

Conclusion As it was previously stated, the research center building needs a special design due to its specifications and requirements. In this building some large areas found and tall columns could make some problems but by using some innovative solution and computer aid, the structure will match and fulfill architectural vision. Design team must coordinate responsibilities among the architect, building frame engineer, façade engineer, general contractor, steel fabricator, steel erector and façade subcontractor(s). As in some special project, choosing best type for design building help to match economic and safety required due to loads. In this project a roof has special requirement that sun light should enter building, best solution to achieve this is to use space truss with double laminated glass. Design structure as a frame type is better than beam-column type especially in large areas that reduce sections weight and this will reduce cost of building. Using some 3D programs help to maintain time of designing and drawing.

Page 258: THESIS HASSAN3-1

258

References

ECP 205-2001

ECP 201

JAMES C. PARKER, P.E. (2008). Façade Attachments to Steel-Framed Buildings

ALUMCO KSA Sharing Knowledge Series Seminar# 02. Architectural Glass and Glazing

Page 259: THESIS HASSAN3-1

259

Aknowlegment

I wish to express my sicere thanks to [Dr. Amr Shaat], for providing me with all the necessary

facilities for the research and for the continuos encouragement. I am also grateful to [Engineer

Ahmed], in the Department of [Civil Engineering]. I am extremly thankful and indebted to him for

sharing expertise, and sincere and valuable guidance and encouragement extended to me.

I take this opportunity to express gratitude to all of the Department faculty members for their help

and support. I also thank my parents for the unceasin encouragement, support and attention. I am

also grateful to my partner [Heba Ahmed] who supported me throught this venture.

I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lemt

their hand in this venture.