thesis ahmad farid abu bakar.pdf

294
EROSION AND SEDIMENTATION AT PUTRAJAYA WETLAND AHMAD FARID ABU BAKAR FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2009

Upload: vuongdien

Post on 14-Jan-2017

274 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Thesis Ahmad Farid Abu Bakar.pdf

EROSION AND SEDIMENTATION

AT

PUTRAJAYA WETLAND

AHMAD FARID ABU BAKAR

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2009

Page 2: Thesis Ahmad Farid Abu Bakar.pdf

EROSION AND SEDIMENTATION

AT

PUTRAJAYA WETLAND

AHMAD FARID ABU BAKAR

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

SUPERVISORS:

Assoc. Prof. Dr. ISMAIL YUSOFF

Assoc. Prof. Dr. ROSLAN HASHIM

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2009

Page 3: Thesis Ahmad Farid Abu Bakar.pdf

ABSTRACT

Erosion and sedimentation process study was carried out at Putrajaya

wetland area. The sheet and rill erosion was estimated using USLE approach while

the observed bank erosion throughout study area was documented entirely. The

sedimentation process (in term of sediment yield) was estimated and compared

using USLE-SDR approach, TSS rating curve technique (for suspended sediment

yield) and wetland cell reservoir sediment yield (from wetland sedimentation

survey).

The USLE gross erosion and specific erosion value show a relatively high

variability in term of spatial and temporal characteristic together with the effect of

using different grid cell size. Sensitivity analysis was performed in GIS environment

using grid regression analysis extension show that for almost all analysis year, the

LS factor is the most sensitive parameter in comparison to the other factors by

using 20m, 30m and 40m grid cell size. Throughout 2003 to 2004, moderate to

major bank erosion had been observed and documented around Putrajaya wetland

area. Bank scour and mass failure had also been observed respectively.

The catchment TSS yield (suspended sediment yield) using TSS rating

curve show a variability of TSS yield with 2004 value recorded higher average TSS

yields in comparison to 2003. The USLE-SDR catchment sediment yield estimation

using Vanoni (1975) SDR equation show a slightly lower USLE sediment yield in

comparison with USLE sediment yield result using USDA-SCS (1972) SDR

equation. The highest average annual reservoir sediment yield was estimated at

UE1 wetland cell (536 t/ha/yr) while the lowest at UW7 (9.75 t/ha/yr).

Comparative analysis between three catchment sediment yield estimation

method show that the catchment sediment yields estimation using both USLE-SDR

(Vanoni, 1975) and USLE-SDR (USDA-SCS, 1972) approach had overestimate

and underestimate the specific TSS yield and wetland reservoir sediment yield

value showing that USLE-SDR Vanoni (1975) and USDA-SCS (1972) is consider a

fair to poor sediment yield estimator. The linkages between wetland TSS yield,

ii

Page 4: Thesis Ahmad Farid Abu Bakar.pdf

wetland reservoir sediment yield and USLE total gross erosion could be analyzed

in term of sediment delivery ratio (SDR). The increasing (UW, UN, UE and UB

wetland subcatchment area) and reduction (LE wetland subcatchment area) trends

of SDR value toward downstream stations was observed from the result, indicate

that there was an increasing amount of sediment transported (increasing transport

capacity) from upstream to downstream wetland at UW, UN, UE and UB wetland

subcatchment area while declining trend of SDR values in LE wetland

subcatchment area implied the effectiveness of wetland filtration processes within

LE’s wetland cells.

In term of sediment mitigation measure, the management should consider

culvert redesigned using permanent bank reinforced structure or heavy stone to

provide armor protection together with effective culvert enlargement for critical and

major bank erosion inlet. Wetland geotechnical monitoring or wetland slope and

embankment monitoring are also needed. Rehabilitation on wetland storage

capacity is needed by using the siphon dredging technique while replanting and

desilting exercise for wetland cells with dead storage (almost zero storage

capacity).

iii

Page 5: Thesis Ahmad Farid Abu Bakar.pdf

ABSTRAK

Kajian hakisan dan pemendapan sedimen telah dijalankan di kawasan

tanah lembab, Putrajaya. Hakisan lembar telah dianggarkan menggunakan kaedah

USLE manakala hakisan tebing di kawasan kajian telah didokumentasikan. Proses

pemendapan sedimen (dari segi hasilan sedimen) telah dianggarkan dan

dibandingkan dengan 3 kaedah penganggaran hasilan iaitu menggunakan kaedah

USLE-SDR, teknik TSS “rating curve” (luahan sedimen terampai) dan luahan

sedimen tadahan bagi sel tanah lembap (dari survei sedimentasi tanah lembap).

Kadar hakisan keseluruhan dan hakisan spesifik yang dianggarkan

menggunakan USLE menunjukkan kepelbagaian dari segi lokasi dan tempoh

kajian, juga kesan dengan penggunaan saiz sel grid yang berbeza. Analisa

kesensitifan telah dijalankan di dalam sekitaran GIS dengan menggunakan analisa

regresi grid menunjukkan bahawa, bagi keseluruhan tahun kajian, faktor LS

didapati faktor yang paling sensitif dibandingkan faktor-faktor yang lain dengan

menggunakan saiz sel grid 20m, 30m dan 40m. Daripada tahun 2002 hingga 2006,

hakisan tebing dari skala minor hingga major telah diperhatikan dan didokumenkan

bagi keseluruhan kawasan tanah lembap, Putrajaya. Kerukan tebing dan

kegagalan jisim (mass failure) juga telah diperhatikan.

Anggaran hasilan TSS (hasilan sedimen terampai) lembangan dengan

menggunakan “TSS rating curve” menunjukkan kepelbagaian dari segi lokasi dan

tempoh, dengan hasilan TSS pada tahun 2004 adalah paling tinggi berbanding

hasilan pada tahun 2003 dan Januari hingga Mei 2006. Hasilan

sedimentlembangan dengan menggunakan persamaan USLE-SDR yang

dicadangkan oleh Vanoni (1975) adalah lebih rendah berbanding hasil sedimen

yang dianggarkan dengan menggunakan persamaan SDR yang dicadangkan oleh

USDA-SCS (1972). Purata hasilan tahunan sedimen tadahan yang tertinggi telah

dianggarkan di sel UE1 (536 t/ha/yr) manakala yang terendah di UW7 (9.75

t/ha/yr).

iv

Page 6: Thesis Ahmad Farid Abu Bakar.pdf

Analisa perbandingan antara ketiga-tiga kaedah penganggaran hasilan

sedimen lembangan menunjukkan bahawa hasilan sedimen dengan menggunakan

kedua-dua persamaan USLE-SDR (Vanoni, 1975) dan USLE-SDR (USDA-SCS,

1972) telah terlebih anggar dan terkurang anggar hasilan TSS dan hasilan

sedimen tadahan menunjukkan bahawa kaedah penganggaran hasilan sedimen

dengan menggunakan kedua-dua persamaan USLE-SDR (Vanoni, 1975) dan

USLE-SDR (USDA-SCS, 1972) boleh dianggap sebagai kaedah penganggaran

yang sederhana kepada lemah. Perkaitan antara hasilan TSS, hasilan sedimen

tadahan dan keseluruhan hakisan USLE bolah dianalisakan dari segi nisbah

hantaran sedimen (sediment delivery ratio, SDR). Trend peningkatan nilai SDR di

sublembangan UW, UN, UE dan UB dan trend penurunan nilai SDR di

sublembangan LE ke arah hiliran lembagan telah diperhatikan menunjukkan di

sublembangan UW, UN, UE dan UB, terdapat peningkatan amaun sedimen yang

diangkut daripada hulu ke hiliran sublembangan tersebut dan penurunan amaun

sedimen yang diangkut di sublembangan LE.

Dari segi mitigasi sedimen, pihak pengurusan perlu mempertimbangkan

rekabentruk semula perparitan menggunakan struktur sokongan kekal atau batuan

berat bagi menghasilkan perlindungan serta pembesaran perparitan bagi kawasan

yang mengalami hakisan tebing yang utama dan kritikal. Pemantauan geoteknikal

atau pemantauan tebing dan cerun juga diperlukan. Pemulihan kapasiti simpanan

tanah lembab diperlukan menggunakan teknik “siphon dredging” dan aktiviti

pembuangan sediment dan penanaman semula diperlukan bagi kawasan sel tanah

lembap yang dipenuhi sedimen.

v

Page 7: Thesis Ahmad Farid Abu Bakar.pdf

Acknowledgement

First of all, the author would like to express thanks to Allah Rabbul Jalil for

all the strength, ideas and guidance. A very much appreciation and gratitude to my

supervisor, Assoc. Prof. Dr. Ismail Yusoff, Department of Geology, University

Malaya, for his patience, guidance, help and support throughout the duration of this

research (also to his wife, Assoc. Prof. Dr. Yatimah Alias). Gratitude is also

extended to my co-supervisor, Assoc. Prof Dr. Roslan Hashim, Civil Engineering

Department, Faculty of Engineering, University Malaya for his kindly guidance and

support. Special thanks to Mr. Zorkeflee Abu Hassan (REDAC, USM) and Mr.

Omar Al Kouri (UPM) for the guidance and expose to GIS and Remote Sensing

matters.

To all Geology Department staff, especially to Prof. Dr. Azman Abdul Ghani,

Prof. Dr. Wan Hasiah Abdullah, Prof. Dr. John Kuna Raj, Prof. Dr. Lee Chai Peng,

Assoc. Prof. Dr. Samsudin Hj. Taib, Assoc. Prof. Dr. Ng Tham Fatt, Dr. Ros

Fatihah Muhammad, Mr. Khairul Azlan, Mr. Jasmi Hafiz, Mr. Aizad, Mr. Zamri, Mr.

Sahlan, Mr. Yusri, the late arwah Hj. Mokhtar, Mr. Bahaa eldin and other Geology

Department staff for all the helping hands and support throughout this research

undertaken. Special thanks for Prof. Dr. Mohd Jamil Ma’ah and Dr. Abdul Hadi for

all the advices and guidance, to IPPP for the grant provided.

Finally, the author wish to thanks all parties including staff of Perbadanan

Putrajaya (Mr Akashah, Mr. Faizal), Unit Perunding Universiti Malaya (UPUM) (Mrs

Hafiza, Mrs Maznolita, Mrs wan Zuraini and Mrs Haniza), KLCC urusharta

(Putrajaya branch, Mr. Ramzi, Mr. Shaharani, Mr. Fasron), staff of DID Jalan

Ampang Branch, MACRES (Mr. Khairul Anam), Department of Agricultural (DOA)

Malaysia (Soil Management & Conservation division, Mr. Mustafa Kamal) Alam

Sekitar Malaysia (ASMA) (Mr. Aidil, Mr. Anuar, Mr. Wan Affendi), Spatialworks

Sdn. Bhd. (Mr. Nazari, Miss Tsu Fei) and friends (Mr. Japareng, Mr. Lukman, Mr.

Lutfi, Cik Aiza, Mr. Daicus and etc.) and others that are involved directly or

indirectly in making this thesis a success.

vi

Page 8: Thesis Ahmad Farid Abu Bakar.pdf

Dedication

Dedicated to My dearest wife, Juliana Safina

My lovely daughter, Nur Umairah Syahmina My Beloved Abah and Mak

And Family members

vii

Page 9: Thesis Ahmad Farid Abu Bakar.pdf

CONTENTS PAGE

ABSTRAK ii

ABSTRACT iv

ACKNOWLEDGEMENTS vi

DEDICATION vii

LIST OF FIGURES xiv

LIST OF TABLES xviii

LIST OF SYMBOLS AND ABBREVIATIONS xxii

CHAPTER 1: INTRODUCTION

1.1 GENERAL INTRODUCTION 1

1.2 PROBLEM STATEMENT 4

1.3 THE OBJECTIVES 5

1.4 DESCRIPTION OF STUDY AREA

1.4.1 Location

1.4.2 Topography

1.4.3 Stream, River and Catchment Characteristics

1.4.4 Meteorology and Climate

1.4.5 Geology and Soil Formation

1.4.5.1 Geology

1.4.5.1.1 Alluvium

1.4.5.1.2 Kenny Hill Formation

1.4.5.1.3 Hawthornden Schist

1.4.5.1.4 Lineaments and Geological Structure

1.4.5.2 Soil Formation and Classification

1.4.5.2.1 The Munchong Series

1.4.5.2.2 The Serdang Series

1.4.5.2.3 The Prang Series

6

6

6

9

13

15

15

15

17

17

18

18

21

21

22

viii

Page 10: Thesis Ahmad Farid Abu Bakar.pdf

1.5 PUTRAJAYA LAKE AND WETLAND SYSTEM

1.5.1 The Wetlands Component

1.5.2 The Primary lake

22

23

30

1.6 SEDIMENTATION, BASELINE CONDITION AND EXPECTED

PROBLEM

31

1.7 THESIS ORGANIZATION

32

CHAPTER 2: LITERATURE REVIEW AND THEORETICAL BACKGROUND

2.1 SOIL EROSION PROCESS

2.1.1 Energy Factors

2.1.1.1 Rainfall Erosivity

2.1.1.2 The Slope Steepness, Length and Curvature

2.1.2 Resistance Factor (Soil Erodibility)

2.1.3 Protection Factors (Plant Covers)

34

35

35

38

39

41

2.2 SEDIMENTATION PROCESS (SEDIMENT DELIVERY AND

SEDIMENT YIELD)

2.2.1 Sediment Delivery Ratio

2.2.2 Sediment Yield

41

42

45

2.3 EROSION AND SEDIMENTATION MEASUREMENT 46

2.4 EROSION AND SEDIMENTATION MODEL

2.4.1 Empirical Model

2.4.2 Conceptual Model

2.4.3 Physically Based Model

2.4.4 Grid Cell Size Effect to USLE Calculation in GIS

Environment

48

49

49

50

51

2.5 EFFECT OF EROSION AND SEDIMENTATION PROCESS TO

WETLAND FUNCTIONING

53

2.6 EROSION AND SEDIMENTATION STUDIES IN MALAYSIA 53

2.7 SUMMARY 56

ix

Page 11: Thesis Ahmad Farid Abu Bakar.pdf

CHAPTER 3: MATERIALS AND METHOD

3.1 INTRODUCTION 58

3.2 SUMMARY OF RESEARCH METHODOLOGY 58

3.3 METHOD OF QUANTIFICATION AND ESTIMATION ON

WETLAND WATER DISCHARGE (m3/s), TSS

CONCENTRATION (mg/l), TSS LOADING (t/yr) and TSS YIELD

(t/ha/yr)

3.3.1 Water Discharge Quantification

3.3.1.1 Weir Method

3.3.1.2 Bucket Method

3.3.2 Total Suspended Solid Quantification

3.3.3 Generation of TSS Rating Curve and TSS Loading

Estimation

3.3.4 Sediment Yield Estimation from Total Suspended Solid

Data

62

62

62

66

66

67

69

3.4 DETERMINATION OF CATCHMENT EROSION AND

SEDIMENT YIELD (t/ha/yr) USING USLE AND SDR IN GIS

3.4.1 Rainfall-Runoff Erosivity Factor, R, Determination

3.4.2 Soil Erodibility Factor, K, Determination

3.4.3 Slope Length and Steepness Factor, LS, Determination

3.4.4 Land Use and Management Factor, CP, Determination

3.4.5 USLE Soil Loss (Erosion) rate and USLE Catchment

Sediment Yield Result

70

72

74

79

81

81

3.5 METHOD FOR DETERMINATION OF WETLAND RESERVOIR

SEDIMENT YIELD FROM SEDIMENTATION SURVEY

3.5.1 Method for Sedimentation Survey

3.5.1.1 Static Station Sedimentation Survey

3.5.1.2 Moveable Station Sedimentation Survey

3.5.2 Conversion of Sediment Volume Unit (m3) to Mass Unit

(t, tonnes)

3.5.3 Wetland Reservoir Sediment Yield Estimation

83

84

84

84

84

85

x

Page 12: Thesis Ahmad Farid Abu Bakar.pdf

CHAPTER 4: RESULT AND DISCUSSION

4.1 INTRODUCTION 86

4.2 EROSION ESTIMATION USING USLE

4.2.1 Introduction

4.2.2 Soil Erodibility Factor (K Factor) Determination Result

4.2.3 Rainfall-Runoff Erosivity Factor (R Factor) Determination

Result

4.2.4 Slope Length and Steepness (LS Factor) Determination

Result

4.2.5 Land Cover and Management (CP Factor) Determination

Result

4.2.6 Results of Spatial and Temporal USLE Erosion

Calculations for Different Grid Resolution Size

4.2.7 Analysis of USLE Total Gross Erosion and Specific Erosion

at Putrajaya Wetland Catchment Area

4.2.8 Sensitivity Analysis of USLE Factors to USLE Result

86

86

86

93

98

102

104

108

111

4.3 BANK EROSION AT PUTRAJAYA WETLAND AREA

4.3.1 Introduction

4.3.2 Severity and Location of Bank Erosion Within Putrajaya

Wetland Area

4.3.3 Estimation of Bank Erosion Within Putrajaya Wetland Area

113

113

114

118

4.4 WETLAND ANNUAL TSS LOADING AND TSS YIELD

ESTIMATION FROM TSS RATING CURVE

4.4.1 Introduction

4.4.2 Upper West Wetland TSS Rating Curve

4.4.3 Upper North Wetland TSS Rating Curve

4.4.4 Upper East Wetland TSS Rating Curve

4.4.5 Lower East Wetland TSS Rating Curve

4.4.6 Upper Bisa Wetland TSS Rating Curve

4.4.7 Central Wetland TSS Rating Curve

120

120

120

123

125

127

129

129

xi

Page 13: Thesis Ahmad Farid Abu Bakar.pdf

4.4.8 Annual TSS Loading and TSS Yield Estimation Based on

TSS Rating Curve

131

4.5 CATCHMENT SEDIMENT YIELD ESTIMATION FROM USLE-

SDR APPROACH

4.5.1 Introduction

4.5.2 Calculated SDR Value from Vanoni (1975) and USDA-SCS

(1979) Equation

4.5.3 Result of Catchment Sediment Yield Estimation using

USLE-SDR Approach

136

136

137

138

4.6 WETLAND RESERVOIR SEDIMENT YIELD ESTIMATION

FROM SEDIMENTATION SURVEY DATA

4.6.1 Introduction

4.6.2 Spatial and Temporal Variability of Wetland Sediment

Accumulation

4.6.3 Wetland Specific reservoir Sediment Yield

140

140

140

145

4.7 COMPARATIVE ANALYSIS BETWEEN CATCHMENT TSS

YIELD, WETLAND RESERVOIR SEDIMENT YIELD AND USLE-

SDR SEDIMENT YIELD RESULT

4.7.1 Introduction

4.7.2 Comparative Analysis for 2003 and 2004

4.7.3 Linkages Between Wetland Specific TSS Yield, Wetland

Specific Reservoir Sediment Yield and USLE Total Gross

Erosion

148

148

148

152

4.8 PROPOSED SPECIFIC SEDIMENT CONTROL MEASURE

FOR PUTRAJAYA WETLAND AREA

156

CHAPTER 5: CONCLUSION AND RECOMMENDATION 159

REFERENCES 163

xii

Page 14: Thesis Ahmad Farid Abu Bakar.pdf

APPENDICES

APPENDIX 1: METHOD OF APHA 2540-D

APPENDIX 2: PARTICLE SIZE ANALYSIS RESULT & MONTHLY

RAINFALL DATA

APPENDIX 3: WETLAND WATER DISCHARGE (m3/s), TSS

CONCENTRATION (mg/l) AND SEDIMENTATION SURVEY DATA

APPENDIX 4: SATELLITE IMAGES OF PUTRAJAYA AREA FOR

YEAR 2003 (SPOT 4), 2004 (SPOT 5) AND 2006 (SPOT 4)

APPENDIX 5: REGRESSION RESULTS AND ANOVA TABLE OF

SENSITIVITY ANALYSIS (USLE PARAMETERS VERSUS

USLE RESULTS)

xiii

Page 15: Thesis Ahmad Farid Abu Bakar.pdf

LIST OF FIGURES PAGE Figure 1.1 Process and type of erosion and sedimentation in a

define catchment

2

Figure 1.2 Location of Putrajaya Lake and Wetland, Putrajaya, Malaysia

7

Figure 1.3 Topographic elevation at Putrajaya catchment area 8

Figure 1.4 River system within Putrajaya catchment area

10

Figure 1.5 Extent of Putrajaya catchment and subcatchment area

11

Figure 1.6 Mean annual rainfall distribution surrounding Putrajaya area (After NAHRIM, 1999)

14

Figure 1.7 General Pattern of Long Term Monthly Rainfall Distribution (1951-1990) around Putrajaya area.

14

Figure 1.8 Lithology and geological formation around Putrajaya catchment area

16

Figure 1.9 Distribution of soil series association around Putrajaya catchment area

19

Figure 1.10 Putrajaya Lake and wetland system

24

Figure 1.11 Schematic Layout of Longitudinal Profile of the Wetland Cell of UW, UN and UE

26

Figure 1.12 Schematic Layout of Longitudinal Profile of the Wetland Cell of LE, UB and Central Wetland

27

Figure 1.13 Typical wetland cell design at Putrajaya wetland complex

28

Figure 1.14 Panoramic view of selected wetland cell at Putrajaya wetland complex

29

Figure 1.15 Panoramic view of Putrajaya lake area

30

Figure 3.1 Research flow of erosion and sedimentation process study

61

Figure 3.2 Example of 90o V-notch weir

63

Figure 3.3 Simplified sharp-crested rectangular weir, showing the parameters measured for the measurements of water discharge (modified from Chin, 2000)

64

xiv

Page 16: Thesis Ahmad Farid Abu Bakar.pdf

Figure 3.4 Example of constructed wetland weir structure at Putrajaya wetland (photo taken at LE1 wetland cell)

65

Figure 3.5 Typical example of free fall water over the weir crest (picture taken at UE2 wetland cell)

65

Figure 3.6 Flow chart for application of GIS capabilities in USLE sheet erosion and catchment sediment yield assessment

71

Figure 3.7 Location of rainfall station around Putrajaya area

73

Figure 3.8 The location and distribution of soil sampling station around Putrajaya lake and wetland area

76

Figure 3.9 Classification of soil structure adopted for Parameter b evaluation in K factor determination

77

Figure 3.10 Estimated permeability value based on soil texture (Bazzofi, 2006)

78

Figure 3.11 Combine Slope Length-Steepness Factor, LS (Wischmeier & Smith, 1978)

80

Figure 4.1 Triangular plot of particle size results on soil USDA classification system

88

Figure 4.2 Histogram of calculated K factor result for Putrajaya lake and respective wetland subcatchment area

91

Figure 4.3 Soil erodibility factor maps (K factor map) for Putrajaya catchment area in 10m (a), 20m (b), 30m (c) and 40m (d) grid cell size

92

Figure 4.4 Histogram of total annual rainfall recorded within Putrajaya area for year 2003 and 2004

94

Figure 4.5 Histogram of average annual maximum 30 minute rainfall intensity (i30) within Putrajaya area for year 2003 and 2004

95

Figure 4.6 Histogram of calculated rainfall-runoff erosivity factor (R factor) within Putrajaya area for year 2003 and 2004

97

Figure 4.7 Rainfall-runoff erosivity factor (R factor) map for the Putrajaya catchment area for 2003 (a) and 2004 (b)

97

Figure 4.8 Slope Length and Steepness (LS) factor maps using 10m (a), 20m (b), 30m (c) and 40m (d) grid cell sizes for Putrajaya catchment area

99

xv

Page 17: Thesis Ahmad Farid Abu Bakar.pdf

Figure 4.9 Plot of maximum LS factor value versus grid cell size

100

Figure 4.10 Plot of mean LS factor value versus grid cell size

100

Figure 4.11 Plot of Standard deviation of LS factor value versus grid cell size

101

Figure 4.12 Percentage of land use at the Putrajaya catchment area for 2003 and 2004

103

Figure 4.13 CP factor raster grid maps for 2003 (a) and 2004 (b)

103

Figure 4.14 USLE erosion maps of Putrajaya catchment area for 2003 in 10m (a), 20m (b), 30m (c) and 40m (d) grid cell sizes

105

Figure 4.15 USLE erosion maps of Putrajaya catchment area for 2004 in 10m (a), 20m (b), 30m (c) and 40m (d) grid cell sizes

106

Figure 4.16 Variation of Total gross erosion in Putrajaya catchment area with cell size for 2003 and 2004

107

Figure 4.17 Plot of R2 value from grid regression analysis of USLE factors for year 2003, 2004 and 2006 using different grid size

112

Figure 4.18 Location map of severity of bank erosion at Putrajaya Wetland Area

116

Figure 4.19 Plot of TSS rating curve in log-log axis for UW1, UW2, UW3, UW7 and UW8 sampling stations

121-122

Figure 4.20 Plot of TSS rating curve fitted on log-log axis for UN1, UN2, UN4, and UN6 sampling stations

124-125

Figure 4.21 Plot of TSS rating curve fitted on log-log axis for UE1, UE2 and UE3 station

126

Figure 4.22 Plot of TSS rating curve fitted on log-log axis for LE1 and LE2 sampling station

128

Figure 4.23 Plot of TSS rating curve fitted on log-log axis for UB1 and UB2 sampling station

130

Figure 4.24 Plot of TSS rating curve fitted on log-log axis for CW sampling station

131

xvi

Page 18: Thesis Ahmad Farid Abu Bakar.pdf

Figure 4.25 Catchment specific TSS yields (t/ha/yr) for 2003 and 2004

134

Figure 4.26 Sediment accumulations from 1998 to 2001 (2001 sedimentation survey), 2001 to 2002 (2002 sedimentation survey) and 2002 to 2004 (2004 sedimentation survey) in volume (a) and weight (b)

142

Figure 4.27 Wetland annual sedimentation rate (in volume, m3/yr and weight, tonnes/yr) from 1998 to 2004

143

Figure 4.28 Spatial variability of wetland specific reservoir sediment yield for 2001, 2002 and 2004

147

Figure 4.29 Average annual wetland specific reservoir sediment yield for selected wetland cells

147

Figure 4.30 Trends of SDR values for UW subcatchment wetland (a), UN subcatchment wetland (b), UE subcatchment wetland (c), LE subcatchment wetland (d) and UB subcatchment wetland (e)

154

Figure 4.31 Location of Proposed Sediment Mitigation Measure around Putrajaya Wetland Area

158

xvii

Page 19: Thesis Ahmad Farid Abu Bakar.pdf

LIST OF TABLES

PAGE

Table 1.1 Distribution and area with respect to topographic elevation at Putrajaya area

6

Table 1.2 Putrajaya subcatchment area, landowners and their current landuse

12

Table 1.3 Characteristics of soil within study area

20

Table 1.4 Design characteristic of Putrajaya wetland system

25

Table 2.1 Classification of Rainfall Intensity

36

Table 2.2 Soil loss from various slope segments caused by runoff

39

Table 2.3 Erodibility of five common Malaysian soil series

40

Table 2.4 Erosion and sediment transport models (modified from Merritt, 2002)

52

Table 3.1 Summary of parameter considered in erosion and sedimentation process

60

Table 3.2 Parameter and analysis undertaken for the estimation of wetland TSS yield using TSS rating curve method

63

Table 3.3 Correction factor, K [b,T ]

68

Table 3.4 Daily rainfall and i30 rainfall intensity per rainfall event data gathered from rainfall station around Putrajaya area.

74

Table 3.5

Classification of permeability value adopted in K factor determination

77

Table 3.6 CP factor value as given by Roslan and Tew (1996) 82

Table 3.7 Summary of the data source and material, data generation process and the scenario undertaken for land use analysis

82

Table 4.1 Particle size analysis result and USDA soil classification system for the sample collected around Putrajaya catchment area

87

Table 4.2 Calculated soil erodibility factor result for 42 samples collected within study area

90

xviii

Page 20: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.3 Statistic of K factor result calculated for each Putrajaya subcatchment area

91

Table 4.4 Total annual rainfall recorded at selected rainfall station located within Putrajaya area for 2003 and 2004

94

Table 4.5 Average annual maximum 30 minute rainfall intensity (i30) recorded at selected rainfall station located within Putrajaya area for 2003 and 2004

95

Table 4.6 Calculated rainfall-runoff erosivity factor (R factor) for 2003 and 2004 at selected station within Putrajaya catchment area

96

Table 4.7 Statistical characteristic of the LS factor maps for Putrajaya area

100

Table 4.8 Statistics of potential erosion map calculated for 2003 and 2004 using different grid cell size

107

Table 4.9 Result of USLE total gross erosion (t/yr) estimated for selected wetland subcatchment areas in Putrajaya Wetland

109

Table 4.10 Result of USLE specific erosion (t/ha/yr) estimated for selected wetland subcatchment areas in Putrajaya Wetland

110

Table 4.11 Sensitivity analysis for USLE factors to USLE erosion results

112

Table 4.12 Summary of bank erosion at the Putrajaya wetland area

115

Table 4.13 Historical photo of bank erosion for selected wetland cell from year 2003 to 2004

117

Table 4.14 Estimated volumes of bank erosion based measurement of scour length (m), width (m) and depth (m)

119

Table 4.15 Regression coefficients of TSS rating curves fitted for selected sampling stations

122

Table 4.16 Regression coefficients value of TSS rating curves fitted for selected sampling stations

125

Table 4.17 Regression coefficients of rating curves fitted for selected sampling stations at UE subcatchment

127

Table 4.18 Regression coefficients of rating curves fitted for selected sampling stations at LE subcatchment

128

Table 4.19 Regression coefficients of rating curves fitted for selected sampling stations at UB subcatchment

130

xix

Page 21: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.20 Regression coefficients of rating curves fitted for selected sampling stations at CW subcatchment

131

Table 4.21 TSS loading (t/yr) and specific catchment TSS yield (t/ha/yr) for selected sampling stations at Putrajaya wetland

132

Table 4.22 Actual / corrected TSS yields (after multiplication with correction factor, K [b,T])

133

Table 4.23 Calculated SDR value from vanoni (1975) and USDA-SCS (1972) equation

137

Table 4.24 Gross sediment yields determined using Vanoni (1975) SDR equation

139

Table 4.25 Gross sediment yields determined using USDA-SCS (1972) SDR equation

139

Table 4.26 Sediment accumulations (in volume, m3, and weight, tonnes) and annual sedimentation rates for selected Putrajaya wetland cells from 1998 to 2004

141

Table 4.27 Wetland specific reservoir sediment yields for 2001, 2002 and 2004

146

Table 4.28 Comparison between wetland specific TSS yield, wetland specific reservoir sediment yield and USLE-SDR specific sediment yield for 2004 (accumulation of year 2003 and 2004 value)

149

Table 4.29 SDR values for Putrajaya wetland subcatchment areas

153

xx

Page 22: Thesis Ahmad Farid Abu Bakar.pdf

xxi

LIST OF SYMBOLS AND ABBREVIATIONS

A Soil Loss

C Crop and Management Factor

GIS Geographical Information System

ha Hectare

K Soil erodibility

kg Kilogram

l Litre

LS Slope length and steepness factor

mg Miligram

mm Milimetre

i30 30 minute maximum rainfall intensity

OM Organic Matter Content

P Conservation Practise Factor

R Rainfall Erosivity

SDR Sediment Delivery Ratio

Sg. Sungai (River)

t Tonnes

TOC Total Organic Carbon

TSS Total Suspended Solid

USLE Universal Soil Loss Equation

yr Year

Page 23: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.1 General Introduction

Erosion and sedimentation problems are becoming major threats and

hazards for the lifespan of man-made surface water reservoirs as well as for the

natural water bodies. In Malaysia, due to rapid urbanization and agricultural

necessity, land clearing activities and human intervention to natural ecosystem

are unavoidable. These land clearing activities may accelerate erosional

processes and thus introduce water derived sediment to adjacent water bodies

and may affect water quality subsequently. The fact that soil erosion and

sedimentation continue to be an environmental problem of significant

proportions in the country suggests that additional and more definitive

guidelines, and more stringent monitoring and enforcement are required. In

addition, proper mitigation measures need to be in place and maintained from

time to time.

Erosion and sedimentation are linked to each other and embody the

processes of erosion, transportation and deposition mechanism of sediments

(Julien, 1995; Foster et al., 1995). It reflects the circulation of sediment, from

eroded material, transportation along their pathway to depositional processes

downstream. As the erosion and sedimentation are linked to each other, various

factor contribute to such processes need to be considered and understood

mainly to minimize the on-site and off-site effect of erosion and sedimentation

and thus, enhance catchment management effectiveness respectively.

In general, soil erosion is a two-phase process consisting of the

detachment of individual particles from the soil mass and their transport by

erosive agents such as running water and wind. When sufficient energy is no

1

Page 24: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

longer available to transport the particles, deposition occurs (Morgan, 1986).

Because water acts as a transport mechanism of sediment, the hydrological

process (such as water discharge trends) of the particular catchment had to be

identified and understood mainly to determine the extent and characterizations

of sediment deposition. Figure 1.1 shows the process and type of erosion and

sedimentation that may occur in a define catchment.

Figure 1.1: Process and type of erosion and sedimentation in a define catchment.

Source: (http://muextension.missouri.edu/explore/images/g01509art01.jpg)

The effect of erosion can be derived both at on-site as well as off-site

effects (Lal, 1981; Dregne, 1992). At on-site, the implications of soil erosion

extend beyond the removal of valuable topsoil that directly affect the loss of

natural nutrients, the soil quality, structure, stability and texture. The breakdown

of aggregates and the removal of smaller particles or entire layers of soil or

organic matter can weaken the structure and even change the texture. Textural

changes can in turn affect the water-holding capacity of the soil, making it more

2

Page 25: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

susceptible to extreme conditions. Off-site effects of soil erosion may cause a

reduction in soil productivity (NSE-SPRPC, 1981) and in term of sedimentation

problems, disruption of water supply and the damage of freshwater resources

may be significant (Murtedza and Chuan, 1993).

Sediments which reach streams or watercourses can accelerate bank

erosion, clog drainage ditches and stream channels, reduce the depth and

capacity of the channels and silt reservoirs. This may cause hydrological

deterioration and can lead to severe flooding. Sedimentation of lakes and

reservoirs reduces their capacity, value, and life expectancy (Frederick et al.,

1991). Furthermore, pesticides and fertilizers, frequently transported along with

the eroding soil can contaminate or pollute downstream water sources and

recreational areas and reduce downstream water quality (Cook et al., 1994).

The prevention of soil erosion, which means reducing the rate of soil

erosion and sediment yield to approximately that which would occur under

natural conditions, relies on selecting appropriate strategies for soil

conservation (Morgan, 1979). Although it is impossible to stop soil erosion

completely under natural conditions, there is a great need to control erosion for

proper land and water use planning. This requires awareness of sediment yield

and foreseeing changes such as in land use. Controlling soil erosion keeps

streams, wetlands, and lakes from filling rapidly with sediment. Reservoir

capacities are thus maintained for recreation, flood control, and irrigation.

3

Page 26: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.2 Problem Statement

Sedimentation at Putrajaya wetland is become more problematic through

out the years. According to sediment monitoring reports (Ismail et al., 2003,

2004, 2005 and 2006) the effects of sedimentation can be clearly observed at

effected wetland cells as loss of wetland cell storage volume with high recorded

total suspended sediment loading during rainfall events. Since Putrajaya is now

still under development, there are significant changes of land use and land

being cleared for construction purposes and thus, may contribute to soil loss

and produce water derived sediments particularly during monsoonal rainfall

(high rainfall period).

The problem occurs when the sediments enter the wetland can

eventually destroy habitat and fill up water bodies, thus minimizing the

performance and life span (Whigham et al., 1988) of the wetland. The most

severe impact occurs when wetlands get filled up with so much sediment that

they lost storage capacity and fail to perform most wetland designated functions

(Luo et al., 1997).

Therefore, the measurement of potential catchment erosional rates and

sediment yields as well as wetland sedimentation rates are needed to

understand the relationship between such parameters affecting the erosion and

sedimentation processes spatially and temporally. The appropriate control

measures to minimize sediment yield to the wetland could then be proposed

accordingly to minimize the high cost of dredging and desilting activities.

4

Page 27: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.3 The Objectives

The specific objectives of this research project are:

• To identify, investigate and estimate potential high risk erosional area

and the amount of soil loss within the Putrajaya catchment area.

• To estimate the TSS yield for selected wetland cells at Putrajaya wetland

area using the TSS rating curve method and spatially and temporally

analyze the variability of the estimated the TSS yield.

• To spatially and temporally analyze the catchment sediment yield

estimated using the USLE and SDR approach.

• To spatially and temporally analyze wetland reservoir sediment yield

generated from the sedimentation survey data.

• To compare, evaluate and discuss sediment yield values calculated from

the total suspended sediment data, USLE modeling and sedimentation

survey data.

• To analyze the linkages between the total gross erosion calculated from

USLE, TSS yield derived from the TSS rating curve and the wetland

reservoir sediment yield gathered from wetland sedimentation survey in

terms of the SDR value.

• To propose suitable and appropriate mitigation measures to control

erosion and sedimentation at Putrajaya wetland.

5

Page 28: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

6

1.4 Description of Study Area

1.4.1 Location

The Putrajaya Wetland and lake system is located between latitudes 2

53’ 30” N to 2 58” 30”N and longitudes 101 40’ 30”E to 101 43’ 30”E. Situated

approximately 35 km south of Kuala Lumpur, the complex is separated into two

components of distinct water bodies – the Wetlands and the Primary Lake

(Figure 1.2). These two water-bodies were artificially constructed and are

closely linked; however they are different in their geographical or

geomorphological locations, their hydrological functions and they are governed

by distinctly different water-sediment transport systems.

1.4.2 Topography

Generally, 95% of the study area is below 80m above sea level.

However, there were several undulating hilly terrains which above 100m in

height surrounding the Putrajaya area. Table 1.1 and Figure 1.3 indicate the

distribution and area with respect to topographic elevations at Putrajaya area.

Generally, the existing terrain is undulating with levels that vary from 80m to

152m. Steep upland is found at to the upper northwest, east and hills in

northeast, west and central areas.

Table 1.1: Distribution and area with respect to topographic elevation at

Putrajaya area. Topographic classification Area (ha) Percentage Area with elevation < 20m 3432 39.0 Area with elevation >20m and <80m 4928 56.0 Area with elevation >80m and <100m 352 4.0 Area with elevation >100m 88 1.0 Total 8,800 100.0 Source: (UPM,1995)

Page 29: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

7

Figure 1.2: Location of Putrajaya Lake and Wetland, Putrajaya, Malaysia.

Page 30: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Figure 1.3: Topographic elevation at Putrajaya catchment area.

8

Page 31: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.4.3 Stream, River and Catchment Characteristics

A stream is any body of flowing water confined within a channel,

regardless of size whereas the region from which a stream draws water is

define as its drainage basin (Montgomery, 1989). The drainage system was

formed by Sg. Chuau (14.8 km length) and its tributaries form the main drainage

system for a catchment of about 53.7 km2 in the study area with its complex

topographic and geological features. The water from Sg. Chuau flows from

north to south across the Putrajaya area. Sg. Bisa, Sg. kuyoh and Sg. Limau

Manis are the main tributaries of Sg. Chuau. Figure 1.4 shows the river

network around the Putrajaya area.

According to Strahler (1957) river classification, Sg. Chuau is classified

as a 4th order river while Sg. Bisa and Sg. Limau Manis are classified as 3rd

order river systems. It means that Sg. Chuau is a confluence of two 3rd order

rivers which are the Sg. Bisa and Sg. Limau Manis. Sg. Chuau is then joined to

Sg. Langat at the southern in the outer part of study area. The total catchment

area of Putrajaya is 53.7 km2, extending about 12 kilometres from north to south

and about 4.5km from east to west. The catchment is then divided into the

Upper North (UN), Upper West (UW), Upper East (UE), Lower East (LE), Upper

Bisa (UB), Central Wetland (CW) and Lake sub-catchments respectively.

Figure 1.5 show the extent of the Putrajaya catchment and subcatchment areas

while Table 1.2 show the Putrajaya sub-catchment area, landowners and their

current land use.

9

Page 32: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Figure 1.4: River system within Putrajaya catchment area.

10

Page 33: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

UW

UN

UE

LE

UB

CW

Figure 1.5: Extent of Putrajaya catchment and subcatchment area.

(Note: CW = Central Wetland, UW = Upper West, UN = Upper North, UE = Upper East, LE = Lower East and UB = Upper Bisa)

11

Page 34: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Table 1.2: Putrajaya subcatchment area, landowners and their current landuse.

Sub-catchment Area, km2 % of Area Landowners Current Landuse

Upper North (UN) River catchment: Sg. Chuau

12.4 23.1 UPM Mardi PPJ IOI

Agriculture, Institutional, Residential, Parks, Golf course, Commercial

Upper West (UW) River catchment: Sg. Kuyoh

6.2 11.5 Mardi, PPJ, TNB

Agriculture, Power Station, Parks,

Upper East (UE)

4.2 7.8 PPJ, Uniten, West Country

Parks, Government, Institutional, Commercial, Golf course

Lower East (LE)

1.7 3.2 PPJ Residential, Government

Central River catchment: Sg. Chuau

7.1 13.2 PPJ Residential, Parks

Upper Bisa (UB) River catchment: Sg. Bisa

5.9 11 PPJ Parks, Government, Commercial

Lower Sg. Chuau river catchment

14.7 27.4 PPJ, Cyberjaya

Residential, Commercial, Government

Total Sg. Chuau 52.2 97.2 Limau Manis 1.5 2.8 PPJ Residential,

Government Total Lake 53.7 100

Source: (NAHRIM, 1999)

12

Page 35: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.4.4 Metereology and Climate

The climate of the study area is tropical with relatively high temperature and

rainfall and governed by the moist monsoonal equatorial air-streams equatorial

(Af type) according to the Koppen-Geiger system of climate classification

(Strahler, 1960). The average temperature recorded was 27°C with an average

2500mm of rainfall. It has no distinct dry season and consists of two wetter

periods followed by two less wet ones (Wong, 1966). Four distinct monsoonal

“seasons” can be discerned;

1. Northeast monsoon (December to March)

2. Inter-monsoon (April to May)

3. Southwest monsoon (June to October)

4. Inter-monsoon (October to November)

Storms and high rainfall are always found during the inter-monsoon and

northeast-monsoon while relatively dry spells happen primarily during the

southwest monsoon. However, due to the “Sumatra phenomenon”, several rain-

storms can occur during the early part of the day during the southwest

monsoon. The average humidity is relatively high at about 70% during the day

and 90% during the night time. The average wind velocity recorded was below

2 m/s. Figure 1.6 shows mean annual rainfall distribution through out study

area while Figure 1.7 shows general pattern of long term monthly rainfall

distribution.

13

Page 36: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Figure 1.6: Mean annual rainfall distribution surrounding Putrajaya area. Source: (NAHRIM, 1999)

Mean Monthly Rainfall

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

mm

Prang Besar (1981-2006)

Galloway

Ldg West CountryStor JPS Kajang (1975-1990)

Ldg Sedgeley (1930-2000)

Figure 1.7: General pattern of long term monthly rainfall distribution around Putrajaya area.

14

Page 37: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

15

1.4.5 Geology and Soil Formation 1.4.5.1 Geology

There are three geological formations that can be found in Putrajaya

catchment area. Figure 1.8 shows the general geology of the area. The

Quaternary river alluvium named the Simpang Formation is the youngest

deposit and it overlies the older Carboniferous-Permian Kenny Hill Formation

and the Silurian Hawthornden Schist in study area.

1.4.5.1.1 Alluvium

The alluvium is found in the flat and low-lying area in the central and

southern part of the catchment. The Simpang Formation of sand and gravel

layer is the target aquifer of the present study. This river alluvium, Quaternary

deposits consist of the uncemented layers of fine gravel, sand, silt and peat that

overlie the metasedimentary bedrock (UPM, 1995). The thickness of this

formation varies from 3 to 12m regionally.

Generally, the alluvium of the Sg. Chuau catchment area is thicker than

that the Bisa catchment area, whereas the drilling bits penetrate almost 9 m

without reaching any bedrock, while at the Bisa catchment area, the maximum

penetration is only 5m respectively. Sand and gravel layers are thicker closer to

the river, particularly along the flood plains and near the lower reaches of Sg.

Chuau.

Page 38: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Figure 1.8: Lithology and geological formation around Putrajaya catchment area.

16

Page 39: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.4.5.1.2 Kenny Hill Formation

The Carboniferous to Permian Kenny Hill Formation (Lee et al., 2004) is

found in the west and northwest of Putrajaya area and consists of a

monotonous sequence of interbedded phyllitic shale, mudstone and thick -

bedded fine to medium grained sandstone (Lee et al., 2004) that has undergone

some degree of regional metamorphism. This formation can be identified from

the layers of clastic meta-sedimentary rocks, meta-argilite and meta-arenite.

The fine grained rocks had been metamorphosed to phyllite and schist (Choy,

1973).

Generally, the layers of meta-arenite are thicker than meta-argilite. The

thickness of meta-arenite is more than 0.5m and less than 10cm for meta-

argilite. The general strike of the bedding for the meta-sedimentary rock is

northeast-southwest with dip of 30°-50° and parallel with the lineaments in study

area (Zaiton and Tjia, 1984). Tjia (1980) suggested that recumbent folds in

rocks of Kenny Hill Formation indicate a sense of tectonic transport to the west.

Choy (1973) and Tan and Yeap (1977) proposed that the probable paleo-

environment deposition site for Kenny Hill formation is at the outer portion of

delta, probably on the upper portion of submarine slope.

1.4.5.1.3 Hawthornden Schist

The Ordovician - Lower Silurian Hawthornden Schist (Gobbett, 1965)

occupies about 70% of the area and is the oldest rock unit outcropping in the

study area. The formation is also known as the Kuala Lumpur Schist and can be

found in the east and northeast of Putrajaya. The lower boundary of the

Hawthornden Schist is gradational with Dinding schist while the upper boundary

17

Page 40: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

18

is conformable with the Kuala Lumpur Limestone (Lee et al., 2004). This

formation is made up of low grade metamorphosed rocks (Hamzah et al., 1986)

consisting of moderate to fine-grained quartz-mica-schist, quartz schist,

graphitic schist and phyllite. The soil formed by weathering of this unit is more

than 20m in thickness.

1.4.5.1.4 Lineaments and Geological Structure

A study published by the Geological Survey of Malaysia in 1994 show

that the rocks in and around the Putrajaya catchment are regionally folded

along a NE-SW axis resulting in the development of broad anticlines and

synclines. There are three sets of lineaments (major fractures and joints)

trending NNE-SSW, NW-SE and NE-SW have been recognised in study area.

1.4.5.2 Soil Formation and Classification

The climate has affected the distribution of soil formation greatly in the

state of Selangor (Wong, 1966) and Malaysia. The effect of high temperature,

intense rainfall and high humidity throughout the year has resulted in intense

weathering of the rocks. Nevertheless, the parent rock material has also strong

influence on the composition of the soil. In the study area, the soils were

classified as Munchong, Serdang and Prang series respectively. Figure 1.9

show the distribution of soils in the Putrajaya area while Table 1.3 summarized

the characteristic of soils found in study area.

Page 41: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Figure 1.9: Distribution of soil series association around Putrajaya catchment area.

19

Page 42: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

20

Table 1.3: Characteristics of soil series within study area.

Characteristic Soil series

Soil Profile Photo Colour Texture Structure Parent Material

Munchong Series

Yellowish brown to strong brown

Fine sandy clay to heavy clay texture

Granular to fine subangular blocky structures

quartz-mica schists intermixed with phyllites and quartz vein

Serdang Series

Dark greyish brown

Fine sandy clay to fine sandy clay loam

moderately fine subangular blocky to medium crumb

quartzite, sandstone or conglomerate

Prang Series

Dark brown to dark red

clay loam to clay with clay content often over 65%

weak to medium weak to fine subangular blocky and consistence very friable

Schist

Source: (Jabatan Pertanian Malaysia, 1993)

Page 43: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.4.5.2.1 The Munchong Series

The Munchong Series is most likely found in areas overlying

metamorphosed sediments such as quartz-mica schists intermixed with

phyllites and quartz vein. They also have been observed on steeper terrain over

the contact between the underlying schist and intrusive granite (Wong, 1966).

The soil can be recognized by its fine sandy clay to heavy clay texture, granular

to fine subangular blocky structures and yellowish brown to strong brown

colour.

The Munchong Series typically occurs on undulating, rolling to hilly

terrain at elevations of less than 200 m. The soil drainages are generally well to

excessively drained with a rapid permeability (Param, 2000). The Munchong

Series is classified as a member of the very fine, kaolinitic, isohyperthermic,

red-yellow family of Tipik Tempalemoks according to the Malaysian Soil

Taxonomy-Second Approximation, (Param, 1998) and as Haplic Hapludox (Soil

Survey Staff, 1998).

1.4.5.2.2 The Serdang Series

The Serdang Series is characterized by the presence of quartz gravels

and angular pebbles in the subsoil with the dark greyish brown fine sandy clay

to fine sandy clay. It is loamy in texture with a moderately fine subangular

blocky to medium crumb structure and was classified as a member of the fine

loamy, siliceous, isohyperthermic, red-yellow family of Tipik Lutualemkuts

according to the Malaysian Soil Taxonomy-Second Approximation (Param,

1998) and Typic Kandiudults (Soil Survey Staff, 1998).

21

Page 44: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

The Serdang Series is developed on undulating hilly terrain over mixed

sedimentary rocks such as quartzite, sandstone or conglomerate parent

material. In terms of drainage and permeability, the soil is well drained to over

100 cm depth with good permeability.

1.4.5.2.3 The Prang Series

The Prang Series is developed over amphibolite and schist parent

material and is typically dark brown to dark red in colour. Textures are clay loam

to clay with clay content often over 65%. Structures are weak to medium weak

to fine subangular blocky and consistence is very friable (Param, 2000). The

Prang Series occur on undulating to rolling terrain with excessive drainage

features and good permeability.

The Series is classified as a member of very fine, oxidic,

isohyperthermic, red family of Tipik Akrolemoks according to the Malaysian Soil

Taxonomy-Second Approximation, (Param, 1998) and Typic Hapludox (Soil

Survey Staff, 1998) as the soils have a deep oxic horizon, heavy clay textures,

weak structures and a low (<1.5 cmol (+) kg-1 ) clay cation retention capacity.

1.5 Putrajaya Lake and Wetland System

The Putrajaya Lake and Wetlands complex is the main and biggest

component of Putrajaya, the new Malaysian Government Administrative Centre

and the first constructed wetlands in Malaysia. The Wetland Park is managed

by Putrajaya Corporation, and was opened to the public in October 1999. These

wetlands are believed to be the world’s largest fully constructed freshwater

22

Page 45: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

23

wetlands using cutting edge technology and have been designed to enhance

the water quality and play a role in wetland education and eco tourism in the

country.

The Putrajaya man-made lake and wetland is formed by constructing

wetland cells following the terrain of Sg. Chuau and Sg. Bisa with a dam at

downstream to create the impoundment. The overall water body comprises of

multi-celled wetlands and the primary lake. The multi-celled wetland comprises

of the Upper West, Upper North, Upper East, Lower East, Upper Bisa and

Central wetlands. The Putrajaya Lake is the water body the from Central

wetland weir to the Putrajaya dam as shown in Figure 1.10.

1.5.1 The Wetlands Component

The wetlands component is a network of cellular and segmented water-

bodies. The network comprises of five wetland arms; these are the Upper West

arm (UW), the Upper North arm (UN), the Upper East arm (UE), the Lower East

arm (LE) and the Upper Bisa wetland arm (UB). They are mainly located in the

northern upstream region of Putrajaya (with the exception of UB) and are

directly connected at their upstream end to the natural streams and rivers that

flow into the Putrajaya district. These wetlands receive water and sediment

mainly from the natural streams and rivers, the wetlands drainage network and

rainfall; however, slope incursions of water and sediment, especially near areas

undergoing active construction work, are known to occur during periods of

heavy rainfall (stormwater flows).

Page 46: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Putrajaya Dam

Central Wetland Weir

Figure 1.10: Putrajaya Lake and wetland system.

(Note: CW = Central Wetland, UW = Upper West, UN = Upper North, UE = Upper East, LE = Lower East and UB = Upper Bisa)

24

Page 47: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

The Putrajaya wetland had been constructed with the primary objective

of catchment runoff treatments before it drains into the Putrajaya Lake to ensure

the lake’s water quality meets the standard required for body contact recreation.

Generally, the Putrajaya wetland had been designed using multi-cell and multi-

stage approach for better hydraulic performance and retention of pollutant that

involves a total area of 197 hectares and 12.3 million wetland plants

strategically located to act as buffer for the Putrajaya lake. Figure 1.11 and

Figure 1.12 shows the schematic layout of the longitudinal profiles of the

wetland cells respectively while Table 1.4 show the design characteristics of the

Putrajaya wetland system.

Table 1.4: Design characteristics of Putrajaya wetland system.

Wetland System Upper West

Upper North

Upper East

Lower East

Upper Bisa

Central Wetland

Catchment Area (km2)

5.53 11.54 3.34 1.73 4.03 24.7

Wetland Area (ha) 38.5 54.1 15.8 14.3 23.6 50.9

Normal Pool Area (ha)

27.0 38.3 10.8 9.5 20.6 48.3

Normal Pool Volume (ML)

230 310 130 150 430 1200

Design Inflow Rate (ML/d)

18.8 37.6 11.4 5.9 13.7 79.5

Mean Residence Time (d)

12.2 8.2 11.4 25.4 31.4 15.1

Hydraulic Loading Rate (cm/d)

7.3 11.1 8.9 6.2 6.7 15.1

Source: (Perbadanan Putrajaya and Putrajaya Holdings Sdn Bhd, 1999)

25

Page 48: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Figure 1.11: Schematic Layout of Longitudinal Profile of the Wetland Cell of UW, UN and UE.

Source: (Perbadanan Putrajaya and Putrajaya Holdings Sdn Bhd, 1999)

26

Page 49: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

Figure 1.12: Schematic Layout of Longitudinal Profile of the Wetland Cell

of LE, UB and Central Wetland Source: (Perbadanan Putrajaya and Putrajaya Holdings Sdn Bhd, 1999)

27

Page 50: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

28

Each wetland arm is segmented into small wetland cells along the

downstream direction. These cells are connected to one another by drains with

overflow weirs. The cells were designed to operate as water-retention and

water-filtration ponds, filtering and improving the quality of water that flows

through them and downstream into the primary lake. The typical wetland design

is shown in Figure 1.13 while Figure 1.14 shows the panoramic view of

selected wetland cells at the Putrajaya wetland complex.

Water Flow

Figure 1.13: Typical wetland cell design at Putrajaya wetland complex. Source: (Perbadanan Putrajaya and Putrajaya Holdings Sdn Bhd, 1999)

Page 51: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

(a) (b)

(c) (d)

29 Figure 1.14: Panoramic view of UN2 (a), UW2 (b), LE1 (c) and UB1 (d) wetland cell at the Putrajaya wetland

complex.

Page 52: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.5.2 The Primary Lake

The lake is an open water-body complex designed to become the

aesthetic centre of Putrajaya. This open lake borders and is in contact with the

city offices and residential areas. Like other open lake complexes, the primary

lake is a recipient of inputs of water and sediment from fluvial (& drains),

colluvial (lake banks flows), organic matter, biogenic silica, lake bank erosion

and rain and airborne dust. The catchment-derived clastic materials which

enter the lake via the wetlands, rivers and drains are expected to be the main

contributors of clastic inputs. By design, two water-sediment delivery systems

becomes the main transportation route of catchment-derived water and

sediment into the Lake – the Wetlands system and the Putrajaya Drainage

system. Figure 1.15 shows the panoramic view of Putrajaya lake area.

(b) (a) Figure 1.15: Panoramic view of Putrajaya lake area nearby Perdana bridge

(a) and view of Putrajaya Main Dam and Putrajaya Convention Centre (b)

30

Page 53: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.6 Sedimentation, Baseline Conditions and Expected Problems

The natural rate of erosion can be accelerated by any human activity that

increases the rate of water movement or decreases the physical stability of

stream beds and shorelines. Obstructions placed in streams-boat docks, piers,

and dams-speed up water flowing around them and increase the energy that

can erode the stream bed or bank. Removing trees, shrubs, and rocks from

stream banks and shorelines and tilling fields or gardens close to the water's

edge can also increase the risk of erosion.

The potential for sedimentation to degrade wetlands is great and the

most obvious research need is to evaluate land-use practices that reduce

surface runoff and erosion of valuable topsoil. It is very important to identify and

map the locations of soil loss and sediment sources around the wetland and

lake, to choose an effective solution for the problems.

The soil erosion rate in the Putrajaya area is dependent on various

factors such as soil cover, slope gradient and etc. The Environmetal Impact

Assessment report written by a team from University Pertanian Malaysia (UPM),

had estimated that the erosional rate around the Putrajaya catchment, during

the construction phase without any treatment and mitigation measures can be

as high as 2476 t/ha/year while the erosional rate for construction activity with

good measures ranges between 13 to 77 t/ha/year (UPM, 1995).

31

Page 54: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

1.7 Thesis Organization

The work presented in this thesis consists of Five (5) chapters. Chapter 1

introduces on general information about soil erosion and sedimentation, its on-

site and off-site problems and the important of research in this problem

accordingly. Objectives of this study and the description of study area are also

part of this chapter.

Chapter 2 reviews the literature regarding erosion and sedimentation

process, their measurement and estimation procedures. Background

information about predicting soil erosion and sediment yield, using GIS as a

platform for soil erosion and sediment yield prediction and review on other

models for soil erosion and sediment yield analysis is discussed.

Chapter 3 explains the methodology of research that describes how the

methodology of field sampling and laboratory analyse for determination of

Universal Soil Loss Equation (USLE) parameters and catchment sediment yield

(t/ha/yr), water discharge (m3/s), TSS concentration (mg/l) and TSS yield

(t/ha/yr) estimation and sedimentation survey and reservoir sediment yield

(t/ha/yr) undertaken. The methodology on GIS analysis for soil erosion and

sediment yield using USLE is also described.

Chapter 4 present results and discussion on sheet erosion estimation

using USLE and bank erosion documentation observed within the Putrajaya

wetland area. The results of spatial and temporal TSS yield (suspended

sediment yield) using the TSS rating curve method, the results on wetland

sedimentation rates and wetland reservoir sediment yields estimated from

32

Page 55: Thesis Ahmad Farid Abu Bakar.pdf

Introduction

33

wetland sedimentation survey data and catchment sediment yield estimations

using USLE and sediment delivery ratio (SDR) method will be discussed and

compared accordingly. Finally, the comparison and linkages for the results

gathered from the analyse above will be presented. Based on the findings,

applicable and suitable sediment mitigation measures are proposed.

Chapter 5 concludes on analyse and interpretation of data undertaken

and further recommendations on mitigation measures.

Page 56: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

2.1 Soil Erosion Process

Erosion is a natural process by which soil and rock material is loosened

and removed. Natural erosion occurs primarily on a geologic time scale, but

when man’s activities alter the landscape, the erosion process can be greatly

accelerated and these increases are critical environmental problems in many

parts of the world (Walling, 1997). Accelerated soil erosion is either seen as the

result of logging activities, the introduction of rubber plantations, tin mining

activities or deforestation associated with land conversion for agricultural,

industrial or urbanization purposes (Brooks et al., 1993; Wan Ruslan Ismail,

1996).

Nevertheless, water erosion can be a consequence of degradation of the

soil structure, especially the functional attributes of soil pores to transmit and

retain water, and to facilitate root growth. Climate, soil and topographic

characteristics determine runoff and erosion potential from agricultural and

disturbed lands. The main factor causing soil erosion can be divided into three

groups;

• Energy factors: rainfall erosivity, runoff volume, slope steepness, slope length.

• Protection factors: population density, plant cover, and land management.

• Resistance factors: soil erodibility, infiltration capacity and soil management.

34

Page 57: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

2.1.1 Energy Factors

The energy available for erosion may form from potential and kinetic

energy. When a drop of rain falls on the soil surface, its momentum (potential

energy) is converted into kinetic energy (KE, the energy of motion) that is

related to the mass and the velocity (v) of the eroding agent (Morgan, 1986).

2.1.1.1 Rainfall Erosivity

The characteristics of rainfall intensity, duration and total rainfall should

be considered to facilitate the erosivity factors due to rainfall. Furthermore, the

size, velocity and shape of the rain drop and the kinetic energy of the rain may

have a very important influence on erosion. Morgan (1986) presumed that the

most suitable expression of the erosivity of rainfall as an index based on the

kinetic energy of the rain which is a function of its intensity and duration, the

mass, diameter and velocity of the raindrops.

The strike of rain drop on top of the soil surface supply the energy for the

soil detachment in form of kinetic energy (KE). Data from the United States

show that rainfall energy alone is not a good indicator of erosive potential

(Wischemier and Smith, 1978). Thus, both intensity and duration must be taken

into consideration to analyze the effect of erosion by rainfall. The rainfall

intensity, duration and total rainfall then contribute on the resultant runoff.

35

Page 58: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

Basically, Rainfall intensity, I, is expressed as mm per minute, can be obtained

from the formula:

I = A/N ….. (2.1) (Morgan, 1974)

Where,

I = intensity of rainfall

A = total depth of rainfall (mm)

N = time of accumulation of above rainfall depth (minute or hour)

Roslan (1995) classified the rainfall intensity as shown in Table 2.1.

Table 2.1: Classification of Rainfall Intensity.

Rainfall Intensity (cm/h) Remarks

< 0.65 Low

0.65 - 1.3 Medium

1.3 - 5.0 High

> 5.0 Severe

Source: (Roslan, 1995)

The proportion of falling rainwater drops down in variable diameter size

ranging from 1 to 4 mm provide the kinetic energy for soil detachment and

transportation of soil particles. Morgan (1974) found that the raindrop diameters

vary from slightly over 1 mm for a rainfall intensity of 127 mm per hour to

approximately 3.25 mm for a rainfall intensity of 212 mm per hour. This

exponential relationship was also found by Laws and Parsons (1949) in

temperate regions. However, Hudson (1965) has shown that in tropical areas,

median drop-size increases up to a maximum intensity of 100 mm per hour, and

after that period decreases with increasing intensities.

36

Page 59: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

The erosivity index proposed by Hudson (1965) is found to be more

efficient than that used by Wischemier and Smith (1978) in describing the

rainfall erosivity in tropical regions. Hudson (1965) found that an intensity value

of 25 cm per hour is the critical value necessary to initiate soil erosion. The

relationship is as follows;

EV = ΣEK > 25 ….. (2.2) (Hudson, 1965)

The equation above describe that the erosivity value (EV in

Joules/meter2) of an individual rain event is the sum of kinetic energy (EK in

Joules/meter2) of all rain falling at intensities (I) equal or greater than 25 cm per

hour. Morgan (1974) was then applied the daily rainfall data for computing daily

Hudson’s erosivity index to produced total annual erosivity. The following

equation shows the relationship between annual erosivity annual precipitation

as proposed by Morgan (1974) for Malaysian condition.

Eva = 28P-8838.15 ….. (2.3) (Morgan, 1974)

Where,

Eva = annual erosivity (J/m2)

P = annual precipitation (mm)

According to FRIM (1999), the rainfall erosivity factor, R (t.m/ha.hr) could be

estimated using expression below:

R = Ei30 / 170.2 ….. (2.4) (FRIM, 1999)

Where,

E = 9.28P-8838.15

P = Annual rainfall (mm)

i30 = Maximum 30 minute rainfall intensity (mm/hr)

37

Page 60: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

2.1.1.2 Slope Steepness, Length and Curvature

Erosion is expected to increase with increases in slope steepness and

slope length as a result of respective increases in velocity and volume of

surface runoff (Morgan, 1986). There make the water a better transporting

agent. The slope steepness is usually expressed in percent or degree.

Wischemier and Smith (1958) show that the erosion varies with the percent of

slope steepness according to the equation:

Xc = 0.65S1.49 ….. (2.5) ( Wischemier and Smith, 1958)

Where,

Xc = the coded total soil loss

S = Slope steepness in percent

The slope length is defined as the distance from the point of origin of

overland flow to the point where either the slope decreases (deposition begin)

or enters a defined channel (Wischemier and Smith, 1978). The data from the

United States Soil Conservation Services show that the average soil loss per

unit area is proportional to the power of slope length. The accumulation of water

in the downslope direction with higher velocity results in more soil loss from the

lower parts than the upper parts of a slope. Table 2.2 show the soil loss from

various slope segments caused by runoff (Wischemier and Smith, 1958).

In term of slope curvature, sheet erosion is usually more severe on a

convex slope than on a concave slope. A laboratory study by Rieke and

Nearing (2005) found that the slope shape had significant impact on rill

patterns, sediment yield and runoff production. The uniform and convex slope

has higher sediment yields at the toe slope compared to the concave slope

38

Page 61: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

indicating higher erosion for uniform and convex slopes over concave slopes

respectively.

Table 2.2: Soil loss from various slope segments caused by runoff

Segment Length of

Slope (m)

Relative soil loss per unit

area (tonnes)

Average soil loss for the

whole slope (tonnes)

0-23 0.91 0.91

23-46 1.65 1.28

46-69 2.13 1.56

69-92 2.52 1.80

Source: (Wischemier and Smith, 1958)

2.1.2 Resistance Factors (Soil Erodibility)

Soil erodibility defines the resistance of the soil to both detachment and

transport. Generally, the erodibility of soil varies with soil texture, aggregate

stability, shear strength, infiltration capacity, organic matter and chemical

content (Morgan, 1986). In terms of texture, the soil with large particles is

resistant to erosion due to greater force required for entrainment whereas fine

particles are resistant because of their cohesiveness but they are easily

transported. Soil with high silt content is the most erodible (Morgan, 1986).

Richter and Negendank (1977) found that soils with 40 to 60 percent of silt

content are the most erodible (soil with low clay and sand content).

The infiltration capacity of soil has also major influenced on soil erosion.

Typically, soil with low infiltration capacity is more erodible than the soil with

high infiltration. This is because the low infiltration capacity of soil tends to

initiate runoff compared to soils with high infiltration capacity. The infiltration

39

Page 62: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

capacity of soil is influenced by pore size, pore stability and the form of soil

profile (Morgan, 1986).

In term of aggregates stability, stable soil aggregates are more resistant

to detachment. The stability of aggregates is generally influenced by the organic

and chemical constituents of the soil. Soil with less than 3.5 % of organic matter

content can be considered erodible (Evans, 1980) while Voroney et al. (1981)

suggested that soil erodibility decreases linearly with increasing of organic

matter content. This suggestion however, is commonly untrue for peat soils as

they are highly erodible by water. (Morgan, 1986)

The erodibility of Malaysian soils varies considerably. Table 2.3 shows

the erodibility of five common Malaysian soil series (Prang soil not included due

to unavailable record found in literature with regards to erodibility for Prang soil).

Table 2.3: Erodibility of five common Malaysian soil series

Soil Series Texture % organic

carbon % aggregate > 0.25 mm

Soil Loss (t/ha)

Munchong Clay 1.87 83.1 100

Rengam Sandy clay

loam 1.69 59.0 212

Serdang Fine sandy

loam 1.10 55.9 339

Holyrood Loamy sand 1.35 73.5 252

Sg. Buloh Loamy

coarse sand 2.02 64.9 220

Source: (RRIM, 1975)

40

Page 63: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

2.1.3 Protection Factors (Plant Covers)

The effectiveness of a plant cover in reducing erosion depends upon the

height and continuity of the canopy, the density of ground cover and the root

density (Morgan, 1986). Many researchers agreed that plant covers reduce soil

erosion to approximately due to the ability of plant to intercept raindrop impact

to reduce the amount of kinetic energy upon impact with the soil surface

(Maene and Wan Sulaiman, 1980). Furthermore, the plant roots bind soil

particles together physically into stable aggregates.

2.2 Sedimentation Process (Sediment Delivery Ratio and Sediment Yield)

Although sedimentation in ponds and wetlands is important, for removing

the sediment, nutrients and contaminants which are readily attached to fine

particles (Fennessy et al., 1994; Raisin et al., 1997), excess sedimentation can

lower wetlands lifespan and thus degrade wetland function which generally

reduce wetland retention time, lower groundwater level and bring suspended

sediments and sediment-associated nutrients into the wetlands (Whigham et al.,

1988). As sediment is a major pollutant and also a transporter of pollutants, the

need for assessments and estimations on catchment’s surface runoff, sediment

delivery and sediment yield are vital through water resources analyses,

modeling, and engineering methodology.

41

Page 64: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

2.2.1 Sediment Delivery Ratio

The sediment delivery ratio (SDR) is defined as the fraction of gross

erosion that is transported from a catchment in a specific time interval. The SDR

is a dimensionless scalar and in terms of the definition, SDR can be expressed

as:

SDR = Y / E ….. (2.6) (Ouyang and Bartholic, 1997)

Where,

SDR = sediment delivery ratio

Y = average annual sediment yield per unit area

E = total gross annual erosion for the same area

Factors influencing SDR include hydrological inputs (mainly rainfall),

landscape properties (e.g., vegetation, topography, and soil properties) and

their complex interactions (Walling, 1983; Richards, 1993). The multitude of

such interactions makes it difficult to identify the dominant controls on

catchment sediment response and on catchment-to-catchment variability. As a

result, work on SDR regionalization remains largely empirical. The SDR often

has a value between 0 and 1 due to sediment deposition caused by change of

flow regime and reservoir storage. However, values larger than 1 were also

found at event basis or when bank or gully erosion predominates (Lu et al.,

2005).

According to the upland theory of Boyce (1975) SDR generally

decreases with increasing catchment size area because average slope

decreases with increasing catchment size, and large catchment also have more

sediment storage sites located between sediment source areas and the basin

42

Page 65: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

outlet. At catchment scale, the most widely used method to estimate SDR is

through an SDR-area power function given as:

SDR= αAβ ….. (2.7) (Maner, 1958; Roehl, 1962)

Where,

A = catchment area (km2)

α = constant empirical parameters β = scaling exponent

Field measurements using the statistical regression technique suggest

that β is in the range –0.01 to –0.025 (Walling 1983; Richards 1993), which

means that SDR decreases with increasing catchment area. The relationship for

SDR and catchment size is known as the SDR curve (USDA, 1972). The SDR

curve based on watershed size is widely used because of its simplicity (Lim et

al. 2005). USDA (1972), Boyce (1975) and Vanoni (1975) also developed SDR

curves expressed as:

SDR = 0.4724 A -0.125 ….. (2.8) (Vanoni,1975)

SDR = 0.3750 A -0.2382 ….. (2.9) (Boyce, 1975)

SDR = 0.5656 A -0.11 ….. (2.10) (USDA,1979)

where,

A = Catchment area (km2). The differences in SDR equation above is because of the amount of data

used to derive such equation, the locality and process involved. The Vanoni

(1975) used data from 300 watersheds throughout the world to develop a model

by the drainage area power function. The USDA SCS (1979) developed a SDR

model based on the data from the Blackland Prairie, Texas. A power function

43

Page 66: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

derived from the graphed data points. Boyce (1975) developed an equation

based on relationship between sediment delivery ratio and catchment area

using data from five experimental catchment.

There were also many researchers who tried to relate the SDR value to

catchment area, sediment particle size, sediment travel time, sediment transport

capacity and topography (relief-length ratio) of the catchment. For example,

Maner (1958) suggested that SDR was better correlated with relief-watershed

length ratio (R/L) than with other factors. Renfro (1975) modified the model (with

regression coefficient, R2, value of 0.97) as follows:

log (SDR) = 2.94259 + 0.82362 log (R/L) ….. (2.11) (Renfro, 1975) where,

R = relief of a watershed (the difference in elevation between the

average elevation of the watershed divide and the watershed outlet)

L = maximum length of a watershed (measured parallel to mainstream

drainage)

Balamurugan (1989) found the relationship between catchment area size

and relief – length ratio from study at Sg. Klang catchment area as expression

below:

SDR= 77.683 x A-0.065 (R/L)0.213 ….. (2.12) (Balamurugan, 1989)

where, A = Catchment area (km2)

R = relief of a watershed (the difference in elevation between the

average elevation of the watershed divide and the watershed outlet)

L = maximum length of a watershed (measured parallel to mainstream

drainage)

44

Page 67: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

All the proposed SDR equations above were developed for river basin

geomorphology without any consideration of wetland or pond filtration effects.

Furthermore, almost all the equations above disregarded the effects of other

types of erosion (gully, bank erosion, etc.) assuming that there was minimal and

negligible gullying process and almost no bank erosion.

Thus, the author notes that the application of these equations in different

environmental settings such as constructed wetland and the interpretation of

results calculated with these equations should be applied with caution as these

equations are only valid for sheet erosion sources and need further

consideration if it applied in different environmental settings. For example, the

effect of storage capacity should be considered in application of such formulas

in catchment with lake dominated area.

2.2.2 Sediment Yield

Sediment yield is defined as the amount of eroded material that moves

from a source to a downstream control point, such as a reservoir or to the edge

of catchment outlet, per unit time (Chow, 1964). The fate of eroded material

within a watershed is influenced by hydrologic, topographic, vegetative and

groundcover characteristics. Eroded particles may be transported to the

watershed outlet, or they may be deposited and stored within the watershed.

Lane et al. (1997) defined the sediment discharge from a watershed as the total

quantity of sediment moving out of the watershed in a given time interval

(mass/time). This sediment discharge is often termed sediment yield (ASCE,

1970). The total sediment discharge from a watershed relative to the watershed

area is also called sediment yield (mass/area/time) (ASCE, 1982).

45

Page 68: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

Observations show that sediment yields from catchments are often about

an order of magnitude lower than the soil erosion rates measured from hillslope

plots (Edwards, 1993; Wasson et al., 1996). This implies that most of the

sediment travels only a short distance (Parsons and Stromberg, 1998) and is

deposited. The SDR concept as discussed before was suggested by many

researchers based on this assumption.

2.3 Erosion and Sedimentation Measurement

Measuring the amount of erosion and sedimentation within the

catchment is difficult due to catchment complexities and large uncertainties on

quantification. Study on catchment erosion started a few decades ago and

advanced with progress in measurement and model capabilities. Hudson (1957)

had initiated runoff measurements under field conditions using a series of

experiments in Rhodesia. He successfully recorded the annual soil losses as

high as 225 tons per acre. However, varying amounts and division of runoff flow

required special apparatus and large number of plots and considerable errors in

measurement arose because of the effects of plot boundaries, silting of

collecting apparatus and problems of emptying large amounts of water and

sediment from the tanks (Morgan 1986).

Erosion measurement over a larger area (catchment area ranges from

20 to 640 km2) had been shown by Rapp (1975) by determining sediment

concentration in rivers and the rates of sediment accumulation in reservoirs.

Dunne (1977) stated that there are two basic approaches to erosion study using

sampling at the outlet of the drainage basin and direct measurement of soil

46

Page 69: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

removal at a number of locations within catchments. However no comparison

has been made between results from measured sampling outlets and data from

erosion plot due a portion of the soil mobilized from hillsides comes to rest in

swales, floodplains and other storage sites.

Zarris (2002) attempted to reconstruct sediment yield records of a

drainage basin using the hydrographic survey procedure resulting a quite

satisfactory result due to lack of temporal evolution of the measurement. An

apparent weakness of the method is that it gives only an over-year average of

the sediment yield and not its temporal evolution. However, if frequent

hydrographic surveying of the reservoir is permitted (e.g. every 5 years) then

sediment yield can be computed in finer time scales.

Recent advancements on erosion and sedimentation focus on

understanding of catchment processes as a whole integrated and spatially

distributed system. This approach takes into consideration the complexities in

catchment processes in which the dynamics are likely to be best understood by

examining cross - system organisation rather than concentrating on parts from

which a whole system is constructed. Consideration of the many factors

contributing to erosion and sedimentation is vital to maximize the understanding

of sedimentation triggered by erosion processes.

Over the past decade numerous significant advancements have been

made in the linkage of geographic information systems (GIS) and various

research into catchment hydrology, erosion and sedimentation processes that

provide better understanding of the spatial and distribution processes involved

(Hoyos, 2005; Shen et al., 2005; USACE, 2003; He et al., 2001; Pullar and

47

Page 70: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

Springer, 2000; Arnold et al., 1998). These GIS-based systems have greatly

enhanced the capacity for research scientists to develop and apply models due

to improved data management and apply rapid parameter estimation tools that

can be built into a GIS system.

The availability of GIS tools and more powerful computing facilities

makes it possible to overcome many difficulties and limitations in developing

distributed continuous time basin-scale models, based on available regional

information. The use of a distributed approach permits both the spatial

heterogeneity of catchment land-use, soil properties, topography and the spatial

variability and interaction of erosion and sediment delivery processes to be

represented, and can therefore provide spatially distributed predictions of soil

erosion and sediment redistribution for complex three-dimensional terrains

(Moore et al., 1993; Kothyari and Jain, 1997; De Roo, 1998; Parson et al.,

1998).

2.4 Erosion and Sedimentation Model

With the increased computing power and efficiency, there has been a

rapid increase in the exploration of catchment erosion and sediment transport

through the use of computer models in simulating sediment transport and

associated pollutant transport. In general there is no ‘best’ model for all

applications. The most appropriate model will depend on the intended use and

the characteristics of the catchment being considered (Merrit, 2003).

Erosion and sedimentation models can be classified into three main

categories, depending on the physical processes simulated by the model, the

48

Page 71: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

model algorithms describing these processes and the data dependence of the

model:

• Empirical or statistical/metric

• Conceptual

• Physically based

2.4.1 Empirical Model

Empirical models are generally the simplest of all three model types.

They are based primarily on the analysis of observations and seek to

characterize responses from these data (Wheater et al., 1993). Parameter

values in empirical models may be obtained by calibration, but are more often

transferred from calibration at experimental sites. They are particularly useful as

a first step in identifying sources of sediment and nutrient generation (Merrit,

2002). Prosser et al. (2001) noted that, on a regional scale, patterns of

sediment delivery and sediment residence time remain poorly understood.

Hence, prediction of sediment delivery at these scales is commonly based on

empirical methods that are applied uniformly in a region.

2.4.2 Conceptual Model

Conceptual models of erosion sedimentation models are typically based

on the representation of a catchment as a series of internal storages. They

usually incorporate the underlying transfer mechanisms of sediment and runoff

generation in their structure, representing flow paths in the catchment as a

series of storages, each requiring some characterization of its dynamic

behaviour (Merrit, 2002). Parameter values for conceptual models have typically

been obtained through calibration against observed data, such as stream

discharge and concentration measurements (Abbott et al., 1986). Beck (1987)

49

Page 72: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

noted that conceptual models play an intermediary role between empirical and

physically-based models. Due to the requirement that parameter values are

determined through calibration against observed data, conceptual models tend

to suffer from problems associated with the identifiability of their parameter

values (Jakeman and Hornberger, 1993).

2.4.3 Physically Based Model

Physically based models are based on the solution of fundamental

physical equations describing stream flow and sediment and associated nutrient

generation in a catchment. Standard equations used in such models are the

equations of conservation of mass and momentum for flow and the equation of

conservation of mass for sediment (e.g. Bennett, 1974). The derivation of

mathematical expressions describing individual processes in physics-based

models is subject to numerous assumptions that may not be relevant in many

real world situations (Dunin, 1975). In general, the equations governing the

processes in physics-based models are derived at the small scale and under

very specific physical conditions (Beven, 1989).

Among these models, the Universal Soil Loss Equation (USLE) empirical

model has remained the most practical method of estimating soil erosion

potential in fields and to estimate the effects of different control management

practices on soil erosion for nearly 40 years (Dennis and Rorke, 1999; Kinnell,

2000) while other process-based erosion models have intensive data and

computation requirements. The new version of the USLE, called the Revised

Universal Soil Loss Equation (RUSLE), was developed by modifying the USLE

to more accurately estimate USLE factors, and thus the soil erosion estimates

(Renard et al., 1991).

50

Page 73: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

51

The USLE has been integrated with Geographic Information Systems

(GIS) to estimate soil erosion to enable users to manipulate and analyze the

spatial data more easily, and helps users identify the spatial locations

vulnerable to soil erosion (Yitayew et al., 1999 and Lufafa et al., 2002). The list

of available erosion and sedimentation models is summarized in Table 2.4.

2.4.4 Grid Cell Size Effect to USLE Calculation in GIS Environment

Although the estimation of erosion using Universal Soil Loss Equation

(USLE) in GIS enhance users efficiency and favors many researchers, some

researchers also question the effect of grid cell size on estimation of LS factor

(slope length and steepness factor). Molnar and Julien (1998) designed a study

to compare USLE calculations in a GIS environment at grid sizes ranging from

30X30 m up to 6X6 km. They found that large grid cell sizes apparently tend to

underestimate soil losses.

Wu et al. (2005) found that the selection of the DEM grid size has

considerable influence on the soil loss estimation with the empirical models.

The estimate of total soil loss from the watershed decreases significantly with

the increasing DEM cell size as the spatial variability is reduced by the cell

aggregation. They also suggested applications of discretion process for

quantitative estimation of soil loss concerning the sensitivity to the grid size

selection. Lee and Lee (2006) had used the Revised Universal Soil Loss

Equation (RUSLE) together with GIS spatial analysis to quantify soil loss in a

small basin. They found it difficult to select a suitable grid size in a subjective

and intuitive way. The results of their study show that the LS factors are

sensitive to the grid size while the optimal resolution to quantify soil loss in the

RUSLE model for the study site is 125 m.

Page 74: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

Table 2.4: Erosion and sediment transport models

Model Type Scale Input output References

USLE / RUSLE

Empirical Hillslope / catchment

Low Erosion, using SDR to estimate catchment sediment yield

Wischmeier and Smith (1978)

IHACRES-WQ

Empirical Catchment Low runoff, sediment and Conceptual nutrients

Jakeman et al. (1990)

SEDNET Empirical / Conceptual

Catchment Moderatesediment, relative contributions from overland flow, gully and bank erosion processes

Prosser et al. (2001)

AGNPS Conceptual Small catchment High runoff volume; peak rate, SS, N, P, and COD concentrations

Young et al. (1987)

ANSWERS Physical Small catchment High sediment, nutrients Beasley et al. (1980)

CREAMS Physical field 40–400 ha High erosion; deposition Knisel (1980)

GUEST Physical Plot High runoff; sediment concentration Yu et al. (1997)

WEPP Physical Hillslope/

catchment High

runoff; sediment characteristics; form of sediment loss

Laflen et al. (1991)

Source: (modified from Merritt, 2002)

52

Page 75: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

2.5 Effect of Erosion and Sedimentation Process to Wetland Functioning

One management solution that has been widely reported to reduce diffuse

source pollution is the use of wetlands along the river corridor (Brunet, 1994;

Chambers, 1993 and Lowrance, 1985). These vegetated riparian zones appear to

act as a natural buffer for nitrogen, phosphorus and suspended sediment, thus

controlling nutrient movement from the drainage area into the stream.

The role of rainfall and water discharge in controlling suspended sediment

concentrations at the upstream end of the wetland is evident. Prior and Johnes

(2002), found that suspended sediment concentrations were often higher in

upstream areas in comparison to downstream areas, indicating that the wetland

may perform a nutrient and sediment retention function.

The efficacy of wetlands in removing pollutants from the upslope surface

and groundwater is highly dependent upon hydrology (Correll, 1997). Results

indicate that suspended sediment concentrations are driven by variations in rainfall

and flow and again with concentrations significantly higher upstream of the

wetland. Wetlands also provide an interface between the upslope drainage areas

and the stream channel.

2.6 Erosion and Sedimentation Studies in Malaysia

Many attempts had been made by Malaysian researchers to quantify

erosion and sediment yield in small plots as well as large catchments using

available models. Presented here is only some of the work done by them. Douglas

et al. (1993) analyzed the impact of selective logging on stream hydrology,

53

Page 76: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

chemistry and sediment loads in the Ulu Segama rain forest, Sabah. They found

that road construction activities and logging mobilization had a marked effect on

the sediment yield, leading to a significant increase of sediment yield in

comparison to the initial stage (pre-logging). The sediment yield of 16 t/ha/yr had

been estimated for 56 ha of catchment area.

Hashim et al. (1995) conducted a soil erosion study on steep slopes (10” to

20”) at the MARDI (Malaysian Agricultural Research and Development Institute)

research station in Kemaman on the east coast of Peninsular Malaysia using

experimental plots of 1000 m2 (or 0.1 ha) and one small bare plot of 20 m2. The

results show that maximum soil loss for the bare plot was 181.06 t/ha. Before that,

Hashim and Erh (1978) had tried to determine the relationship between single

event rainfall intensity soil loss on plot (10 x 1 m plot) of bare soil and covered by

mulch. They found that mulching significantly reduced the total soil loss in

comparison to bare soil plot with soil loss on the bare plot as high as 5.143 kg per

plot compared to 1.093 kg per plot in mulched plot.

Leong and Abustan (2000) try to quantify the extent of rainfall that

contributes runoff in the Sg. Kayu Ara river catchment with the development of

rainfall-runoff statistical relationship and baseflow hydrograph separation analysis.

The initial results indicate that temporal and spatial distribution of precipitation over

the catchment had some effects on the degree of runoff. Gregersen et al. (2003)

using USLE as erosion risk assessment method together with river discharge and

turbidity monitoring at Tikolod Sabah found that the erosion in study area ranged

from 68.6 t/ha/yr to 669.5 t/ha/yr and was mainly determined by high slope length

54

Page 77: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

and steepness factor values due to the high steepness of slope (> 30 % slope

steepness).

Mohd Kamil et al. (2003) had investigated soil erosion within a logged-over

tropical forest at Pasoh, Negeri Sembilan using erosion pins at five unbounded

research grids in a 100 m x 100 m plot for 154 days. From the investigation, they

found that the maximum soil erosion recorded was 14.6 mm in the form of sheet

and splash erosion while the maximum soil deposition was 7.2 mm. They also

concluded that the soil erosion occuring at their research plot falls within the high

erosion class. Raj (2003) analyzed the linkages and the impact between

sedimentation rates in the Ringlet Reservoir and land use changes as potential

sources of sediment. He suggested that increasing annual discharge of study area

is caused by the increasing trend of overland flow, as a result of increasing erosion

rates due to land use changes.

Ruslan (2004) had applied the AGNPS (Agricultural Non Point Source)

model to quantify sediment yields in a small catchment at Waterfall River (4.98

km2) located in Penang, Malaysia. He reported that in some events the AGNPS

model overestimated the actual sediment yield, while in some other events it

underestimated the yield. However, some of the AGNPS model results were

reasonable (within 20% deviation). The AGNPS model uses many empirical and

quasi-physically based algorithms that might not be appropriate for a tropical

country like Malaysia. Therefore, one possible future effort is to modify the various

equations used in the AGNPS model to suit local conditions.

55

Page 78: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

River sediment transport study had been exercised by Chang et al. (2005),

for the Kulim River using mathematical model, FLUVIAL-12 that was formulated

and developed for water and sediment routing analysis in man-made and natural

channels. The study shows that the simulation result was able to predict sediment

transport in comparison with the observed river geometry and channel processes.

Mohammad Firuz et al. (2005) attempted to quantify erosion potential at Langkawi

Island using GRASS GIS capability. The result demonstrates the applicability of

open source GIS for soil erosion studies as one of the GIS software. They also

found that improper land management may contribute to high erosion potential.

The range of erosion value in the study area ranges between 0 to 122,470 t/ha/yr

with 58% of study area classified as of low to moderate erosion risk. These

extreme values are likely because of the extreme values in LS factor which are

probably due to the problems in DEM interpolation.

Ariffin and Abu Talib (2006) performed a sediment monitoring and sampling

exercise along three river systems namely Sungai Selangor, Sungai Gerachi and

Sungai Luit to estimate and quantify the rate of sediment deposition in the Sg.

Selangor Dam. The observed incoming sediment load or discharge is in the range

of 0.05 kg/s to 21 kg/s on average that gives an annual sediment yield in the range

of 1580 t/yr to 660,000 t/yr.

2.7 Summary Many factors could affect the erosion and sedimentation processes in a

particular catchment. The SDR concept is proposed as a measurement of

transporting mechanism or process from upland or upstream sediment source to

56

Page 79: Thesis Ahmad Farid Abu Bakar.pdf

Literature Review and Theoretical Background

57

downstream effluent area. Various methods of erosion and sedimentation

measurements could be applied to measure erosion and sedimentation. However,

these methods should be use with care taking into consideration the suitability and

data dependant factors. The studies of erosion and sedimentation in Malaysia were

done in a variety of environments using different methods and approachs resulting

in various erosion and sediment yields respectively. The estimated erosion value

ranges from as low as 68.6 t/ha/yr (Gregersen et al., 2003) to 122,470 t/ha/yr

(Mohammad Firuz et al., 2005).

Page 80: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

3.1 Introduction

On site erosion and sedimentation assessments depend on many

parameters evaluating both at point and non point sources. To deal with these

parameters contributing to erosion and sedimentation processes, an integrated

approach is applied as describe below. This material and method chapter will

explain the methodologies applied for this research project.

3.2 Summary of Research Methodology

The research had been conducted using an integrated approach to

determine the parameters influencing erosion and sedimentation processes

affecting the study area. Generally, six steps of analysis and investigation had

been done. Table 3.1 show the summary of parameters considered while Figure

3.1 show the research on the flow of erosion and sedimentation process

characterization.

1. USLE, Universal Soil Loss Equation (Wischemier and Smith, 1978) have

been applied to estimate soil erosion risk as a source of sedimentation for

the 2003 and 2004.

2. Bank erosion had been identified and documented accordingly. This bank

erosion documentation will be used for further comparison with the gathered

result.

58

Page 81: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

3. Seventeen wetland cells had been chosen to determine their total

suspended solid yield (TSS yield) using the TSS rating curve method. The

TSS rating curves were constructed using instantaneous water discharge

and TSS loading data respectively. The spatial and temporal (annual) TSS

yields were then analyzed, chart and characterized accordingly.

4. Wetland reservoir sediment yields and wetland sedimentation rates for

seventeen wetland cells had been determined using wetland sedimentation

survey data (from Putrajaya Corporation) for year 2001, 2002 and 2004.

5. Catchment sediment yields for seventeen wetland subcatchment areas had

been determined using the USLE-SDR approach. The SDR equations

proposed by Vanoni (1975) and USDA-SCS (1972) had been utilized to

calculate the catchment sediment yield respectively.

6. Comparisons and linkages between sediment yield determination resulting

from TSS yields using TSS rating curves, catchment sediment yield

determinations using USLE-SDR and wetland reservoir sediment yields

derived from sedimentation survey data are evaluated. Finally, specific

erosion and sediment mitigation measures are proposed accordingly.

59

Page 82: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

60

Table 3.1: Summary of parameter considered in erosion and sedimentation process (PJC = Putrajaya Corporation,

DID = Drainage and Irrigation Department, Malaysia).

No. Subject Parameter

Sampling / Laboratory

methodology Collected material

R = Rainfall /runoff erosivity

Acquired rainfall data from PJC

and DID

Rainfall and rainfall intensity data

K = Soil erodibility

Soil sampling / Soil particle size

analysis, organic matter

content

Soil sample

LS = Hillslope length and steepness

Surface elevation digitizing

procedure

Digitized topograhic map

1

Application of USLE-SDR erosion and catchment sediment yield estimation using GIS

CP = Land Cover and Support practice

Satellite image analysis

Satellite image land use classification and support practice map

Water discharge Weir / bucket Water discharge data

2 Wetland cell TSS rating curve generation and TSS yield estimation

TSS concentration APHA 2540-D Water-sediment sample

3 Wetland Reservoir Sediment yield from sedimentation survey data

Wetland annual sedimentation volume and rate

Wetland cell sediment bulk

density analysis

Wetland annual sediment accumulation data (in volume and weight, tonnes)

Page 83: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Annual Wetland Sediment

Accumulation

Erosion and sedimentation process at Putrajaya wetland

Sediment Delivery Ratio A= RKLSCP

Annual TSS Loading

TSS Discharge Data

Water Discharge Data

USLE GIS (Sediment Source spatial Analysis)

TSS Concentration Data

TSS Rating Curve

Annual Wetland

Sedimentation Rate

Wetland Sedimentation survey Data

Sub-Catchment / weir by weir Sediment Yield

Figure 3.1: Research flow of erosion and sedimentation process study.

61

Page 84: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

3.3 Method of Quantification and Estimation on Wetland Water Discharge

(m3/s), TSS Concentration (mg/l), TSS Loading (t/yr) and TSS Yield

(t/ha/yr)

Seventeen wetland cells had been chosen for characterization and

estimation of their water discharge (m3/s), total suspended solid (mg/l) and total

suspended solid loading (t/yr) for the determination of wetland TSS yield (t/ha/yr)

using the TSS rating curve method. Table 3.2 summarizes the parameters and

analyse undertaken for the estimation of wetland TSS yield using the TSS rating

curve method.

3.3.1 Water Discharge Quantification

Bucket method and weir method had been applied for the measurements of

water flow and water discharge throughout this research. Generally, water

discharge measurements for sampling station with weir structure had been

estimated using the weir method while bucket method has been employed for

elevated weir (difference in elevation between weir crest and outflow culvert is

above 1.5 m). The general description for each method and the field procedures

are outlined below.

3.3.1.1 Weir Method

The wide variety of weir types can provide the measurement of water

discharge ranging from a few litres per second to many hundreds of cubic meters

per second. A weir is basically a small dam with a spillway opening of specified

shape for flow control purposes. The upstream head is uniquely related to the

discharge over the crest of the structure, where the flow passes through critical

conditions (the relationship between the inertial forces and the gravitational forces

62

Page 85: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

of the flow is equal to 1.0; therefore, the velocity of the flow, V, is equal to the

velocity of the wave (or celerity)). The most common sharp-crested weir type is a

90o V-notch (Figure 3.2) and rectangular cut out.

Figure 3.2: Example of 90o V-notch weir.

Source: (www.fao.org/docrep/T0231E/t0231e05.htm)

Table 3.2: Parameter and analysis undertaken for the estimation of wetland

TSS yield using TSS rating curve method.

Measurement method

No Stations Water Discharge (m3/s)

TSS concentration (mg/l)

1 UW1 Weir method APHA 2540-D 2 UW2 Weir method APHA 2540-D 3 UW3 Weir method APHA 2540-D 4 UW7 Weir method APHA 2540-D 5 UW8 Bucket method APHA 2540-D 6 UN1 Weir method APHA 2540-D 7 UN2 Weir method APHA 2540-D 8 UN4 Weir method APHA 2540-D 9 UN6 Weir method APHA 2540-D 10 UE1 Weir method APHA 2540-D 11 UE2 Weir method APHA 2540-D 12 UE3 Weir method APHA 2540-D 13 LE1 Bucket method APHA 2540-D 14 LE2 Bucket method APHA 2540-D 15 UB1 Weir method APHA 2540-D 16 UB2 Weir method APHA 2540-D 17 CW B Weir method APHA 2540-D

63

Page 86: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

In the Putrajaya wetland area, rectangular sharp–crested weirs (Figure 3.3)

had been designed and constructed (Figure 3.4) to connect wetland cells, to

impound a required amount of water that should free-fall over the weir crest

(Figure 3.5). With this weir type, the elevation of the backwater above the weir

crest, H, and the length of weir crest is measured. Thus, the discharge (Q) over the

weir is calculated from the following equation;

Q=1.83 bH3/2 …. (3.1) (Chin, 2000)

Where;

Q = Water discharge (m3/s)

b = the length of the weir crest (m)

H = the head of the backwater above the weir crest (m)

b

H

Hw: weir crest level

Hw

Flowing water

Figure 3.3: Simplified sharp-crested rectangular weir, showing the

parameters used for the measurement of water discharge

(modified from Chin, 2000)

64

Page 87: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Figure 3.4: Example of constructed wetland weir structure at Putrajaya

wetland (photo taken at LE1 wetland cell).

Water Jump

Weir Crest

Figure 3.5: Typical example of free fall water over the weir crest (photo taken

at UE2 wetland cell).

65

Page 88: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Three steps below had been followed to determine water discharge for a sharp-

crested rectangular weir:

1) The length of the weir crest (L) had been measured, using a measuring tape.

2) The head of backwater (H) above the weir crest was recorded.

3) The discharge was calculated using Equation (3.1) (refer to Figure 3.3).

3.3.1.2 Bucket Method

The quantification of water discharge using the bucket method was applied

for sampling stations with elevated culverts. Generally the bucket method is done

using a known volume of bucket to retain water for a particular time. The time is

taken until the bucket filled with water and thus, the discharge can be quantified

using the equation below:

Q = Vb / t …. (3.2)

Where,

Q = Water discharge (m3/s)

Vb = Volume of water retain (m3)

t = Time for bucket to be filled with water (s)

The quantification of water discharge using the bucket method was repeated for at

least three times for each sampling exercise in order to determine the average

water discharge accordingly.

3.3.2 Total Suspended Solid Quantification

Suspended sediment is the concentration of sediment particles held in

suspension in a particular flow. The units commonly used in the measurement of

sediment concentration vary with the range of concentrations and the standard

66

Page 89: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

measurement techniques utilized in different countries (Julien, 1995). The unit

milligram per litre (mg/l), which describes the ratio of the mass of sediment

particles to the volume of the water-sediment mixture, is used in this study.

One litre of water-sediment sample was collected at each sampling station,

at free fall water after the weir crest. The measurements of the TSS concentration

were carried out laboratory at Geology Department, University Malaya using APHA

2540-D method. Details on the APHA 2540-D method can be found in Appendix 1.

3.3.3 Generation of TSS Rating Curve and TSS Loading Estimation

The determination of TSS fluxes or loads requires data on both water

discharge and total suspended solid discharge. A total suspended solid discharge

rating curve is a plot of instantaneous total suspended solid discharge, Qs, against

instantaneous water discharge, Q, for a measurement site. The total suspended

solid discharge rating curve in this study was produced based on the modified

method proposed by US Army Corps of Engineers (1989). They constructed a

sediment rating curve based on flow duration curve (using average continuous

daily water discharge) and suspended sediment discharge data.

However, in this study, because of the inavailability of continuous daily

water discharge data, the total suspended solid rating curve was built on

instantaneous water discharge data. This instantaneous total suspended solid

discharge had been extrapolated into daily basis in order to determine the gross

annual total suspended solid yield. Usually, extrapolation process may introduce

certain errors to the calculated results. Thus, correction factor (K[b,T ]) proposed

67

Page 90: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

by Balamurugan (1989) was multiplied to the computed loading in order to obtain

actual TSS loading.

Table 3.3: Correction factor, K[b,T ]

Discharge Data b

Daily Weekly Monthly Annual 1.5 1.078 1.132 1.176 1.261 2.0 1.185 1.335 1.476 1.802 2.5 1.300 1.582 1.895 2.871 3.0 1.395 1.840 2.416 5.226 Source: (Balamurugan, 1989)

All instantaneous water discharge and total suspended solid discharge from

2002 to May 2006 (one to two sampling and measurement per month with variable

weather conditions) were used to produce the total suspended solid discharge

rating curve fitted as a log-log linear graph. The power regression method is

adopted to generate a unique rating curve for each selected sampling stations.

Regression methods, and their resulting rating curves, define the empirical

relationships between water discharges and total suspended solid discharges. The

power regression equation is expressed as follow:

log10(C)=a+b·log10(Q) …. (3.3) (Asselman, 2000)

Where,

C = total suspended solid discharge (t / day)

Q = instantaneous water discharge (m3 / s)

The expression above is then back-transformed to obtain:

C = aQb …. (3.4) (Asselman, 2000)

68

Page 91: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Where “a” and “b” are regression coefficients. The equation above covers both the

effect of increased stream power at higher discharges and the extent to which new

sources of sediment become available in weather conditions that cause high

discharge (Asselman, 2000).

The interpretation of the a and b regression coefficients is based on Walling

(1974) and Asselman (2000) with the use of the parameter of total suspended solid

discharge instead of the suspended sediment concentration (mg/l) used by both

researchers. The annual TSS loading was calculated from the input of the total

annual water discharge into the power regression equation of the produced TSS

rating curves respectively.

3.3.4 Sediment Yield Estimation from Total Suspended Solid Data

Sediment yield is defined as the total sediment outflow from a watershed

measurable at a point of reference during a specified period of time. The sediment

outflow from the watershed is induced by processes of detachment, transportation,

and deposition of soil materials by rainfall and runoff (Cigizoglu, 2003). In this

study, the annual TSS loading for 2003 and 2004 calculated from TSS rating

curves were divided with respective catchment areas to produce specific TSS

yields (t/ha/yr) for the respective wetland cell subcatchments. These data will be

used to further analyze and compare with data from the USLE catchment sediment

yield and wetland reservoir sediment yields respectively.

69

Page 92: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

3.4 Determination of Catchment Erosion and Sediment Yield (t/ha/yr) using

USLE and SDR in GIS

Universal Soil Loss Equation (USLE) is an empirical relationship of

parameters effecting soil erosion loss that has been adopted to estimate annual

soil loss rate and hence the catchment sediment yield for the Putrajaya wetland

subcatchment area. Generally, USLE consist of six factors as below:

A = RKLSCP …. (3.5)

Where,

A = Soil loss per unit area (t/ha/yr)

R = Rainfall-Runoff erositivity (Mj.mm/ha.h.yr)

K = Soil erodibility (t.ha.h/ha.Mj.mm)

L = Slope length factor

S = Slope steepness factor

C = Crop (land cover) factor

P = Land management factor

The method for calibration and determination of Universal Soil Loss

Equation (USLE) factors from laboratory and raw data source and GIS application

on USLE equation will be explained below. The calculation of USLE annual soil

loss and erosion potential in GIS was done on a subcatchment basis using “spatial

analyst extension” (an extension in Arcview GIS for raster grid map calculation) .

Figure 3.6 shows the flow chart for the application of GIS capabilities in erosion

and sediment yield assesments in this study.

70

Page 93: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Figure 3.6: Flow chart for application of GIS in USLE erosion estimation and

USLE-SDR catchment sediment yield assesment.

Raster Grid Conversion

K (Soil Erodibility)

R (Soil Erosivity)

LS (Slope Length)

CP (Cover and Management)

Rainfall data Soil data

Digital Elevation Model

(Raster grid)

2003, 2004 and 2006 Spot 4 Satellite Image

Kriging surface data interpolation

(Raster grid)

Kriging surface data interpolation

(Raster grid)

Surface elevation from

Topographic map

Arcview Raster Calculator R*K*LS*CP

A (annual soil loss)

Sediment Delivery Ratio estimation by catchment area proposed by Vanoni (1975) and USDA (1972)

Catchment Sediment Yield

71

Page 94: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

72

3.4.1 Determination of Rainfall-Runoff Erosivity factor, R.

The R factor is an expression of the erosivity of rainfall and runoff at a

particular location. As the erosivity factor in USLE equation measures the effect of

raindrop impact (rainfall intensity) and total storm energy in contributing to soil

erosion, the value of "R" will increase as the amount and intensity of rainfall

increase. The rainfall data for this study was gathered from Department of Irrigation

and Drainage, Malaysia (DID), (Prang Besar rainfall station, ID: 2916001) and

Putrajaya Corporation (PJC) (telemetric rainfall station W01, R01, R02, R03, R04

and K01 manual rainfall station). Table 3.4 shows the longitudes and latitudes of

rainfall station while Figure 3.7 shows the map location of rainfall station around

study area. The USLE erosivity, R factor calibrated for this study is based on the

equation published by FRIM 1999 as stated below;

R = (E*i30) / 170.2 …. (3.6) (FRIM, 1999)

E = 9.28P – 8838.15 …. (3.7) (Morgan, 1986)

Where;

i30 = the maximum 30-minute rainfall intensity (mm/hr)

E = annual erosivity (J/m2)

P = annual rainfall (mm)

Data generated from the above equation were entered into an Arcview GIS

database for spatial distribution analysis of rainfall erosivity around the study area.

Using the Kriging interpolation extension written by Yi Tang (1998) downloaded

from ESRI website, the surface interpolation for erosivity, E and i30, rainfall

intensity (raster grid data) in the Putrajaya area was generated for further USLE

calculation.

Page 95: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

W 01

R 01

K 01

R 04

R 03

R 02 DID PB

Figure 3.7: Location of rainfall stations around Putrajaya area.

73

Page 96: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Table 3.4: Daily rainfall and i30 rainfall intensity per rainfall event data gathered from rainfall station around Putrajaya area.

Rainfall Station Latitude Longitude Data gathered

DID’s Prang

Besar

(ID: 2916001)

2 55’ 40” N 101 41’ 50”E

W01 2 56’ 36” N 101 42’ 02”E

R01 2 58’ 05” N 101 41’ 40”E

R02 2 55’ 43” N 101 41’ 33”E

R03 2 57’ 05” N 101 40’ 44”E

R04 2 55’ 46” N 101 40’ 34”E

Daily Rainfall, i30 rainfall intensity per rainfall event

3.4.2 Determination of Soil Erodibility Factor, K.

The soil erodibility factor, K, is an expression of the inherent erodibility of the

soil or surface material at a particular site under standard experimental conditions.

The value of K is a function of the particle-size distribution, organic-matter content,

structure, and permeability of the soil or surface material. For this study, the soil

erodibility equation and nomograph modified by Tew (1999) for Malaysia condition

from Wischemier and Smith (1978) had been applied to quantify soil erodibility

factor as stated below.

100K = 2.1M 1.14(10-4)(12-a) + 4.5(b-3) + 8.0(c-2) …. (3.8) (Tew, 1999 )

Where;

K= Soil erodibility factor (t.ha.h/ha.Mj.mm)

M= (% silt + % very fine sand) x (100-%clay)

a= % organic matter

b= soil structure code

c= permeability class

74

Page 97: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

75

Forty two soil samples of 10 cm depth (surface soil sample) had been

collected in consideration of soil type and accessibility permission, using a one inch

hand auger to quantify and estimate the soil erodibility characteristics around study

area. Figure 3.8 shows the location and distribution of soil sampling station around

Putrajaya lake and wetland area.

The M ((% silt + % very fine sand) x (100-%clay)) parameter was

determined from soil particle size distribution analysis (dry sieve and Mastersizer S

particle size analysis). The % organic matter, a, is obtained from TOC (total

organic carbon) analysis using the AJ2000 Carbon analyzer at the Geology

Department, University of Malaya. The result from the TOC (total organic carbon)

analysis is multiplied by 1.72 for organic matter contain determination in the soil

sample according to the Walkley and Black method (organic matter [OM] = TOC%

x 1.72) (Varvaeke et al., 2004). The soil structure parameter, b, is determined from

the soil profile structure according to Figure 3.9.

The permeability value was estimated based on soil texture triangular as

proposed by Bazzofi (2006) and is classified into six classes as shown in Table 3.5

and Figure 3.10. Results from K factor calculations are transferred to a GIS USLE

database to create point data value in shape file format. Kriging’s interpolation

extension (Yi Tang, 1998), from the ESRI website was used for the surface

interpolation of the K factor (raster grid data) in the Putrajaya area for further USLE

calculations.

Page 98: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Figure 3.8: Location and distribution of soil sampling station around Putrajaya lake and wetland area.

76

Page 99: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Figure 3.9: Classification of soil structure adopted for Parameter b evaluation

in K factor determination.

Granular Blocky

Prismatic Columnar

Platy

Note: Parameter b (soil structure) value for K factor determination; 1 : Very fine granular 2 : fine granular 3 : Medium to coarse granular 4 : Blocky, platy or coarse

Source: (http://soil.gsfc.nasa.gov/pvg/prop1.htm)

Table 3.5: Classification of permeability value adopted in K factor

determination.

Value for parameter c

Permeability Permeability value (cm/hr)

1 Rapid 20.0 – 30.0 2 Moderate to Rapid 5.4 - 20.0 3 Moderate 2.0 - 5.4 4 Slow to Moderate 1.0 - 2.0 5 Slow 0.1 – 1.0 6 Very Slow <0.10

77

Page 100: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Permeability

1 = Rapid

2 = Moderate to rapid

3 = Moderate

4 = Slow to Moderate

5 = Slow

6 = Very slow

Figure 3.10: Estimated permeability value based on soil texture.

Source: (Bazzofi, 2006)

78

Page 101: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

79

3.4.3 Determination of Slope Length and Steepness Factor, LS.

The slope and slope length factor, LS, had been calibrated from a digitized

topographic map of the Putrajaya area. The digitized topographic map in line

format (GIS shapefile) was then converted to digital elevation model (DEM) using

“contour gridder extension” written by Stuckens (2003).

The LS factor was originally calculated using the equation below;

LS = (λ/22.13)m(0.065 + 0.046S + 0.0065S2)…. (3.9)(Wischemier and Smith, 1978)

Where,

λ = slope length (m)

S = slope in percent

m = 0.2 for S<1%, 0.3 for 1%<S<3%, 0.4 for 3%<S<5%,

0.5 for 5%<S<12% and 0.6 for S>12%

Figure 3.11 shows the graph that combines the L and S factors. The LS factor

equation is modified to better express the influence of complex terrain for

computation in GIS environment as below:

LS = (Lhill/22.1)m (65.41 sin2 a + 4.56 sina + 0.065) …. (3.10) (Wischemier and

Smith, 1978)

Where,

Lhill = slope length in meters,

a = angle of slope,

m = 0.5 if % S >= 4.51, 0.4 if % S is = 3.01 to 4.5, 0.3 if %S = 1 to 3, 0.2 if

% S < 1,

ArcView Spatial Analyst was then been applied to calculate the LS Factor using

expression:

([Flow Length Grid] / 22.1).Pow( [M Value Grid] )* [Slope Radians Grid].Sin.Pow(2 ) * 65.41+ [Slope Radians Grid].Sin * 4.56 + 0.065

Source: (Nadine, 2003)

Page 102: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Figure 3.11: Combine Slope Length-Steepness Factor, LS, chart.

Source: (Wischemier & Smith, 1978)

80

Page 103: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

3.4.4 Determination of Land Cover and Management Factor, CP.

Generally, the C factor is a factor in USLE that is defined as the ratio of soil

loss from land cropped under specific conditions while P factor is the expression of

land management factor (Wischemier and Smith, 1958). The land use and land

management factor, CP, for this study was calibrated based on land use

classification for the years 2003 and 2004 spot 4 satellite images, classified using

PCI Geomatica satellite image analysis software.

The land cover and management factor (CP) value based on research

carried by Roslan and Tew (1996) for Malaysian conditions was adopted for this

study. Table 3.6 show the CP factor value as given by Roslan and Tew (1996).

Table 3.7 summarizes the data source and material and data generation

processes for the respective analysis.

3.4.5 Determination of USLE Soil Loss (Erosion) rate and USLE Catchment

Sediment Yield

The generated USLE factor raster grid maps are then combined with each

other using the “map calculator” function in Arcview GIS to generate spatial annual

soil loss rate in t/ha/yr for the years 2003 and 2004. Furthermore, the sensitivity of

USLE factors contributing to the USLE erosion results had been assessed in GIS

using the grid regression analysis extension developed by Jenness (2006).

81

Page 104: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

Table 3.6: CP factor value used in USLE.

Land Cover CP

factor

Water body 0.000

Bareland (mining areas, newly cleared land, construction area) 1.000 Horticultural, agricultural, Palm oil 0.250

Permanent Cropland 0.150

Cropland 0.200

Rangeland / Shrubland 0.229

Commercial 0.008

Impervious 0.005

Residential 0.003

Swamps 0.001

Forest 0.010

Grassland 0.015

Source: (Roslan and Tew, 1996)

Table 3.7: Summary of the data source and material, data generation

process and the scenario undertaken for land use analysis.

Selected Scenario Data source and material Data Generation Process

Year 2003

land use Spot 4 satellite image

Year 2004

land use Spot 5 satellite image

Year 2006

land use Spot 4 satellite image

Remote sensing

image classification

procedure to land use

polygon shape file format

82

Page 105: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

For determination of the catchment sediment yield from USLE, the sediment

delivery ratio (SDR) for each subcatchment was calculated based on the Vanoni

(1975) and USDA (1972) equations:

SDR = 0.4724 A -0.125 …. (3.11) (Vanoni, 1975)

SDR = 0.5656 A -0.11 …. (3.12) (USDA, 1972)

Where,

A = watershed area (km2).

These SDR equations express the effect of catchment area size to the

sediment deposition downstream where the greater catchment size results in lower

sediment yields in the catchment outlet downstream. Although there are numerous

SDR equations and calculation methods these two methods are chosen because

of their simplicity, the applicability and their general reception by other researchers

(Lim et al., 2005). Other methods may be applied for further studies. The USLE

gross erosion results were multiplied to the value calculated using SDR equations

above.

3.5 Method for Determination of Wetland Reservoir Sediment Yield (t/ha/yr)

from Sedimentation Survey Exercise

The sedimentation survey data was used primarily to determine wetland

reservoir sediment yield. Initially, all the data from the sedimentation survey was by

volume (m3 of sediment). The volume was converted to mass (tonnes, t) in this

study by multiplying it with the bulk density (g/cm3) of the wetland bed sediment.

Details on this exercise will be explained further in subsection 3.5.2.

83

Page 106: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

3.5.1 Method for Sedimentation Survey

3.5.1.1 Static station sedimentation survey

Static station sedimentation survey was done for the wetland with emerging

sediment accumulation or in area with low water depths. A ranging pole was used

to get the levels of the sedimentation surface at every +/- 20m (grid point). The

Theodolite Total Station was used to collect all the data of height and coordinates

(X,Y,Z) of the point, the instrument was located at the control points in the weir.

Lines at 20m interval were laid out several directions to get the levels of the

sedimentation surface.

3.5.1.2 Moveable station sedimentation survey

In order to quantify the sedimentation for an area with deeper water depth,

the boat equipped with GPS and echo sounder was used. The path of the boat

followed the direction of the 20m interval grid across the water surface.

The whole area of sedimentation and underwater topography was charted

continuously by an Echo Sounder. The boat was located using a Global Positioning

System (GPS) with ‘Static Survey L1 & L2’ with an accuracy not less than (5mm +1

mm). The depth and the location were recorded in the GPS Trimble 400Ssi L1 &

L2, Bathy 500 AECH0 Sounder & Transducer, Radio, Data Recorder and Note

Book automatically.

3.5.2 Conversion of Sediment Volume Unit (m3) to Mass Unit (t, tonnes)

Generally, the measured sediment volume (m3) from the sedimentation

survey exercise was converted to the sediment mass (tonnes) using the

representative bulk density (Verstraeten and Poesen, 2001) acquired from the

84

Page 107: Thesis Ahmad Farid Abu Bakar.pdf

Material and Method

85

wetland bed sediment. Three to four wetland bed sediment samples were collected

randomly close to the middle of each wetland cell area to quantify their

representative bulk density. The collected samples were brought back to the

Geology Department to analyze their bulk density according to British Standard

method (BS 1137: 1990, Part 2, Method 7.2).

The results gathered from the bulk density analysis for the wetland bed

sediment samples were then been averaged and multiplied with their respective

wetland sediment volumes (m3) to obtain unit in tones.

3.5.3 Wetland Reservoir Sediment Yield Estimation

The wetland reservoir sediment yield (t/ha/yr) was calculated using the formula

below:

SYres = Mres / A …. (3.13)

Where,

SYres = Reservoir sediment yield for particular year (t/ha/yr)

Mres = Sediment accumulation in reservoir for respective year (t)

A = Catchment area (ha)

These data will be used to further analyze and compare with other data from USLE

catchment sediment yields and TSS yields respectively.

Page 108: Thesis Ahmad Farid Abu Bakar.pdf

4.1 Introduction

This chapter will present and discuss the results and findings obtained

from analyses undertaken during the study of erosion and sedimentation

process within the Putrajaya wetland area. Spatial and temporal sheet and rill

erosion at the Putrajaya area was determined using the Universal Soil Loss

Equation (USLE) while the observed bank erosion within the wetland area was

documented respectively. Three different sediment yield data approaches had

been used (the determination of the TSS yield from the TSS rating curve, the

determination of the catchment sediment yield from the USLE-SDR approach

and the wetland reservoir sediment yield from sedimentation survey data). The

results from the above were compared and the linkages of the results were

further assessed. Finally, specific and suitable erosion and sediment control

measures are proposed at the end of the chapter.

4.2 Erosion determination using USLE 4.2.1 Introduction

The USLE was adopted to obtain measurements of sheet and rill erosion

in the study area using 10m, 20m, 30m and 40m grids. Further analyses of

USLE for total gross and specific erosion for selected wetland cell

subcatchment areas were carried out. Sensitivity analysis for all factors that

contribute to a particular USLE result was also performed accordingly.

4.2.2 Soil Erodibility Factor (K Factor) Determination Results

The samples collected from the surrounding Putrajaya area show a

variety of soil types (Table 4.1, Figure 4.1) ranging from clay, sandy clay to

sandy clay loam. Result of the detail particle size analyses are found in

Appendix 2.

86

Page 109: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.1: Particle size analyses results and USDA soil classification system for samples collected from the Putrajaya catchment area.

No. Sample name

Subcatchment Area

Gravel Sand silt clay USDA Soil Classification

System 1 PL1 4.05 25.96 17.93 52.06 Clay 2 PL2 2.69 14.07 15.32 67.92 Clay 3 PL3 8.89 59.09 5.38 26.65 Sandy Clay Loam 4 PL4 4.86 38.00 13.47 43.68 Clay

5 PL5 8.45 41.63 10.71 39.20 Sandy Clay

6 PL6 1.24 37.13 21.41 40.21 Clay

7 PL7 9.87 42.56 7.75 39.82 Sandy Clay

8 PL8 31.30 28.00 10.94 29.76 Gravelly Clay

9 PL9 4.26 27.11 19.86 48.77 Clay 10 PL10 1.47 48.83 12.52 37.17 Sandy Clay 11 PL11 2.53 23.13 18.95 55.39 Clay 12 PL12 9.72 30.53 11.64 48.11 Clay 13 PL13 3.40 20.29 19.88 56.43 Clay 14 PL14 3.25 36.18 14.92 45.65 Clay 15 PL15 20.14 47.45 7.07 25.34 Gravelly Sandy Clay Loam 16 PL16 6.78 44.44 12.30 36.48 Sandy Clay 17 PL17 9.11 43.38 9.51 38.00 Sandy Clay 18 PL18 15.50 27.55 13.54 43.41 Clay 19 PL19 1.00 68.12 6.65 24.23 Sandy Clay Loam 20 PL20

Lake

10.41 44.98 10.43 34.18 Sandy Clay 21 UB1(1) 0.30 49.62 9.06 41.02 Sandy Clay 22 UB1(2) 29.60 56.36 2.24 11.58 Gravelly Sandy Loam 23 UB2(1) 16.87 71.76 2.16 8.80 Gravelly Loamy Sand 24 UB2(2) 6.25 47.89 10.73 35.13 Sandy Clay 25 UB2(3)

Upper Bisa

3.42 33.79 8.30 54.50 Clay 26 LE1(1) 2.36 44.57 20.23 32.84 Sandy Clay Loam 27 LE1(2) 17.69 38.41 9.42 34.48 Gravelly Sandy Clay 28 LE2

Lower East 5.61 61.51 10.53 22.35 Sandy Clay Loam

29 UW1 3.63 26.79 9.41 60.16 Clay 30 UW2-8 0.26 4.36 24.52 70.86 Clay 31 UW4 8.49 51.36 9.30 30.85 Sandy Clay Loam 32 UW6 9.85 37.92 9.91 42.32 Clay 33 UW8

Upper West

7.88 52.00 8.74 31.38 Sandy Clay Loam 34 UE1 2.04 26.65 13.01 58.31 Clay 35 UE1(ioi) 18.40 36.48 5.90 39.22 Gravelly Clay 36 UE3

Upper East 6.08 30.98 12.48 50.46 Clay

37 UN1 3.53 48.96 9.66 37.85 Sandy Clay 38 UN3 0.07 43.41 16.58 39.94 Clay 39 UN5 5.95 47.60 11.33 35.12 Sandy Clay 40 UN7 1.83 37.02 9.38 51.60 Clay 41 UN8

Upper North

0.16 30.45 15.88 53.06 Clay 42 CWA Central Wetland 3.90 33.56 17.99 44.55 Clay

87

Page 110: Thesis Ahmad Farid Abu Bakar.pdf

88

CWA

LE1(1) LE1(2) LE2 PL1 PL10 PL11 PL12 PL13 PL14 PL15 PL16PL17PL18PL19 PL2 PL20 PL3 PL4 PL5 PL6

PL7 PL8 PL9 UB1(1) UB1(2) UB2(1) UB2(2) UB2(3) UE1 UE1(ioi) UE3 UN1 UN3 UN5 UN7 UN8 UW1 UW2-8 UW4 UW6 UW8

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

100 90 80 70 60 50 40 30 20

CLAY

CLAY

SILTY CLAY

SANDY CLAY

10SAND SILT

SILTY CLAY LOAMCLAY LOAM

SANDY CLAY LOAM

LOAMSANDY LOAMSILT LOAM

LOAMY SAND

SANDSILT

Figure 4.1: Triangular plot of particle size results on soil USDA

classification system.

Page 111: Thesis Ahmad Farid Abu Bakar.pdf

The samples collected from the Upper West subcatchment area have

clay to sandy clay loam soils type. The soil types range from clay to sandy clay

in Upper North area., All samples from the Upper East and Central

subcatchment area have a classification of clay while samples collected at

Lower East subcatchment area are classified as sandy clay loam to sandy clay.

The Upper Bisa subcatchment area shows a variety of soil types ranging from

sandy clay, sandy loam, loamy sand to clay with organic matter content ranging

from 0.14 to 8.70 % respectively.

The calculated soil erodibility factor (K factor) from (Table 4.2, Figure

4.2) around the Putrajaya area ranges from as low as 0.05 (at UB1(2)) to as

high as 0.38 (at PL6). The statistics of the K factor (Table 4.3) show that the

lake subcatchment area has the highest mean average K factor (0.24) while the

lowest mean average K factor (0.16) was observed at the Upper Bisa

subcatchment area. The lowest standard deviation K factor was from the Upper

North subcatchment area (0.02).

Raster grid maps for surface interpolated K factor (soil erodibility factor

maps) for the Putrajaya catchment area in different grid sizes (10m, 20m, 30m

and 40m grid size) are shown in Figure 4.3. The interpolated K factor maps

show relatively similar values for almost all the different grid resolution sizes

with only slight differences in terms of maximum and mean K factor. The

generated K factor maps in different grid sizes will be used for further USLE

erosion raster calculations. The K factor for Putrajaya area is assumed to be

constant throughout the analysis for each year (2003 and 2004).

89

Page 112: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.2: Calculated soil erodibility factor results for 42 samples within study area.

No. Sample name

Subcatchment Area

M a b c K

1 PL1 1562.04 2.14 4 6 0.23 2 PL2 730.38 0.61 4 6 0.18 3 PL3 2052.43 0.31 4 5 0.26 4 PL4 1865.24 0.88 4 6 0.26

5 PL5 1765.65 0.49 4 6 0.26

6 PL6 3096.21 0.19 4 6 0.38

7 PL7 1560.06 0.69 3 6 0.21

8 PL8 1500.53 0.28 3 6 0.21

9 PL9 1626.62 0.95 2 6 0.18 10 PL10 2787.08 0.26 4 6 0.35 11 PL11 1429.01 0.80 4 6 0.23 12 PL12 1522.73 0.86 2 6 0.17 13 PL13 1328.35 0.83 3 6 0.19 14 PL14 1888.46 0.46 4 6 0.27 15 PL15 1726.97 0.50 3 5 0.20 16 PL16 2005.38 0.62 4 5 0.25 17 PL17 1912.81 1.53 2 5 0.17 18 PL18 1397.11 0.34 4 6 0.23 19 PL19 4168.66 2.11 3 5 0.36 20 PL20

Lake

2400.89 2.22 2 5 0.20 21 UB1(1) 2198.72 0.19 4 5 0.28 22 UB1(2) 692.30 0.36 3 2 0.05 23 UB2(1) 2319.05 0.20 2 2 0.15 24 UB2(2) 2479.16 5.58 3 5 0.18 25 UB2(3)

Upper Bisa

1581.09 0.22 1 6 0.15 26 LE1(1) 3230.10 1.68 3 4 0.27 27 LE1(2) 1952.32 8.70 3 4 0.10 28 LE2

Lower East 2999.53 1.49 3 4 0.26

29 UW1 983.19 1.01 4 6 0.20 30 UW2-8 812.30 0.14 4 5 0.17 31 UW4 2840.28 2.85 4 3 0.23 32 UW6 1618.09 1.37 3 6 0.21 33 UW8

Upper West

2878.07 2.92 4 5 0.28 34 UE1 1129.34 0.16 2 6 0.15 35 UE1(ioi) 1302.71 0.66 4 6 0.22 36 UE3

Upper East 1390.31 5.79 2 6 0.12

37 UN1 2485.62 2.21 4 5 0.27 38 UN3 2557.82 0.17 3 5 0.27 39 UN5 2504.49 1.88 4 5 0.27 40 UN7 1486.86 2.88 4 6 0.22 41 UN8

Upper North

2021.36 2.52 4 6 0.26 42 CWA Central Wetland 2136.90 1.22 4 4 0.23

90

Page 113: Thesis Ahmad Farid Abu Bakar.pdf

Figure 4.2: Histogram of calculated K factor for the Putrajaya lake and respective wetland subcatchment areas. Table 4.3: Statistics of K factor results for each Putrajaya subcatchment area.

Putrajaya Sub Catchment

N Mean Min Max St Dev

Lake 20 0.24 0.17 0.38 0.06 Upper Bisa 5 0.16 0.05 0.28 0.08 Lower East 3 0.21 0.10 0.26 0.10 Upper West 5 0.22 0.17 0.28 0.04 Upper East 3 0.17 0.12 0.22 0.05 Upper North 5 0.26 0.22 0.27 0.02

The calculated K factor result for sample collected around Putrajaya area

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40P

L1

PL2

PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL1

0

PL1

1

PL1

2

PL1

3

PL1

4

PL1

5

PL1

6

PL1

7

PL1

8

PL1

9

PL2

0

UB

1(1)

UB

1(2)

UB

2(1)

UB

2(2)

UB

2(3)

LE1(

1)

LE1(

2)

LE2

UW

1

UW

2-8

UW

4

UW

6

UW

8

UE

1

UE

1(io

i)

UE

3

UN

1

UN

3

UN

5

UN

7

UN

8

CW

A

Sampling Station

K fa

ctor

K (TKH, 1999)

Lake Upper Bisa Low er East Upper West Upper East Upper North

91

Page 114: Thesis Ahmad Farid Abu Bakar.pdf

2 0 2 4 Kilometers

kfac_10m0.08 - 0.1520.152 - 0.2240.224 - 0.2960.296 - 0.3680.368 - 0.440.44 - 0.5120.512 - 0.5850.585 - 0.6570.657 - 0.729

N

2 0 2 4 Kilometers

kfac_20m0.081 - 0.1530.153 - 0.2250.225 - 0.2970.297 - 0.3690.369 - 0.4410.441 - 0.5130.513 - 0.5850.585 - 0.6570.657 - 0.729

N

( )

(b) (a)

2 0 2 4 Kilometers

kfac_30m0.081 - 0.1530.153 - 0.2250.225 - 0.2970.297 - 0.3690.369 - 0.4410.441 - 0.5120.512 - 0.5840.584 - 0.6560.656 - 0.728

N

2 0 2 4 Kilometers

kfac_40m0.084 - 0.1560.156 - 0.2270.227 - 0.2990.299 - 0.370.37 - 0.4420.442 - 0.5130.513 - 0.5850.585 - 0.6560.656 - 0.728

N

(d) (c) Figure 4.3: Soil erodibility factor maps (K factor maps) for the Putrajaya

catchment area in 10m (a), 20m (b), 30m (c) and 40m (d) grid

sizes.

92

Page 115: Thesis Ahmad Farid Abu Bakar.pdf

4.2.3 Rainfall-Runoff Erosivity Factor (R Factor) Determination Results

The erosivity of rainfall is a major input variable in USLE. Indices of rain

erosivity are parameters derived from rainfall characteristics that are sufficiently

correlated with surface erosion (splash, sheet and rill erosion) resulting from

rainfall to be used in soil loss prediction.

The total annual rainfall and average annual rainfall intensity data from

six rainfall stations maintained by the Putrajaya Corporation (PJC) and one

Drainage of Irrigation Department (DID) rainfall station located in the Putrajaya

area for 2003 and 2004 are used for rainfall-runoff erosivity (R) factor

computation. Table 4.4 and Figure 4.4 show the total annual rainfall recorded

from different rainfall stations located in the Putrajaya area for 2003 and 2004

while Table 4.5 and Figure 4.5 show the recorded average annual maximum

30 minute rainfall intensity (i30) respectively. Details of the total annual rainfall

and average annual rainfall intensity data are found in Appendix 2.

In general, 2004 has lower total annual rainfall and average annual

maximum 30 minute rainfall intensity (i30) in compared to 2003. The total

annual rainfall recorded for 2003 ranges from 1272.9 (DID PB rainfall station)

mm to 3297.3 mm (K-01 rainfall station) and for 2004, the recorded total annual

rainfall ranged from 1147.8 mm (W-01 rainfall station) to 2779.6 mm (K-01

rainfall station). The recorded average annual maximum 30 minute rainfall

intensity (i30) for 2003 ranged from 16.3 mm (W-01 rainfall station) to 50.4 mm

(R-01 and K-01 rainfall station) while for 2004, the average annual maximum 30

minute rainfall intensity (i30) ranged from 17.6 mm (W-01 rainfall station) to 47.2

mm (R-01 and K-01 rainfall station).

93

Page 116: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.4: Total annual rainfall recorded at selected rainfall station located

within Putrajaya area for year 2003 and 2004.

Rainfall Station

2003 2004

K-01 3297.3 2779.6 W-01 1535.7 1147.8 R-01 3166.9 2578.2 R-02 1943.3 2389.7 R-03 2577.8 2395.9 R-04 2196.6 2178.2

DIDPB 1272.9 1898.9

Putrajaya Total Annual Rainfall

0

500

1000

1500

2000

2500

3000

3500

K-01 W-01 R-01 R-02 R-03 R-04 DIDPB

Rainfall Station

Ra

infa

ll (

mm

)

2003

2004

Figure 4.4: Histogram of total annual rainfall recorded within Putrajaya

area for year 2003 and 2004.

94

Page 117: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.5: Average annual 30 minute maximum rainfall intensity (i30)

recorded at selected rainfall station located within Putrajaya area

for year 2003 and 2004.

Rainfall Station

2003 2004

K-01* 50.4 47.2 W-01 16.3 17.6 R-01 50.4 47.2 R-02 38.4 30.1 R-03 18.9 24.9 R-04 25.3 32.3

DIDPB 32.7 34.4 * Assume same i30 value with R-01 rainfall station.

Putrajaya Average Annual Maximum 30 Minute

Rainfall Intensity (i30)

0

10

20

30

40

50

60

K-01 W-01 R-01 R-02 R-03 R-04 DIDPB

Rainfall Station

Rai

nfa

ll I

nte

nsi

ty (

mm

/hr)

2003

2004

Figure 4.5: Histogram of average annual maximum 30 minute rainfall

intensity (i30) within Putrajaya area for year 2003 and 2004.

95

Page 118: Thesis Ahmad Farid Abu Bakar.pdf

The results show that the calculated rainfall-runoff erosivity factor (Table

4.6, Figure 4.6) are highly varied in terms of spatial and temporal aspects

where almost all rainfall stations in year 2004 show lower R factor value

compared to 2003. In 2003, the lowest R factor value recorded was at the W-01

rainfall station (518.4) while the highest (6443.9) was recorded at the K-01

rainfall station. The lowest R factor value for 2004 was recorded also at the W-

01 rainfall station (187.6) while the highest was from the K-01 rainfall station

(4702.4).

These total annual rainfall and average annual rainfall intensity data for

each rainfall station were then inserted into the USLE GIS database and the

Thiesen area-precipitation calculation extension of Petras (2001) was utilized to

calculate the Thiesen rainfall area poligon for Putrajaya area. The rainfall

erosivity map for USLE calculations was produced using raster grid. (Figure

4.7).

Table 4.6: Calculated rainfall-runoff erosivity factor (R factor) for year 2003

and 2004 at selected station within Putrajaya catchment area.

Rainfall Station

2003 2004

K-01 6443.85 4702.40W-01 518.44 187.55 R-01 6085.53 4184.16R-02 2071.91 2361.45R-03 1674.99 1957.19R-04 1716.39 2161.04

DIDPB 571.70 1773.01

96

Page 119: Thesis Ahmad Farid Abu Bakar.pdf

Putrajaya Rainfall-Runoff Erosivity Factor

0

1000

2000

3000

4000

5000

6000

7000

K-01 W-01 R-01 R-02 R-03 R-04 DIDPB

Rainfall Station

Rai

nfa

ll-R

un

off

Ero

sivi

ty

Fac

tor

(mm

)

2003

2004

Figure 4.6: Histogram of calculated rainfall-runoff erosivity factor (R

factor) within Putrajaya area for year 2003 and 2004.

1 0 1 2 Kilometers

2003 Rainfall Erosivity (Mj.mm/ha.h.yr)0 - 10001000 - 20002000 - 30003000 - 40004000 - 50005000 - 60006000 - 7000

N

1 0 1 2 Kilometers

2004 Rainfall Erosivity (Mj.mm/ha.h.yr)0 - 10001000 - 20002000 - 30003000 - 40004000 - 50005000 - 60006000 - 7000

N

(a) (b)

Figure 4.7: Rainfall-runoff erosivity factor (R factor) map for the Putrajaya

catchment area for 2003 (a) and 2004 (b).

97

Page 120: Thesis Ahmad Farid Abu Bakar.pdf

4.2.4 Slope Length and Steepness (LS Factor) Determination Result

The LS factor is an expression of the effects of topography, specifically

hillslope length and steepness, on rates of soil loss at a particular site. In

general, the value of the LS factor increases as hillslope length and steepness

increase, under the assumption that runoff accumulates and accelerates in the

downslope direction. A visual examination of the Slope Length and Steepness

factor map (Figure 4.8) indicates that the grid cell size does have profound a

effect on the spatial pattern of the LS factor (scale effect). The LS factor map for

the 10m grid (the finest grid cell size) shows a smoother texture in comparison

to higher grid resolution size.

In term of statistical characteristics (Table 4.7), the LS factor for 10m grid

resolution size ranges from 0 to 0.330, for 20m grid from 0 to 0.274, for 30m

grid from 0 to 0.259 and for 40m grid from 0 to 0.263. This results indicate that

the maximum value of the LS factor decreases with the increase of grid cell

resolution sizes (Figure 4.9). The mean values (Figure 4.10) for the LS factor

also show a similar trend with maximum value decreasing with the increasing

grid sizes (mean LS factor for 10m grid size is 0.053, for 20m grid size is 0.048,

for 30m grid size is 0.042 and for 40m grid size is 0.039).

However, in terms of standard deviation (SD) (Figure 4.11), the SD value

of the LS factor shows an increasing trend with the increase of grid resolution

sizes. The SD value of 0.051 have been calculated for 10m grid resolution size

LS factor and is 0.054 for 20m grid, 0.056 for the 30m grid and 0.057 for the

40m grid. This result indicates that using a higher grid resolution, wider LS

factor values are dispersed from the average value and consequently, may

affect the USLE result accordingly.

98

Page 121: Thesis Ahmad Farid Abu Bakar.pdf

1 0 1 2 Kilometers

LSfac_10m0 - 0.0370.037 - 0.0730.073 - 0.110.11 - 0.1470.147 - 0.1830.183 - 0.220.22 - 0.2560.256 - 0.2930.293 - 0.33

N

1 0 1 2 Kilometers

LSfac_20m0 - 0.030.03 - 0.0610.061 - 0.0910.091 - 0.1220.122 - 0.1520.152 - 0.1830.183 - 0.2130.213 - 0.2430.243 - 0.274

N

(b) (a)

1 0 1 2 Kilometers

LSfac_30m0 - 0.0290.029 - 0.0570.057 - 0.0860.086 - 0.1150.115 - 0.1440.144 - 0.1720.172 - 0.2010.201 - 0.230.23 - 0.259

N

1 0 1 2 Kilometers

LSfac_40m0 - 0.0290.029 - 0.0580.058 - 0.0880.088 - 0.1170.117 - 0.1460.146 - 0.1750.175 - 0.2040.204 - 0.2340.234 - 0.263

N

(c) (d)

Figure 4.8: Slope Length and Steepness (LS) factor maps using 10m (a),

20m (b), 30m (c) and 40m (d) grid cell sizes for Putrajaya

catchment area.

99

Page 122: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.7: Statistical characteristics of the LS factor maps for the

Putrajaya area.

Grid Size 10m 20m 30m 40m

N 500344 125051 55604 31264 Mean 0.053 0.048 0.042 0.039

SD 0.051 0.054 0.056 0.057 Min 0.000 0.000 0.000 0.000 Max 0.330 0.274 0.259 0.263

Range 0.330 0.274 0.259 0.263

Maximum LS Factor Value for Different Grid Cell Size Resolution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10m 20m 30m 40m

Grid Cell Size

Max

imu

m L

S F

acto

r

max

Figure 4.9: Plot of maximum LS factor value versus grid cell size.

Mean LS Factor Value for Different Grid Cell Size Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

10m 20m 30m 40m

Grid Cell Size

Mea

n L

S F

acto

r

mean

Figure 4.10: Plot of mean LS factor value versus grid cell size.

100

Page 123: Thesis Ahmad Farid Abu Bakar.pdf

Standard Deviation of LS Factor Value for Different Grid Cell Size Resolution

0.048

0.049

0.05

0.051

0.052

0.053

0.054

0.055

0.056

0.057

0.058

10m 20m 30m 40m

Grid Cell Size

Sta

nd

ard

Dev

iati

on

SD

Figure 4.11: Plot of LS factor Standard Deviation value versus grid cell

size. Since the use of different grid resolution sizes greatly affect the LS factor

value, the use of suitable and correct grid resolution for USLE calculation is

needed. Many researchers had emphasized the effects of grid cell sizes on

USLE calculations using GIS. Molnar and Julien (1998) used cell sizes of 30 m

to 690 m for USLE calculation within the GRASS GIS platform and found that

the LS factor is clearly affected by changes in scale. As cell size is increased

from 30 m to 690 m, the distribution of slopes is smoothed out and tends toward

a lower mean slope for the entire watershed. The coarser resolution will

underestimate the calculation result of erosion losses for the entire basin.

Lee and Lee (2006) also found that the spatial resolution is very sensitive

to the determination of soil loss in the RUSLE model (revised USLE) and

suggested that caution needs to be taken in selecting the grid size for

estimating soil loss using the numerical modeling approach. Wu et. al (2005)

found that selection of the DEM grid size has considerable influence on soil loss

calculation with the empirical models. The determination of total soil loss from

the watershed decreases significantly with increasing DEM cell size as the

101

Page 124: Thesis Ahmad Farid Abu Bakar.pdf

spatial variability is reduced by cell aggregation. Furthermore, Ramli et. al

(2006) who studied the effect of digital elevation model on soil erosion studies

at Cameron Highlands, Malaysia, found that the different DEM resolutions

produced different slope angles, slope aspects and especially USLE LS factor

and emphasize the importance of suitable DEM scale in soil erosion studies.

4.2.5 Land Cover and Management Factor (CP Factor) Determination

Result

The land cover and management factor expressed the ratio of soil loss

under specified field conditions to the corresponding loss from the standard soil

plot. The scenario for 2003 and 2004 had been analyzed in terms of their land

use. These temporal scenarios have been classified from Spot 4 satellite

images that have been discussed in Subsection 3.3.4. The satellite images that

have been utilized in this study are found in Appendix 4.

From Figure 4.12, it has been observed that there is a slight decline in

percentage of bare area, impervious areas or pavements like parking lots and

water bodies from 2003 to 2004. The grassland or scrubland show the highest

percentage in 2004 compared to 2003 indicating that major land clearing

activities took place during 2004. This land clearing activities tally with the clear

percentages by reduction of trees or secondary forest or oil palm in 2004. The

slight decrease water bodies percentages from 2003 to 2004 suggested the

sedimentation have reduced respective water bodies. Figure 4.13 show the CP

factor raster grid maps produced for 2003 and 2004 respectively. These CP

factor raster grid maps will be used for further USLE factor calculations.

102

Page 125: Thesis Ahmad Farid Abu Bakar.pdf

Percentage of Land Use at Putrajaya for 2003 and 2004

05

101520253035404550

Bare area /construction

site

Grassland /Scrubland

Mixedresidential /

Govt Institution

Trees /secondary

forest/ Oil Palm

Road /Impervious /Pavement

Water bodies

Land Use

Pe

rce

nta

ge

(%

)

2003

2004

Figure 4.12: Percentage of land use at the Putrajaya catchment area for

2003 and 2004.

1 0 1 2 Kilometers

CP factor 20030 - 0.10.1 - 0.20.2 - 0.30.3 - 0.40.4 - 0.50.5 - 0.60.6 - 0.70.7 - 0.80.8 - 0.90.9 - 1

N

1 0 1 2 Kilometers

CP Factor 20040 - 0.10.1 - 0.20.2 - 0.30.3 - 0.40.4 - 0.50.5 - 0.60.6 - 0.70.7 - 0.80.8 - 0.90.9 - 1

N

(b) (a)

Figure 4.13: CP factor raster grid maps for 2003 (a) and 2004 (b)

103

Page 126: Thesis Ahmad Farid Abu Bakar.pdf

4.2.6 Results of Spatial and Temporal USLE erosion calculations for

different grid resolution size

The USLE potential erosion maps (Figure 4.14 and Figure 4.15) and

statistics of erosion for 2003 and 2004 (Table 4.8) clearly show the declining

trend of total gross erosion, average mean and maximum erosion with the

increase of grid cell sizes. During 2003, using the 10m grid cell size, the total

gross erosion for the Putrajaya catchment area was 11,281,090 t/yr while the

total gross erosion was 2,505,608 t/yr for the 20m grid, 992,408 t/yr for the 30m

grid and 507,837.4 t/yr for the 40m grid.

The declining trend of total gross erosion with increase in grid cell size

has also been observed in the 2004 total gross erosion result. The total gross

erosion calculated for year 2004 in 10 m grid cell size (7,812,817 t/yr) had

declined to 1,772,180 t/yr when using the 20 m grid cell size, to 713,329.2 t/yr

with the use of the 30 m grid cell size and 356,791 t/yr for 40 m grid cell size.

In terms of temporal characteristic (Figure 4.16), a 30% decrease of total

gross erosion is observed from 2003 to 2004. This large decrease in total gross

erosion corresponded to a decrease in total annual rainfall that affected the

rainfall-runoff erosivity factor (refer to Figure 4.4) even with a slight increase of

bare area (refer to Figure 4.12). These results indicate that the rainfall-runoff

erosivity factor was one of the major parameters effecting the erosion

processes in study area instead of just land use factor.

104

Page 127: Thesis Ahmad Farid Abu Bakar.pdf

( )

1 0 1 2 Kilometers

Soil erosion 2003 (Tons/ha/yr)0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

NN

1 0 1 2 Kilometers

Soil erosion 2003 (Tons/ha/yr)0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

(b) (a)

1 0 1 2 Kilometers

Soil erosion 2003 (Tons/ha/yr)0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

N

1 0 1 2 Kilometers

Soil erosion 2003 (Tons/ha/yr)0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

N

Soil erosion (t/ha/yr)

Figure 4.14: USLE erosion maps of Putrajaya catchment area for 2003 in

10m (a), 20m (b), 30m (c) and 40m (d) grid cell sizes.

0 - 1 (very low) 1 - 5 (low)

5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

(c) (d)

105

Page 128: Thesis Ahmad Farid Abu Bakar.pdf

1 0 1 2 Kilometers

Soil erosion 2004 (Tons/ha/yr)0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)> 100 (extreme)

N

1 0 1 2 Kilometers

Soil erosion 2004 (Tons/ha0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

N

(b) (a)

1 0 1 2 Kilometers

Soil erosion 2004 (Tons/ha/yr)0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

N

1 0 1 2 Kilometers

Soil erosion 2004 (Tons/ha/yr)0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)>100 (extreme)

N

106

Figure 4.15: USLE erosion maps of Putrajaya catchment area for 2004 in

10m (a), 20m (b), 30m (c) and 40m (d) grid cell sizes.

0 - 1 (very low)1 - 5 (low)5 - 10 (moderate)10 - 20 (high)20 - 50 (very high)50 - 100 (severe)

Soil erosion (t/ha/yr)

)>100 (extreme

(c) (d)

Page 129: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.8: Statistics of potential erosion maps calculated for 2003 and

2004 using different grid cell sizes.

Analysis Year 2003 Grid Size (m) 10 20 30 40 Average Mean 22.60 20.08 17.86 16.37 Total gross erosion (t/yr) 11,281,090.00 2,505,608.00 992,408.00 507,837.40Standard Deviation 51.65 50.81 49.65 49.52 Min 0 0 0 0 Max 1357.30 888.27 918.01 825.59

Analysis Year 2004 Grid Size (m) 10 20 30 40 Average Mean 15.65 14.21 12.86 11.50 Total gross erosion (t/yr) 7,812,817.00 1,772,180.00 713,329.20 356,791.00Standard Deviation 39.10 39.66 39.07 37.60 Min 0 0 0 0 Max 707.53 573.15 602.86 584.86

Total Gross Erosion in Putrajaya Catchment Area

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

10 20 30 40

Grid Cell Size

To

tal

Gro

ss E

rosi

on

(t/h

a/yr

)

2003

2004

Figure 4.16: Variation of total gross erosion in Putrajaya catchment area

with cell size for 2003 and 2004.

107

Page 130: Thesis Ahmad Farid Abu Bakar.pdf

108

4.2.7 Analysis of USLE Total Gross Erosion and Specific Erosion at

Putrajaya Wetland Catchment Area

Further detailed analysis of total gross and specific erosion at the

Putrajaya wetland area was conducted in order to investigate the variability of

specific erosion for particular wetland cell subcatchment areas. The Putrajaya

wetland catchment area had been divided into several wetland subcatchment

areas. Generally, the total gross (Table 4.9) and specific erosion (Table 4.10)

for selected wetland subcatchment results show a clear decreasing amount of

specific erosion with increasing grid cell size. The average total gross erosion

and specific erosion calculated for 2003 clearly decreased from 404,418.33

t/ha/yr and 2479.22 t/ha/yr for the 10m grid cell size to 89,940.67 t/ha/yr and

557.89 t/ha/yr for the 20m grid cell size and 35,336.31 t/ha/yr and 2214.45

t/ha/yr for the 30m grid cell size until 18,061.49 t/ha/yr and 114.19 t/ha/yr for the

40 m grid cell size.

The minimum total gross erosion was observed at the UN8

subcatchment area (10m; 25,710.46 t/ha/yr, 20m; 6011.45 t/ha/yr, 30m;

1881.24 t/ha/yr and 40m; 939.89 t/ha/yr) while the maximum total gross erosion

was at UB1 (10m; 3,921,418.00 t/ha/yr, 20m; 868,008.40 t/ha/yr, 30m;

81,050.60 t/ha/yr and 40m; 41981.75 t/ha/yr). The minimum specific erosion

was at LE2 subcatchment area (10m; 205.16 t/ha/yr, 20m; 44.35 t/ha/yr, 30m;

17.58 t/ha/yr and 40m; 7.85 t/ha/yr) while the maximum specific erosion was at

the UW2 subcatchment area (10m; 4624.66 t/ha/yr, 20m; 1040.28 t/ha/yr, 30m;

402.83 t/ha/yr and 40m; 206.07 t/ha/yr).

Page 131: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.9: Result of USLE total gross erosion (t/yr) for selected wetland subcatchment areas in Putrajaya Wetland.

2003 2004 Wetland Cell

Wetland Cell subcatchment

Area (ha) 10m 20m 30m 40m 10m 20m 30m 40m

UW1 19.94 72384.72 15277.49 6481.22 4108.99 55126.86 9978.97 5911.33 2026.68

UW2 21.84 101002.64 22719.70 8797.88 3930.00 94706.49 16956.07 8878.07 2984.36

UW3 20.17 42473.31 9033.80 4047.25 1917.38 29547.51 6127.19 2362.63 1215.94

UW7 333.93 75361.24 16901.13 6804.26 3498.64 33310.85 7113.28 3378.06 1560.26

UW8 78.84 55349.66 10624.84 3833.21 2177.52 28287.53 7744.07 2451.32 1782.15

UN1 72.80 27606.21 6027.52 1881.24 939.89 23424.73 5857.59 2539.33 893.71

UN2 13.85 825689.40 185676.32 69812.03 35703.34 530052.70 117462.51 42918.71 22145.24

UN4 32.12 240050.08 55951.84 23675.73 11392.12 273638.80 60689.53 25586.11 11751.80

UN6 239.23 180052.13 37630.37 16550.05 7012.00 190320.20 46950.56 19645.95 8352.15

UN8 924.93 25710.46 6011.45 2307.60 1537.04 24068.51 6960.25 2287.73 1483.26

UE1 31.23 63746.18 13259.08 6301.14 3106.23 27334.63 9580.73 2634.48 1333.81

UE2 41.13 109221.93 26106.43 11838.63 5344.12 114890.82 33527.77 12859.78 5809.42

UE3 285.62 149290.64 33666.52 12878.22 6561.45 123326.70 18807.77 9196.18 5529.54

LE1 75.27 746864.30 167787.20 66740.00 32363.64 510142.80 114088.95 45926.08 23224.54

LE2 78.51 57051.18 12064.64 5529.51 2460.18 20987.81 6379.86 3289.19 1178.70

UB1 116.35 3921418.00 868008.40 339716.26 176130.66 2486266.80 572262.20 222747.05 116652.31

UB2 277.95 181839.48 42244.69 13523.09 8862.19 229730.63 51491.63 21223.75 9211.93

central 197.46 127158.40 27941.73 10244.19 5209.04 122114.39 30843.37 11117.66 5713.41

Min 13.85 25710.46 6011.45 1881.24 939.89 20987.81 5857.59 2287.73 893.71

Max 924.93 3921418.00 868008.40 339716.26 176130.66 2486266.80 572262.20 222747.05 116652.31 Average (Mean)

158.95 404418.33 89940.67 35336.31 18061.49 282068.49 64234.05 25519.75 12772.69

109

Page 132: Thesis Ahmad Farid Abu Bakar.pdf

2003 2004 Wetland Cell

Wetland Cell subcatchment

Area (ha) 10m 20m 30m 40m 10m 20m 30m 40m

UW1 19.94 3630.13 766.17 325.04 206.07 2764.64 500.45 296.46 101.64

UW2 21.84 4624.66 1040.28 402.83 179.95 4336.38 776.38 406.51 136.65

UW3 20.17 2105.77 447.88 200.66 95.06 1464.92 303.78 117.14 60.28

UW7 333.93 2472.64 556.03 209.06 106.92 1587.32 351.76 128.53 66.32

UW8 78.84 3044.78 709.69 300.30 144.50 3470.81 769.78 324.53 149.06

UN1 72.80 2473.24 516.90 227.34 96.32 2614.29 644.93 269.86 114.73

UN2 13.85 1856.35 434.04 166.61 110.98 1737.80 502.55 165.18 107.09

UN4 32.12 3400.43 812.78 368.58 166.38 3576.92 1043.83 400.37 180.87

UN6 239.23 3121.95 701.36 278.98 135.28 2132.44 476.90 191.97 97.08

UN8 924.93 4436.29 984.13 381.91 200.01 2936.44 674.38 263.77 136.08

UE1 31.23 4071.67 894.71 328.02 166.80 3910.16 987.62 355.99 182.95

UE2 41.13 3233.18 804.39 305.20 168.02 4909.27 1012.96 461.28 170.19

UE3 285.62 2277.75 510.78 199.94 99.11 1455.04 330.65 134.40 65.21

LE1 75.27 589.67 129.32 51.89 28.07 370.90 82.08 29.53 16.99

LE2 78.51 205.16 44.35 17.58 7.85 98.25 19.85 7.84 3.46

UB1 116.35 290.75 64.70 25.95 16.93 74.07 23.55 10.52 5.89

UB2 277.95 312.37 66.69 25.75 12.98 127.97 28.48 10.76 5.68

central 197.46 1955.31 424.34 172.10 77.85 463.89 196.01 63.62 29.71

Min 13.85 205.16 44.35 17.58 7.85 74.07 19.85 7.84 3.46

Max 924.93 4624.66 1040.28 402.83 206.07 4909.27 1043.83 461.28 182.95 Average (mean)

158.95 2479.22 557.89 224.45 114.19 2209.86 501.76 210.27 94.13

110

Table 4.10: Result of USLE specific erosion (t/ha/yr) for selected wetland subcatchment areas in Putrajaya Wetland.

Page 133: Thesis Ahmad Farid Abu Bakar.pdf

The average mean of total gross erosion and specific erosion for 2004

decreased from 282,068.49 t/ha/yr and 2209.86 t/ha/yr (10m grid cell size) to

64,234.05 t/ha/yr and 501.76 t/ha/yr (20m grid cell size), 25,519.75 t/ha/yr and

210.27 t/ha/yr (30m grid cell size) and 12,772.68 t/ha/yr and 94.13 t/ha/yr (40m

grid cell size). The minimum total gross erosion was observed at the LE2

subcatchment area (10m; 20,987.81 t/ha/yr, 20m; 5857.51 t/ha/yr, 30m;

2287.73 t/ha/yr and 40m; 893.71 t/ha/yr) while the maximum total gross erosion

is identified at UB1 (10m; 2,486,266.80 t/ha/yr, 20m; 572,262.20 t/ha/yr, 30m;

222,747.20 t/ha/yr and 40m; 116,652.31 t/ha/yr).

The minimum specific erosion for 2004 was observed at the UB1

subcatchment area for 10m (74.07 t/ha/yr) and at LE2 for 20m (19.85 t/ha/yr),

30m (7.84 t/ha/yr) and 40m (3.46 t/ha/yr) while the maximum specific erosion

was from the UE2 subcatchment area for 10m (4909.27 t/ha/yr), at UN4 for the

20m grid size (1043.83 t/ha/yr), at UE2 for the 30m (461.28 t/ha/yr) and UE1 for

the 40m grid size (182.95 t/ha/yr).

The variability of locations for the calculated average means, minimum

and maximum of total gross erosions and specific erosions for different grid cell

sizes indicate a clear effect of the grid cell sizes to the resulting USLE

calculations. Instead of topographic effect (differences grid cell sizes) the

heterogeneity of rainfall erosivity, differences in the soil distribution

characteristics and land use in the Putrajaya catchment area also contributes to

these USLE results.

4.2.8 Sensitivity Analysis of USLE Factors on USLE Results

Sensitivity analysis was performed in a GIS environment using grid

regression analysis extension as mentioned in subsection 3.4.5 to evaluate the

111

Page 134: Thesis Ahmad Farid Abu Bakar.pdf

factors that most affected the USLE calculations. This analysis was also

performed in a temporal manner for year 2003 and 2004 using different grid cell

sizes (10 m, 20 m, 30 m and 40 m).

Generally, the factors with the highest R2 value were regarded as the

most influential and sensitive factors on the results (Balamurugan, 1990). The

regression analysis results and ANOVA tables can be found in Appendix 5.

From the results (Table 4.11, Figure 4.17), it is clearly observed that for almost

all the years analysed, using 20m, 30m and 40m grid cell sizes, the LS factor is

the most sensitive parameter compared to the other factors, except for 2004.

The CP factor was noted as the most sensitive factor for the 10m grid cell size,

in all years followed by the LS factor, R factor and K factor.

Table 4.11: Sensitivity analysis for USLE factors to USLE erosion results.

R2 value Analysis Year

Factors 10m 20m 30m 40m

R 0.057 0.047 0.038 0.030 K 0.043 0.033 0.027 0.023 LS 0.172 0.198 0.220 0.226

2003

CP 0.178 0.141 0.119 0.103 R 0.048 0.040 0.034 0.026 K 0.038 0.032 0.025 0.022 LS 0.146 0.167 0.191 0.197

2004

CP 0.244 0.202 0.172 0.145 * Note: Value in red marks the highest R2 value.

R2 values from grid regression analysis

0

0.05

0.1

0.15

0.2

0.25

0.3

R K LS CP R K LS CP

2003 2004

USLE Factors

R2 v

alu

e 10m

20m

30m

40m

Figure 4.17: Plot of R2 value from grid regression analysis of USLE factors for 2003 and 2004 using different grid sizes.

112

Page 135: Thesis Ahmad Farid Abu Bakar.pdf

It is also observed that the LS factor for the 10m grid cell size have the

lowest R2 value in comparison with the values from using 20m, 30m and 40m

grid cell sizes. Furthermore, the R2 values for LS factor also show an increasing

trend with the increase of grid cell sizes for all the years analysed. This result

indicates that the LS factor plays the main role in affecting the USLE results for

grid cell sizes from 20m and above.

The relatively low USLE result by using 20m, 30m and 40m grid cell

sizes in comparison to the USLE 10m grid cell size result was related to the

gross underestimation of the LS factor whereas a relatively high USLE result for

the 10m grid cell size is related to the relatively high CP factor. The application

of finer grid cell sizes may contributes to overestimation in the USLE results.

Thus, further determinations on sediment yield should be based on USLE using

10m grid size USLE results.

4.3 Bank Erosion at Putrajaya Wetland Area

4.3.1 Introduction

Bank erosion can be considered as one of major sources of

sedimentation at the Putrajaya wetland area. From 2002 to 2006, certain areas

within the Putrajaya wetland area were affected by bank erosion, from severe to

minimal erosion, based on site observations. Detail records on bank erosion

had been extracted from reports done by Abd Hadi et al. (2002), Yusoff et al.

(2003 to 2006) and the author’s on-site observation respectively.

113

Page 136: Thesis Ahmad Farid Abu Bakar.pdf

4.3.2 Severity and Location of Bank Erosion Within Putrajaya Wetland

Area

In general, bank erosion within Putrajaya Wetland Area can be classified

as moderate to critical depending on the failure itself. Furthermore, both bank

scour and mass failure had been identified as the major group of bank erosion

observed at the Putrajaya Wetland Area. Bank scour is defined as the direct

removal of bank materials by the physical action of flowing water and the

sediment that it carries while mass failure describes the various mechanisms of

bank erosion that result in sections of the bank sliding or toppling into the

wetland.

Table 4.12 summarizes the bank erosion in Putrajaya Wetland Area

while Figure 4.18 shows the location and severity of bank erosion respectively.

From year 2002 to 2003, moderate to major bank erosion had been observed at

the UW2, UW6 and UW8 wetland cells (Upper West (UW) wetland area) while

at the Upper North (UN) wetland area, moderate to major bank erosion had

been observed at the UN1, UN7 and UN8 wetland cells.

At the Upper East (UE) wetland area, major bank erosion had been

observed at UE1 while minor bank erosion had been observed at LE2 in the

Lower East (LE) wetland area. Major bank erosion had also been observed at

the UB1 and UB2 wetland cell in the Upper Bisa (UB) wetland area as bank

scour and mass failure. Table 4.13 shows the photographic history of bank

erosion for selected wetland cells for 2003 and 2004.

114

Page 137: Thesis Ahmad Farid Abu Bakar.pdf

115

Table 4.12: Summary of bank erosion at the Putrajaya wetland area.

Location Specific Name Type of bank erosion Erosion

Severity

UB2 UB2-03 Bank scour and mass failure Major

UB2 UB2-04 Bank scour and mass failure Major

UB2 UB2-05 Bank scour Minor

UB1 UB1-05 Bank scour and mass failure Major

UB1 UB1-01 Bank scour Moderate

UW2 UW2-GPT5 Bank scour Moderate

UW6 UW6-C3 Bank scour Moderate

UW8 UW8-06 Bank scour and mass failure Major

UW8 UW8-C2 Bank scour Moderate

UN8 UN8-17 Bank scour and mass failure Major

UN8 UN8-C4 Bank scour and mass failure Major

UN7 UN7-C1 Bank scour and mass failure Major

UN1 UN1A Bank scour Moderate

UE3 UE3-GPT2 Bank scour and

mass failure Major

UE1 UE1-01 Bank scour and mass failure Major

LE2 LE2-05 Bank scour Minor

CW CWA Bank scour and mass failure Major

Page 138: Thesis Ahmad Farid Abu Bakar.pdf

Figure 4.18: Location map of severity of bank erosion at Putrajaya Wetland Area.

116

Page 139: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.13: Historical photo evident of bank erosion for selected wetland cell from 2003 to 2004.

Location 2003 2004 Location 2003 2004

UB2-03

Major bank erosion (bank scour and mass failure)

Major bank erosion (bank scour and mass failure)

UE1

Major bank erosion (bank scour and mass failure)

Major bank erosion (bank scour and mass failure)

UB1-05

Major bank erosion (bank scour)

Major bank erosion (bank scour and mass failure)

UN8-17

Major bank erosion (bank scour)

Moderate bank erosion (bank scour)

UE3

Major bank erosion (bank scour and mass failure)

Major bank erosion (bank scour and mass failure)

UW8-06

Moderate bank erosion (bank scour)

Major bank erosion (bank scour and mass failure)

117

Page 140: Thesis Ahmad Farid Abu Bakar.pdf

Bank scour and mass failure had been observed at UW8-06, UN8-17,

UN8-C4, UN7-C1, UE1-01, UE3-GPT2, UB1-05, UB2-03, UB2-04 and CWA

while bank scour was observed at UW2-GPT5, UW6-C3, UW8-C2, UN1A, LE2-

05, UB1-01 and UB2-05. Attempts by the management (Putrajaya Corporation)

to mitigate bank erosion, were successful at UN7-C1, UE3-GPT2, UN8-17,

UN1A, UB1-01and LE2-05 and only partially successful at UW8-06, UB2-03,

UW2-GPT5 and UW6-C3. All the unsuccessful attempts were probably caused

by under-designing of the inlet culverts and lack of water buffer areas in the

waterways before inlet culverts. Waterway blockage by tree trunks, trash and

sediments could possibly have influenced bank stability and the occurrences of

bank erosion.

4.3.3 Estimation of bank erosion within the Putrajaya Wetland Area

It is not easy to determine the amount of soil eroded from bank erosion

due to the nature of bank erosion that was actively changing all the times.

Furthermore, because of the bank erosion varies in terms of their types (bank

scour and mass failure), different approaches and models used of

measurement could lead to misinterpretation of the process itself with large

systematic errors (De Rose et al., 2005). Furthermore, the study of bank

erosion needs a huge amount of data (remote sensing, soil strength, long term

water discharge data and etc.) and detailed measurement and monitoring

techniques. The irregularity nature of eroded banks is commonly attributed to

the complex interplay between bank material erosion, resuspension, and bed

load. Further studies are needed to understand this process particularly in

wetland dominated area.

118

Page 141: Thesis Ahmad Farid Abu Bakar.pdf

The estimation of the volume of bank erosion (Table 4.14) in this study is

based on the observation and measurement of scour length, width and depth of

the eroded bank. This determination is considered as a gross or rough

determination only as the amount of eroded sediment was determined without

taking any consideration the time factor. The determination value is not included

in the sediment delivery ratio (SDR) calculation due to the lack of this time

variable parameter and the roughness of measurement itself. The calculated

value is only meant to be as a rough reference only and should be further

correlated with the calculated SDR value.

Table 4.14: Estimated volumes of bank erosion based measurement of

scour length (m), width (m) and depth (m).

Location Specific

Name Erosion Severity

Maximum Length

(m)

Maximum Width

(m)

Maximum Depth

(m)

Estimated volume

(m3)

UB2 UB2-03 Major 5 4 3 60.0

UB2 UB2-04 Major 3 2 2 12.0

UB2 UB2-05 Minor 1 0.5 0.2 0.1

UB1 UB1-05 Major 4 3.2 2.5 32.0

UB1 UB1-01 Moderate 1 0.5 1.5 0.8

UW2 UW2- Moderate 1.5 0.5 0.5 0.4

UW6 UW6-C3 Moderate 0.5 1 0.5 0.3

UW8 UW8-06 Major 2 1 1 2.0

UW8 UW8-C2 Moderate 1 1 0.5 0.5

UN8 UN8-17 Major 3.5 2 2 14.0

UN8 UN8-C4 Major 2 1.5 2 6.0

UN7 UN7-C1 Major 4 3 3 36.0

UN1 UN1A Moderate 3 1.5 0.5 2.3

UE3 UE3-GPT2 Major 5 5 2.5 62.5

UE1 UE1-01 Major 3 4 3 36.0

LE2 LE2-05 Minor 1.5 0.5 1 0.8

CW CWA Major 2 3 2 12.0

119

Page 142: Thesis Ahmad Farid Abu Bakar.pdf

4.4 Wetland Annual TSS Loading and TSS Yield determination from TSS Rating Curve

4.4.1 Introduction

TSS rating curve was generated based on instantaneous water

discharge and instantaneous TSS discharge (TSS loading) data from January

2002 to May 2006. From the power regression equation generated for each

TSS rating curve, the erosion and the availability of sediment supply nearby

each respective sampling station can also been interpreted. Finally, wetland

annual TSS loading and TSS yield are determined using the generated power

equation from the respective TSS rating curve based the on extrapolated total

annual water discharge for the analysis in the year undertaken.

4.4.2 Upper West Wetland TSS Rating Curve

Generally, the plotted sediment rating curves (Figure 4.19 (a), (b), (c),

(d) and (e)) for selected stations within the Upper West wetland show R2

values above 0.65 with the sediment rating curve for UW3 records the highest

R2 value (0.85) compared to the other stations. However, in terms of the

regression coefficient value (Table 4.15), the produced TSS rating curve for

almost all the Upper West sampling stations show a general higher value of the

“a” regression coefficient in comparison with the “b” regression coefficient value

except for the UW1 TSS rating curve that has low “a” value and high “b” value.

Low “a” value and high “b” value in the UW1 TSS rating curve is due to

generally high water discharge value at UW1 and indicates the availability of

eroded material during high discharge event.

120

Page 143: Thesis Ahmad Farid Abu Bakar.pdf

UW1 TSS Rating Curve

y = 1.043x1.2818

R2 = 0.6598

0.001

0.01

0.1

1

10

0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(a)

UW2 TSS Rating Curve

y = 2.3361x1.2423

R2 = 0.6724

0.001

0.01

0.1

1

10

100

0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(b)

UW3 TSS Rating Curve

y = 3.7496x1.6339

R2 = 0.8322

0.001

0.01

0.1

1

10

100

0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(c)

121

Page 144: Thesis Ahmad Farid Abu Bakar.pdf

UW7 TSS Rating Curve

y = 2.7234x1.4122

R2 = 0.8134

0.0001

0.001

0.01

0.1

1

10

100

0.0010 0.0100 0.1000 1.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay) Series1

Power (Series1)

(d)

UW8 TSS Rating Curve

y = 10.945x1.627

R2 = 0.6035

0.00001

0.0001

0.001

0.01

0.1

1

10

0.0010 0.0100 0.1000 1.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(e)

Figure 4.19: Plot of TSS rating curve in log-log axis for UW1 (a), UW2 (b),

UW3 (c), UW7 (d) and UW8 (e) sampling stations.

Table 4.15: Regression coefficients of TSS rating curves fitted for selected

sampling stations.

Sampling Station

Power Function Equation

a b R2 N

UW1 y = 1.043x1.2818 1.04 1.28 0.66 73 UW2 y = 2.3361x1.2423 2.34 1.24 0.67 73 UW3 y = 3.7496x1.6339 3.75 1.63 0.83 73 UW7 y = 2.7234x1.4122 2.72 1.41 0.81 73 UW8 y = 10.945x1.627 10.95 1.63 0.60 73

122

Page 145: Thesis Ahmad Farid Abu Bakar.pdf

The UW8 TSS rating curve record the highest “a” regression coefficient

value (10.95) while UW3 record the lowest (1.04). Meanwhile, for the regression

coefficient “b” value, UW3 recorded the highest value (1.63) and the lowest was

observed at UW2 (1.24). The results could indicate that the UW8 surrounding

area was characterized by the highest availability of intensively weathered

material which could easily be eroded and transported (highest “a” value) while

the highest “b” value at UW3 station can be interpreted as an indicative of a

strong increase in erosive power and in sediment transport capacity when

discharge increased (Morgan, 1986; Asselman, 2000).

4.4.3 Upper North Wetland TSS Rating Curve

The TSS rating curve (Figure 4.20 (a), (b), (c) and (d)) for selected

stations at the Upper North (UN) wetland subcatchment show a relatively good

model efficiency criterion (R2) with the calculated R2 value above 0.71. The TSS

rating curve for UN1 recorded the highest R2 value (0.85) in comparison to the

other stations (UN2, 0.78; UN4, 0.77 and UN6, 0.71).

Generally, the TSS rating curve for the UN1, UN4 and UN6 sampling

stations show a higher value of “a” regression coefficient (Table 4.16) in

comparison to “b” regression coefficient while UN2 sampling station record

lower “a” regression coefficient in comparison to “b” regression coefficient. This

results indicate that the surrounding area of UN1, UN4 and UN6 sampling

stations can be characterized as the area with the greater availability of

weathered material which can easily be eroded (general high erodibility area)

and transported while at the UN2 station, with higher “b” regression coefficient

value, indicates that this wetland cell suffered increase in sediment transport

capacity when discharge increased.

123

Page 146: Thesis Ahmad Farid Abu Bakar.pdf

UN1 TSS Rating Curve

y = 1.8137x1.4141

R2 = 0.8486

0.001

0.01

0.1

1

10

100

0.0010 0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(a)

UN2 TSS Rating Curve

y = 1.2141x1.4254

R2 = 0.7754

0.001

0.01

0.1

1

10

100

0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(b)

UN4 TSS Rating Curve

y = 1.5715x1.3506

R2 = 0.7733

0.001

0.01

0.1

1

10

100

0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(c)

124

Page 147: Thesis Ahmad Farid Abu Bakar.pdf

UN6 TSS Rating Curve

y = 2.7135x1.3587

R2 = 0.7053

0.001

0.01

0.1

1

10

100

0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(d)

Figure 4.20: Plot of TSS rating curve fitted on log-log axis for UN1 (a), UN2

(b), UN4 (c), and UN6 (d) sampling stations. Table 4.16: Regression coefficients value of TSS rating curves fitted for

selected sampling stations.

Sampling Station

Power Function Equation

a b R2 N

UN1 y = 1.8137x1.4141 1.82 1.41 0.85 73 UN2 y = 1.2141x1.4254 1.21 1.43 0.76 73 UN4 y = 1.5715x1.3506 1.57 1.35 0.77 73 UN6 y = 2.7135x1.3587 2.71 1.36 0.71 71

4.4.4 Upper East Wetland TSS Rating Curve

Figure 4.21 (a), (b) and (c) show the plot of the TSS rating curve in log-

log axis for the UE1, UE2 and UE3 stations located at the Upper East (UE)

wetland subcatchment. Table 4.17 summarizes the regression coefficients of

rating curves fitted for selected sampling stations accordingly. A moderate to

strong model efficiency criterion (R2) had been observed (0.65 to 0.75) for all

TSS rating curve fitted at selected Upper East wetland sampling stations. The

TSS rating curve for the UE2 records the highest R2 value (0.77) in comparison

to the other stations (UE1, 0.75; UE3, 0.65).

125

Page 148: Thesis Ahmad Farid Abu Bakar.pdf

UE1 TSS Rating Curve

y = 1.8474x1.4236

R2 = 0.7542

0.0001

0.001

0.01

0.1

1

10

100

0.0010 0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(a)

UE2 TSS Rating Curve

y = 1.6868x1.3129

R2 = 0.7726

0.0001

0.001

0.01

0.1

1

10

0.0010 0.0100 0.1000 1.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

/Day

)

Series1

Power (Series1)

(b)

UE3 TSS Rating Curve

y = 1.6609x1.154

R2 = 0.6522

0.0001

0.001

0.01

0.1

1

10

0.0010 0.0100 0.1000 1.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(c)

Figure 4.21: Plots of TSS rating curve fitted on log-log axis for UE1 (a), UE

(2) and UE3 (c) station.

126

Page 149: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.17: Regression coefficients of rating curves fitted for selected sampling stations at the UE subcatchment.

Sampling Station

Power Function Equation

a b R2 N

UE1 y = 1.8474x1.4236 1.85 1.42 0.75 73 UE2 y = 1.6868x1.3129 1.67 1.31 0.77 73 UE3 y = 1.6609x1.154 1.66 1.15 0.65 73

The TSS rating curve for UE1 shows the highest “a” and “b” regression

coefficient values (1.85 and 1.42) while the TSS rating curve for UE3 shows the

lowest “a” and “b” regression coefficient value (1.66 and 1.15) respectively. The

result also shows an increase of “a” and “b” regression coefficient values from

UE3 to UE1 indicating that there were increasing available amounts of

sediments together with higher TSS transport capacity from upstream to

downstream wetland cells.

An increase of curve steepness had been observed from the upstream to

downstream rating curves indicating that there was an increase of bed sediment

deposition toward downstream direction within the wetland cells with the highest

sediment deposition at the UE1 wetland cell. An increase of discharge will result

in a large increment of suspended sediment respectively (Asselman, 2000).

4.4.5 Lower East Wetland TSS Rating Curve

In general, the TSS rating curves for both LE1 and LE2 sampling station

(Figure 4.22a and 4.22b) show a moderate model efficiency criterion (R2)

where the R2 values for LE1 and LE2 were 0.55 and 0.63 respectively. The

decreasing value of “a” and “b” regression coefficients (Table 4.18) towards the

downstream direction (LE2 to LE1) had been observed at Lower East wetland

subcatchment suggesting that there was a reduction of fine sediment supply in

the downstream direction.

127

Page 150: Thesis Ahmad Farid Abu Bakar.pdf

LE1 TSS Rating Curve

y = 0.5496x1.2508

R2 = 0.5454

0.0001

0.001

0.01

0.1

1

0.0010 0.0100 0.1000 1.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(a)

LE2 TSS Rating Curve

y = 4.2227x1.4758

R2 = 0.6252

0.0001

0.001

0.01

0.1

1

0.0010 0.0100 0.1000 1.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(b)

Figure 4.22: Plots of TSS rating curves fitted on log-log axis for LE1 (a)

and LE2 (b).

Table 4.18: Regression coefficients of rating curves fitted for selected

sampling stations at the LE subcatchment.

Sampling Station

Power Function Equation

A b R2 N

LE1 y = 0.5496x1.2508 0.55 1.25 0.55 73 LE2 y = 4.2227x1.4758 4.22 1.48 0.63 73

128

Page 151: Thesis Ahmad Farid Abu Bakar.pdf

The relatively high “a” regression coefficient value recorded at LE2 could

indicate the higher availability of weathered material or sediment near the LE2

area. This result was confirmed by field observations and sediment monitoring

reports (Yusoff et al., 2004) in terms of the availability of high sediment supply

near the LE2 sampling station during the year analysed.

4.4.6 Upper Bisa Wetland TSS Rating Curve

The TSS rating curves (Figure 4.23 (a) and (b)) for the UB1 and UB2

wetland show a moderate (0.59) and relatively good (0.70) model efficiency

criterion (R2) value. Decreasing value of “a” regression coefficient and

increasing “b” regression coefficient values (Table 4.19) from upstream (UB2)

to downstream (UB1) stations had been observed at the Upper Bisa wetland

subcatchment.

The decreasing “a” regression coefficient value toward downstream

(UB2 to UB1) station indicates that there was a reduction of fine sediment

supply towards the downstream direction (high availability of sediment supply at

upstream area), while the increase of “b” regression coefficient value could

indicate higher fine sediment transport capacity towards downstream direction.

4.4.7 Central Wetland TSS rating curve

The TSS rating curve for the Central Wetland (CW) sampling station

(Figure 4.24) show a moderate (0.56) model efficiency criterion (R2) value. In

terms of “a” regression coefficient and “b” regression coefficient value (Table

4.20), a relatively low “a” regression coefficient (0.34) and high “b” regression

coefficient value (1.62) had been observed from the CW TSS rating curve. This

indicate that a high amount of fine sediment had been deposited behind the CW

weir. During high discharge, this fine sediment could be flushed out resulting in

a high amount of fine sediment concentration respectively.

129

Page 152: Thesis Ahmad Farid Abu Bakar.pdf

UB1 TSS Rating Curve

y = 0.8582x1.3756

R2 = 0.5867

0.0001

0.001

0.01

0.1

1

10

0.0010 0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(a)

UB2 TSS Rating Curve

y = 1.9577x1.3363

R2 = 0.7002

0.00001

0.0001

0.001

0.01

0.1

1

10

0.0001 0.0010 0.0100 0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

(b)

Figure 4.23: Plot of TSS rating curve fitted on log-log axis for UB1 (a) and UB2 (b) sampling station.

Table 4.19: Regression coefficients of rating curves fitted for selected sampling stations at UB subcatchment.

Sampling Station

Power Function Equation

A b R2 N

UB1 y = 0.8582x1.3756 0.86 1.38 0.59 72 UB2 y = 1.9577x1.3363 1.96 1.34 0.70 70

130

Page 153: Thesis Ahmad Farid Abu Bakar.pdf

Central Wetland TSS Rating Curve

y = 0.3419x1.6235

R2 = 0.5614

0.01

0.1

1

10

0.1000 1.0000 10.0000

Q (m3/s)

TS

S L

oad

ing

(T

on

nes

/ D

ay)

Series1

Power (Series1)

Figure 4.24: The plot of TSS rating curve fitted on log-log axis for CW

sampling station.

Table 4.20: The regression coefficients of rating curves fitted for selected

sampling stations at CW subcatchment.

Sampling Station

Power Function Equation

A b R2 N

CW y = 0.3419x1.6235 0.34 1.62 0.56 72 4.4.8 Annual TSS loading and TSS yield determination based on the TSS

rating curve

The annual TSS loading (t/yr) had been determined from the TSS rating

curve fitted for selected wetland cells using the average annual water discharge

while the specific TSS yield (t/ha/yr) had been estimated after dividing the

annual TSS loading value with respect to the wetland catchment area (Table

4.21). The TSS yield is then multiplied with the correction factor (as discussed

in Material and Method chapter) to obtain actual TSS yield (Table 4.22). Figure

4.25 show the histogram of TSS yield for the selected wetland cell respectively.

131

Page 154: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.21: TSS loading (t/yr) and specific catchment TSS yield (t/ha/yr) for selected sampling stations at Putrajaya

wetland.

Total annual Discharge (m3/year)

TSS Loading (t/year)

TSS yield (t/ha/year) Sampling

Stations

Wetland Sub catchment Area

(Ha)

Wetland Cell Area

(Ha)

Power Regression Equation 2003 2004 2003 2004 2003 2004

UW 1 19.94 6.39 y = 1.043x1.2818 65.26 52.03 80643.40 60481.57 4044.30 3033.18

UW 2 21.84 5.27 y = 2.3361x1.2423 70.10 64.26 167372.35 150663.52 7663.57 6898.51

UW 3 20.17 3.73 y = 3.7496x1.6339 51.88 39.53 867816.29 558085.70 43025.10 27669.10

UW 7 333.93 2.98 y = 2.7234x1.4122 33.39 22.70 140965.72 81947.65 422.14 245.40

UW 8 78.84 2.10 y = 10.945x1.627 3.62 4.28 32369.57 42688.42 410.57 541.46

UN 1 72.8 8.21 y = 1.8137x1.4141 167.76 111.53 926410.95 521508.12 12725.43 7163.57

UN 2 13.85 3.96 y = 1.2141x1.4254 119.80 226.31 406609.72 1009571.71 29358.10 72893.26

UN 4 32.12 2.99 y = 1.5715x1.3506 171.78 160.44 598623.51 547402.16 18637.10 17042.41

UN 6 239.23 9.81 y = 2.7135x1.3587 202.57 130.50 1348254.26 743858.69 5635.81 3109.39

UE 1 31.23 3.65 y = 1.8474x1.4236 44.78 29.38 151140.22 83179.71 4839.58 2663.46

UE 2 41.13 2.51 y = 1.6868x1.3129 31.92 27.55 58082.65 48014.47 1412.17 1167.38

UE 3 285.62 4.95 y = 1.6609x1.154 21.40 17.00 20795.82 15985.97 72.81 55.97

LE 1 75.27 6.00 y = 0.5496x1.2508 7.09 7.62 2323.06 2552.85 30.86 33.92

LE 2 78.51 1.64 y = 4.2227x1.4758 3.68 3.73 10528.13 10777.55 134.10 137.28

UB 1 116.35 9.17 y = 0.8582x1.3756 76.55 75.56 122292.55 120470.99 1051.07 1035.42

UB 2 277.95 8.36 y = 1.9577x1.3363 33.12 32.57 76798.91 75302.76 276.30 270.92

CW 197.46 37.74 y = 0.3419x1.6235 450.17 333.70 2534794.57 1563319.01 12837.00 7917.14

132

Page 155: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.22: Actual / corrected TSS yield (after multiplication with correction factor, K [b,T])

Estimated TSS yield (t/ha/year)

Actual TSS yield (t/ha/year) Sampling

Stations

Wetland Cell Sub catchment Area

(Ha)

Wetland Cell Area

(Ha)

Power Regression Equation

b value

K [b,T]

2003 2004 2003 2004

UW 1 19.94 6.39 y = 1.043x1.2818 1.28 1.415 4044.30 3033.18 5722.29 4291.65

UW 2 21.84 5.27 y = 2.3361x1.2423 1.24 1.455 7663.57 6898.51 11149.41 10036.36

UW 3 20.17 3.73 y = 3.7496x1.6339 1.63 1.313 43025.10 27669.10 56487.25 36326.50

UW 7 333.93 2.98 y = 2.7234x1.4122 1.41 1.325 422.14 245.40 559.39 325.19

UW 8 78.84 2.10 y = 10.945x1.627 1.63 1.313 410.57 541.46 539.04 710.87

UN 1 72.8 8.21 y = 1.8137x1.4141 1.41 1.325 12725.43 7163.57 16862.86 9492.68

UN 2 13.85 3.96 y = 1.2141x1.4254 1.43 1.317 29358.10 72893.26 38657.65 95983.12

UN 4 32.12 2.99 y = 1.5715x1.3506 1.35 1.359 18637.10 17042.41 25326.79 23159.70

UN 6 239.23 9.81 y = 2.7135x1.3587 1.36 1.352 5635.81 3109.39 7621.88 4205.14

UE 1 31.23 3.65 y = 1.8474x1.4236 1.42 1.321 4839.58 2663.46 6391.96 3517.80

UE 2 41.13 2.51 y = 1.6868x1.3129 1.31 1.389 1412.17 1167.38 1961.14 1621.20

UE 3 285.62 4.95 y = 1.6609x1.154 1.15 1.566 72.81 55.97 114.02 87.65

LE 1 75.27 6.00 y = 0.5496x1.2508 1.25 1.444 30.86 33.92 44.58 48.99

LE 2 78.51 1.64 y = 4.2227x1.4758 1.48 1.302 134.10 137.28 174.62 178.76

UB 1 116.35 9.17 y = 0.8582x1.3756 1.38 1.340 1051.07 1035.42 1408.87 1387.88

UB 2 277.95 8.36 y = 1.9577x1.3363 1.34 1.366 276.30 270.92 377.39 370.04

CW 197.46 37.74 y = 0.3419x1.6235 1.62 1.310 12837.00 7917.14 16811.82 10368.59

Average 1.39 1.365 8386.82 8933.99 11188.88 11888.95

Maximum 1.63 1.566 43025.10 72893.26 56487.25 95983.12

Minimum 1.15 1.302 30.86 33.92 44.58 48.99

133

Page 156: Thesis Ahmad Farid Abu Bakar.pdf

134

TSS yield (tonnes/ha/yr)

1

10

100

1,000

10,000

100,000

UW1 UW2 UW3 UW7 UW8 UN1 UN2 UN4 UN6 UE1 UE2 UE3 LE1 LE2 UB1 UB2 CW

Sampling Stations

TS

S y

ield

(to

nn

es

/ha

/yr)

2003

2004

UW wetland

UNwetland

UEwetland

LEwetland

UB wetland

CW

Figure 4.25: Catchment specific TSS yields (t/ha/yr) for 2003 and 2004.

Page 157: Thesis Ahmad Farid Abu Bakar.pdf

At the UW catchment, the UW3 sampling station record the highest TSS

loading while the lowest at UW8 station for 2003 and 2004. In terms of actual

TSS yield UW3 again recorded the highest value for all the years analysed

while the lowest value was observed at UW8 in 2003 and UW7 for 2004. The

highest annual TSS loading value for the UN wetland subcatchment for 2003

was recorded at the UN6 station and for 2004 at UN2. The lowest annual TSS

loading was recorded at UN2 for 2003 and UN1 for 2004. In terms of TSS yield,

UN2 recorded the highest TSS yield in comparison to the other stations while

the lowest was recorded at UN6 station.

At the UE subcatchment, the UE1 station recorded the highest TSS

loading for 2003 and 2004 while the lowest was recorded at UE3. The highest

actual TSS yield was also recorded at UE1 while the lowest was recorded at

UE3. Site observations confirmed that the high TSS loading and TSS yields

recorded at these stations was because of the presence of bank erosion and

active land clearing activities near to this wetland cell. For the LE subcatchment

area, the upstream station, LE2, recorded the highest TSS loading and TSS

yields for 2003 and 2004 compared with the LE1 station downstream. The

location of LE2 (upstream area) and the availability of sediment supply from

active construction activities nearby were responsible these high yield

throughout the years analysed.

The highest TSS loading and TSS yields for the UB subcatchment

wetland was recorded at UB1 (downstream) and the lowest at UB2 (upstream).

Although active construction sites and bank erosion were located near to UB2

station, TSS loading and TSS yields recorded higher at the UB1 indicates that

the design of the UB2 wetland cell which is the highest and the deepest water

135

Page 158: Thesis Ahmad Farid Abu Bakar.pdf

ponding area in comparison to the UW, UN, UE and LE wetland cells, was

successful in reducing the effect of sedimentation in the UB2 wetland from bank

erosion near to the water source (Ismail et al., 2004).

In terms of temporal characteristics, average TSS yield calculated in

2004 was slight higher compared to 2003. The highest average TSS yield in

2003 was recorded at the UW and UB wetland cells while at LE and UN wetland

cell for year 2004. The actual TSS yield data for selected wetland sampling

stations obtained from their respective TSS rating curve will be used to compare

or possibly link them with the catchment erosion and sediment yield results

gathered by the USLE – SDR method and wetland reservoir sediment yield

estimated from the sedimentation survey accordingly and will be discussed

further in this chapter.

4.5 Catchment sediment yield estimation using the USLE-SDR approach

4.5.1 Introduction

The catchment sediment yield can be derived from the USLE erosion

result by multiplying it with the SDR (sediment delivery ratio). Generally, the

sediment delivery ratio is a factor that defines how much sediment is delivered

from source by erosion to the catchment outlet or reservoir. The SDR value

usually ranges from 0 to 1 while a value above 1 indicates excess

sedimentation or the availability of other sources of erosion in that particular

catchment. The method proposed by Vanoni (1975) and USDA-SCS (1972)

based on catchment area, had been applied to determine the catchment

sediment yield from the USLE 10 m grid cell size in this study for reasons

mentioned in subsection 4.2.8.

136

Page 159: Thesis Ahmad Farid Abu Bakar.pdf

4.5.2 Calculated SDR values from Vanoni (1975) and USDA-SCS (1972)

Equations

From Table 4.23, it was observed that using the equation proposed by

Vanoni (1975), the calculated SDR value had a lower value in compared to the

SDR value proposed by USDA-SCS (1972). The SDR values calculated using

Vanoni’s (1975) equation ranged from 0.41 (UE3 and UW7) to 0.60 (UN2) while

the calculated SDR values from the equation proposed by the USDA SCS

(1972) ranged from 0.50 (UE3 and UW7) to 0.70 (UN2). The mean average

SDR value using Vanoni’s (1975) equation was 0.49 and 0.58 using the USDA-

SCS equation. The calculated SDR value is then been multiplied with the USLE

erosion to determine the catchment sediment yield.

Table 4.23: Calculated SDR values from Vanoni (1975) and USDA-SCS (1972) equations.

wetland cell

subcatchment Area (Ha)

Area (km2)

SDR (Vanoni, 1975)

SDR (USDA SCS, 1972)

UW1 19.94 0.1994 0.58 0.68 UW2 21.84 0.2184 0.57 0.67 UW3 20.17 0.2017 0.58 0.67 UW7 333.93 3.3393 0.41 0.50 UW8 78.84 0.7884 0.49 0.58 UN1 72.8 0.728 0.49 0.59 UN2 13.85 0.1385 0.60 0.70 UN4 32.12 0.3212 0.54 0.64 UN6 239.23 2.3923 0.42 0.51 UE1 31.23 0.3123 0.55 0.64 UE2 41.13 0.4113 0.53 0.62 UE3 285.62 2.8562 0.41 0.50 LE1 75.27 0.7527 0.49 0.58 LE2 78.51 0.7851 0.49 0.58 UB1 116.35 1.1635 0.46 0.56 UB2 277.95 2.7795 0.42 0.51 CW 197.46 1.9746 0.43 0.52

137

Page 160: Thesis Ahmad Farid Abu Bakar.pdf

138

4.5.3 Result of catchment sediment yield determination using the USLE-

SDR approach.

Generally, the USLE gross and specific sediment yield determination

using the Vanoni (1975) SDR equation have a slightly lower value compared to

the USLE sediment yield determination using USDA-SCS (1972) SDR equation.

Table 4.24 shows the USLE gross catchment sediment yield determined from

the Vanoni (1975) and USDA-SCS (1972) SDR equation while Table 4.25

shows the USLE specific catchment sediment yield. The highest gross

catchment sediment yield using Vanoni (1975) SDR equation in 2003, was from

the UW7 subcatchment area (335,482 t/yr) while the lowest (7,843 t/yr) was

from LE2. In 2004, the highest gross sediment yield value was from the UN6

wetland subcatchment area (216,097 t/yr) while the lowest was again from LE2

(3,756 t/yr). The highest gross catchment sediment yield, using the USDA-SCS

(1972) SDR equation in 2003 was from the UW7 subcatchment area (409,000

t/yr) while the lowest (9,356 t/yr) was from LE2. In 2004, the highest gross

sediment yield value was from the UN6 wetland subcatchment area (262,559

t/yr) while the lowest was from LE2 (4,480 t/yr).

The highest specific catchment sediment yield using the Vanoni (1975)

SDR equation in 2003 was from the UE3 subcatchment area (6,553 t/ha/yr)

while the lowest (76 t/ha/yr) was from LE1. In 2004, the highest specific

sediment yield was from the UN6 wetland subcatchment area (4,186 t/ha/yr)

while the lowest was again from the LE1 subcatchment (48 t/ha/yr). The highest

specific catchment sediment yield using the USDA-SCS (1972) SDR equation in

2003 was from the UW7 subcatchment area (7,971 t/ha/yr) while the lowest (88

t/ha/yr) was from UE1. In 2004, the highest gross sediment yield value was from

UN6 (5,092 t/ha/yr) while the lowest was from the LE1 (57 t/ha/yr).

Page 161: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.24: Gross sediment yields determined using Vanoni (1975) and USDA-SCS (1972) SDR equation.

Gross Sediment Yield

(t/yr)

Vanoni (1975) equation USDA-SCS (1972) equation Wetland

cell

Wetland Cell Sub

catchment area (ha)

Wetland Cell area (ha)

2003 2004 2003 2004

UW 1 19.94 6.39 41830.32 31857.19 48886.23 37230.84

UW 2 21.84 5.27 57708.00 54110.69 67534.29 63324.44

UW 3 20.17 3.73 24509.69 17050.71 28648.89 19930.25

UW 7 333.93 2.98 335482.34 215363.46 409000.66 262558.66

UW 8 78.84 2.10 116820.33 133166.27 139369.94 158871.12

UN 1 72.8 8.21 88499.69 93546.67 105456.47 111470.47

UN 2 13.85 3.96 15550.29 14557.20 18074.23 16919.95

UN 4 32.12 2.99 59466.56 62553.02 69996.12 73629.09

UN 6 239.23 9.81 316373.16 216097.48 383779.15 262138.88

UE 1 31.23 3.65 69475.78 66719.88 81743.18 78500.66

UE 2 41.13 2.51 70198.64 106589.76 82935.52 125929.47

UE 3 285.62 4.95 269544.83 172186.46 327844.09 209428.29

LE 1 75.27 6.00 21725.12 13665.01 25900.67 16291.42

LE 2 78.51 1.64 7842.65 3755.77 9355.91 4480.46

UB 1 116.35 9.17 15680.79 3994.94 18817.16 4793.99

UB 2 277.95 8.36 36095.40 14787.32 43884.47 17978.29

CW 197.46 37.74 167521.36 39744.07 202629.13 48073.31

Table 4.25: Specific sediment yields determined using Vanoni (1975) and

USDA-SCS (1972) SDR equation.

Specific Sediment Yield (t/yr)

Vanoni (1975) equation USDA-SCS (1972) equation Wetland

cell

Wetland Cell Sub

catchment area (ha)

Wetland Cell area (ha)

2003 2004 2003 2004

UW 1 19.94 6.39 2097.81 1597.65 2451.67 1867.14 UW 2 21.84 5.27 2642.31 2477.60 3092.23 2899.47 UW 3 20.17 3.73 1215.16 845.35 1420.37 988.11 UW 7 333.93 2.98 1004.65 644.94 1224.81 786.27 UW 8 78.84 2.10 1481.74 1689.07 1767.76 2015.11 UN 1 72.8 8.21 1215.66 1284.98 1448.58 1531.19 UN 2 13.85 3.96 1122.76 1051.06 1305.00 1221.66 UN 4 32.12 2.99 1851.39 1947.48 2179.21 2292.31 UN 6 239.23 9.81 1322.46 903.30 1604.23 1095.76 UE 1 31.23 3.65 75.11 72.14 88.38 84.87 UE 2 41.13 2.51 2247.80 3413.06 2655.64 4032.32 UE 3 285.62 4.95 6553.48 4186.40 7970.92 5091.86 LE 1 75.27 6.00 76.06 47.84 90.68 57.04 LE 2 78.51 1.64 104.19 49.90 124.30 59.53 UB 1 116.35 9.17 199.73 50.88 239.68 61.06 UB 2 277.95 8.36 310.23 127.09 377.18 154.52 CW 197.46 37.74 602.70 142.99 729.01 172.96

139

Page 162: Thesis Ahmad Farid Abu Bakar.pdf

4.6 Wetland Reservoir Sediment Yield Estimation from Sedimentation

Survey Data

4.6.1 Introduction

In general, reservoir sedimentation survey exercise give valuable data on

how much sediment was deposited in the particular water bodies. Since the

amounts of deposited sediment may differ from year to year, the availability of

temporal sedimentation data can give an understanding on the annual amounts

of sediment deposited and thus, the rate of sedimentation can be assessed.

The reservoir sediment yield is then estimated from the particular data

respectively.

4.6.2 Spatial and temporal variability of wetland sediment accumulation

Table 4.26 summarizes the sediment accumulation (in volume, m3, and

weight, tonnes) and annual sedimentation rate calculated for selected Putrajaya

wetland cell from 1998 to 2004 while Figure 4.26 shows the comparison of

sediment accumulations 1998 to 2001 (2001 sedimentation survey), 2001 to

2002 (2002 sedimentation survey) and 2002 to 2004 (2004 sedimentation

survey). Figure 4.27 shows the annual sedimentation rate in volume, m3, and

weight, tonnes, in selected Putrajaya Wetland cells. In 2001 sedimentation

survey (3 years of sediment accumulation), the highest sediment accumulation

was detected at the CW wetland cell (52,284 m3) while the lowest sediment

accumulation had been observed at LE1 (2,150 m3) with an average sediment

accumulation of 12,692 m3. The highest sediment accumulation in 2002

sedimentation survey (1 year sediment accumulation) was recorded at the UE3

wetland cell (54,738 m3) while the lowest was detected at the UW7 cell (-2,690

m3) with the average sediment accumulation value of 11,354 m3.

140

Page 163: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.26: Sediment accumulations (in volume, m3, and weight, tonnes) and annual sedimentation rates for selected Putrajaya

wetland cells from 1998 to 2004.

Sediment Accumulation in volume (m3)

Sediment Accumulation in weight (Tonnes)

Annual Sedimentation rate Wetland cell

Wetland Sub

catchment area (ha)

Wetland Cell area (ha)

Average Bulk

Density (g/cm3)* 1998-2001 2001-2002 2002-2004 1998-2001 2001-2002 2002-2004 (m3/yr) (Tonnes/yr)

UW 1 19.94 6.39 1.57 6,920.98 3,204.61 13,581.58 10,890.48 5,042.59 21,371.25 3951.19 6217.39

UW 2 21.84 5.27 1.38 6,462.82 3,745.87 8,811.27 8,918.95 5,169.45 12,159.90 3169.99 4374.72

UW 3 20.17 3.73 1.35 12,135.80 1,226.14 1,738.12 16,369.52 1,653.89 2,344.48 2516.68 3394.65

UW 7 333.93 2.98 1.43 12,197.76 -2,690.13 9,566.18 17,451.59 -3,848.82 13,686.54 3178.97 4548.22

UW 8 78.84 2.10 1.59 5,630.07 829.10 6,553.77 8,933.07 1,315.51 10,398.68 2168.82 3441.21

UN 1 72.8 8.21 1.49 21,386.75 21,325.14 19,195.14 31,814.47 31,722.82 28,554.28 10317.84 15348.59

UN 2 13.85 3.96 1.50 2,861.44 2,847.37 1,524.31 4,285.16 4,264.09 2,282.73 1205.52 1805.33

UN 4 32.12 2.99 1.68 1,100.96 3,410.63 761.33 1,853.75 5,742.67 1,281.89 878.82 1479.72

UN 6 239.23 9.81 1.47 24,963.26 9,839.42 55,481.21 36,781.42 14,497.61 81,747.24 15047.31 22171.04

UE 1 31.23 3.65 2.13 5,349.36 12,676.06 20,839.00 11,420.82 27,063.23 44,491.01 6477.40 13829.18

UE 2 41.13 2.51 1.38 2,841.12 15,759.51 2,213.02 3,912.30 21,701.26 3,047.39 3468.94 4776.82

UE 3 285.62 4.95 1.40 20,963.38 54,737.68 33,535.22 29,319.38 76,556.12 46,902.36 18206.05 25462.98

LE 1 75.27 6.00 1.44 2,149.62 9,308.29 7,047.28 3,098.75 13,418.22 10,158.90 3084.20 4445.98

LE 2 78.51 1.64 1.42 7,166.48 1,107.50 5,180.17 10,143.40 1,567.55 7,331.98 2242.36 3173.82

UB 1 116.35 9.17 1.41 17,107.24 11,484.33 14,295.79 24,153.07 16,214.30 20,183.69 10721.84 10091.84

UB 2 277.95 8.36 1.55 14,241.86 26,337.44 20,289.65 22,011.32 40,705.49 31,358.41 15217.24 15679.20

CW 197.46 37.74 1.69 52,284.35 17,875.13 25,636.66 88,360.55 30,208.97 43,325.96 15966.02 26982.58

141

Page 164: Thesis Ahmad Farid Abu Bakar.pdf

Wetland Sediment Accumulation (m3)

-10,000.00

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

UW 1 UW 2 UW 3 UW 7 UW 8 UN 1 UN 2 UN 4 UN 6 UE 1 UE 2 UE 3 LE 1 LE 2 UB 1 UB 2 CW

Wetland Cell

m3

1998-2001

2001-2002

2002-2004

(a)

Wetland Sediment Accumulation (tonnes)

-20,000.00

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

UW 1 UW 2 UW 3 UW 7 UW 8 UN 1 UN 2 UN 4 UN 6 UE 1 UE 2 UE 3 LE 1 LE 2 UB 1 UB 2

Wetland Cell

ton

ne

s

1998-2001

2001-2002

2002-2004

(b) Figure 4.26: Sediment accumulations from 1998 to 2001 (2001

sedimentation survey), 2001 to 2002 (2002 sedimentation survey) and 2002 to 2004 (2004 sedimentation survey) in volume (a) and weight (b).

142

Page 165: Thesis Ahmad Farid Abu Bakar.pdf

Wetland Annual Sedimentation rate (in volume, m3/yr, and weight, tonnes/yr)

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

20000.00

UW 1 UW 2 UW 3 UW 7 UW 8 UN 1 UN 2 UN 4 UN 6 UE 1 UE 2 UE 3 LE 1 LE 2 UB 1 UB 2 CW

Wetland Cell

m3/y

r

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

ton

nes

/yr

Sedimentation rate (m3/yr)

Sedimentation rate (tonnes/yr)

Figure 4.27: Wetland annual sedimentation rate (in volume, m3/yr and weight, tonnes/yr) from 1998 to 2004.

143

Page 166: Thesis Ahmad Farid Abu Bakar.pdf

The negative value of sediment volume is due to desilting exercise

carried out in the particular wetland cell before the sedimentation survey

exercise and was confirmed by field observation and in the sediment monitoring

record (Yusoff et al., 2004). The highest sediment accumulation in the 2004

sedimentation survey (2 years sediment accumulation) was observed at the

UN6 wetland cell (55,481m3) while the lowest was observed at the UN4

(761m3). The average sediment accumulation for the selected wetland cells was

14,485m3.

Bulk density measurement had been conducted for sediment samples

collected within the wetland cells. It had been observed that the bulk densities

of the samples ranged from 1.35 g/cm3 (UW3 cell) to 2.13 g/cm3 (UE1 cell) with

an average bulk density of 1.52 g/cm3. These bulk density values were then

multiplied with the measured sedimentation volume to derive the sediment

accumulations in tonnes (t). From this calculation, it has been observed that

during the2001 sedimentation survey, the highest sediment accumulation (in t)

was recorded at the CW wetland cell (88,361 t) while the lowest was recorded

at the UN4 (1,854 t). In the 2002 sedimentation survey, the highest sediment

accumulation was recorded at the UE3 wetland cell (76,556 t) while the lowest

at the UW7 (-3,849 t). During 2004 sedimentation survey, the highest sediment

accumulation was recorded at the UN6 (81,747 t) while the lowest sediment

accumulation was at the UN4 (1,282 t).

In terms of annual sedimentation rate (rate of sediment accumulation

from 1998 to 2004), the highest sedimentation rate was observed at the UE3

wetland cell (18,206 m3/yr or 25,463 t/yr) while the lowest was from the UN4

wetland cell (879 m3/yr or 1480 t/yr).

144

Page 167: Thesis Ahmad Farid Abu Bakar.pdf

145

4.6.3 Wetland Specific Reservoir Sediment Yield

Table 4.27 shows the calculated wetland specific reservoir sediment

yield for 2001, 2002 and 2004 sedimentation survey data. Figure 4.28 shows

the spatial variability of the calculated wetland specific reservoir sediment yield

and Figure 4.29 shows the average annual wetland specific reservoir sediment

yield for selected wetland cells. In 2001, the highest reservoir sediment yield

was from the UW3 wetland cell (271 t/ha/yr) while the lowest was from the LE1

(14 t/ha/yr). The highest wetland sediment yield for 2002 was observed from the

UE1 wetland cell (867 t/ha/yr) while the lowest was from the UW7 (-12 t/ha/yr).

Again, the negative value of sediment volume is due to the desilting exercise

that took place in the UW7 wetland cell.

In the 2004 sedimentation survey, the highest wetland sediment yield

was also for the UE1 wetland cell (712 t/ha/yr) and the lowest wetland reservoir

sediment yield was from the UW7 and UN4 wetland cell (20 t/ha/yr). The

highest average annual reservoir sediment yield was calculated at UE1 wetland

cell (536 t/ha/yr) while the lowest at UW7 (9.75 t/ha/yr). These results indicate

that UE1 cell was continuously receiving high amounts of sediment from

surrounding area from 1998 to 2004 and this had been confirmed with on-site

field observations and sediment monitoring report that there was aggressive

land clearing activities and major embankment failures near the UE1 wetland

cell. The lowest reservoir sediment yield value at UW7 corresponded to the

desilting exercise done at UW7 and the relatively good sediment filtering

process in the UW7’s subcatchment area. The result also shows the areal effect

as UW7 has the largest wetland subcatchment area compared to the other

wetland cells.

Page 168: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.27: Wetland specific reservoir sediment yields for 2001, 2002 and 2004.

Wetland cell

Wetland Cell Sub

catchment area (ha)

Wetland Cell area (ha)

Average Bulk

Density (g/cm3)*

2001 Sediment

yield (t/ha/yr)

2002 Sediment

yield (t/ha/yr)

2004 Sediment

yield (t/ha/yr)

Average Annual

Sediment yield

(t/ha/yr)

UW 1 19.94 6.39 1.57 182 253 536 320.75 UW 2 21.84 5.27 1.38 136 237 278 212.75 UW 3 20.17 3.73 1.35 271 82 58 144.75 UW 7 333.93 2.98 1.43 17 -12 20 9.75 UW 8 78.84 2.10 1.59 38 17 66 41.25 UN 1 72.8 8.21 1.49 146 436 196 247.25 UN 2 13.85 3.96 1.50 103 308 82 155.75 UN 4 32.12 2.99 1.68 19 179 20 66.00 UN 6 239.23 9.81 1.47 51 61 171 94.00 UE 1 31.23 3.65 2.13 122 867 712 536.00 UE 2 41.13 2.51 1.38 32 528 37 178.25 UE 3 285.62 4.95 1.40 34 268 82 118.25 LE 1 75.27 6.00 1.44 14 178 67 79.50 LE 2 78.51 1.64 1.42 43 20 47 37.50 UB 1 116.35 9.17 1.41 69 139 87 106.25 UB 2 277.95 8.36 1.55 26 146 56 78.25 CW 197.46 37.74 1.69 149 153 110 137.25

146

Page 169: Thesis Ahmad Farid Abu Bakar.pdf

Wetland Specific Reservoir Sediment Yield (t/ha/yr)

-200

0

200

400

600

800

1,000

UW 1 UW 2 UW 3 UW 7 UW 8 UN 1 UN 2 UN 4 UN 6 UE 1 UE 2 UE 3 LE 1 LE 2 UB 1 UB 2

Wetland Cells

t/h

a/yr

2001

2002

2004

Figure 4.28: Spatial variability of wetland specific reservoir sediment yield for 2001, 2002 and 2004.

Average Annual Wetland Reservoir Sediment Yield (t/ha/yr)

0

100

200

300

400

500

600

UW 1 UW 2 UW 3 UW 7 UW 8 UN 1 UN 2 UN 4 UN 6 UE 1 UE 2 UE 3 LE 1 LE 2 UB 1 UB 2 CW

Wetland Cells

t/h

a/yr

Average AnnualSediment yield(t/ha/yr)

Figure 4.29: Average annual wetland specific reservoir sediment yield for selected wetland cells.

147

Page 170: Thesis Ahmad Farid Abu Bakar.pdf

148

The results also show the variability of wetland sediment yields in terms

of spatial and temporal behaviour due to the processes contributing to sediment

accumulation. The results of the reservoir specific sediment yield from this

analysis will then be compared to the wetland subcatchment TSS yields, USLE

specific erosion and USLE catchment sediment yields to further analyze the

erosion and sedimentation processes that took place in study area.

4.7 Comparative analysis between wetland catchment TSS yield, wetland

reservoir sediment yield and USLE-SDR sediment yield result

4.7.1 Introduction

Comparative analysis was performed between the three different

sediment yield values obtained from the estimation of TSS yield using the TSS

rating curve, the catchment sediment yield from USLE-SDR and wetland

reservoir sediment yield from sedimentation survey data. The values of

catchment sediment yield using USLE-SDR approach from the 10m grid cell

size results were used for reasons as mentioned in subsection 4.2.8. Since only

sedimentation survey data for 2001, 2002 and 2004 were available, the value of

TSS yields 2003 have to be combined with the 2004 estimated value and this

procedure was also repeated for the catchment sediment yield value in the

USLE-SDR results.

4.7.2 Comparative analysis for 2003 and 2004

The results of the catchment sediment yield (Table 4.28) using both the

USLE-SDR (Vanoni, 1975) and USLE-SDR (USDA-SCS, 1972) approaches

underestimated the specific TSS yield values at almost all the selected

sampling stations in this study (except for UW7, UW8, UE2, UE3 and LE1

station). The % underestimates for the comparison between USLE-SDR

Page 171: Thesis Ahmad Farid Abu Bakar.pdf

149

Table 4.28: Comparison between wetland specific TSS yield, wetland specific reservoir sediment yield and USLE-SDR specific sediment yield for 2004 (accumulation of year 2003 and 2004 value).

Note: -ve % value= % underestimate, +ve % value= % overestimate

t/ha/year % overestimate or underestimate

Wetland cell

Wetland Cell Sub

catchment area (ha)

Wetland Cell area

(ha) TSS yield

Wetland reservoir sediment

yield

USLE-SDR Vanoni

sediment yield

USLE-SDR USDA-SCS sediment

yield

USLE-SDR Vanoni

vs. TSS yield

USLE-SDR USDA-SCS

vs. TSS yield

USLE-SDR Vanoni vs.

wetland reservoir sediment yield

USLE-SDR USDA-SCS vs.

wetland reservoir sediment yield

UW 1 19.94 6.39 10013.94 535.89 3695.46 4318.81 -63.10 -56.87 589.59 705.91

UW 2 21.84 5.27 21185.77 278.39 5119.90 5991.70 -75.83 -71.72 1739.11 2052.27

UW 3 20.17 3.73 92813.75 58.12 2060.51 2408.48 -97.78 -97.41 3445.27 4043.98

UW 7 333.93 2.98 884.58 20.49 1649.58 2011.08 86.48 127.35 7950.66 9714.93

UW 8 78.84 2.10 1249.91 65.95 3170.81 3782.86 153.68 202.65 4707.90 5635.95

UN 1 72.8 8.21 26355.54 196.11 2500.64 2979.77 -90.51 -88.69 1175.12 1419.44

UN 2 13.85 3.96 134640.77 82.41 2173.83 2526.66 -98.39 -98.12 2537.82 2965.96

UN 4 32.12 2.99 48486.49 19.95 3798.87 4471.52 -92.17 -90.78 18941.95 22313.63

UN 6 239.23 9.81 11827.02 170.85 2225.77 2699.99 -81.18 -77.17 1202.76 1480.33

UE 1 31.23 3.65 9909.76 712.31 147.25 173.25 -98.51 -98.25 -79.33 -75.68

UE 2 41.13 2.51 3582.34 37.05 5660.85 6687.96 58.02 86.69 15178.95 17951.17

UE 3 285.62 4.95 201.67 82.11 10739.88 13062.79 5225.47 6377.31 12979.87 15808.89

LE 1 75.27 6.00 93.57 67.48 123.91 147.72 32.42 57.87 83.62 118.91

LE 2 78.51 1.64 353.38 46.69 154.09 183.82 -56.40 -47.98 230.03 293.70

UB 1 116.35 9.17 2796.75 86.74 250.61 300.74 -91.04 -89.25 188.92 246.71

UB 2 277.95 8.36 747.43 56.41 437.32 531.70 -41.49 -28.86 675.25 842.56

CW 197.46 37.74 27180.41 109.71 745.69 901.97 -97.26 -96.68 579.69 722.14

Page 172: Thesis Ahmad Farid Abu Bakar.pdf

(Vanoni, 1975) catchment sediment yields and TSS yields range from -98.51 %

(UE1) to -41.49 % (UB2) while % overestimates range from 32.42 % (LE1) to

5225.47 % (UE3). The % underestimates between USLE-SDR (USDA SCS,

1972) catchment sediment yield and TSS yield range from -98.25 % (UE1) to -

28.86 % (UB2) while % overestimates ranges from 57.87 % (LE1) to 6377.31 %

(UE3).

Comparisons between the wetland catchment specific sediment yields

using USLE-SDR (Vanoni, 1975) and USLE-SDR (USDA-SCS, 1972) with

wetland reservoir specific sediment yields show that both catchment specific

sediment yields determined using the USLE-SDR approach overestimated the

wetland reservoir specific sediment yield values at almost all stations except for

UE1 station (-79.33 % underestimate for Vanoni (1975) USLE SDR and -75.68

% underestimate for USDA SCS (1972)). The % overestimates for the

comparison between USLE-SDR (Vanoni, 1975) catchment sediment yield and

wetland reservoir sediment yields ranges from 83.62 % (LE1) to 18941.95 %

(UN4) while the comparison between USLE-SDR (USDA SCS, 1972)

catchment sediment yields and wetland reservoir sediment yields ranges from

118.91 % (LE1) to 22313.63 % (UN4).

The clearly overestimate USLE-SDR (Vanoni, 1975) and USLE-SDR

(USDA-SCS, 1972) to wetland reservoir sediment yield value for all station is

expected due to the differences of these two measurement approach and

definition whereas the USLE-SDR approach measure the portion of sediment

leaving their respective watershed (catchment) while the reservoir sediment

yield measure the sediment trapping within their respective reservoir

accumulated from the entire watershed.

150

Page 173: Thesis Ahmad Farid Abu Bakar.pdf

The overestimated and underestimated values using USLE-SDR

(Vanoni, 1975) and USLE-SDR (USDA-SCS, 1972) to TSS yield could be

related to the overestimation and underestimation of the LS factor in the USLE

calculation as mentioned in the sensitivity analysis (subsection 4.2.8) where

USLE calculations in GIS tend to underestimate USLE value when using larger

grid cell sizes. The availability of wetlands and their respective weirs that act as

a filtration system requires a reduction factor to be applied for calculating the

resulting USLE-SDR (Vanoni, 1975) and USLE-SDR (USDA-SCS, 1972)

catchment sediment yields. Comparative study between USLE-SDR approach

and suspended sediment yield values done by Boomer et. al (2008) at 78

catchments of the Chesapeake Bay watershed and 23 catchments monitored

by the USGS (United States Geological Survey) found that the models

prediction exceeded observed sediment yields by more than 100% and failed to

identify catchments with higher yields (r range, -0.28 – 0.00; p > 0.14). Lack of

calibration parameters of runoff and water discharge in USLE-SDR also

contributes to large discrepancies from estimated values (Bhattarai and Dutta,

2008).

The overestimated and underestimated results for the USLE-SDR

(Vanoni, 1975) and USLE-SDR (USDA-SCS, 1972) for TSS yield and wetland

reservoir sediment yields value have also indicated that there was a lack of

SDR parameter estimations when using the SDR equations proposed by

Vanoni (1975) and USDA-SCS (1972). The results suggest that this SDR value

not be suitable for wetland sub-environment with sediment trapping facilities

and the availability of bank erosion with the observed general increase

catchment sediment yield with the decrease of catchment area. Thus, the new

151

Page 174: Thesis Ahmad Farid Abu Bakar.pdf

152

SDR value specifically for the study area is needed as a linkage between TSS

yields, reservoir sediment yields and erosion estimation from USLE and will be

discussed further in subsection 4.7.3.

4.7.3 Linkages between wetland specific TSS yield, wetland specific

reservoir sediment yield and USLE total gross erosion

The linkages between wetland TSS yield, wetland reservoir sediment

yield and USLE total gross erosion could be analyzed in terms of sediment

delivery ratio (SDR) that is defined as the portion of sediment transported from

the source area to the catchment outlet or particular reservoir.

Generally, the calculated SDR values (Table 4.29) show an increasing

trend (Figure 4.30) of SDR values towards the downstream catchment wetland

cells except for the LE wetland subcatchment. The SDR values for stations

within the UW subcatchment range from 0.001 (UW7) to 1.290 (UW3) for 2003

and 2004 while at the UN subcatchment, the SDR values range between 0.01

(UN6) to 2.706 (UN2). The SDR values range between 0.0003 (UE3) to 0.043

(UE1) for stations within the UE subcatchment and the SDR values range from

0.002 (LE1) to 0.017 (LE2) for the stations within the LE subcatchment. The

UB1 station has a higher SDR value (0.068) than UB2 (0.007) while the SDR

value was 0.057 for the CW wetland. The highest SDR value was from the UN2

wetland subcatchment area at 2.706.

The reduction of SDR values towards the downstream stations indicates

a decreasing amount of sediment transported from upstream to downstream or

decreasing transport capacity of sediment towards the downstream direction

and vice-versa for the increase of SDR values. Other factors that could

influence the calculated SDR values include hydrological inputs (mainly rainfall),

Page 175: Thesis Ahmad Farid Abu Bakar.pdf

Table 4.29: SDR values for Putrajaya wetland subcatchment areas.

Wetland cell

Wetland Cell Sub

catchment area (ha)

Wetland Cell area (ha)

TSS yield

(t/ha/year)

Wetland reservoir sediment

yield (t/ha/year)

TSS yield + wetland reservoir sediment

yield (t/ha/year)

USLE total gross

erosion (t/ha/year)

SDR value

UW 1 19.94 6.39 10013.94 535.89 10549.83 127512 0.083

UW 2 21.84 5.27 21185.77 278.39 21464.15 195709 0.11

UW 3 20.17 3.73 92813.75 58.12 92871.87 72020.8 1.29

UW 7 333.93 2.98 884.59 20.49 905.08 1355742 0.001

UW 8 78.84 2.10 1249.91 65.95 1315.86 513689 0.003

UN 1 72.8 8.21 26355.54 196.11 26551.65 370372 0.072

UN 2 13.85 3.96 134640.78 82.41 134723.19 49779 2.706

UN 4 32.12 2.99 48486.48 19.95 48506.44 224113 0.216

UN 6 239.23 9.81 11827.02 170.85 11997.88 1257007 0.01

UE 1 31.23 3.65 9909.76 712.31 10622.07 249273 0.043

UE 2 41.13 2.51 3582.34 37.05 3619.39 334899 0.011

UE 3 285.62 4.95 201.67 82.11 283.77 1066159 0.0003

LE 1 75.27 6.00 93.56 67.48 161.04 72302 0.002

LE 2 78.51 1.64 353.38 46.69 400.08 23820.7 0.017

UB 1 116.35 9.17 2796.75 86.74 2883.48 42446.5 0.068

UB 2 277.95 8.36 747.43 56.41 803.84 122393 0.007

CW 197.46 37.74 27180.41 109.71 27290.12 477696 0.057

153

Page 176: Thesis Ahmad Farid Abu Bakar.pdf

154

The SDR value calculated at UW subcatchment area

0

0.2

0.4

0.6

0.8

1

1.2

1.4

UW 1 UW 2 UW 3 UW 7 UW 8

Wetland

SD

R v

alu

e

The SDR value calculated at UN subcatchment area

0

0.5

1

1.5

2

2.5

3

UN 1 UN 2 UN 4 UN 6

Wetland

SD

R v

alu

e

The SDR value calculated at UE subcatchment area

-0.01

0

0.01

0.02

0.03

0.04

0.05

UE 1 UE 2 UE 3

Wetland

SD

R v

alu

e

Figure 4.30: Trends of SDR values for UW subcatchment wetland (a), UN subcatchment wetland (b), UE subcatchment wetland (c), LE subcatchment wetland (d) and UB subcatchment wetland (e).

(c)

The SDR value calculated at LE subcatchment area

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

LE 1 LE 2

Wetland

SD

R v

alu

e

The SDR value calculated at UB subcatchment area

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

UB 1 UB 2

Wetland

SD

R v

alu

e

(e)

(b)

(d)

(a)

Page 177: Thesis Ahmad Farid Abu Bakar.pdf

landscape properties (e.g., vegetation, topography, and soil properties) and

their complex interactions (Walling, 1983; Richards, 1993).

The decreasing trend towards the downstream direction at the LE

subcatchment wetland indicates a relatively good sediment filtering capability

for wetland station within their respective subcatchment. The increasing SDR

values toward the downstream direction for UW, UE and UB subcatchment

wetland cell could be related to the availability of bank erosion at the UW2, UE1

and UB1 downstream stations respectively.

The larger than 1 SDR value calculated primarily at UW3 and UN2 for

year 2003 plus 2004 could indicate the availability of bank or gully erosion near

the respective stations. However, the combination of calculated SDR values

with site observations and previous sediment monitoring reports (Yusoff et al.,

2004, 2006) show that only UW2, UB1, UB2 and CW suffered from bank

erosion (for UW3, bank erosion at UW6) while no clear bank erosion was

observed for the rest of stations.

This indicates that other factors such as sediment re-suspension and

flushing effect could contribute to the higher SDR values at respective stations.

Furthermore, the uncertainties of the USLE gross erosion results (overestimate

at lower and underestimate for higher grid size) could possibly have contributed

to this anomaly where the result clearly shows the increase of SDR values with

the increase grid cell sizes with lower USLE gross erosion value for higher grid

cell size.

155

Page 178: Thesis Ahmad Farid Abu Bakar.pdf

4.8 Proposed specific sediment control measures for Putrajaya Wetland

area

The results indicate that the sedimentation processes within wetland cells

together with the availability of bank erosion nearby clearly affect the TSS yield,

wetland reservoir sediment yield and hence, SDR value for the respective

wetland. For the wetland without any bank erosion, high sediment and TSS

yield are suspected to be due to the effect of sediment re-suspension and

sediment flushing. Furthermore, the availability of sediment input from spilled-

over water during storm events could worsen the scenario itself. Thus, these

two factors (bank erosion and sediment re-suspension or flushing effect)

together with sediment input during storm events should be controlled to

minimize the damage due to sedimentation at the respective wetland cells and

downstream areas (Putrajaya lake).

Sedimentation due to bank erosion could be control by installing

sediment fences near to the source areas with bank erosion. However, this is

only considered as a temporary measure and need to be monitored frequently

because sediment fences tend to collapse or fail after heavy storms. The best

solution is to remove the sediment and repair the failure itself. The heavily

affected of bank erosion for example at UB1-05, UN8-C5, UN8-17 and etc.

should be redesigned using permanent bank reinforced structure or heavy

stone to provide armor protection together with effective culvert enlargement

program. The management also needs to consider wetland geotechnical

monitoring or wetland slope and embankment monitoring to monitor potential

slope embankment failure surrounding wetland area.

156

Page 179: Thesis Ahmad Farid Abu Bakar.pdf

157

Further site observations revealed that during storm events, excessive

runoff tend to spilled-over from drainage culvert and GPT (gross pollutant trap)

when the culvert and GPT were filled with sediments. This phenomenon

weakens the nearby soil structure as the soil becomes oversaturated resulting

bank erosion. Furthermore, the spilled-over phenomenon could transport more

sediment due to high discharge and sediment supply (refer to Table 4.13).

Thus, the culverts and GPT should regularly be monitored, maintained and

freed from infilling sediment as one of the bank erosion control strategies to

avoid any diversion of runoff. The locations of different sediment mitigation

measures are shown in Figure 4.31.

It is not an easy task to control sediment re-suspension and sediment

flushing during high discharge and to minimize their effects due to the source of

sediment coming from the accumulated sediments within the wetland cell itself

particularly for sediment accumulation with highly clay content. Rehabilitation on

wetland storage capacity is needed by using the siphon dredging technique

instead of removing all sediments, that easily implemented and very effective

for small to medium reservoirs together with controlled sediment flushing and

emptying through under-sluice method. The management should also consider

replanting and desilting exercise for wetland cells with dead storage (almost

zero storage capacity).

Page 180: Thesis Ahmad Farid Abu Bakar.pdf

Figure 4.31: Location of sediment mitigation measure around Putrajaya Wetland Area.

158

Page 181: Thesis Ahmad Farid Abu Bakar.pdf

Conclusion and Recommendations

5.0 Conclusion and recommendations

Erosion and sedimentation process studies were carried out at the

Putrajaya wetland area. The sheet and rill erosion was determined using the

USLE approach while the observed bank erosion throughout study area was

documented completely. The sedimentation process in terms of sediment yields

was determined and correlated using the USLE-SDR, TSS rating curve

technique (for suspended sediment yields) and wetland reservoir sediment

yields (from wetland sedimentation survey).

The estimated USLE gross erosion and specific erosion values show

relatively high variability in terms of spatial and temporal characteristics together

with the effect of using different grid cell sizes. The USLE results using different

grid cell sizes of 10m, 20m, 30m and 40m show a declining trend of total gross

erosion, average mean and maximum erosion with increase of grid cell sizes. In

term of temporal characteristics, a decrease of total gross erosion is observed

from 2003 to 2004 with an approximately 30 % decrease of total gross erosion.

Sensitivity analysis performed in the GIS environment using grid

regression analysis extension shows that for almost all the years analysed the

LS factor is the most sensitive parameter compared to the other factors using

20m, 30m and 40m grid cell sizes. However, by using the 10m grid cell size, the

CP factor was noted as the most sensitive factor for the years analysed

followed by the LS factor, R factor and K factor. Thus, the relatively low USLE

values calculated using 20m, 30m and 40m grid cell sizes can be related to the

perdominant underestimation of the LS factor whereas the relatively high USLE

results for the relative contribution of the high CP factor for the 10m grid cell

size. From this findings, the result of USLE 10m grid size were used for further

159

Page 182: Thesis Ahmad Farid Abu Bakar.pdf

Conclusion and Recommendations

analysis and comparison regarding USLE erosion (e.g USLE SDR sediment

yield). Thus, it is recommended that further calculation in GIS using DEM as

major input, should consider the effect of grid cell size to the results.

Throughout 2002 to 2004, moderate to major bank erosion had been

observed at UW2, UW6 and UW8 wetland cell (Upper West (UW) wetland area)

while at Upper North (UN) wetland area, bank erosion had been observed at

UN1, UN7 and UN8 wetland (also moderate to major bank erosion). At Upper

East (UE) wetland, major bank erosion was observed at UE1 wetland cell while

at Lower East (LE) wetland, minor bank erosion had been observed at LE2.

Major bank erosion had also been observed at UB1 and UB2 wetland (for

Upper Bisa (UB) wetland area). In terms of the types of bank erosion, bank

scour and mass failure had been observed at UW8-06, UN8-17, UN8-C4, UN7-

C1, UE1-01, UE3-GPT2, UB1-05, UB2-03, UB2-04 and CWA while bank scour

alone was observed at UW2-GPT5, UW6-C3, UW8-C2, UN1A, LE2-05, UB1-01

and UB2-05.

The TSS suspended sediment yields from the TSS rating curves show a

variability of TSS yields in terms of spatial and temporal characteristics. In term

of temporal characteristics, 2004 recorded higher average TSS yields in

comparison to 2003. The highest average TSS yields in 2003 was recorded at

the UW and UB wetland cells and at the LE and UN wetland cell for 2004.

The USLE-SDR catchment sediment yields determined using the Vanoni

(1975) SDR equation show a slightly lower USLE sediment yield compared to

the USLE sediment yields from the USDA-SCS (1972) SDR equation. The SDR

values calculated using the Vanoni (1975) equation range from 0.41 (UE3 and

160

Page 183: Thesis Ahmad Farid Abu Bakar.pdf

Conclusion and Recommendations

UW7) to 0.60 (UN2) while calculated SDR values from the USDA SCS (1972)

equation range from 0.50 (UE3 and UW7) to 0.70 (UN2).

The wetland reservoir sediment yields for 2002 from the sedimentation

survey exercise range from -12 t/ha/yr (UW7) to 867 t/ha/yr (UE1). For the 2004

sedimentation survey, the wetland reservoir sediment yields range from 20

t/ha/yr (UW7 and UN4) to 712 t/ha/yr (UE1). The highest average annual

reservoir sediment yield was from the UE1 wetland cell (536 t/ha/yr) while the

lowest was from UW7 (9.75 t/ha/yr).

Comparative analysis between the three sediment yield methods show

that the catchment sediment yields from both the USLE-SDR (Vanoni, 1975)

and USLE-SDR (USDA-SCS, 1972) approaches had overestimated and

underestimated the specific TSS yields and wetland reservoir sediment yields.

These results further show that USLE using USLE-SDR Vanoni (1975) and

USDA-SCS (1972) is consider a fair to poor sediment yield determinator as

there was a lot of factors affecting the sediment delivery processes from the

source of erosion to the sink area. However for management purposes, and

because of the simplicity of the equation, the USLE can give a rough idea of the

source of erosion and how to plan and place erosion and sediment mitigation

measures.

The linkages between wetland TSS yield, wetland reservoir sediment

yield and USLE total gross erosion can be analyzed in term of sediment delivery

ratio (SDR) defined as the portion of sediment transported from source area to

the catchment outlet or particular reservoir. The increasing (UW, UN, UE and

UB wetland subcatchment area) and reducing (LE wetland subcatchment area)

trends of SDR value towards the downstream stations observed indicate that

161

Page 184: Thesis Ahmad Farid Abu Bakar.pdf

Conclusion and Recommendations

162

there was an increasing amount of sediment transported (increasing transport

capacity) from the upstream to downstream wetlands at UW, UN, UE and UB

wetland subcatchment area. The declining trend of SDR values in LE wetland

subcatchment area implied that the effectiveness of wetland filtration processes

within LE’s wetland cells.

Sedimentation due to bank erosion could be control by installing

sediment fences in the affected areas. However, this measure is only a

temporary measure and need to be monitored frequently as sediment fencing

tend to collapse or fail after heavy storms. The best solution is to remove the

sediment and repair the failure itself. The heavily affected of bank erosion

should be redesigned using permanent bank reinforced structure or heavy

stone to provide armor protection together with effective culvert enlargement

program should be considered for critical and major bank erosion inlets (UB1-

05, UN8-C5, UN8-17 and etc.). The management also needs to consider

wetland geotechnical monitoring or wetland slope and embankment monitoring

to detect potential slope embankment failures surrounding the wetland area.

Rehabilitation on wetland storage capacity is needed by using the siphon

dredging technique instead of removing all sediments, that easily implemented

and very effective for small to medium reservoirs together with controlled

sediment flushing and emptying through under-sluice method. The

management should also consider replanting and desilting exercise for wetland

cells with dead storage (almost zero storage capacity).

Page 185: Thesis Ahmad Farid Abu Bakar.pdf

References

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., Rasmussen, J., 1986. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, SHE. 1. History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology , 87, 45–59. Abd. Hadi A.R., Yusoff I. And Ahmad Farid A. B., 2002. Sediment monitoring at entry point. Unpublished bimonthly report submitted to Perbadanan Putrajaya. American Society of Civil Engineers (ASCE), 1970. Chapter V: Sediment sources and sediment yields. J. Hyd. Div., ASCE 96(HY6), 1283-1330. American Society of Civil Engineers (ASCE), 1982. Relationships between morphology of small streams and sediment yield. Report of a Task Committee. J. Hyd. Div., ASCE 108(HY11), 1328-1365. American Public Health Association (APHA), 1998. Standard methods for the examination of water and wastewater. 19th Edition. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC. Ariffin J. and Abdul Talib S., 2006. Sediment Monitoring and Sampling to Forecast Sediment Deposition in Sg Selangor Dam. National Conference – Water for Sustainable Development Towards a Developed Nation by 2020. 13 – 14 July 2006, Guoman Resort Port Dickson. Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R., 1998. Large area hydrologic modeling and assessment; part I, model development. Journal of the American Water Resources Association, 34 (1), 73–89. Asselman, N.E.M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234, 228–248. Baharuddin K., 1988. Effect of logging on sediment yield in a hill dipterocarp forest in Peninsular Malaysia. Journal of Tropical Forest Science, 1(1), 56-66. Bazzofi, P., 2006. http://florence.homelinux.com/rusle/login.php Beasley, D.B., Huggins, L.F., Monke, E.J., 1980. ANSWERS—a model for watershed planning. Trans Am Soc Agric Eng , 23, 938–944. Beck, M.B., 1987. Water quality modelling: a review of uncertainty. Water Resources Research 23 (8), 1393–1442. Bennett, J.P., 1974. Concepts of mathematical modelling of sedimentyield. Water Resources Research, 10, 485–492. Beven, K., 2004. Robert E. Horton's perceptual model of infiltration processes. Hydrological Processes, Wiley Intersciences. Bhattarai R. and Dutta, D., 2008. A comparative analysis of sediment yield simulation by empirical and process-oriented models in Thailand. Hydrological Sciences 53 (6), 1253 – 1269.

163

Page 186: Thesis Ahmad Farid Abu Bakar.pdf

References

Boomer K. B., Weller D. E. and Jordan T. E., 2008. Empirical models based on the Universal Soil Loss Equation fail to predict sediment discharges from Chesapeake Bay Catchments. J. Environ. Qual. 37,79–89. Boyce, R. C., 1975. Sediment routing with sediment delivery ratios. In: Present and prospective technology for predicting sediment yield and sources. ARS-S-40, USDA, Washington, D.C., 61-65. Boyce, R.C., 1975. Sediment routing with sediment delivery ratios. Present and Prospective Technology for ARS. USDA, Washington, D.C. Brunet, R.C., Oinay, G., Gazelle, F. and Roques, L., 1994. Role of the floodplain and riparian zone in suspended matter and nitrogen retention in the Adour River, south-west France. Regulated Rivers: Res Manage, 9, 55–63. Chambers, J.M., Wrigley, T.J. and McComb, A.J., 1993. The potential use of wetlands to reduce phosphorus export from agricultural catchments. Fert. Res. , 36, 157–164. Chang C.K., Aminuddin A.G., Nor Azizi Z., and Rozi A. , 2005. Sediment transport at Kulim river. Malaysia. XXXI IAHR Congress, 11-16 September at Seoul, Korea. 1397-1407. Chin, D. A., 2000. Water Resources Engineering. Prentice Hall, New Jersey,

750p.

Chow, V.T., (Ed.), 1964. Handbook of Applied Hydrology. McGraw Hill, New York.

Choy, K.W., 1973. Structural features in the western Kuala Lumpur area [abstract]. In: GSM Discussion Meeting, 16 & 17 Feb. 1973, GSM Newsletter 41:4.

Cigizoglu, H. K., 2004. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Advances in Water Resources , 27, 185-195.

Cook, M. G., Zublena, J. P., Hodges, S. C. and Naderman, G. C., 1994. Erosion and sedimentation soils influence water quality. North Carolina Cooperative Extension Service, USA.

De Roo A.P.J., 1998. Modelling runoff and sediment transport in catchments using GIS. Hydrol. Process., 12, 905–922. De Rose, R., Wilson, D.J., Bartley, R. and Wilkinson, S., 2005. Riverbank erosion and its importance to uncertainties in large-scale sediment budgets. In: D.E. Walling and J.A. Horowitz, Editors, Proceedings of the International Symposium on Sediment Budgets (S1) Held During the Seventh Scientific Assembly of the IAHS at Foz do Iguacu, Brazil, 3–9 April 2005, Sediment Budgets 1, IAHS Publ. vol. 291, IAHS Press (2005), pp. 85–92.

164

Page 187: Thesis Ahmad Farid Abu Bakar.pdf

References

Dennis, M.F. and Rorke, M.F., 1999. The relationship of soil loss by interill erosion to slope gradient, Catena, 38, 211–222. Department of Irrigation and Drainage, Malaysia (DID), 1986. Sungai Tekam Experimental Basin. Transitional Report July 1980 to June 1983. Water Resources Publication, no. 16. Drainage and Irrigation Department, Ministry of Agriculture, Kuala Lumpur, Malaysia. Dickinson, W.T., 1981. Erosion and sediment transport measurement. A proceeding of the Florence Symposium. LAHS pub/. No. 133, 195-201. Douglas, I., 1968. Erosion in the Sungai Gombak Catchment, Selangor, Malaysia. Journal of Tropical Geography, 26, 1-16. Douglas, I., Greer, T., Bidin K. and Sinun W., 1993. Impact of road and compacted ground on post-logging sediment yield in a small drainage basin, Sabah, Malaysia. In: Proceeding of the Yokohama Symposium on Hydrology of Warm Humid Regions. IAHS Publ., no 216: 213-218. Dregne, H.E., 1992. Erosion and soil productivity in Asia. J. Soil Water Conserv., 47, 8-13. Dunin, F., 1975. The use of physical process models. In: Chapman, T.,Dunin, F. (Eds.), Prediction in Catchment Hydrology—A National Symposium on Hydrology. Australian Academy of Science, Canberra, 277–291.

Dunne, T., 1977. Studying patterns of soil erosion in Kenya. FAO Soils Bull , 33, 109-122.

Edwards, K., 1993. Soil erosion and conservation in Australia. In: Pimentel, D. (Eds.), World Soil Erosion and Conservation, Cambridge, pp. 147–169. Evans I. S., 1980. An integrated system of terrain analysis and slope mapping. Zeitschrift für Geomorphology, 36, 274-95. Fennessy, M.S., Brueske, C.C. and Mitsch, W.J., 1994. Sediment deposition patterns in restored freshwater wetlands using sediment traps. Ecol Eng, 3, 409–428. Ferguson, R.I., 1987. Accuracy and precision of methods for estimating river loads. Earth Surface Processes and Landforms, 12, 95–104. Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology, 62, 344-359.

Foster, G.R., Flanagan, D.C., Nearing, M.A., Lane, L.J., Risse, L.M. and Finkner, S.C., 1995. Chapter 11: Hillslope Erosion Component. In: Flanagan, D. C. and Nearing M. A. (Eds.), USDA Water Erosion Prediction Project : Hillslope Profile and Watershed Model Documentation, Vol. NSERL Report No. 10. USDA-ARS national Soil Erosion Research Laboratory.

Foster, G.R., Lane, L.J., Nowlin, J.D., Laflen, J.M., and Young, R.A. 1981. Estimating erosion and sediment yield on field-sized areas. Transactions of the ASAE, 24, 1253-1263.

165

Page 188: Thesis Ahmad Farid Abu Bakar.pdf

References

Frederick, R., Troeh, J., Hobbs, A. and Donahue, R. L., 1991. Soil and water conservation. Prentice-Hall Inc., New Jersey.

Freeze, R.A. and Cherry, J.A.., 1979. Groundwater. Prentice-Hall Inc., New Jersey, USA.

FRIM, 1999. FRIM Technical Information Handbook No 25. A Guide For Estimating Soil Loss Using The Modified Soil Loss Equation (MSLE) In Forest Land”. FRIM, 24 pp. Geological Survey of Malaysia, 1994. Geological and Geotechnical Investigations of the Proposed Pusat Pentadbiran Persekutuan Perang Besar (Integrated Report). Geological Survey of Malaysia. Gregersen, B., Aalbæk, J., Lauridsen, P.E., Kaas, M., Lopdrup, Veihe, A. and van der Keur, P. 2003. LAND USE AND SOIL EROSION IN TIKOLOD, SABAH, MALAYSIA. ASEAN Review of Biodiversity and Environmental Conservation (ARBEC) at: http://www.arbec.com.my/pdf/art7janmar03.pdf Hashim G.M and Erh K.T., 1978. Rainfall intensity and its significance to soil erosion. In: Proceeding symposium water in agriculture in Malaysia. 31-40 pp. Hashim, G. M., Cyril A., Ciesiolka A., Abdullah Yusoff W., Wahab Nafis, A., Radzali M., Rose W. C., Keppel, C. J., 1995. Soil erosion processes in sloping land in the east coast of Peninsular Malaysia. Soil Technology , 8, 215—223. He, C., Shi, C., Yang, C. and Agosti, B.P., 2001. A windows-based GIS–AGNPS interface. Journal of the American Water Resources Association, 37 (2), 395–406. Hoyos, N., 2005. Spatial modeling of soil erosion potential in a tropical watershed of the Colombian andes. Catena-00953, 24pp. http://sorrel.humboldt.edu/~geodept/geology550/550_handouts/suspended_load_computation.pdf

Hudson, N.W. 1957. The design of field experiments on soil erosion. J. Agricultural Engineering Research, 2 (1), 56-65.

Hudson, N.W., 1965. The influence of rainfall on mechanic of soil erosion with particular refence to southern Rhodesia. Unpub. MSc thesis, University of Cape Town. Jabatan Pertanian Malaysia, 1993. Panduan Siri-Siri Tanah Utama Di Semenanjung Malaysia. Jabatan Pertanian Semenanjung Malaysia, RT 76/11-93/7R-Disember 1993. Jakeman, A., Littlewood, I., Whitehead, P., 1990. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology, 117, 275–300.

166

Page 189: Thesis Ahmad Farid Abu Bakar.pdf

References

Jakeman, A.J., Hornberger, G.M., 1993. How much complexity is warranted in a rainfall-runoff model?. Water Resources Research, 29(8), 2637–2649. Julien, P.Y., 1995. Erosion and Sedimentation. Cambridge University Press, Cambridge. Jenness, J., 2006. http://www.jennessent.com/arcview/regression.htm. Kinnell P.I.A., 2000. AGNPS–UM: applying the USLE–M within the agricultural nonpoint source pollution model. Environmental Modelling and Software, 15, 331–341. Knisel, W.G., 1980. CREAMS: A Field Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems. USDA. Kothyari, U.C. and Jain, S.K., 1997. Sediment yield estimation using GIS. Hydrol. Sci. J., 42, 833-843. Laflen, J.M., Lane, L.J., Foster, G.R., 1991. WEPP: A new generation of erosion prediction technology. Journal of Soil and Water Conservation, 46, 34–38. Lai, F.S., 1993. Sediment yield from logged, steep upland catchments in Peninsular Malaysia. In: Proceeding of the Yokohama Symposium, Hydrology of Warm Humid Regions, IAHS Publ. no. 216, 219-229. Lal, R., 1981. Deforestation of tropical rainforest and hydrological problems. In R. Lal and E.W. Russell (Eds.) Tropical Agricultural Hydrology. J. Wiley & Sons, Chichester, Lane, L. J., Hernandez M. and Nichols, M., 1997. Processes controlling sediment yield from watersheds as functions of spatial scale. Environmental Modelling & Softwure, 12, 355-369. Laws, J.O. and Parsons, D.A., 1949. The relation of raindrop size to intensity. Trans. Am. Geophys. Union, 24. pp 452 – 460. Lee, C. P., Mohd. Shafeea, L., Kamaludin, H., Bahari, M. N. And Rashidah, K., 2004. Stratigraphic Lexicon of Malaysia. Geological Society of Malaysia, 162 p. Lee, G. S. and Lee, K. H., 2006. Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea. Hydrol. Earth Syst. Sci. Discuss., 3, pp 135–157. Leigh, C.H. & Low, K.S., 1973. An Appraisal of Flood Situation in West Malaysia. In: Soepadmo, E.S. and K.G. Singh (Eds.), Proceedings Symposium on Biological Research and National Development. Malayan Nature Society. Leong W.C. and Abustan I, 2000. Development of Urban Runoff Characteristics of Sg. Kayu Ara Catchment and to Validate Rainfall-Runoff Charts in The Malaysian Urban Stormwater Management Manual. National Conference – Water for Sustainable Development Towards a Developed Nation by 2020, 13-14 July 2006, Guoman Resort Port Dickson.

167

Page 190: Thesis Ahmad Farid Abu Bakar.pdf

References

Lowrance, R.R., Leonard, R.A. and Sheridan, J., 1985. Managing riparian ecosystems to control non point source pollution. J. Soil Water Conserv. 40 (1), 87–91. Lu, H., Moran, C.J., Prosser, I.P., 2005. Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling and Software, 21 (9), 1297-1308. Lufafa, A., Tenywa, M.M., Isabirye, M., Majaliwa, M.J.G.and Woomer, P.L., 2003. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based universal soil loss model. Agricultural Systems, 76, 883–894. Luo, H.R., Smith, L.M., Allen, B.L. and Haukos. D.A., 1997. Effects of sedimentation on playa wetland volume. Ecological Applications, 7, 247-52. Maene, L.M. and Wan Sulaiman Wan Harun, 1980. Status of soil conservation research in peninsular Malaysia and its future development. Proceedings of the Conference on Soil Science and Agriculture in Development in Malaysia, Malaysian Society of Soil Science, Kuala Lumpur. Maner, S. B., 1958. Factors affecting sediment delivery rates in the Red Hills physiographic area. Trans. Am. Geophys. Un., 39, 669-675. Merritt, W.S., Letcher, R.A. and Jakeman A..J., 2002. A review of erosion and sediment transport models. Environmental Modelling & Software , 18, 761–799. Mohammad Firuz R., Choo S. M., Mohd Kamil Y. and Ahmad Makmom A., 2004. Preliminary assessment of erosion hazard using opend source geographical resources Analysis Support System (GRASS) at Langkawi Island. Paper presented at Proceeding of the FOSS/GRASS users conference at Bangkok, Thailand, 12-14 September 2004. Mohd Kamil Y., Muhammad Firuz R., Law J. T. And Wan Nor Azmin S., 2003. Soil erosion of a logged-over tropical forest, Pasoh, Negeri Sembilan. Bulletin Geol. Soc. Of Mal., 46, 111-114. Molnaar, D. K. and Julien, P. Y., 1998. Estimation of upland erosion using GIS. Computers & Geosciences, 24 (2), 183-192. Montgomery, D.R., and Dietrich, W.E., 1989. Source areas, drainage density, and channel initiation. Water Resources Research, 25, 1907–1918. Moore, I.D., Norton, T.W. and Williams, J.E.,1993. Modelling environmental heterogeneity in forested landscapes. In: "Water Issues in Forest Today", An Int. Symp. on Forest Hydrology, Canberra, November 22-26. Morgan R.P.C., 1974. Estimating regional variation in soil erosion hazards in Peninsular Malaysia. Malayan Nature Journal, 28, 94-106. Morgan, R. P. C., 1986. Soil Erosion and Conservation. Longman Scientific & Technical, UK.

168

Page 191: Thesis Ahmad Farid Abu Bakar.pdf

References

Morgan, R.P.C., 1979. Soil Erosion. Longman, London. Murtedza, M. and Chuan, T.T., 1993. Managing ASEAN’s Forests. In: Seda, M. (ed.) Environmental Management in ASEAN, ISEAS Publication, Singapore, 111-140. Nadine, T., 2003. Modeling Sediment and Contaminant Pathways to the Cedar River. Source: http://gis.esri.com/library/userconf/proc02/pap0785/p0785.htm National Hydraulic Research Institute of Malaysia (NAHRIM), KTA Tenaga Sdn. Bhd. And MHA Enviro Consult Sdn. Bhd., 1999. Catchment Development and Management Plan for Putrajaya Lake. Unpublished report submitted to Perbadanan Putrajaya. NSE-SPRPC (National Soil Erosion-Soil Productivity Research Planning Committee), 1981. Soil erosion effects on soil productivity: A research perspective. Journal of Soil and Water Conservation, 36, 82-90.

Ouyang, D. and Bartholic, J., 1997. Predicting Sediment Delivery Ratio in Saginaw Bay Watershed. The 22nd National Association of Environmental Professionals Conference Proceedings. May 19-23, 1997, Orlando, 659-671.

Paramanathan, S., 2000. Soil of Malaysia, Their Characteristics and identification. Academy of Sciences and Param Agricultural Soil Survey, Malaysia. Parson, S.C., Hamlett, J.M., Robillard, P.D. and Foster, M.A., 1998. Determining the decision-making risk from AGNPS simulations. Trans. Am. Soc. Agric. Eng. , 41, 1679–1688. Perbadanan Putrajaya and Putrajaya Holdings Sdn Bhd, 1999. Putrajaya Wetlands. Perbadanan Putrajaya, Malaysia. 145 p. Prior, H. and Johnes, P.J., 2002. Regulation of surface water quality in a Chalk catchment, UK: an assessment of the relative importance of in-stream and wetland processes. Sci Total Environ 282–283, 159–174. Prosser, I.P., Rutherford, I.D., Olley, J.M., Young, W.J., Wallbrink, P.J., Moran, C.J., 2001. Large-scale patterns of erosion and sediment transport in river networks, with examples from Australia. Marine and Freshwater Research, 52, 81–99. Prosser, I.P., Young, B., Rustomji, P., Hughes, A., Moran, C., 2001. A model of river sediment budgets as an element of river health assessment. In: Proceedings of the International Congress on Modelling and Simulation (MODSIM’2001), December 10–13, 861–866. Pullar, D. and Springer, D., 2000. Towards integrating GIS and catchment models. Environmental Modelling and Software, 15 (5), 451–459.

169

Page 192: Thesis Ahmad Farid Abu Bakar.pdf

References

Quilbe´ R., Rousseau A. N., Duchemin M., Poulin A., Gangbazo, G. and Villeneuve, J.P., 2006. Selecting a calculation method to estimate sediment and nutrient loads in streams: Application to the Beaurivage River (Que´bec, Canada). Journal of Hydrology, 326, 295–310. Raisin, G.W., Mitchell, D.S. and Croome, R.L., 1997. The effectiveness of a small constructed wetland in ameliorating diffuse nutrient loadings from an Australian rural catchment. Ecol. Eng., 9, 19–35.

Rapp, A. 1975. Soil erosion and sedimentation in Tanzania and Lesotho. In: Morgan, R.P.C., 1986. (Ed.), Soil. erosion and its control. Van Nostrand and Reinhold Company, New York.

Renard, K.G., Foster, G.R., Weesies, G.A. and Porter, J.P., 1991. RUSLE: revised universal soil loss equation. Journal of Soil and Water Conservation , 46 (1), 30–33. Renfro, G. W., 1975. Use of erosion equations and sediment delivery ratios for predicting sediment yield, In: Present and prospective technology for predicting sediment yields and sources, USDA Agr. Res. Serv. Pub. ARS-S-40, 33-45. Richards, K., 1993. Sediment delivery and the drainage network. In: Beven, K. and Kirkby, M.J. (Eds.), Channel Network Hydrology. Wiley, Chichester, pp. 221–254.

Richter, G. and Negendank, J. F. W., 1977. Soil erosion processes and their measurement in the German area of the Moselle river. Earth Surf. Proc., 2, 261-278.

Rieke-Zapp, D. H. and Nearing, M. A. 2005. Slope Shape Effects on Erosion, A Laboratory Study. Soil Sci Soc Am Jour., 69, 1463-1471.

Roehl, J. W., 1962. Sediment source areas, delivery ratios and influencing morphological factors. Int. Assoc. Scient. Hydrol., 59, 202-213. Roslan Z. A., 1995. Tanah runtuh- ciri-ciri, ramalan dan teknologi kawalan. Isu-isu semasa sains dan teknologi 1995, Petaling Jaya, Selangor, 94-100 pp. Roslan, Z. A. and Tew, K. H., 2004. Soil Erosion and Sedimentation Assessment, Control and Management Plan for the Tropical Region. Symposium on Tropical Residual Soil Engineering, Universiti Putra Malaysia, 6 – 7 July, 2004. Rubber Research Institute of Malaysia (RRIM), 1975. Soil Erosion and Conservation in Peninsular Malaysia. Kuala Lumpur, Malaysia. Ruslan, R., 2004. Estimating sediment yield using Agricultural Non-Point Sources (AGNPS) model: The effects of slope information from different GIS software. Journal of Spatial Hydrology. 4 (2) 20pp. Shallow, P. G. , 1956. River Flow in Cameron Highland. Hydro Electric Technical Memorandum no. 3. Kuala Lumpur, Central Electricity Board.

170

Page 193: Thesis Ahmad Farid Abu Bakar.pdf

References

Shen, J., Parker, A. and Riverson, J., 2005. A new approach for a windows-based watershed modeling system based on a database-supporting architecture. Environmental Modelling and Software, 20, 1127–1138. Soil Survey Staff, 1998. Keys to Soil Taxanomy – Eight Edition. Soil Conservation Service, Washington D. C. Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Trans.Am.Geophys.Union, 38, 913–920. Strahler, A.N., 1960. Physical Geography. Wiley & Sons, Inc. New York. Stuckens, J., 2003. http://arcscripts.esri.com/details.asp?dbid=12531 Tan, B. K. and Yeap, E. B. , 1977. Structure of the Kenny hill Formation, Kuala Lumpur and Selangor. Geol. Soc. Malaysia Bull. 8,127-129 Tew K. H., 1999. Production of Malaysian Soil erodibility Nomograph in Relation to Soil Erosion. V.T Soil Erosion, Kuala Lumpur. Tjia, H.D., 1980. Recumbent folds in rocks of Kenny Hill Formation indicate sense of tectonic transport. Warta Geologi 6(2), 23-24. Udden, J.A., 1914. Mechanical composition of clastic sediments. Bulletin of the Geological Society of America, 25, 655-744. Universiti Pertanian Malaysia (UPM), 1995. Laporan Penilaian Kesan Alam Sekitar bagi Projek Pembangunan Pusat Pentadbiran Persekutuan Putrajaya di Daerah Sepang, Selangor, Malaysia. Unpublished report submitted to Unit Pembangunan Pusat Pentadbiran Putrajaya, Jabatan Perdana Menteri, Malaysia. US Army Corps of Engineers (USACE), 1989. Engineering and Design - Sedimentation Investigations of Rivers and Reservoirs. USACE Engineer Manual 1110-2-4000, Washington D. C. US Army Corps of Engineers (USACE), 2003. Geospatial Hydrologic Modeling Extension HEC-GeoHMS User Manual v. 1.1. 267 pp. US Department of Agriculture (USDA), 1972. Sediment Sources, Yields, and Delivery Ratios. National Engineering Handbook, Section 3, Sedimentation. USDA, Washington, D.C. Vanoni, V.A., 1975. Sedimentation Engineering, Manual and Report No. 54. American Society of Civil Engineers, New York, N.Y. Vervaeke, P., Tack, F. M. G., Lust, N. and Verloo M., 2004. Short- and Longer-Term Effects of the Willow Root System on Metal Extractability in Contaminated Dredged Sediment. J. Environ. Qual. 33, 976-983.

171

Page 194: Thesis Ahmad Farid Abu Bakar.pdf

References

Voroney, R. P., van Veen, J. A. and Paul, E. A., 1981. Organic carbon dynamics in grassland soils. II. Model validation and simulation of the long- term effects of cultivation and rainfall erosion. Can. J. Soil Sci., 61, 211-224.

Walling, D.E., 1983. The sediment delivery problem. Journal of Hydrology, 65, pp. 209–237. Walling, D.E., 1997. The response of sediment yields to environmental change. In: Walling, D.E. and Probst, J. (Eds.), Human Impact on Erosion and Sedimentation vol. 245, IAHS Publication pp. 77–89. Wan Ruslan Ismail, 1996. The role of tropical storms in the catchment sediment removal. Journal of Bioscience., 7, 153-168. Wasson, R.J., Olive, L.J. and Rosewell, C., 1996. Rates of erosion and sediment transport in Australia. In: Walling, D.E. and Webb, R. (Eds.), Erosion and Sediment Yield: Global and Regional Perspectives, pp. 139–148 (IAHS Publication No. 236). Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377-392. Wheater, H.S., Jakeman, A.J., Beven, K.J., 1993. Progress and directions in rainfall-runoff modelling. In: Jakeman, A.J., Beck, M.B., McAleer, M.J. (Eds.), Modelling Change in Environmental Systems. John Wiley and Sons, Chichester, 101–132. Whigham, D.F., Chitterling, C., Palmer, B., 1988. Impacts of freshwater wetlands on water quality: landscape perspective. Environmental Management, 12, 663– 671. Whigham, D.F., Chitterling, C.and Palmer, B., 1988. Impacts of freshwater wetlands on water quality: landscape perspective. Environmental Management, 12, 663–671. Wischmeier, W.H. and Smith D.D., 1958. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys. Union, 39, 285 – 291. Wischmeier, W.H. and Smith, D.D., 1978. Predicting rainfall-erosion losses. A guide to conservation planning. USDA Handbook no 537. USDA, Washington, D.C. Wong, I.F.T., 1966. Reconnaissance Soil Survey of Selangor. Malayan soil survey report No. 6/1966. Dept. Agric. & Co. operatives, Kuala Lumpur, Malaysia. Wu, S., Li, J. and Huang, G., 2005. An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models. Environmental Modeling and Assessment, 10. pp 33–42.

172

Page 195: Thesis Ahmad Farid Abu Bakar.pdf

References

173

Yitayew, M., Pokrzywka, S.J. and Renard, K.G., 1999. Using GIS for facilitating erosion estimation. Applied Engineering in Agriculture, 15 (4), 295–301. Young, R.A., Onstad, C.A., Bosch, D.D. and Anderson, W.P., 1987. AGNPS, agricultural nonpoint source pollution. A watershed analysis tool. In: Conservation Research Report 35. US Department of Agriculture, Washington, DC. Yu, B., Rose, C.W., Cielsiolka, C.A.A., Coughlan, K.J., Fentie, B., 1997. Towards a framework for runoff and soil loss prediction using GUEST technology. Australian Journal of Soil Research, 35, 1191–1212. Yusoff I. And Ahmad Farid A. B., 2003, 2004, 2005, 2006. Sediment monitoring at entry point. Unpublished bimonthly report submitted to Perbadanan Putrajaya. Zaiton Harun and Tjia H. D., 1984. Overturned folds, superposed thrusts and structural overprints near Sungai Buah, Selangor. Bulletin Geol. Soc. Malaysia, 17. pp. 225-236. Zarris, D., Lykoudi, L. and Koutsoyiannis, L., 2002. Sediment yield estimation from a hydrographic survey: a case study for the Kremasta reservoir basin, Greece. In: Tsakiris G. (Ed.), Proceedings of the 5th International Conference of European Water Resources Association: "Water Resources Management in the Era of Transition". European Water Resources Association, Athens, Greece, pp. 234-241. Zingg A.W., 1940. Degree and length of land slope as it affects soil loss in runoff. Agric. Eng., 21, 59-64.

Page 196: Thesis Ahmad Farid Abu Bakar.pdf

APPENDIX 1

Page 197: Thesis Ahmad Farid Abu Bakar.pdf

Total Suspended Solids (TSS) Reference:

Standard Methods; 2540 A, 2540 D, 2540 E

Scope and Application

The residue obtained after a thoroughly mixed sample is filtered and dried at 103° -105° C represents the amount of solids suspended in the sample solution. The amount of suspended solids in a water sample may be used as a general indicator of the overall quality of the sample. Suspended solids analyses are important in the control of biological and physical wastewater treatment processes and for assessing compliance with discharge regulations. The residue remaining after drying at 103° C is weighed and placed in a muffle furnace at 550° C. The weight loss from ignition determines "volatile suspended solids".

Apparatus

Vacuum pump and manifold Forceps or tweezers Desiccator and desiccant that contains a color indicator for moisture content Drying oven for use at 103° -105° C Muffle furnace for use at 550° C. Analytical balance - capable of weighting to 0.1 mg Magnetic stirplate and stirbar Magnetic stirbar retriever Crucible tongs Heat resistant gloves Cotton gloves Glass-fiber filter disks (Whatman AH-934 or equivalent) 40 mL Gooch crucible (permanently labeled) Aluminum dish for drying filter disks Side arm erlenmeyer flask Sample Delivery Mechanisms: (as required)

1. 1 mL - 5 mL variable pipette, 2. 25 mL graduated wide-mouth glass pipette, 3. 50 mL wide-mouth glass transfer pipette, OR 4. 250 mL glass graduated cylinder

Reagents

Distilled or deionized water

Storage / Preservation

Samples may be stored in a plastic or glass container and kept for 7 days at 4° C.

Raw Data Sheet Format

The following must be recorded on the data sheet:

o Sample identification (source, name, and date(s) of collection) o Analyst(s) o Raw data o Final results with correct units (reported to nearest mg/L) o Description of unusual sample characteristics

Page 198: Thesis Ahmad Farid Abu Bakar.pdf

o Replicates are to be listed in an orderly cluster

Quality Control Requirements

o A check sample should be analyzed with every batch of samples. o Recoveries of suspended solids check samples should be between ±2σ. o Recoveries of suspended solids check samples should be between ±3σ. o Recovery statistics of suspended solids check samples should be reviewed on a yearly

basis and any changes in acceptable ranges documented appropriately. o Results of replicate analyses should yield RSD’s of less than 5% for the set.

Procedure for Total Suspended Solids

Filter Preparation

1. Pre-wash glass-fiber filter disks in Gooch crucibles. With vacuum operating wash the disks with three 20 mL portions of distilled or deionized water.

2. When all water has been vacuumed through the filter disks, place the Gooch crucible in a 103° -105° C oven to dry. If volatile suspended solids are to be analyzed, move the dry filters into a 550° C muffle furnace for 15 minutes; if the volatile portion does not need to be determined, place the crucibles into a desiccator to cool and skip step 3.

3. Remove the Gooch crucibles from the muffle furnace and place on a heat resistant surface. The surface temperature of the crucible must be greater than 103° C when placed into the desiccator.

4. Cool the filters thoroughly in a desiccator before use. Gooch crucibles and washed filters should be stored in a desiccator.

Sample Analysis

1. Weigh the Gooch crucible and filter (at room temperature) on an analytical balance. Use crucible tongs or wear lint free cotton gloves to transfer the crucible from the desiccator to the balance pan. Handling the crucible with your bare fingers may transfer oils and moisture from the skin.

2. Record the weight of the crucible and filter. 3. Place prepared crucible and filter on the vacuum manifold or side-arm Erlenmeyer flask

with vacuum gasket. Wet the filter with deionized water in order to seat the filter against the crucible. Turn on the vacuum. If there is a hole in the filter, you may hear an abnormal hissing or whistling. Use a different weighed crucible and filter.

4. Thoroughly mix the sample to be analyzed. Carefully measure the volume of sample transferred to the Gooch crucible. The volume of sample used should leave at least 2.5, but not more than 200, milligrams of residue on the filter.

5. Rinse the filter with three successive 10 mL portions of deionized water. If the sample takes excessive time to filter (longer than 10 minutes), begin again with a different weighed crucible and filter using a smaller volume of sample for filtering.

6. Allow the vacuum to continue until no traces of moisture are present. If solids are present on the side of the funnel, rinse the sides gently with deionized water.

7. Place the crucible in the oven to dry for at least 1 hour at 103° C. 8. Transfer the dried crucible to a desiccator to cool. When the crucible has cooled

sufficiently it should not feel warm to the touch on the inside of your forearm. 9. Weigh the dried and cooled crucible on an analytical balance. Record the weight. If the

sample is not going to be used for regulatory purposes, it may be acceptable to use this weight as the final dry weight.

10. Return the crucible to the drying oven for another thirty minutes. Cool, reweigh and record its weight. Repeat this procedure until the change in the weight of the residue remains within 4% or less than 0.5 mg from one weighing to the next. (This is referred to as constant weight.) Record the final dry weight on the benchsheet and calculate the total suspended solids.

Page 199: Thesis Ahmad Farid Abu Bakar.pdf

APPENDIX 2

Page 200: Thesis Ahmad Farid Abu Bakar.pdf

(mm) (gm) 100 4 2 11 21 18 45

10.000 0.005.000 1.083.350 1.192.000 1.631.180 2.180.600 4.010.425 2.740.300 4.090.212 4.920.150 6.430.063 9.19

< 0.063 62.54Total 37.46

2319

Fine Sand silt clay

0.00 200.00

GravelCoarse Sand

Medium Sand

BS Sieve

Sample Name

CWA

(%)

2.88

4.355.82

3.18

154.83

197.12

189.59183.77

193.94

17.1624.5362.54

10.707.3110.9213.13

(%)

141.70124.53100.0037.46

173.06165.75

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

CWA

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%Series1

Series2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 201: Thesis Ahmad Farid Abu Bakar.pdf

(mm) (gm) 100 2 2 15 28 20 33

10.000 0.005.000 0.573.350 0.892.000 0.901.180 1.500.600 4.890.425 4.260.300 6.050.212 6.950.150 9.530.063 11.39

< 0.063 53.07Total 46.93

2319

Fine Sand silt clayGravelCoarse Sand

Medium Sand

BS Sieve

0.00 200.00

Sample Name

LE1 (1)

(%)

1.21

1.923.20

1.90

159.39

198.79

194.97191.77

196.89

20.3124.2753.07

10.429.0812.8914.81

(%)

144.58124.27100.0046.93

181.36172.28

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

LE1 (1)

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 202: Thesis Ahmad Farid Abu Bakar.pdf

(mm) (gm) 100 18 4 14 20 9 34

10.000 0.005.000 8.883.350 4.352.000 4.461.180 3.870.600 5.480.425 3.520.300 5.160.212 5.240.150 6.680.063 8.46

< 0.063 43.90Total 56.10

2319

Fine Sand silt clayGravelCoarse Sand

Medium Sand

BS Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

(%)

126.99115.08100.0056.10

151.80145.53

11.9115.0843.90

9.776.279.209.34

136.33

184.17

168.47161.57

176.4215.83

7.956.90

7.75

0.00 200.00

Sample Name

LE1 (2)

(%)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

LE1 (2)

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%Series1

Series2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 203: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 6 6 27 28 11 22

10.000 0.005.000 2.853.350 1.402.000 1.361.180 6.240.600 14.040.425 6.430.300 6.700.212 6.220.150 8.650.063 13.23

< 0.063 32.88Total 67.12

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

132.60119.71100.0067.12

161.43151.85

12.8919.7132.88

20.929.589.989.27

141.87

195.75

191.64182.35

193.674.25

2.039.30

2.09

0.00 200.00

Sample Name

LE2

(%)

PercentagePercentageRetained

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

LE2

Percentage retained (%)

0.005.00

10.0015.0020.0025.0030.0035.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 204: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 4 1 17 30 10 38

10.000 0.005.000 1.183.350 1.382.000 0.971.180 1.440.600 3.660.425 4.620.300 8.910.212 9.740.150 9.760.063 10.84

< 0.063 47.51Total 52.49

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

139.23120.65100.0052.49

183.57174.77

18.5820.6547.51

6.978.8016.9818.56

157.79

197.75

193.27190.54

195.112.25

1.842.74

2.64

0.00 200.00

Sample Name

UN1

(%)

PercentagePercentageRetained

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UN1

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 205: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 0 2 16 26 17 40

10.000 0.005.000 0.003.350 0.002.000 0.071.180 1.550.600 3.620.425 4.110.300 8.120.212 8.550.150 8.400.063 9.06

< 0.063 56.52Total 43.48

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

0.00 200.00

Sample Name

UN3

(%)

PercentagePercentageRetained

0.00

0.163.58

0.00

159.82

200.00

199.84196.27

200.00

19.3120.8456.52

8.339.4518.6619.67

Passing(%)

140.15120.84100.0043.48

187.94178.49

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

CLAY

SILT SAND GRAVEL

FINE FINE FINEMEDIUM MEDIUM MEDIUMCOARSE COARSE COARSECLAY

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UN3

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 206: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 6 2 18 27 11 35

10.000 0.005.000 3.473.350 1.122.000 1.351.180 2.010.600 5.320.425 5.010.300 8.000.212 8.180.150 8.720.063 10.36

< 0.063 46.45Total 53.55

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

135.64119.36100.0053.55

175.22165.87

16.2919.3646.45

9.939.3514.9515.28

150.92

193.52

188.89185.14

191.426.48

2.533.75

2.09

0.00 200.00

Sample Name

UN5

(%)

PercentagePercentageRetained

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UN5

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 207: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 2 2 14 21 9 52

10.000 0.005.000 0.003.350 0.352.000 1.481.180 1.600.600 3.550.425 3.540.300 7.000.212 7.340.150 7.310.063 6.69

< 0.063 61.14Total 38.86

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

0.00 200.00

Sample Name

UN7

(%)

PercentagePercentageRetained

0.00

3.814.12

0.91

154.91

200.00

195.28191.16

199.09

18.8217.2161.14

9.149.1118.0118.88

Passing(%)

136.03117.21100.0038.86

182.03172.92

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UN7

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 208: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 0 0 3 27 16 53

10.000 0.005.000 0.003.350 0.052.000 0.111.180 0.140.600 0.750.425 0.850.300 1.530.212 2.450.150 6.940.063 17.79

< 0.063 68.94Total 30.61

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

180.80158.13100.0031.06

196.59193.82

22.6758.1368.94

2.442.775.018.01

188.81

200.00

199.48199.03

199.830.00

0.350.45

0.17

0.00 200.00

Sample Name

UN8

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.0080.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UN8

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 209: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 4 2 9 15 9 60

10.000 0.005.000 0.443.350 1.242.000 1.951.180 2.380.600 3.600.425 2.270.300 3.280.212 3.460.150 4.320.063 7.49

< 0.063 69.57Total 30.43

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

0.00 200.001.45

6.42

Sample Name

UW1

(%)

PercentagePercentageRetained

7.83

4.07

150.19

198.55

188.06180.23

194.48

14.2024.6069.57

11.827.4510.7711.38

Passing(%)

138.81124.60100.0030.43

168.41160.96

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.0080.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UW1

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 210: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 0 0 1 3 25 71

10.000 0.005.000 0.003.350 0.172.000 0.091.180 0.180.600 0.270.425 0.210.300 0.340.212 0.220.150 0.620.063 2.52

< 0.063 95.38Total 4.62

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

167.97154.55100.00

4.62

184.63180.09

13.4254.5595.38

5.844.557.364.76

172.73

200.00

194.37190.48

196.320.00

1.953.90

3.68

0.00 200.00

Sample Name

UW2-8

(%)

PercentagePercentageRetained

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UW2-8

Percentage retained (%)

0.0020.0040.0060.0080.00

100.00120.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 211: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 8 2 17 32 9 31

10.000 0.005.000 2.513.350 2.942.000 3.041.180 2.160.600 4.720.425 4.780.300 7.930.212 9.150.150 10.500.063 12.12

< 0.063 40.15Total 59.85

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

0.00 200.00

Sample Name

UW4

(%)

PercentagePercentageRetained

4.19

5.083.61

4.91

153.08

195.81

185.81182.21

190.89

17.5420.2540.15

7.897.9913.2515.29

Passing(%)

137.79120.25100.0059.85

174.32166.33

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UW4

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 212: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 10 5 15 18 10 42

10.000 0.005.000 1.693.350 3.332.000 4.841.180 5.060.600 5.880.425 3.790.300 5.050.212 4.980.150 5.870.063 7.29

< 0.063 52.23Total 47.77

2319

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Fine Sand silt clayTotal GravelPassing

(%)

127.54115.26100.0047.77

156.48148.55

12.2815.2652.23

12.317.9410.5810.43

Coarse Sand

Medium Sand

10.58

6.96

137.97

196.47

179.38168.80

189.51

Sample Name

UW6

(%)

PercentagePercentageRetained

Dry Sieve

0.00 200.003.53

10.12

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UW6

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 213: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 8 1 18 33 9 31

10.000 0.005.000 1.683.350 2.842.000 3.361.180 1.020.600 5.020.425 4.740.300 8.010.212 9.180.150 11.170.063 12.86

< 0.063 40.12Total 59.88

2319

Fine Sand silt clay

0.00 200.002.81

5.611.70

Sample Name

UW8

(%)

PercentagePercentageRetained

4.74

155.46

197.19

186.84185.14

192.45

Total GravelCoarse Sand

Medium Sand

18.6521.4840.12

8.387.9213.3815.33

Passing(%)

140.13121.48100.0059.88

176.75168.84

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UW8

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 214: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 2 2 11 14 13 58

10.000 0.005.000 0.003.350 0.732.000 1.301.180 1.650.600 2.620.425 3.090.300 5.190.212 4.880.150 4.390.063 4.82

< 0.063 71.32Total 28.68

2319

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Fine Sand silt clayTotal GravelPassing

(%)

132.09116.79100.0028.68

177.99167.20

15.3016.7971.32

9.1410.7918.1117.01

Coarse Sand

Medium Sand

5.77

2.56

149.10

200.00

192.90187.14

197.44

Sample Name

UE1

(%)

PercentagePercentageRetained

Dry Sieve

0.00 200.000.00

4.54

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.0080.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UE1

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 215: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 18 6 15 16 6 39

10.000 0.005.000 5.263.350 5.642.000 7.501.180 5.990.600 6.820.425 3.710.300 4.430.212 4.160.150 4.500.063 6.87

< 0.063 45.12Total 54.88

2319

Fine Sand silt clay

0.00 200.009.58

13.6710.91

Sample Name

UE1(ioi)

(%)

PercentagePercentageRetained

10.28

128.30

190.42

166.47155.56

180.14

Total GravelCoarse Sand

Medium Sand

8.2012.5245.12

12.436.768.077.58

Passing(%)

120.72112.52100.0054.88

143.13136.37

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UE1(ioi)

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 216: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 6 3 12 16 12 50

10.000 0.005.000 1.503.350 1.832.000 2.751.180 3.190.600 4.750.425 3.290.300 4.170.212 4.120.150 4.520.063 6.94

< 0.063 62.94Total 37.06

2319

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Fine Sand silt clayTotal GravelPassing

(%)

130.92118.73100.0037.06

162.17153.29

12.2018.7362.94

12.828.8811.2511.12

Coarse Sand

Medium Sand

8.61

4.94

142.04

195.95

183.59174.99

191.01

Sample Name

UE3

(%)

PercentagePercentageRetained

Dry Sieve

0.00 200.004.05

7.42

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UE3

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 217: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 0 4 17 28 9 41

10.000 0.005.000 0.003.350 0.002.000 0.301.180 4.340.600 6.020.425 5.110.300 5.930.212 5.560.150 7.630.063 15.03

< 0.063 50.08Total 49.92

2319

Fine Sand silt clay

0.00 200.00

Sample Name

UB1 (1)

(%)

PercentagePercentageRetained

0.00

0.618.70

0.00

156.53

200.00

199.39190.69

200.00

Total GravelCoarse Sand

Medium Sand

15.2930.1150.08

12.0510.2411.8811.13

Passing(%)

145.39130.11100.0049.92

178.64168.40

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UB1 (1)

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 218: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 30 21 30 6 2 12

10.000 0.005.000 5.023.350 7.452.000 17.141.180 20.840.600 21.490.425 5.400.300 3.040.212 1.820.150 1.670.063 2.09

< 0.063 14.04Total 85.96

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

104.38102.44100.0085.96

116.32110.04

1.952.4414.04

25.006.283.542.12

Total GravelCoarse Sand

Medium Sand

106.50

194.16

165.56141.32

185.495.84

19.9324.24

8.67

0.00 200.00

Sample Name

UB1 (2)

(%)

PercentagePercentageRetained

Percentage retained (%)

0.005.00

10.0015.0020.0025.0030.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UB1 (2)

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 219: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 17 12 36 23 2 9

10.000 0.005.000 1.443.350 5.982.000 9.461.180 12.050.600 19.510.425 8.520.300 8.420.212 7.180.150 7.400.063 8.68

< 0.063 11.37Total 88.63

2319

Fine Sand silt clay

0.00 200.00

Sample Name

UB2 (1)

(%)

PercentagePercentageRetained

1.62

10.6713.59

6.74

126.25

198.38

180.96167.37

191.63

Total GravelCoarse Sand

Medium Sand

8.359.8011.37

22.019.619.508.10

Passing(%)

118.15109.80100.0088.63

145.36135.75

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.00

5.00

10.00

15.00

20.00

25.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UB2 (1)

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 220: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 6 3 17 27 11 35

10.000 0.005.000 1.753.350 1.952.000 2.551.180 3.450.600 6.790.425 4.480.300 5.680.212 6.170.150 8.440.063 12.87

< 0.063 45.87Total 54.13

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

139.37123.78100.0054.13

169.54161.27

15.6023.7845.87

12.548.2710.5011.40

Total GravelCoarse Sand

Medium Sand

150.77

196.77

188.46182.09

193.163.23

4.716.37

3.61

0.00 200.00

Sample Name

UB2 (2)

(%)

PercentagePercentageRetained

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UB2 (2)

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 221: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 3 1 6 26 8 55

10.000 0.005.000 2.103.350 0.432.000 0.891.180 1.210.600 2.790.425 1.450.300 1.880.212 2.450.150 3.740.063 20.27

< 0.063 62.80Total 37.20

2319

Fine Sand silt clay

0.00 200.00

Sample Name

UB2 (3)

(%)

PercentagePercentageRetained

5.65

2.393.24

1.15

171.10

194.35

190.82187.58

193.21

Total GravelCoarse Sand

Medium Sand

10.0554.4762.80

7.503.915.066.58

Passing(%)

164.52154.47100.0037.20

180.08176.17

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

UB2 (3)

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 222: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 4 2 9 15 18 52

10.000 0.005.000 1.973.350 1.082.000 1.001.180 2.380.600 4.050.425 2.170.300 2.710.212 2.730.150 4.210.063 7.72 26.071

< 0.063 69.99Total 30.01

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

139.73125.71100.0030.01

165.09157.84

14.0225.7169.99

13.497.259.029.09

Total GravelCoarse Sand

Medium Sand

148.82

193.42

186.49178.58

189.836.58

3.347.91

3.59

0.00 200.00

Sample Name

PL1

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.0080.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL1

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 223: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 3 2 5 7 15 68

10.000 0.005.000 0.003.350 0.922.000 1.771.180 1.990.600 2.040.425 1.260.300 1.340.212 1.360.150 1.880.063 4.20 26.071

< 0.063 83.24Total 16.76

2319

Fine Sand silt clay

0.00 200.00

Total GravelCoarse Sand

Medium Sand

Sample Name

PL2

(%)

PercentagePercentageRetained

0.00

10.5611.87

5.49

144.39

200.00

183.95172.08

194.51

11.2225.0683.24

12.177.528.008.11

Passing(%)

136.28125.06100.0016.76

159.90152.39

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.00

20.00

40.00

60.00

80.00

100.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL2

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 224: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 9 10 27 23 5 27

10.000 0.005.000 1.443.350 2.122.000 5.321.180 9.760.600 14.650.425 6.380.300 5.690.212 5.120.150 6.010.063 11.47 26.071

< 0.063 32.02Total 67.98

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL3

(%)

PercentagePercentageRetained

2.12

7.8314.36

3.12

133.25

197.88

186.93172.56

194.76

Total GravelCoarse Sand

Medium Sand

8.8516.8832.02

21.569.398.367.53

Passing(%)

125.72116.88100.0067.98

151.01141.62

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.005.00

10.0015.0020.0025.0030.0035.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL3

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 225: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 5 5 13 20 13 44

10.000 0.005.000 0.393.350 1.132.000 3.331.180 5.040.600 6.760.425 3.000.300 3.560.212 3.800.150 5.180.063 10.66 26.071

< 0.063 57.15Total 42.85

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

136.96124.87100.0042.85

161.13154.14

12.0924.8757.15

15.786.998.308.88

Total GravelCoarse Sand

Medium Sand

145.84

199.08

188.67176.91

196.440.92

7.7711.76

2.64

0.00 200.00

Sample Name

PL4

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL4

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 226: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 8 5 19 18 11 39

10.000 0.005.000 1.853.350 2.232.000 4.371.180 4.790.600 8.860.425 4.670.300 4.980.212 4.370.150 5.120.063 8.84 26.071

< 0.063 49.91Total 50.09

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL5

(%)

PercentagePercentageRetained

3.70

8.729.56

4.46

136.60

196.30

183.12173.56

191.85

Total GravelCoarse Sand

Medium Sand

10.2217.6549.91

17.699.329.958.73

Passing(%)

127.87117.65100.0050.09

155.88146.56

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL5

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 227: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 1 0 6 30 21 40

10.000 0.005.000 0.793.350 0.082.000 0.371.180 0.320.600 0.690.425 1.550.300 4.200.212 5.540.150 8.250.063 16.59 26.071

< 0.063 61.63Total 38.37

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

164.72143.23100.0038.37

194.14190.09

21.4943.2361.63

1.814.0510.9314.44

Total GravelCoarse Sand

Medium Sand

179.15

197.94

196.77195.94

197.722.06

0.950.83

0.22

0.00 200.00

Sample Name

PL6

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL6

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 228: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 10 6 18 18 8 40

10.000 0.005.000 2.463.350 2.972.000 4.441.180 6.230.600 8.200.425 4.600.300 5.360.212 4.830.150 4.770.063 8.56 26.071

< 0.063 47.57Total 52.43

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL7

(%)

PercentagePercentageRetained

4.70

8.4611.89

5.66

134.65

195.30

181.18169.30

189.65

Total GravelCoarse Sand

Medium Sand

9.1016.3247.57

15.648.7810.239.22

Passing(%)

125.43116.32100.0052.43

153.66144.88

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL7

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 229: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 31 5 12 10 11 30

10.000 0.005.000 14.483.350 10.002.000 6.831.180 5.120.600 6.020.425 3.170.300 3.260.212 2.640.150 2.860.063 4.93 26.071

< 0.063 40.70Total 59.30

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

113.14108.32100.0059.30

128.43123.08

4.828.3240.70

10.165.355.504.44

Total GravelCoarse Sand

Medium Sand

117.58

175.59

147.22138.58

158.7324.41

11.518.63

16.86

0.00 200.00

Sample Name

PL8

(%)

PercentagePercentageRetained

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL8

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 230: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 4 4 12 12 20 49

10.000 0.005.000 0.833.350 0.882.000 2.551.180 3.670.600 5.520.425 2.790.300 3.250.212 2.800.150 3.270.063 5.82 26.071

< 0.063 68.62Total 31.38

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL9

(%)

PercentagePercentageRetained

2.64

8.1411.69

2.80

137.90

197.36

186.41174.72

194.55

Total GravelCoarse Sand

Medium Sand

10.4118.5668.62

17.588.8810.368.92

Passing(%)

128.97118.56100.0031.38

157.14148.26

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.0080.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL9

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 231: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 1 1 16 32 13 37

10.000 0.005.000 0.613.350 0.072.000 0.801.180 1.320.600 3.660.425 3.880.300 8.130.212 7.830.150 9.580.063 14.43 26.071

< 0.063 49.70Total 50.30

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

147.72128.68100.0050.30

187.17179.46

19.0428.6849.70

7.287.7116.1615.57

Total GravelCoarse Sand

Medium Sand

163.29

198.80

197.08194.45

198.661.20

1.582.62

0.14

0.00 200.00

Sample Name

PL10

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL10

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 232: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 3 2 9 13 19 55

10.000 0.005.000 0.853.350 0.602.000 1.081.180 1.510.600 3.830.425 2.340.300 2.360.212 2.050.150 2.640.063 8.39 26.071

< 0.063 74.34Total 25.66

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL11

(%)

PercentagePercentageRetained

3.31

4.215.87

2.33

151.01

196.69

190.15184.28

194.36

Total GravelCoarse Sand

Medium Sand

10.3032.7174.34

14.949.129.218.00

Passing(%)

143.01132.71100.0025.66

169.34160.22

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.0080.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL11

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 233: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 10 4 9 18 12 48

10.000 0.005.000 4.243.350 2.282.000 3.191.180 3.530.600 3.940.425 2.280.300 3.080.212 2.860.150 4.400.063 10.44 26.071

< 0.063 59.75Total 40.25

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

136.88125.94100.0040.25

157.31151.65

10.9325.9459.75

9.785.657.667.11

Total GravelCoarse Sand

Medium Sand

143.99

189.45

175.85167.09

183.7910.55

7.948.77

5.66

0.00 200.00

Sample Name

PL12

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL12

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 234: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 3 2 7 11 20 56

10.000 0.005.000 1.153.350 0.722.000 1.531.180 2.200.600 3.340.425 1.850.300 2.300.212 2.220.150 2.580.063 5.81 26.071

< 0.063 76.31Total 23.69

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL13

(%)

PercentagePercentageRetained

4.83

6.469.28

3.05

144.78

195.17

185.65176.38

192.11

Total GravelCoarse Sand

Medium Sand

10.8824.5276.31

14.097.799.729.37

Passing(%)

135.41124.52100.0023.69

162.29154.50

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.00

20.00

40.00

60.00

80.00

100.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL13

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 235: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 3 4 12 20 15 46

10.000 0.005.000 0.713.350 0.542.000 2.001.180 3.960.600 6.330.425 2.720.300 3.350.212 3.490.150 5.010.063 11.32 26.071

< 0.063 60.57Total 39.43

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

141.41128.70100.0039.43

165.68158.77

12.7128.7060.57

16.056.918.508.86

Total GravelCoarse Sand

Medium Sand

150.27

198.19

191.75181.72

196.821.81

5.0710.03

1.37

0.00 200.00

Sample Name

PL14

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.0070.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL14

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 236: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 20 13 19 16 7 25

10.000 0.005.000 6.423.350 4.372.000 9.351.180 12.860.600 10.530.425 3.910.300 4.080.212 3.560.150 4.570.063 7.93 26.071

< 0.063 32.41Total 67.59

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL15

(%)

PercentagePercentageRetained

9.50

13.8319.02

6.47

123.77

190.50

170.20151.18

184.04

Total GravelCoarse Sand

Medium Sand

6.7711.7332.41

15.585.796.045.27

Passing(%)

118.50111.73100.0067.59

135.60129.81

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.005.00

10.0015.0020.0025.0030.0035.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL15

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 237: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 7 7 18 19 12 36

10.000 0.005.000 0.173.350 1.822.000 4.791.180 7.300.600 8.390.425 4.080.300 5.400.212 5.180.150 5.090.063 9.01 26.071

< 0.063 48.78Total 51.22

2319

Fine Sand silt clay

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

127.53117.59100.0051.22

156.14148.18

9.9417.59

137.63

48.78

16.377.9610.5510.10

Total GravelCoarse Sand

Medium Sand

199.67

186.76172.51

196.110.33

9.3514.25

3.56

0.00 200.00

Sample Name

PL16

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL16

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 238: Thesis Ahmad Farid Abu Bakar.pdf

BS Sieve WeightNo. Retained

(mm) (gm) 100 9 6 16 21 10 38

10.000 0.005.000 1.623.350 2.772.000 4.731.180 6.140.600 8.210.425 3.520.300 4.170.212 4.210.150 5.330.063 11.79 26.071

< 0.063 47.51Total 52.49

2319

Fine Sand silt clay

0.00 200.00

Sample Name

PL17

(%)

PercentagePercentageRetained

3.08

9.0011.69

5.28

140.65

196.92

182.64170.94

191.64

Total GravelCoarse Sand

Medium Sand

10.1622.4647.51

15.646.717.948.03

Passing(%)

132.62122.46100.0052.49

155.30148.59

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL17

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 239: Thesis Ahmad Farid Abu Bakar.pdf

BS SieveNo.

(mm) 100 16 5 12 11 14 43

10.0005.0003.3502.0001.1800.6000.4250.3000.2120.1500.063 26.071

< 0.063Total

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

118.84111.59100.0043.05

140.86133.84

7.2511.5956.95

11.757.027.947.06

43.05

WeightRetained

(gm)

3.043.124.9956.95

5.063.02

125.90

189.29

164.00152.61

178.68

3.42

4.61

6.32

10.71

14.684.90 11.38

4.57 10.62

0.000.00 200.00

Sample Name

PL18

(%)

PercentagePercentageRetained

Percentage retained (%)

0.0010.0020.0030.0040.0050.0060.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL18

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 240: Thesis Ahmad Farid Abu Bakar.pdf

BS SieveNo.

(mm) 100 1 2 18 48 7 24

10.0005.0003.3502.0001.1800.6000.4250.3000.2120.1500.063 26.071

< 0.063Total

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

0.000.00 200.00

Sample Name

PL19

(%)

PercentagePercentageRetained

8.34

0.00

1.00

0.00

1.451.67 2.42

0.00 0.00

169.98

200.00

198.55196.14

200.00

69.12

WeightRetained

(gm)

12.0914.6521.6330.88

4.235.51

21.2031.2930.88

6.127.9712.0717.49

Passing(%)

152.49131.29100.0069.12

190.02182.05

Dry Sieve

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Percentage retained (%)

0.005.00

10.0015.0020.0025.0030.0035.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL19

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 241: Thesis Ahmad Farid Abu Bakar.pdf

BS SieveNo.

(mm) 100 10 4 15 26 10 34

10.0005.0003.3502.0001.1800.6000.4250.3000.2120.1500.063 26.071

< 0.063Total

2319

Fine Sand silt clayTotal GravelCoarse Sand

Medium Sand

PARTICLE SIZE DISTRIBUTION

Test Method : BS 1377:1990, Part 2, Method 9.2, 9.3 & 9.5

Dry Sieve

Passing(%)

136.04122.73100.0055.39

164.07157.18

13.3122.7344.61

9.686.9010.1510.99

55.39

WeightRetained

(gm)

6.097.3712.5944.61

5.363.82

147.03

192.15

181.21173.75

187.83

5.62

4.35

3.67

7.85

6.634.13 7.46

2.39 4.31

0.000.00 200.00

Sample Name

PL20

(%)

PercentagePercentageRetained

Percentage retained (%)

0.00

10.00

20.00

30.00

40.00

50.00

10.0

005.

000

3.35

02.

000

1.18

00.

600

0.42

50.

300

0.21

20.

150

0.06

3

< 0.

063

Size (mm)

%

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 100.00000Particle size (mm)

Per

cent

age

Pas

sing

PL20

SILT

SAND GRAVEL

FINE FINEMEDIUM MEDIUMCOARSE COARSECLAY

Page 242: Thesis Ahmad Farid Abu Bakar.pdf

APPENDIX 3

Page 243: Thesis Ahmad Farid Abu Bakar.pdf

REGRESSION RESULTS 10m Grid Size ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ REGRESSION RESULTS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cpfac03_10m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CPFAC03_10M [Dependent/Response] --- Cell Count: 499108 Mean: 0.2864 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3507 Variance: 0.1230 Sum: 142963.3500 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499108 Mean: 22.6025 Minimum: 0.0000 Maximum: 1357.2986 Range: 1357.2986 St. Dev: 51.6508 Variance: 2667.8010 Sum: 11281090.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003(t/ha/yr)] Regession Equation: Y-hat = 0.2215693 + 0.0028700*[Soil erosion 2003(t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: ------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2215693428 0.0004919095 450.42696 < 0.00001 0.22060521 0.22253347 [Soil erosion 2003 (t/ha/yr)] 0.0028699631 0.0000087249 328.93796 < 0.00001 0.00285286 0.00288706 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499106 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.178164 --> Adjusted R-Squared = 0.178162 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cpfac03_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 10967.320 10967.3204275 108200 < 0.00001 Residuals 499106 50590.074 0.1013614 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499107 61557.394 --------------------------------- Analysis Began: March 18, 10:31:43 PM Analysis Complete: March 18, 10:40:26 PM Time Elapsed: 8 minutes, 43 seconds...

Page 244: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS usle2003 vs Rfac03 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rfac_2003_10m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- Grids Created and Added to View: --> Predicted Values: [Y-Hat (Predicted Values)_2] Source = d:\putrausle\grid12 --------------------------------------------------- DESCRIPTIVE STATISTICS: --- RFAC_2003_10M [Dependent/Response] --- Cell Count: 499108 Mean: 3685.9629 Minimum: 518.4152 Maximum: 6443.8551 Range: 5925.4398 St. Dev: 2438.4422 Variance: 5946000.3140 Sum: 1839693619.2000 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499108 Mean: 22.6025 Minimum: 0.0000 Maximum: 1357.2986 Range: 1357.2986 St. Dev: 51.6508 Variance: 2667.8010 Sum: 11281090.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 3430.1870580 + 11.3162616*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3430.1870579 3.6725885328 933.99710 < 0.00001 3422.98889 3437.38521 [Soil erosion 2003 (t/ha/yr)] 11.316261626 0.0651402311 173.72154 < 0.00001 11.1885887 11.4439344 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499106 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.057019 --> Adjusted R-Squared = 0.057017 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rfac_2003_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 170511572810.358 170511572810.3584000 30179.175 < 0.00001 Residuals 499106 2819936199574.435 5649974.5536508 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499107 2990447772384.793 --------------------------------- Analysis Began: March 18, 9:15:36 PM Analysis Complete: March 18, 9:22:29 PM Time Elapsed: 6 minutes, 53 seconds...

Page 245: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS usle2003 vs. kfac |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_10m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- Grids Created and Added to View: --> Predicted Values: [Y-Hat (Predicted Values)] Source = d:\putrausle\grid12 --------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_10M [Dependent/Response] --- Cell Count: 499108 Mean: 0.4163 Minimum: 0.0796 Maximum: 0.7288 Range: 0.6493 St. Dev: 0.0978 Variance: 0.0096 Sum: 207766.5125 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499108 Mean: 22.6025 Minimum: 0.0000 Maximum: 1357.2986 Range: 1357.2986 St. Dev: 51.6508 Variance: 2667.8010 Sum: 11281090.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.4072663 + 0.0003986*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4072662904 0.0001507351 2701.8665 < 0.00001 0.40697085 0.40756172 [Soil erosion 2003 (t/ha/yr)] 0.0003986008 0.0000026735 149.08934 < 0.00001 0.00039336 0.00040384 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499106 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.042636 --> Adjusted R-Squared = 0.042634 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 211.555 211.5554938 22227.634 < 0.00001 Residuals 499106 4750.331 0.0095177 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499107 4961.886 --------------------------------- Analysis Began: March 18, 9:26:28 PM Analysis Complete: March 18, 9:33:27 PM Time Elapsed: 6 minutes, 59 seconds...

Page 246: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS usle2003 vs. Lsfac10m |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_10m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_10M [Dependent/Response] --- Cell Count: 499108 Mean: 0.0535 Minimum: 0.0000 Maximum: 0.3297 Range: 0.3297 St. Dev: 0.0511 Variance: 0.0026 Sum: 26680.4219 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499108 Mean: 22.6025 Minimum: 0.0000 Maximum: 1357.2986 Range: 1357.2986 St. Dev: 51.6508 Variance: 2667.8010 Sum: 11281090.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.0441526 + 0.0004116*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0441526262 0.0000719907 613.31008 < 0.00001 0.04401152 0.04429372 [Soil erosion 2003 (t/ha/yr)] 0.0004116174 0.0000012768 322.35935 < 0.00001 0.00040911 0.00041412 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499106 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.172325 --> Adjusted R-Squared = 0.172323 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 225.598 225.5980558 103916 < 0.00001 Residuals 499106 1083.547 0.0021710 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499107 1309.145 --------------------------------- Analysis Began: March 18, 10:22:14 PM Analysis Complete: March 18, 10:29:05 PM Time Elapsed: 6 minutes, 51 seconds...

Page 247: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rfac_2004_10m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RFAC_2004_10M [Dependent/Response] --- Cell Count: 499363 Mean: 2677.1572 Minimum: 187.5232 Maximum: 4702.4008 Range: 4514.8777 St. Dev: 1670.4029 Variance: 2790245.9486 Sum: 1336873267.2000 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499363 Mean: 15.6456 Minimum: 0.0000 Maximum: 707.5264 Range: 707.5264 St. Dev: 39.1042 Variance: 1529.1361 Sum: 7812816.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 2529.7237354 + 9.4233502*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 2529.7237354 2.4911338086 1015.4909 < 0.00001 2524.84119 2534.60628 [Soil erosion 2004 (t/ha/yr)] 9.4233501562 0.0591466411 159.32181 < 0.00001 9.30742457 9.53927573 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499361 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.048373 --> Adjusted R-Squared = 0.048371 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rfac_2004_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 67806775940.773 67806775940.7729490 25383.440 < 0.00001 Residuals 499361 1333942876340.749 2671299.6736644 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499362 1401749652281.522 --------------------------------- Analysis Began: March 19, 11:06:32 AM Analysis Complete: March 19, 11:13:46 AM Time Elapsed: 7 minutes, 14 seconds...

Page 248: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_10m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_10M [Dependent/Response] --- Cell Count: 499363 Mean: 0.4162 Minimum: 0.0796 Maximum: 0.7288 Range: 0.6493 St. Dev: 0.0978 Variance: 0.0096 Sum: 207861.1750 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499363 Mean: 15.6456 Minimum: 0.0000 Maximum: 707.5264 Range: 707.5264 St. Dev: 39.1042 Variance: 1529.1361 Sum: 7812816.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.4085549 + 0.0004920*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4085548817 0.0001485349 2750.5647 < 0.00001 0.40826375 0.40884600 [Soil erosion 2004 (t/ha/yr)] 0.0004920095 0.0000035266 139.51212 < 0.00001 0.00048509 0.00049892 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499361 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.037515 --> Adjusted R-Squared = 0.037513 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 184.846 184.8457567 19463.633 < 0.00001 Residuals 499361 4742.422 0.0094970 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499362 4927.268 --------------------------------- Analysis Began: March 19, 12:28:02 PM Analysis Complete: March 19, 12:36:46 PM Time Elapsed: 8 minutes, 44 seconds...

Page 249: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_10m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_10M [Dependent/Response] --- Cell Count: 499363 Mean: 0.0534 Minimum: 0.0000 Maximum: 0.3297 Range: 0.3297 St. Dev: 0.0511 Variance: 0.0026 Sum: 26691.8312 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499363 Mean: 15.6456 Minimum: 0.0000 Maximum: 707.5264 Range: 707.5264 St. Dev: 39.1042 Variance: 1529.1361 Sum: 7812816.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.0456162 + 0.0005008*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0456162381 0.0000720909 632.75946 < 0.00001 0.04547494 0.04575753 [Soil erosion 2004 (t/ha/yr)] 0.0005008142 0.0000017116 292.59228 < 0.00001 0.00049745 0.00050416 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499361 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.146349 --> Adjusted R-Squared = 0.146348 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 191.521 191.5207684 85610.244 < 0.00001 Residuals 499361 1117.133 0.0022371 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499362 1308.653 --------------------------------- Analysis Began: March 19, 1:24:00 PM Analysis Complete: March 19, 1:31:15 PM Time Elapsed: 7 minutes, 15 seconds...

Page 250: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cpfac04_10m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CPFAC04_10MNEW [Dependent/Response] --- Cell Count: 499363 Mean: 0.2545 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3665 Variance: 0.1343 Sum: 127081.3875 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 499363 Mean: 15.6456 Minimum: 0.0000 Maximum: 707.5264 Range: 707.5264 St. Dev: 39.1042 Variance: 1529.1361 Sum: 7812816.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.1819525 + 0.0046361*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.1819525158 0.0004864902 374.01063 < 0.00001 0.18099901 0.18290602 [Soil erosion 2004 (t/ha/yr)] 0.0046361035 0.0000115506 401.37099 < 0.00001 0.00461346 0.00465874 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 499361 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.243919 --> Adjusted R-Squared = 0.243918 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cpfac04_10mnew -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 16412.271 16412.2714750 161099 < 0.00001 Residuals 499361 50873.468 0.1018771 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 499362 67285.739 --------------------------------- Analysis Began: March 19, 1:39:35 PM Analysis Complete: March 19, 1:48:28 PM Time Elapsed: 8 minutes, 53 seconds...

Page 251: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rfac_2006_10m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RFAC_2006_10M [Dependent/Response] --- Cell Count: 497695 Mean: 3866.0535 Minimum: 1501.3465 Maximum: 5955.6930 Range: 4454.3465 St. Dev: 1941.6295 Variance: 3769925.0764 Sum: 1924115660.8000 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 497695 Mean: 24.4824 Minimum: 0.0000 Maximum: 969.3941 Range: 969.3941 St. Dev: 49.3431 Variance: 2434.7425 Sum: 12184788.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 3634.9500618 + 9.4395662*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3634.9500618 3.0068030856 1208.9085 < 0.00001 3629.05682 3640.84330 [Soil erosion 2006 (t/ha/yr)] 9.4395662015 0.0545868123 172.92759 < 0.00001 9.33257774 9.54655465 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 497693 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.056680 --> Adjusted R-Squared = 0.056678 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rfac_2006_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 107974292075.552 107974292075.5517600 29903.953 < 0.00001 Residuals 497693 1797021582422.563 3610702.9482483 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 497694 1904995874498.114 --------------------------------- Analysis Began: March 19, 2:05:26 PM Analysis Complete: March 19, 2:12:58 PM Time Elapsed: 7 minutes, 32 seconds...

Page 252: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_10m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_10M [Dependent/Response] --- Cell Count: 497695 Mean: 0.4162 Minimum: 0.0796 Maximum: 0.7288 Range: 0.6493 St. Dev: 0.0979 Variance: 0.0096 Sum: 207164.0375 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 497695 Mean: 24.4824 Minimum: 0.0000 Maximum: 969.3941 Range: 969.3941 St. Dev: 49.3431 Variance: 2434.7425 Sum: 12184788.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.4065366 + 0.0003966*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4065365917 0.0001590473 2556.0732 < 0.00001 0.40622486 0.40684831 [Soil erosion 2006 (t/ha/yr)] 0.0003966258 0.0000028874 137.36369 < 0.00001 0.00039096 0.00040228 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 497693 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.036528 --> Adjusted R-Squared = 0.036526 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 190.624 190.6243573 18868.785 < 0.00001 Residuals 497693 5028.008 0.0101026 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 497694 5218.633 --------------------------------- Analysis Began: March 19, 2:35:36 PM Analysis Complete: March 19, 2:44:26 PM Time Elapsed: 8 minutes, 50 seconds...

Page 253: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_10m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_10M [Dependent/Response] --- Cell Count: 497695 Mean: 0.0535 Minimum: 0.0000 Maximum: 0.3297 Range: 0.3297 St. Dev: 0.0511 Variance: 0.0026 Sum: 26616.2219 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 497695 Mean: 24.4824 Minimum: 0.0000 Maximum: 969.3941 Range: 969.3941 St. Dev: 49.3431 Variance: 2434.7425 Sum: 12184788.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.0416184 + 0.0004845*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0416184483 0.0000719012 578.82824 < 0.00001 0.04147752 0.04175937 [Soil erosion 2006 (t/ha/yr)] 0.0004844505 0.0000013053 371.13381 < 0.00001 0.00048189 0.00048700 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 497693 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.216766 --> Adjusted R-Squared = 0.216764 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 284.391 284.3905570 137740 < 0.00001 Residuals 497693 1027.580 0.0020647 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 497694 1311.971 --------------------------------- Analysis Began: March 19, 3:06:29 PM Analysis Complete: March 19, 3:13:35 PM Time Elapsed: 7 minutes, 6 seconds...

Page 254: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cpfac06_10m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CPFAC06_10M [Dependent/Response] --- Cell Count: 497695 Mean: 0.2808 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3290 Variance: 0.1082 Sum: 139732.5125 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 497695 Mean: 24.4824 Minimum: 0.0000 Maximum: 969.3941 Range: 969.3941 St. Dev: 49.3431 Variance: 2434.7425 Sum: 12184788.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.2026378 + 0.0031909*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2026377797 0.0004577121 442.71881 < 0.00001 0.20174067 0.20353488 [Soil erosion 2006 (t/ha/yr)] 0.0031909218 0.0000083095 384.00862 < 0.00001 0.00317463 0.00320720 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 497693 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.228569 --> Adjusted R-Squared = 0.228568 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cpfac06_10m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 12338.109 12338.1094264 147463 < 0.00001 Residuals 497693 41641.675 0.0836694 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 497694 53979.785 --------------------------------- Analysis Began: March 19, 3:15:54 PM Analysis Complete: March 19, 3:24:59 PM Time Elapsed: 9 minutes, 5 seconds...

Page 255: Thesis Ahmad Farid Abu Bakar.pdf

REGRESSION RESULTS 20m Grid Size ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cpfac03_20m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CPFAC03_20M [Dependent/Response] --- Cell Count: 124805 Mean: 0.2873 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3510 Variance: 0.1232 Sum: 35849.6344 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124805 Mean: 20.0762 Minimum: 0.0000 Maximum: 888.2681 Range: 888.2681 St. Dev: 50.8120 Variance: 2581.8634 Sum: 2505607.6000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.2351878 + 0.0025930*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2351878043 0.0009915135 237.20079 < 0.00001 0.23324445 0.23713115 [Soil erosion 2003 (t/ha/yr)] 0.0025929912 0.0000181481 142.87901 < 0.00001 0.00255742 0.00262856 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124803 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.140578 --> Adjusted R-Squared = 0.140571 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cpfac03_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 2166.543 2166.5427940 20414.413 < 0.00001 Residuals 124803 13245.105 0.1061281 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124804 15411.648 --------------------------------- Analysis Began: March 29, 2:42:03 PM Analysis Complete: March 29, 2:43:08 PM Time Elapsed: 1 minutes, 5 seconds...

Page 256: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_20m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_20M [Dependent/Response] --- Cell Count: 124805 Mean: 0.0479 Minimum: 0.0000 Maximum: 0.2738 Range: 0.2738 St. Dev: 0.0544 Variance: 0.0030 Sum: 5978.7633 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124805 Mean: 20.0762 Minimum: 0.0000 Maximum: 888.2681 Range: 888.2681 St. Dev: 50.8120 Variance: 2581.8634 Sum: 2505607.6000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.0383226 + 0.0004773*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0383225686 0.0001484204 258.20267 < 0.00001 0.03803166 0.03861347 [Soil erosion 2003 (t/ha/yr)] 0.0004772953 0.0000027166 175.69500 < 0.00001 0.00047197 0.00048261 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124803 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.198294 --> Adjusted R-Squared = 0.198287 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 73.407 73.4073683 30868.736 < 0.00001 Residuals 124803 296.788 0.0023780 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124804 370.195 --------------------------------- Analysis Began: March 29, 2:46:44 PM Analysis Complete: March 29, 2:47:54 PM Time Elapsed: 1 minutes, 10 seconds...

Page 257: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_20m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_20M [Dependent/Response] --- Cell Count: 124805 Mean: 0.4162 Minimum: 0.0810 Maximum: 0.7278 Range: 0.6468 St. Dev: 0.0977 Variance: 0.0095 Sum: 51939.8219 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124805 Mean: 20.0762 Minimum: 0.0000 Maximum: 888.2681 Range: 888.2681 St. Dev: 50.8120 Variance: 2581.8634 Sum: 2505607.6000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.4089392 + 0.0003601*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4089391530 0.0002993186 1366.2332 < 0.00001 0.40835249 0.40952581 [Soil erosion 2003 (t/ha/yr)] 0.0003600616 0.0000054785 65.721740 < 0.00001 0.00034932 0.00037079 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124803 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.033452 --> Adjusted R-Squared = 0.033444 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 41.775 41.7752307 4319.347 < 0.00001 Residuals 124803 1207.051 0.0096717 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124804 1248.827 --------------------------------- Analysis Began: March 29, 2:56:01 PM Analysis Complete: March 29, 2:57:10 PM Time Elapsed: 1 minutes, 9 seconds...

Page 258: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rfac_2003_20m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RFAC_2003_20M [Dependent/Response] --- Cell Count: 124805 Mean: 3683.9953 Minimum: 518.4152 Maximum: 6443.8551 Range: 5925.4398 St. Dev: 2438.6111 Variance: 5946824.2434 Sum: 459781017.6000 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124805 Mean: 20.0762 Minimum: 0.0000 Maximum: 888.2681 Range: 888.2681 St. Dev: 50.8120 Variance: 2581.8634 Sum: 2505607.6000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 3474.1368052 + 10.4531046*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3474.1368052 7.2793501385 477.25919 < 0.00001 3459.86940 3488.40420 [Soil erosion 2003 (t/ha/yr)] 10.453104649 0.1332375225 78.454660 < 0.00001 10.1919613 10.7142479 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124803 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.047001 --> Adjusted R-Squared = 0.046993 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rfac_2003_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 35209169209.502 35209169209.5024410 6155.134 < 0.00001 Residuals 124803 713909734035.651 5720293.0541385 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124804 749118903245.154 --------------------------------- Analysis Began: March 29, 3:00:42 PM Analysis Complete: March 29, 3:01:46 PM Time Elapsed: 1 minutes, 4 seconds...

Page 259: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cpfac_2004new INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CPFAC_2004NEW [Dependent/Response] --- Cell Count: 124711 Mean: 0.2541 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3655 Variance: 0.1336 Sum: 31691.7813 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124711 Mean: 14.2103 Minimum: 0.0000 Maximum: 573.1454 Range: 573.1454 St. Dev: 39.6589 Variance: 1572.8252 Sum: 1772179.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.1951645 + 0.0041489*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.1951644867 0.0009840755 198.32267 < 0.00001 0.19323571 0.19709325 [Soil erosion 2004 (t/ha/yr)] 0.0041489137 0.0000233592 177.61329 < 0.00001 0.00410313 0.00419469 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124709 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.201890 --> Adjusted R-Squared = 0.201884 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cpfac_2004new -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 3376.400 3376.4002727 31546.481 < 0.00001 Residuals 124709 13347.527 0.1070294 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124710 16723.927 --------------------------------- Analysis Began: March 29, 3:11:55 PM Analysis Complete: March 29, 3:12:56 PM Time Elapsed: 1 minutes, 1 seconds...

Page 260: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_20m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_20M [Dependent/Response] --- Cell Count: 124711 Mean: 0.0479 Minimum: 0.0000 Maximum: 0.2738 Range: 0.2738 St. Dev: 0.0544 Variance: 0.0030 Sum: 5974.8492 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124711 Mean: 14.2103 Minimum: 0.0000 Maximum: 573.1454 Range: 573.1454 St. Dev: 39.6589 Variance: 1572.8252 Sum: 1772179.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.0399313 + 0.0005614*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0399312921 0.0001496142 266.89494 < 0.00001 0.03963805 0.04022453 [Soil erosion 2004 (t/ha/yr)] 0.0005614428 0.0000035514 158.08914 < 0.00001 0.00055448 0.00056840 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124709 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.166947 --> Adjusted R-Squared = 0.166940 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 61.830 61.8295788 24992.178 < 0.00001 Residuals 124709 308.525 0.0024740 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124710 370.354 --------------------------------- Analysis Began: March 29, 3:18:25 PM Analysis Complete: March 29, 3:19:34 PM Time Elapsed: 1 minutes, 9 seconds...

Page 261: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_20m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_20M [Dependent/Response] --- Cell Count: 124711 Mean: 0.4162 Minimum: 0.0810 Maximum: 0.7278 Range: 0.6468 St. Dev: 0.0977 Variance: 0.0095 Sum: 51902.9594 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124711 Mean: 14.2103 Minimum: 0.0000 Maximum: 573.1454 Range: 573.1454 St. Dev: 39.6589 Variance: 1572.8252 Sum: 1772179.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.4097294 + 0.0004544*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4097293738 0.0002978477 1375.6334 < 0.00001 0.40914559 0.41031315 [Soil erosion 2004 (t/ha/yr)] 0.0004543562 0.0000070700 64.264571 < 0.00001 0.00044049 0.00046821 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124709 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.032055 --> Adjusted R-Squared = 0.032047 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 40.493 40.4928306 4129.935 < 0.00001 Residuals 124709 1222.736 0.0098047 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124710 1263.229 --------------------------------- Analysis Began: March 29, 3:28:58 PM Analysis Complete: March 29, 3:29:59 PM Time Elapsed: 1 minutes, 1 seconds...

Page 262: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rfac_2004_20m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RFAC_2004_20M [Dependent/Response] --- Cell Count: 124711 Mean: 2675.8268 Minimum: 187.5232 Maximum: 4702.4008 Range: 4514.8777 St. Dev: 1671.0560 Variance: 2792428.3222 Sum: 333705036.8000 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124711 Mean: 14.2103 Minimum: 0.0000 Maximum: 573.1454 Range: 573.1454 St. Dev: 39.6589 Variance: 1572.8252 Sum: 1772179.8000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 2555.0257790 + 8.5009639*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 2555.0257789 4.9528569790 515.86908 < 0.00001 2545.31826 2564.73329 [Soil erosion 2004 (t/ha/yr)] 8.5009639005 0.1175672378 72.307252 < 0.00001 8.27053409 8.73139370 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124709 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.040237 --> Adjusted R-Squared = 0.040230 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rfac_2004_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 14174947210.134 14174947210.1343990 5228.339 < 0.00001 Residuals 124709 338108067279.661 2711176.1563292 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124710 352283014489.795 --------------------------------- Analysis Began: March 29, 3:33:54 PM Analysis Complete: March 29, 3:34:59 PM Time Elapsed: 1 minutes, 5 seconds...

Page 263: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cpfac06_20m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CPFAC06_20M [Dependent/Response] --- Cell Count: 124411 Mean: 0.2800 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3287 Variance: 0.1080 Sum: 34833.7000 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124411 Mean: 21.8034 Minimum: 0.0000 Maximum: 846.0087 Range: 846.0087 St. Dev: 49.3188 Variance: 2432.3490 Sum: 2712576.2000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.2181161 + 0.0028378*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2181160838 0.0009236646 236.14206 < 0.00001 0.21630571 0.21992645 [Soil erosion 2006 (t/ha/yr)] 0.0028377668 0.0000171291 165.66844 < 0.00001 0.00280419 0.00287133 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124409 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.180738 --> Adjusted R-Squared = 0.180732 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cpfac06_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 2436.902 2436.9021882 27446.032 < 0.00001 Residuals 124409 11046.135 0.0887889 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124410 13483.037 --------------------------------- Analysis Began: March 29, 3:55:17 PM Analysis Complete: March 29, 3:56:19 PM Time Elapsed: 1 minutes, 2 seconds...

Page 264: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_20m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_20M [Dependent/Response] --- Cell Count: 124411 Mean: 0.0479 Minimum: 0.0000 Maximum: 0.2738 Range: 0.2738 St. Dev: 0.0544 Variance: 0.0030 Sum: 5961.6383 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124411 Mean: 21.8034 Minimum: 0.0000 Maximum: 846.0087 Range: 846.0087 St. Dev: 49.3188 Variance: 2432.3490 Sum: 2712576.2000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.0359255 + 0.0005501*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0359255397 0.0001468919 244.57127 < 0.00001 0.03563763 0.03621344 [Soil erosion 2006 (t/ha/yr)] 0.0005500698 0.0000027240 201.92839 < 0.00001 0.00054473 0.00055540 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124409 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.246846 --> Adjusted R-Squared = 0.246840 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 91.563 91.5630651 40775.075 < 0.00001 Residuals 124409 279.368 0.0022456 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124410 370.932 --------------------------------- Analysis Began: March 29, 3:59:29 PM Analysis Complete: March 29, 4:00:34 PM Time Elapsed: 1 minutes, 5 seconds...

Page 265: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rfac_2006_20m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RFAC_2006_20M [Dependent/Response] --- Cell Count: 124411 Mean: 3865.0848 Minimum: 1501.3465 Maximum: 5955.6930 Range: 4454.3465 St. Dev: 1941.8174 Variance: 3770654.7373 Sum: 480859084.8000 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124411 Mean: 21.8034 Minimum: 0.0000 Maximum: 846.0087 Range: 846.0087 St. Dev: 49.3188 Variance: 2432.3490 Sum: 2712576.2000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 3678.4380405 + 8.5604661*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3678.4380405 5.9304558875 620.26227 < 0.00001 3666.81444 3690.06163 [Soil erosion 2006 (t/ha/yr)] 8.5604660671 0.1099792299 77.837115 < 0.00001 8.34490863 8.77602350 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124409 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.046438 --> Adjusted R-Squared = 0.046430 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rfac_2006_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 22175809479.305 22175809479.3049320 6058.617 < 0.00001 Residuals 124409 455363073539.872 3660210.0614897 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124410 477538883019.177 --------------------------------- Analysis Began: March 29, 4:13:24 PM Analysis Complete: March 29, 4:14:28 PM Time Elapsed: 1 minutes, 4 seconds...

Page 266: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_20m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_20M [Dependent/Response] --- Cell Count: 124411 Mean: 0.4161 Minimum: 0.0810 Maximum: 0.7278 Range: 0.6468 St. Dev: 0.0978 Variance: 0.0096 Sum: 51770.8938 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 124411 Mean: 21.8034 Minimum: 0.0000 Maximum: 846.0087 Range: 846.0087 St. Dev: 49.3188 Variance: 2432.3490 Sum: 2712576.2000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.4085155 + 0.0003491*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4085155222 0.0003149512 1297.0753 < 0.00001 0.40789822 0.40913282 [Soil erosion 2006 (t/ha/yr)] 0.0003491403 0.0000058407 59.776999 < 0.00001 0.00033769 0.00036058 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 124409 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.027920 --> Adjusted R-Squared = 0.027912 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_20m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 36.888 36.8879727 3573.290 < 0.00001 Residuals 124409 1284.306 0.0103233 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 124410 1321.194 --------------------------------- Analysis Began: March 29, 4:21:13 PM Analysis Complete: March 29, 4:22:20 PM Time Elapsed: 1 minutes, 7 seconds...

Page 267: Thesis Ahmad Farid Abu Bakar.pdf

REGRESSION RESULTS 30m Grid Size ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rainfall Erosivity (Mj.mm/ha.h.yr) 2003 INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RAINFALL EROSIVITY (MJ.MM/HA.H.YR) 2003 [Dependent/Response] --- Cell Count: 55556 Mean: 3859.9074 Minimum: 1501.3465 Maximum: 5955.6930 Range: 4454.3465 St. Dev: 1942.4773 Variance: 3773218.2164 Sum: 214441024.0000 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55556 Mean: 17.8632 Minimum: 0.0000 Maximum: 918.0112 Range: 918.0112 St. Dev: 49.6483 Variance: 2464.9577 Sum: 992408.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 3723.3175288 + 7.6464472*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3723.3175288 8.6116182502 432.35979 < 0.00001 3706.43869 3740.19635 [Soil erosion 2003 (t/ha/yr)] 7.6464471954 0.1632097710 46.850425 < 0.00001 7.32655494 7.96633944 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55554 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.038009 --> Adjusted R-Squared = 0.037991 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rainfall Erosivity (Mj.mm/ha.h.yr) 2003 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 8006814352.693 8006814352.6928711 2194.962 < 0.00001 Residuals 55554 202650657492.498 3647813.9736562 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55555 210657471845.191 --------------------------------- Analysis Began: March 30, 11:32:08 AM Analysis Complete: March 30, 11:33:09 AM Time Elapsed: 1 minutes, 1 seconds...

Page 268: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: CP Factor 2003 INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CP FACTOR 2003 [Dependent/Response] --- Cell Count: 55556 Mean: 0.2869 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3512 Variance: 0.1233 Sum: 15936.7781 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55556 Mean: 17.8632 Minimum: 0.0000 Maximum: 918.0112 Range: 918.0112 St. Dev: 49.6483 Variance: 2464.9577 Sum: 992408.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.2432658 + 0.0024404*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2432657938 0.0014862816 163.67408 < 0.00001 0.24035267 0.24617891 [Soil erosion 2003 (t/ha/yr)] 0.0024404316 0.0000281684 86.637147 < 0.00001 0.00238522 0.00249564 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55554 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.119029 --> Adjusted R-Squared = 0.119014 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: CP Factor 2003 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 815.593 815.5933108 7505.995 < 0.00001 Residuals 55554 6036.437 0.1086589 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55555 6852.031 --------------------------------- Analysis Began: March 30, 11:39:45 AM Analysis Complete: March 30, 11:40:49 AM Time Elapsed: 1 minutes, 4 seconds...

Page 269: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_30m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_30M [Dependent/Response] --- Cell Count: 55556 Mean: 0.0425 Minimum: 0.0000 Maximum: 0.2586 Range: 0.2586 St. Dev: 0.0561 Variance: 0.0031 Sum: 2360.6521 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55556 Mean: 17.8632 Minimum: 0.0000 Maximum: 918.0112 Range: 918.0112 St. Dev: 49.6483 Variance: 2464.9577 Sum: 992408.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.0330192 + 0.0005303*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0330192230 0.0002235594 147.69771 < 0.00001 0.03258104 0.03345740 [Soil erosion 2003 (t/ha/yr)] 0.0005302618 0.0000042369 125.15147 < 0.00001 0.00052195 0.00053856 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55554 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.219932 --> Adjusted R-Squared = 0.219918 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_30m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 38.505 38.5053618 15662.891 < 0.00001 Residuals 55554 136.573 0.0024584 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55555 175.078 --------------------------------- Analysis Began: March 30, 11:46:13 AM Analysis Complete: March 30, 11:47:14 AM Time Elapsed: 1 minutes, 1 seconds...

Page 270: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_30m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_30M [Dependent/Response] --- Cell Count: 55556 Mean: 0.4162 Minimum: 0.0811 Maximum: 0.7281 Range: 0.6469 St. Dev: 0.0978 Variance: 0.0096 Sum: 23120.9906 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55556 Mean: 17.8632 Minimum: 0.0000 Maximum: 918.0112 Range: 918.0112 St. Dev: 49.6483 Variance: 2464.9577 Sum: 992408.0000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.4103033 + 0.0003287*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4103032951 0.0004383534 936.01027 < 0.00001 0.40944411 0.41116247 [Soil erosion 2003 (t/ha/yr)] 0.0003286756 0.0000083077 39.562319 < 0.00001 0.00031239 0.00034495 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55554 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.027402 --> Adjusted R-Squared = 0.027384 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_30m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 14.794 14.7936525 1565.177 < 0.00001 Residuals 55554 525.082 0.0094517 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55555 539.876 --------------------------------- Analysis Began: March 30, 11:48:30 AM Analysis Complete: March 30, 11:49:35 AM Time Elapsed: 1 minutes, 5 seconds...

Page 271: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cp30_2004new INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CP30_2004NEW [Dependent/Response] --- Cell Count: 55468 Mean: 0.2539 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3658 Variance: 0.1338 Sum: 14083.4922 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55468 Mean: 12.8602 Minimum: 0.0000 Maximum: 602.8631 Range: 602.8631 St. Dev: 39.0656 Variance: 1526.1242 Sum: 713329.1500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.2038812 + 0.0038897*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2038812240 0.0014896996 136.86062 < 0.00001 0.20096140 0.20680104 [Soil erosion 2004 (t/ha/yr)] 0.0038896606 0.0000362210 107.38661 < 0.00001 0.00381866 0.00396065 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55466 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.172123 --> Adjusted R-Squared = 0.172108 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cp30_2004new -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 1280.725 1280.7248920 11531.885 < 0.00001 Residuals 55466 6160.024 0.1110595 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55467 7440.749 --------------------------------- Analysis Began: March 30, 11:51:41 AM Analysis Complete: March 30, 11:52:41 AM Time Elapsed: 1 minutes, 0 seconds...

Page 272: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\ DEPENDENT GRID: Rainfall Erosivity (Mj.mm/ha.h.yr) 2004 INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RAINFALL EROSIVITY (MJ.MM/HA.H.YR) 2004 [Dependent/Response] --- Cell Count: 55468 Mean: 2676.4070 Minimum: 187.5232 Maximum: 4702.4008 Range: 4514.8777 St. Dev: 1671.1750 Variance: 2792825.8806 Sum: 148454950.4000 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55468 Mean: 12.8602 Minimum: 0.0000 Maximum: 602.8631 Range: 602.8631 St. Dev: 39.0656 Variance: 1526.1242 Sum: 713329.1500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 2574.5072146 + 7.9236822*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 2574.5072145 7.3733544930 349.16362 < 0.00001 2560.05538 2588.95903 [Soil erosion 2004 (t/ha/yr)] 7.9236822499 0.1792784009 44.197640 < 0.00001 7.57229537 8.27506912 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55466 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.034020 --> Adjusted R-Squared = 0.034003 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rainfall Erosivity (Mj.mm/ha.h.yr) 2004 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 5314795137.191 5314795137.1906738 1953.431 < 0.00001 Residuals 55466 150909024973.135 2720748.2957692 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55467 156223820110.326 --------------------------------- Analysis Began: March 30, 11:54:23 AM Analysis Complete: March 30, 11:55:29 AM Time Elapsed: 1 minutes, 6 seconds...

Page 273: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_30m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_30M [Dependent/Response] --- Cell Count: 55468 Mean: 0.0425 Minimum: 0.0000 Maximum: 0.2586 Range: 0.2586 St. Dev: 0.0561 Variance: 0.0031 Sum: 2357.0756 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55468 Mean: 12.8602 Minimum: 0.0000 Maximum: 602.8631 Range: 602.8631 St. Dev: 39.0656 Variance: 1526.1242 Sum: 713329.1500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.0344075 + 0.0006288*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0344075188 0.0002259799 152.25916 < 0.00001 0.03396459 0.03485044 [Soil erosion 2004 (t/ha/yr)] 0.0006288248 0.0000054945 114.44502 < 0.00001 0.00061805 0.00063959 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55466 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.191029 --> Adjusted R-Squared = 0.191015 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_30m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 33.473 33.4727861 13097.665 < 0.00001 Residuals 55466 141.751 0.0025556 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55467 175.223 --------------------------------- Analysis Began: March 30, 11:57:32 AM Analysis Complete: March 30, 11:58:34 AM Time Elapsed: 1 minutes, 2 seconds...

Page 274: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_30m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_30M [Dependent/Response] --- Cell Count: 55468 Mean: 0.4162 Minimum: 0.0811 Maximum: 0.7281 Range: 0.6469 St. Dev: 0.0977 Variance: 0.0095 Sum: 23087.0172 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55468 Mean: 12.8602 Minimum: 0.0000 Maximum: 602.8631 Range: 602.8631 St. Dev: 39.0656 Variance: 1526.1242 Sum: 713329.1500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.4109919 + 0.0004067*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4109918855 0.0004406208 932.75638 < 0.00001 0.41012826 0.41185550 [Soil erosion 2004 (t/ha/yr)] 0.0004067122 0.0000107134 37.962896 < 0.00001 0.00038571 0.00042771 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55466 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.025325 --> Adjusted R-Squared = 0.025308 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_30m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 14.003 14.0025410 1441.182 < 0.00001 Residuals 55466 538.908 0.0097160 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55467 552.911 --------------------------------- Analysis Began: March 30, 11:59:37 AM Analysis Complete: March 30, 12:00:42 PM Time Elapsed: 1 minutes, 5 seconds...

Page 275: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: Rainfall Erosivity (Mj.mm/ha.h.yr) 2006 INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- RAINFALL EROSIVITY (MJ.MM/HA.H.YR) 2006 [Dependent/Response] --- Cell Count: 55366 Mean: 3693.2578 Minimum: 518.4152 Maximum: 6443.8551 Range: 5925.4398 St. Dev: 2437.0199 Variance: 5939066.0905 Sum: 204480896.0000 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55366 Mean: 19.6861 Minimum: 0.0000 Maximum: 786.4747 Range: 786.4747 St. Dev: 49.5675 Variance: 2456.9361 Sum: 1089938.9000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 3509.9605826 + 9.3109967*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3509.9605825 10.976103575 319.78202 < 0.00001 3488.44734 3531.47382 [Soil erosion 2006 (t/ha/yr)] 9.3109966574 0.2058007549 45.242772 < 0.00001 8.90762573 9.71436757 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55364 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.035654 --> Adjusted R-Squared = 0.035636 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: Rainfall Erosivity (Mj.mm/ha.h.yr) 2006 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 11793136122.243 11793136122.2430420 2046.908 < 0.00001 Residuals 55364 318976256483.999 5761438.0551261 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55365 330769392606.242 --------------------------------- Analysis Began: March 30, 12:03:32 PM Analysis Complete: March 30, 12:04:34 PM Time Elapsed: 1 minutes, 2 seconds...

Page 276: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: CP Factor 2006 INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CP FACTOR 2006 [Dependent/Response] --- Cell Count: 55366 Mean: 0.2811 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3292 Variance: 0.1084 Sum: 15564.5906 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55366 Mean: 19.6861 Minimum: 0.0000 Maximum: 786.4747 Range: 786.4747 St. Dev: 49.5675 Variance: 2456.9361 Sum: 1089938.9000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.2303218 + 0.0025805*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2303218249 0.0013870504 166.05151 < 0.00001 0.22760319 0.23304045 [Soil erosion 2006 (t/ha/yr)] 0.0025805037 0.0000260070 99.223257 < 0.00001 0.00252952 0.00263147 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55364 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.150979 --> Adjusted R-Squared = 0.150964 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: CP Factor 2006 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 905.828 905.8284323 9845.255 < 0.00001 Residuals 55364 5093.854 0.0920066 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55365 5999.682 --------------------------------- Analysis Began: March 30, 12:06:03 PM Analysis Complete: March 30, 12:07:07 PM Time Elapsed: 1 minutes, 4 seconds...

Page 277: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_30m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_30M [Dependent/Response] --- Cell Count: 55366 Mean: 0.0425 Minimum: 0.0000 Maximum: 0.2586 Range: 0.2586 St. Dev: 0.0561 Variance: 0.0031 Sum: 2354.3176 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55366 Mean: 19.6861 Minimum: 0.0000 Maximum: 786.4747 Range: 786.4747 St. Dev: 49.5675 Variance: 2456.9361 Sum: 1089938.9000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.0309484 + 0.0005879*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0309484477 0.0002200889 140.61793 < 0.00001 0.03051707 0.03137982 [Soil erosion 2006 (t/ha/yr)] 0.0005879465 0.0000041266 142.47573 < 0.00001 0.00057985 0.00059603 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55364 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.268285 --> Adjusted R-Squared = 0.268272 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_30m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 47.023 47.0232477 20299.335 < 0.00001 Residuals 55364 128.250 0.0023165 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55365 175.274 --------------------------------- Analysis Began: March 30, 12:09:24 PM Analysis Complete: March 30, 12:10:26 PM Time Elapsed: 1 minutes, 2 seconds...

Page 278: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_30m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_30M [Dependent/Response] --- Cell Count: 55366 Mean: 0.4162 Minimum: 0.0811 Maximum: 0.7281 Range: 0.6469 St. Dev: 0.0979 Variance: 0.0096 Sum: 23041.5000 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 55366 Mean: 19.6861 Minimum: 0.0000 Maximum: 786.4747 Range: 786.4747 St. Dev: 49.5675 Variance: 2456.9361 Sum: 1089938.9000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.4097061 + 0.0003282*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4097061162 0.0004592746 892.07209 < 0.00001 0.40880593 0.41060629 [Soil erosion 2006 (t/ha/yr)] 0.0003281937 0.0000086113 38.111763 < 0.00001 0.00031131 0.00034507 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 55364 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.025565 --> Adjusted R-Squared = 0.025547 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_30m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 14.652 14.6520226 1452.507 < 0.00001 Residuals 55364 558.479 0.0100874 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 55365 573.131 --------------------------------- Analysis Began: March 30, 12:12:43 PM Analysis Complete: March 30, 12:13:47 PM Time Elapsed: 1 minutes, 4 seconds...

Page 279: Thesis Ahmad Farid Abu Bakar.pdf

REGRESSION RESULTS 40m Grid Size ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_40m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_40M [Dependent/Response] --- Cell Count: 31025 Mean: 0.0390 Minimum: 0.0000 Maximum: 0.2629 Range: 0.2629 St. Dev: 0.0568 Variance: 0.0032 Sum: 1211.2110 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 16.3686 Minimum: 0.0000 Maximum: 825.5882 Range: 825.5882 St. Dev: 49.5214 Variance: 2452.3651 Sum: 507837.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.0300785 + 0.0005475*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0300785116 0.0003002651 100.17317 < 0.00001 0.02948997 0.03066704 [Soil erosion 2003 (t/ha/yr)] 0.0005474691 0.0000057570 95.096153 < 0.00001 0.00053618 0.00055875 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.225708 --> Adjusted R-Squared = 0.225683 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_40m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 22.804 22.8042719 9043.279 < 0.00001 Residuals 31023 78.230 0.0025217 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 101.034 --------------------------------- Analysis Began: March 21, 4:57:11 PM Analysis Complete: March 21, 5:07:11 PM Time Elapsed: 10 minutes, 0 seconds...

Page 280: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: 2003 Rainfall Erosivity (Mj.mm/ha.h.yr) INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- 2003 RAINFALL EROSIVITY (MJ.MM/HA.H.YR) [Dependent/Response] --- Cell Count: 31025 Mean: 3692.2766 Minimum: 518.4152 Maximum: 6443.8551 Range: 5925.4398 St. Dev: 2438.7641 Variance: 5947570.1403 Sum: 114552883.2000 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 16.3686 Minimum: 0.0000 Maximum: 825.5882 Range: 825.5882 St. Dev: 49.5214 Variance: 2452.3651 Sum: 507837.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 3550.3968333 + 8.6677713*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3550.3968332 14.487440766 245.06721 < 0.00001 3522.00086 3578.79280 [Soil erosion 2003 (t/ha/yr)] 8.6677713470 0.2777687763 31.204988 < 0.00001 8.12333329 9.21220939 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.030433 --> Adjusted R-Squared = 0.030402 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: 2003 Rainfall Erosivity (Mj.mm/ha.h.yr) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 5716258464.807 5716258464.8071899 973.7512793 < 0.00001 Residuals 31023 182115792938.384 5870347.5788410 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 187832051403.191 --------------------------------- Analysis Began: March 25, 1:03:46 PM Analysis Complete: March 25, 1:04:54 PM Time Elapsed: 1 minutes, 8 seconds...

Page 281: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_40m INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_40M [Dependent/Response] --- Cell Count: 31025 Mean: 0.4161 Minimum: 0.0844 Maximum: 0.7277 Range: 0.6433 St. Dev: 0.0979 Variance: 0.0096 Sum: 12909.2227 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 16.3686 Minimum: 0.0000 Maximum: 825.5882 Range: 825.5882 St. Dev: 49.5214 Variance: 2452.3651 Sum: 507837.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.4108505 + 0.0003202*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4108504709 0.0006199201 662.74745 < 0.00001 0.40963540 0.41206553 [Soil erosion 2003 (t/ha/yr)] 0.0003201553 0.0000118857 26.936009 < 0.00001 0.00029685 0.00034345 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.022853 --> Adjusted R-Squared = 0.022821 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_40m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 7.799 7.7986320 725.5486133 < 0.00001 Residuals 31023 333.454 0.0107486 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 341.252 --------------------------------- Analysis Began: March 25, 1:11:21 PM Analysis Complete: March 25, 1:12:28 PM Time Elapsed: 1 minutes, 7 seconds...

Page 282: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: CP factor 2003 INDEPENDENT GRID: [Soil erosion 2003 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CP FACTOR 2003 [Dependent/Response] --- Cell Count: 31025 Mean: 0.2859 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3502 Variance: 0.1226 Sum: 8869.3039 --- [SOIL EROSION 2003 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 16.3686 Minimum: 0.0000 Maximum: 825.5882 Range: 825.5882 St. Dev: 49.5214 Variance: 2452.3651 Sum: 507837.4000 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2003 (t/ha/yr)] Regession Equation: Y-hat = 0.2484980 + 0.0022835*[Soil erosion 2003 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2484979739 0.0019970209 124.43433 < 0.00001 0.24458373 0.25241221 [Soil erosion 2003 (t/ha/yr)] 0.0022835145 0.0000382890 59.638871 < 0.00001 0.00220846 0.00235856 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.102858 --> Adjusted R-Squared = 0.102829 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: CP factor 2003 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 396.739 396.7386837 3556.795 < 0.00001 Residuals 31023 3460.426 0.1115439 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 3857.164 --------------------------------- Analysis Began: March 25, 1:18:34 PM Analysis Complete: March 25, 1:19:34 PM Time Elapsed: 1 minutes, 0 seconds...

Page 283: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_40m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_40M [Dependent/Response] --- Cell Count: 31025 Mean: 0.0391 Minimum: 0.0000 Maximum: 0.2629 Range: 0.2629 St. Dev: 0.0568 Variance: 0.0032 Sum: 1211.4918 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 11.5001 Minimum: 0.0000 Maximum: 584.8555 Range: 584.8555 St. Dev: 37.6049 Variance: 1414.1278 Sum: 356790.9500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.0313041 + 0.0006735*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0313041026 0.0003035739 103.11852 < 0.00001 0.03070908 0.03189912 [Soil erosion 2004 (t/ha/yr)] 0.0006734531 0.0000077198 87.237052 < 0.00001 0.00065832 0.00068858 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.196988 --> Adjusted R-Squared = 0.196962 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_40m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 19.898 19.8982647 7610.303 < 0.00001 Residuals 31023 81.114 0.0026146 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 101.012 --------------------------------- Analysis Began: March 25, 1:22:15 PM Analysis Complete: March 25, 1:23:20 PM Time Elapsed: 1 minutes, 5 seconds...

Page 284: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: cpfac_2004new INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CPFAC_2004NEW [Dependent/Response] --- Cell Count: 31025 Mean: 0.2539 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3657 Variance: 0.1338 Sum: 7875.9953 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 11.5001 Minimum: 0.0000 Maximum: 584.8555 Range: 584.8555 St. Dev: 37.6049 Variance: 1414.1278 Sum: 356790.9500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.2110452 + 0.0037230*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2110451651 0.0020190265 104.52817 < 0.00001 0.20708779 0.21500253 [Soil erosion 2004 (t/ha/yr)] 0.0037229609 0.0000513433 72.511116 < 0.00001 0.00362232 0.00382359 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.144921 --> Adjusted R-Squared = 0.144894 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: cpfac_2004new -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 608.103 608.1032823 5257.862 < 0.00001 Residuals 31023 3587.996 0.1156560 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 4196.099 --------------------------------- Analysis Began: March 25, 1:28:07 PM Analysis Complete: March 25, 1:29:09 PM Time Elapsed: 1 minutes, 2 seconds...

Page 285: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: 2004 Rainfall Erosivity (Mj.mm/ha.h.yr) INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- 2004 RAINFALL EROSIVITY (MJ.MM/HA.H.YR) [Dependent/Response] --- Cell Count: 31025 Mean: 2680.7269 Minimum: 187.5232 Maximum: 4702.4008 Range: 4514.8777 St. Dev: 1670.4635 Variance: 2790448.2380 Sum: 83169548.8000 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 11.5001 Minimum: 0.0000 Maximum: 584.8555 Range: 584.8555 St. Dev: 37.6049 Variance: 1414.1278 Sum: 356790.9500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 2597.6959516 + 7.2200121*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 2597.6959516 9.8896745357 262.66748 < 0.00001 2578.31178 2617.08011 [Soil erosion 2004 (t/ha/yr)] 7.2200120704 0.2514918218 28.708735 < 0.00001 6.72707791 7.71294622 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.025880 --> Adjusted R-Squared = 0.025848 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: 2004 Rainfall Erosivity (Mj.mm/ha.h.yr) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 2287052994.053 2287052994.0534668 824.1914659 < 0.00001 Residuals 31023 86085876852.950 2774904.9689892 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 88372929847.004 --------------------------------- Analysis Began: March 25, 1:30:59 PM Analysis Complete: March 25, 1:32:05 PM Time Elapsed: 1 minutes, 6 seconds...

Page 286: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_40m INDEPENDENT GRID: [Soil erosion 2004 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_40M [Dependent/Response] --- Cell Count: 31025 Mean: 0.4161 Minimum: 0.0844 Maximum: 0.7277 Range: 0.6433 St. Dev: 0.0979 Variance: 0.0096 Sum: 12909.6188 --- [SOIL EROSION 2004 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 31025 Mean: 11.5001 Minimum: 0.0000 Maximum: 584.8555 Range: 584.8555 St. Dev: 37.6049 Variance: 1414.1278 Sum: 356790.9500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2004 (t/ha/yr)] Regession Equation: Y-hat = 0.4113739 + 0.0004113*[Soil erosion 2004 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4113739226 0.0006155527 668.30007 < 0.00001 0.41016741 0.41258043 [Soil erosion 2004 (t/ha/yr)] 0.0004112835 0.0000156533 26.274484 < 0.00001 0.00038060 0.00044196 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 31023 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.021768 --> Adjusted R-Squared = 0.021737 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_40m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 7.421 7.4213520 690.3485485 < 0.00001 Residuals 31023 333.502 0.0107502 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 31024 340.923 --------------------------------- Analysis Began: March 25, 1:35:45 PM Analysis Complete: March 25, 1:36:46 PM Time Elapsed: 1 minutes, 1 seconds...

Page 287: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: kfac_40m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- KFAC_40M [Dependent/Response] --- Cell Count: 30994 Mean: 0.4160 Minimum: 0.0844 Maximum: 0.7277 Range: 0.6433 St. Dev: 0.0980 Variance: 0.0096 Sum: 12895.0391 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 30994 Mean: 17.4515 Minimum: 0.0000 Maximum: 869.9435 Range: 869.9435 St. Dev: 47.7473 Variance: 2279.8047 Sum: 540892.3500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.4104536 + 0.0003207*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.4104535982 0.0006338314 647.57534 < 0.00001 0.40921126 0.41169593 [Soil erosion 2006 (t/ha/yr)] 0.0003206557 0.0000124680 25.718275 < 0.00001 0.00029621 0.00034509 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 30992 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.020896 --> Adjusted R-Squared = 0.020864 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: kfac_40m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 7.265 7.2652981 661.4296945 < 0.00001 Residuals 30992 340.423 0.0109842 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 30993 347.689 --------------------------------- Analysis Began: March 25, 1:39:15 PM Analysis Complete: March 25, 1:40:20 PM Time Elapsed: 1 minutes, 5 seconds...

Page 288: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: LSfac_40m INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- LSFAC_40M [Dependent/Response] --- Cell Count: 30994 Mean: 0.0391 Minimum: 0.0000 Maximum: 0.2629 Range: 0.2629 St. Dev: 0.0568 Variance: 0.0032 Sum: 1210.7180 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 30994 Mean: 17.4515 Minimum: 0.0000 Maximum: 869.9435 Range: 869.9435 St. Dev: 47.7473 Variance: 2279.8047 Sum: 540892.3500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.0281802 + 0.0006236*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.0281802277 0.0002946105 95.652480 < 0.00001 0.02760277 0.02875767 [Soil erosion 2006 (t/ha/yr)] 0.0006235991 0.0000057952 107.60532 < 0.00001 0.00061224 0.00063495 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 30992 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.271991 --> Adjusted R-Squared = 0.271968 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: LSfac_40m -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 27.478 27.4780723 11578.905 < 0.00001 Residuals 30992 73.548 0.0023731 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 30993 101.026 --------------------------------- Analysis Began: March 25, 1:44:39 PM Analysis Complete: March 25, 1:45:41 PM Time Elapsed: 1 minutes, 2 seconds...

Page 289: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: CP Factor 2006 INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- CP FACTOR 2006 [Dependent/Response] --- Cell Count: 30994 Mean: 0.2774 Minimum: 0.0000 Maximum: 1.0000 Range: 1.0000 St. Dev: 0.3262 Variance: 0.1064 Sum: 8598.1133 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 30994 Mean: 17.4515 Minimum: 0.0000 Maximum: 869.9435 Range: 869.9435 St. Dev: 47.7473 Variance: 2279.8047 Sum: 540892.3500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 0.2353507 + 0.0024102*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 0.2353507132 0.0018576317 126.69395 < 0.00001 0.23170967 0.23899174 [Soil erosion 2006 (t/ha/yr)] 0.0024101898 0.0000365412 65.958098 < 0.00001 0.00233856 0.00248181 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 30992 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.123095 --> Adjusted R-Squared = 0.123066 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: CP Factor 2006 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 410.467 410.4665208 4350.471 < 0.00001 Residuals 30992 2924.092 0.0943499 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 30993 3334.559 --------------------------------- Analysis Began: March 25, 1:47:16 PM Analysis Complete: March 25, 1:48:21 PM Time Elapsed: 1 minutes, 5 seconds...

Page 290: Thesis Ahmad Farid Abu Bakar.pdf

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~| REGRESSION RESULTS |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEPENDENT GRID: 2006 Rainfall Erosivity (Mj.mm/ha.h.yr) INDEPENDENT GRID: [Soil erosion 2006 (t/ha/yr)] MASK GRID: No Mask Grid used in analysis --------------------------------------------------------------------- <<<<<<< Polygon ID: No Polygon Analysis Area Specified >>>>>>>>>>>>>> --------------------------------------------------------------------- DESCRIPTIVE STATISTICS: --- 2006 RAINFALL EROSIVITY (MJ.MM/HA.H.YR) [Dependent/Response] --- Cell Count: 30994 Mean: 3869.6996 Minimum: 1501.3465 Maximum: 5955.6930 Range: 4454.3465 St. Dev: 1941.6803 Variance: 3770122.2709 Sum: 119937472.0000 --- [SOIL EROSION 2006 (T/HA/YR)] [Independent/Predictor] --- Cell Count: 30994 Mean: 17.4515 Minimum: 0.0000 Maximum: 869.9435 Range: 869.9435 St. Dev: 47.7473 Variance: 2279.8047 Sum: 540892.3500 --------------------------------------------------------------------------------------- Regression Model = B0 + B1*[Soil erosion 2006 (t/ha/yr)] Regession Equation: Y-hat = 3742.5337067 + 7.2868143*[Soil erosion 2006 (t/ha/yr)] --------------------------------------------------------------------------------------- Parameter Coefficients: --------------------------------------------------------------------------------------------------- | 95% CI Coefficient | Value | Std. Error | t-Value | P (>|t|) | Lower | Upper --------------------------------------------------------------------------------------------------- [Intercept] 3742.5337067 11.707438477 319.67143 < 0.00001 3719.58665 3765.48076 [Soil erosion 2006 (t/ha/yr)] 7.2868143010 0.2302954582 31.641155 < 0.00001 6.83542587 7.73820272 -- -- -- -- -- -- -- -- -- P-values calculated on t-distribution with 30992 df. --------------------------------------------------------------------------------------------------- Coefficient of Multiple Determination (R-Squared): --> R-Squared = 0.031293 --> Adjusted R-Squared = 0.031262 --------------------------------------------------------------------------------------- ANOVA Table Dependent Grid: 2006 Rainfall Erosivity (Mj.mm/ha.h.yr) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Df Sum of Sq Mean Sq F-Value P-Value Regression 1 3751894782.886 3751894782.8862305 1001.163 < 0.00001 Residuals 30992 116143683677.771 3747537.5476823 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Total 30993 119895578460.657 --------------------------------- Analysis Began: March 25, 1:51:50 PM Analysis Complete: March 25, 1:52:49 PM Time Elapsed: 59 seconds..

Page 291: Thesis Ahmad Farid Abu Bakar.pdf

APPENDIX 4

Page 292: Thesis Ahmad Farid Abu Bakar.pdf

Image 2003 of Putrajaya by SPOT-4

Page 293: Thesis Ahmad Farid Abu Bakar.pdf

Image 2004 of Putrajaya by SPOT-5

Page 294: Thesis Ahmad Farid Abu Bakar.pdf

Image 2006 of Putrajaya by SPOT-4