thermal systems design principles of space systems design u n i v e r s i t y o f maryland thermal...

25
Thermal Systems Desig Principles of Space Systems Desig U N I V E R S I T Y O F MARYLAND Thermal Systems Design ā€¢ Fundamentals of heat transfer ā€¢ Radiative equilibrium ā€¢ Surface properties ā€¢ Non-ideal effects ā€“ Internal power generation ā€“ Environmental temperatures ā€¢ Conduction ā€¢ Thermal system components Ā© 2002 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: claud-robertson

Post on 11-Jan-2016

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Thermal Systems Design

ā€¢ Fundamentals of heat transferā€¢ Radiative equilibriumā€¢ Surface propertiesā€¢ Non-ideal effects

ā€“ Internal power generationā€“ Environmental temperatures

ā€¢ Conductionā€¢ Thermal system components

Ā© 2002 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Page 2: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Classical Methods of Heat Transfer

ā€¢ Convectionā€“ Heat transferred to cooler surrounding gas, which

creates currents to remove hot gas and supply new cool gas

ā€“ Donā€™t (in general) have surrounding gas or gravity for convective currents

ā€¢ Conductionā€“ Direct heat transfer between touching componentsā€“ Primary heat flow mechanism internal to vehicle

ā€¢ Radiationā€“ Heat transferred by infrared radiationā€“ Only mechanism for dumping heat external to vehicle

Page 3: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Ideal Radiative Heat Transfer

Planckā€™s equation gives energy emitted in a specific frequency by a black body as a function of temperature

ā€¢ Stefan-Boltzmann equation integrates Planckā€™s equation over entire spectrum

ā‚¬

Prad =ĻƒT 4

ā‚¬

eĪ»b =2Ļ€hC0

2

Ī»5 expāˆ’hC0

Ī»kT

āŽ›

āŽ āŽœ

āŽž

āŽ  āŽŸ āˆ’1

āŽ”

āŽ£ āŽ¢

āŽ¤

āŽ¦ āŽ„

(Donā€™t worry, we wonā€™t actually use this equation for anythingā€¦)

ā‚¬

Ļƒ =5.67x10āˆ’8 Wm2Ā°K 4

(ā€œStefan-Boltzmann Constantā€)

Page 4: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Thermodynamic Equilibrium

ā€¢ First Law of Thermodynamics

heat in -heat out = work done internallyā€¢ Heat in = incident energy absorbedā€¢ Heat out = radiated energyā€¢ Work done internally = internal power

used(negative work in this sense - adds to total heat in the system)

ā‚¬

Qāˆ’W =dUdt

Page 5: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Radiative Equilibrium Temperature

ā€¢ Assume a spherical black body of radius r

ā€¢ Heat in due to intercepted solar flux

ā€¢ Heat out due to radiation (from total surface area)

ā€¢ For equilibrium, set equal

ā€¢ 1 AU: Is=1394 W/m2; Teq=280Ā°K

ā‚¬

Qin =IsĻ€r2

ā‚¬

Qout =4Ļ€r2ĻƒT 4

ā‚¬

IsĻ€r2 =4Ļ€ r2ĻƒT4 ā‡’ Is =4ĻƒT4

ā‚¬

Teq =Is

4Ļƒ

āŽ›

āŽ āŽœ

āŽž

āŽ  āŽŸ

14

Page 6: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Effect of Distance on Equilibrium Temp

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40

Distance from Sun (AU)

Black Body Equilibrium Temperature

(Ā°K)

Page 7: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Shape and Radiative Equilibrium

ā€¢ A shape absorbs energy only via illuminated faces

ā€¢ A shape radiates energy via all surface area

ā€¢ Basic assumption made is that black bodies are intrinsically isothermal (perfect and instantaneous conduction of heat internally to all faces)

Page 8: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Effect of Shape on Black Body Temps

Page 9: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Incident Radiation on Non-Ideal Bodies

Kirchkoffā€™s Law for total incident energy flux on solid bodies:

whereā€“ =absorptance (or absorptivity)ā€“ =reflectance (or reflectivity)ā€“ =transmittance (or transmissivity)

ā‚¬

QIncident=Qabsorbed+Qreflected+Qtransmitted

ā‚¬

Qabsorbed

QIncident

+Qreflected

QIncident

+Qtransmitted

QIncident

=1

ā‚¬

Ī± ā‰”Qabsorbed

QIncident

; Ļ ā‰”Qreflected

QIncident

; Ļ„ā‰”Qtransmitted

QIncident

Page 10: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Non-Ideal Radiative Equilibrium Temp

ā€¢ Assume a spherical black body of radius r

ā€¢ Heat in due to intercepted solar flux

ā€¢ Heat out due to radiation (from total surface area)

ā€¢ For equilibrium, set equal

ā‚¬

Qin =IsĪ±Ļ€ r2

ā‚¬

Qout =4Ļ€r2ĪµĻƒT 4

ā‚¬

IsĪ±Ļ€r2 =4Ļ€r2ĪµĻƒT4 ā‡’ Is =4ĪµĪ±

ĻƒT 4

ā‚¬

Teq =Ī±Īµ

Is

4Ļƒ

āŽ›

āŽ āŽœ

āŽž

āŽ  āŽŸ

14

( = ā€œemissivityā€ - efficiency of surface at radiating heat)

Page 11: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Effect of Surface Coating on Temperature

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Teq=560Ā°K (a/e=4)Teq=471Ā°K (a/e=2)Teq=396Ā°K (a/e=1)Teq=333Ā°K (a/e=0.5)Teq=280Ā°K (a/e=0.25)

Black Ni, Cr, Cu Black Paint

White Paint

Optical Surface Reflector

Polished Metals

Aluminum Paint

Page 12: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Non-Ideal Radiative Heat Transfer

ā€¢ Full form of the Stefan-Boltzmann equation

where Tenv=environmental temperature (=4Ā°K for space)

ā€¢ Also take into account power used internally

ā‚¬

Prad =ĪµĻƒA T 4 āˆ’Tenv4

( )

ā‚¬

IsĪ± As+Pint =ĪµĻƒArad T4 āˆ’Tenv4

( )

Page 13: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Example: AERCam/SPRINT

ā€¢ 30 cm diameter sphereā€¢ =0.2; =0.8ā€¢ Pint=200Wā€¢ Tenv=280Ā°K (cargo bay

below; Earth above)ā€¢ Analysis cases:

ā€“ Free space w/o sunā€“ Free space w/sunā€“ Earth orbit w/o sunā€“ Earth orbit w/sun

Page 14: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

AERCam/SPRINT Analysis (Free Space)

ā€¢ As=0.0707 m2; Arad=0.2827 m2

ā€¢ Free space, no sun

ā‚¬

Pint = ĪµĻƒAradT4 ā‡’ T =

200W

0.8 5.67 Ɨ10āˆ’8 W

m2Ā°K 4

āŽ›

āŽ āŽœ

āŽž

āŽ  āŽŸ 0.2827m2( )

āŽ›

āŽ

āŽœ āŽœ āŽœ āŽœ

āŽž

āŽ 

āŽŸ āŽŸ āŽŸ āŽŸ

14

= 354Ā°K

Page 15: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

AERCam/SPRINT Analysis (Free Space)

ā€¢ As=0.0707 m2; Arad=0.2827 m2

ā€¢ Free space with sun

ā‚¬

IsĪ± As + Pint = ĪµĻƒAradT4 ā‡’ T =

IsĪ± As + Pint

ĪµĻƒArad

āŽ›

āŽ āŽœ

āŽž

āŽ  āŽŸ

14

= 362Ā°K

Page 16: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

AERCam/SPRINT Analysis (LEO Cargo Bay)

ā€¢ Tenv=280Ā°K

ā€¢ LEO cargo bay, no sun

ā€¢ LEO cargo bay with sun

ā‚¬

Pint =ĪµĻƒArad T4 āˆ’Tenv4

( )ā‡’ T =200W

0.8 5.67Ɨ10āˆ’8 Wm2Ā°K4

āŽ›

āŽ āŽœ

āŽž

āŽ  āŽŸ 0.2827m2( )

+(280Ā°K)4

āŽ›

āŽ

āŽœ āŽœ āŽœ āŽœ āŽœ

āŽž

āŽ 

āŽŸ āŽŸ āŽŸ āŽŸ āŽŸ

14

=384Ā°K

ā‚¬

IsĪ± As+Pint =ĪµĻƒArad T4 āˆ’Tenv4

( )ā‡’ T =IsĪ± As+Pint

ĪµĻƒArad

+Tenv4

āŽ›

āŽ āŽœ āŽœ

āŽž

āŽ  āŽŸ āŽŸ

14

=391Ā°K

Page 17: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Radiative Insulation

ā€¢ Thin sheet (mylar/kapton with surface coatings) used to isolate panel from solar flux

ā€¢ Panel reaches equilibrium with radiation from sheet and from itself reflected from sheet

ā€¢ Sheet reaches equilibrium with radiation from sun and panel, and from itself reflected off panel

Is

Tinsulation Twall

Page 18: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Multi-Layer Insulation (MLI)ā€¢ Multiple insulation

layers to cut down on radiative transfer

ā€¢ Gets computationally intensive quickly

ā€¢ Highly effective means of insulation

ā€¢ Biggest problem is existence of conductive leak paths (physical connections to insulated components)

Is

Page 19: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

1D Conduction

ā€¢ Basic law of one-dimensional heat conduction (Fourier 1822)

whereK=thermal conductivity (W/mĀ°K)A=areadT/dx=thermal gradient

ā‚¬

Q=āˆ’KAdTdx

Page 20: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

3D Conduction

General differential equation for heat flow in a solid

whereg(r,t)=internally generated heat

=density (kg/m3)

c=specific heat (J/kgĀ°K)

K/c=thermal diffusivity

ā‚¬

āˆ‡ 2Tr r ,t( )+

g(r r ,t)K

=ĻcK

āˆ‚Tr r ,t( )

āˆ‚t

Page 21: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Simple Analytical Conduction Model

ā€¢ Heat flowing from (i-1) into (i)

ā€¢ Heat flowing from (i) into (i+1)

ā€¢ Heat remaining in cell

TiTi-1 Ti+

1

ā‚¬

Qin =āˆ’KATi āˆ’Tiāˆ’1

Ī”x

ā‚¬

Qout =āˆ’KATi+1 āˆ’Ti

Ī”x

ā‚¬

Qout āˆ’Qin =ĻcK

Ti( j +1)āˆ’Ti( j)Ī”t

ā€¦ ā€¦

Page 22: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Heat Pipe Schematic

Page 23: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Shuttle Thermal Control Components

Page 24: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Shuttle Thermal Control System Schematic

Page 25: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

ISS Radiator Assembly