thehistoryofvisualmagicincomputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic...

41
The History of Visual Magic in Computers

Upload: others

Post on 21-Sep-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

The History of Visual Magic in Computers

Page 2: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
Page 3: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Jon Peddie

The History of VisualMagic in Computers

How Beautiful Images are Made in CAD,3D, VR and AR

123

Page 4: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Jon PeddieJon Peddie ResearchTiburon, CAUSA

ISBN 978-1-4471-4931-6 ISBN 978-1-4471-4932-3 (eBook)DOI 10.1007/978-1-4471-4932-3Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013939972

© Springer-Verlag London 2013This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part ofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting, reproduction on microfilms or in any other physical way, and transmission or informationstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodologynow known or hereafter developed. Exempted from this legal reservation are brief excerpts in connectionwith reviews or scholarly analysis or material supplied specifically for the purpose of being enteredand executed on a computer system, for exclusive use by the purchaser of the work. Duplication ofthis publication or parts thereof is permitted only under the provisions of the Copyright Law of thePublisher’s location, in its current version, and permission for use must always be obtained from Springer.Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violationsare liable to prosecution under the respective Copyright Law.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoes not imply, even in the absence of a specific statement, that such names are exempt from the relevantprotective laws and regulations and therefore free for general use.While the advice and information in this book are believed to be true and accurate at the date ofpublication, neither the authors nor the editors nor the publisher can accept any legal responsibility forany errors or omissions that may be made. The publisher makes no warranty, express or implied, withrespect to the material contained herein.

Cover Design Images:Whirlwind photograph is courtesy of MITSRC7 convertible image is courtesy of Lightwork Design. Copyright Kheang ChrunNvidia’s ‘Dawn’ image is courtesy of NvidiazStation image is ©Infinite Z

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 5: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Foreword I

The human visual system enables us to see a world of colour, texture and motion.Using two eyes we have an appreciation of depth in the field of view – thus enablingus to appreciate the three dimensions of the space, or scene, around us. However,the complexities of the operation of our visual system are still far from understood.Are we passive recipients of visual stimuli which we interpret according to ourexperience of the real world, or are we active processors of visual information overwhich we are exerting some degree of control? Current research is seeking to findanswers to this question.

In general, considerations of 3D computer graphics do not involve the deeperquestions of the human visual system. However, it is important to recognise thatwhen graphical information is displayed, it is the human visual system that isinterpreting it [1, 5].

This book traces the development of 3D computer graphics in terms of hardware,software, techniques and applications – by a key graphics pioneer who has beeninvolved with the field from the beginning. The key milestones are clearly set out,enabling the reader to understand the significance of the developments that tookplace.

Computers have been used to draw pictures from the earliest days. Researcherswere therefore able to use computer generated output in papers and publications.It gave the impression of authority and authenticity. However, such representationsare entirely dependent on the underlying data and the representations that have beenchosen. It is well known that either or both of these may not be correct or appropriate(as was already known for statistical data), so visual information has to be treatedwith caution [7, 13].

Complex ideas can be quickly conveyed using a picture. Painters have used avariety of methods to produce images that are able to convey 3D scene and context,and even motion and emotion. To create an impression of depth in the picture,various foreshortening techniques have been used. Many of these are not necessarilystrictly geometric but the eye interprets the picture more or less in the way thepainter intended. It is postulated that the great artists had a gift for understandinghow their art should be constructed in order to generate the effect they desired it tohave on the viewer.

Computers process data, but as Hamming [6] noted – “The purpose of computingis insight not numbers”. Pictures are able to represent complex information which

v

Page 6: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

vi Foreword I

would take considerable time to express in words or numbers. In short, a picture canbe worth a thousand words (assuming of course that the visual representation is notmisleading!).

Outputting pictures using various devices is one thing, but interacting withpictures is quite another, as this implies interacting with the underlying program anddata which control the picture. This was not an easy task for the first computers [10].

With the increase in power of workstations and displays it became relatively easyto handle three or more dimensions. Interaction does enable 3D models and objectsto be manipulated directly by the user, and enables the user to appreciate the 3Dnature of the data, even though the representation on the screen is in 2D (unlessstereo is being used, for example).

The rate of general development in computer processing power has been encap-sulated in Moore’s law [8]. It has been observed that developments in computerhardware result in twice the power for the same price over a period of 1–2 years.This applies to central processing capability, memory and also networking andtelecommunications. It also applies to devices where computer-related technologyis utilized, such as the number and size of pixels in digital cameras. Thus digitalphotographs and videos increase in resolution and realism, and are able to consumethe ever increasing amounts of storage now available at continually reducing cost!

It is predicted that there must be some limit to the number of components thatcan be put into an integrated circuit, since ultimately the size of atoms and thespeed of light appear to be fundamental barriers. Thus the processes of ever finerphotolithography to produce the circuits will reach their limit. However, silicon isjust the current technology and it is surmised that other technologies may supercedeit when silicon has run its course, such as optical, quantum or DNA computing,which could enable Moore’s law to continue into the indefinite future.

Pioneers of computer graphics have noted the “wheel of reincarnation” that hastaken place in the architecture of systems that support computer graphics. Thisbegan with considering the best way to couple a display to a computer [3, 9].Building more functionality into the display in order to make it run faster resultedin the display becoming a self-contained computer in its own right, which in turngenerated a further cycle which repeated the first.

This book notes that what may be regarded as the centre of gravity of computerprocessing of information has moved from the main frame to the display deviceand back again. Supercomputers have been used to generate vast amounts of datafor computer simulations, and at the other end of the scale the personal computerhas been equipped with more powerful processors and graphics cards to improveits performance with the real-time display of computer games and movies. Now thedesk top is moving into the cloud – with the availability of fast network links andmassive low-cost servers, which are increasingly zero-cost to the user (at least fornormal amounts of storage).

The interfaces to the earliest computers were difficult to use. Punched papertape and punched cards had to be input, programs compiled, then the data wasfed in. Memory and software limitations made input and output a time-consumingprocess. However, as processor and memory capabilities increased, so did the

Page 7: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Foreword I vii

overall usability. The advent of time sharing enabled users to have a greater degreeof direct interaction with the computer and obtain computed results in near real-time. These results could also be displayed graphically either on a terminal orgraphics display. Thus the computer moved from being considered solely as anumerical processing machine to a more general form which could process symbolsand visual information. Of course, the latter needed appropriate forms of digitalrepresentation in order to be processed, but higher-level functions provided this.

Sequences of pictures could also be generated which conveyed the impression ofmovement when viewed as a movie. Thus computer animation became a disciplinein its own right – pushing back the frontiers of algorithms and techniques to generatespecial effects of the kind seen in today’s movies. Such techniques could also beused in simulations of physical processes in order to obtain a greater understandingof the natural world. Simulations can also be used in training procedures whichgenerate artificial situations analogous to those in real-life to enable responses to bepracticed in safety. Flight simulators are a good example of this.

It is clear that in some instances developments have been constrained bythe available technology. For example, WIMP (windows, icons, point-and-clickdevices) graphical user interfaces could only become significant when both screensand software had sufficient capability and speed to allow user interaction to takeplace at reasonable rates. Speed relied in turn upon the underlying hardware and theconnectivity between the central processor and the display device. One can alsotake the view that such developments could have restricted more open thinkingabout optimum interfaces for the future. WIMP graphical user interfaces that arosein desktop and mouse computing environments only use human vision of what is onthe screen and a touch of the mouse or keyboard, and are essentially 2D in nature.Using other human sensory channels is not easy to accommodate, resulting in a userinterface that is unnatural as far as normal human-human interaction is concerned.Future work needs to include a better match to the human’s ability to process multi-sensory, multi-channel, data and to operate naturally in a 3D environment [12].

In parallel with the developments in computers and computer graphics whichcould be said to be “in your face”, there is also the current trend towards ubiquitous,or seamless, computing. This is computing which is more or less invisible byembedding it into objects and the real-world environment, and even in clothes andpeople. Smart sensors are programmed to monitor data without human intervention,and produce appropriate responses automatically. Cars are estimated to havesomewhere between 50 and 100 microprocessors installed to control the variousactive and passive monitoring functions of the car’s operation. Many of thesegenerate an effect on the 3D environment within the vehicle, or outside it.

3D computer graphics has been an exciting field over the last 50 years or so.Many books, proceedings, and conferences have been devoted to it. This bookcharts the excitement that the field has generated by the work of hardware designers,software developers, and users alike.

So – what challenges remain?Sutherland [11] proposed ten unsolved problems in computer graphics. By 1998

there were at least ten more [2], and by 2000 there were at least ten problems left

Page 8: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

viii Foreword I

[4]. In short, as the field expands, more and more problems and challenges remainto be addressed.

This book therefore provides a great opportunity to learn from the past and applyit to the future.

Rae EarnshawComputer Graphics Pioneer (elected 1987)

Professor of Creative Industries, Glyndwr University, UKEmeritus Professor of Electronic Imaging, University of Bradford, UK

References

1. Berger, J. (1977). Ways of seeing. London: British Broadcasting Corporation and PenguinBooks.

2. Blinn, J. F. (1998). Ten more unsolved problems in computer graphics. IEEE ComputerGraphics and Applications, 18(5), 86–89. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=708564.

3. Clark, J. H. (1985). Graphics software standards and their evolution with hardware algorithms.In R. A. Earnshaw (Ed.), Fundamental algorithms for computer graphics, NATO ASI series(Vol. F17, pp. 619–629).

4. Foley, J. D. (2000). Getting there: The top ten problems left. IEEE Computer Graphicsand Applications, 20(1), 66–68. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=814569.

5. Gregory, R. L. (1990). Eye and brain, the psychology of seeing. Princeton: PrincetonUniversity Press.

6. Hamming, R. W. (1962). Numerical methods for scientists and engineers. New York:McGraw-Hill.

7. Ingo, H. (2003). Misleading visualizations. http://avoinelama.fi/hingo/kirjoituksia/misleadingvisualizations.html, http://en.wikipedia.org/wiki/Misleading graph.

8. Moore, G. E. (1965, April 19). Cramming more components onto integrated circuits. Elec-tronics Magazine, 38(8), 114–117. http://download.intel.com/museum/Moores Law/Articles-Press Releases/Gordon Moore 1965 Article.pdf.

9. Myer, T. H., & Sutherland, I. E. (1968). On the design of display processors. Communicationsof the ACM, 11(6), 410–414. http://dl.acm.org/citation.cfm?id=363368.

10. Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication system (cour-tesy Computer Laboratory, University of Cambridge UCAM-CL-TR-574 September 2003).Massachusetts Institute of Technology. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf.

11. Sutherland, I. E. (1996, May). Ten unsolved problems in computer graphics. Datamation,12(5), 22–27.

12. van Dam, A. (2000). Beyond WIMP. IEEE Computer Graphics and Applications, 20(1), 50–51. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=814559.

13. Wainer, H. Visual revelations: Graphical tales of fate and deception from Napoleon Bonaparteto Ross Perot. New York: Psychology Press. ISBN 978-0-8058-3878-7.

Page 9: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Foreword II

Z

This is a book about the letter “Z”. That thing we call the “z-axis”, which adds athird dimension. For most of us, we figured out at a young age how to draw squares,triangles, and circles, and we managed to get through geometry, in about the ninthgrade – but then along came those pesky cubes, pyramids, and spheres, and our mathcapabilities skidded to a stop.

When it comes to “Z”, we’re not even sure how to pronounce the letter – evenin English, let alone other languages – where we struggle between “zee” and “zed”.And why the Brits use “organise” instead of “organize” confuses further : : : Whywe use “measure” instead of “meazure”, or conversely, “azure” instead of “asure”;and “freeze/froze/frozen” in the same way we use “chose/chose/chosen” is beyondme : : :

For readers interested in computer graphics and display technologies, we arealready accustomed to such confusion. After all, for generations we’ve blithelyaccepted as “standard” measures refresh rates of 29.97 frames per second, imageheights of 486 lines (or is it 483 lines? Er, maybe it’s 480 lines), samplingevery other scan line at different times (interlacing), doing matrix arithmetic onnonlinearly encoded color signals : : : Huh?

Centuries ago, we switched from a Greek alphabet starting with alpha and endingwith omega – we now use an expanded alphabet that starts with A and ends withZ. Still, now long after we expanded from omega to zed, our use of the letter Zis anything but common. Z is our least used letter of the alphabet, and we use itinterchangeably with other sounds, like g, j, si, ts, and x. Somewhat similarly, weare now in the final stages of shifting the world of displays from analog to digitalsolutions – an enormous change.

This book helps us churn through the history behind such esoteric calculations,enabling us to understand the technology limitations that resulted in the graphicssolutions and displays we now use. For many reasons, the history of graphics anddisplays diverged as the two major industries using the technologies grew – TVs andPCs came up with significantly different solutions, resulting recently in a collision(or should it be “collizion”?) between the two markets.

This collision, (often called convergence), leaves us inevitably to the intriguingnotion that our TV display devices will serve as a computer monitor, just as our PC

ix

Page 10: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

x Foreword II

display entertains us with TV output. And then there’s “Z” – creating big questionsabout how stereoscopic technologies will similarly converge across platforms thatstill offer fundamentally different usage models. Our PCs tend to be single-user,single-view devices; while our TVs tend to be multi-user, multi-view devices – afactor that dramatically transforms the display technology solutions that enable thez-dimension.

Many commentators in the media today are fond of questioning the need for thez-dimension in the market for flat panel displays. Indeed, creating three dimensionalimages using a 2-dimensional surface is highly problematic. Today’s 3D renderingsolutions are simply amazing – creating depth cues that are simply amazing – tothe point that some suggest that stereoscopic 3D display solutions are simply notnecessary.

One of the most common uses of the letter Z is to represent the act of sleeping(zzzz) : : : Interestingly, it’s still a topic of tremendous debate as to whether wedream in 3D or in 2D. Can our mind form the dual views necessary for stereopsis –or do our eyes need to be part of the 3D experience?

The human visual system is based on the placement of our two eyes – andthis binocular anatomy defines a stereo world. No matter how good 3D renderingalgorithms become, they will always fail to replicate the world we actually see.Accordingly, 3D displays are inevitable, regardless of the skepticism of so many inthe media.

This book does an amazing job of identifying the history behind 3D graphics and3D displays. While the past fascinates, the truly evocative thing about this book isthat it identifies that while the technologies are steadily evolving – such that thereis no question that 3D visualization techniques and technologies will increasinglybecome a part of our future.

Austin, TX, USA Mark Fihn

Page 11: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Preface

If you ever looked at a fantastic adventure or science fiction movie, or an amazinglycomplex and rich computer game, or a TV commercial where cars or gas pumpsor biscuits behaved liked people and wondered, “How do they do that” then you’veexperienced the magic of 3D generated by a computer.1

The dedication of this book is to the thousands of people over thousands ofyears who developed the building blocks and made the discoveries in mathematics,science, and computers that make such 3D magic possible.

Dedications and Acknowledgements

Although mostly linear in its evolution, 3D in computers has come about throughmultiple disciplines and mutually dependent lines of development. The improve-ments in processors, memory, displays, input devices, operating systems, driversand APIs, applications, and software development tools have all moved in paralleland sometimes dependently on each other.

With such a broad scope as the goal of this book you will have to accept that itwould be impossible to thoroughly and extensively cover all the richness of all thetopics. With that disclaimer let me also apologize to anyone or any organizationsI failed to cover in this book. Moreover, anyone who feels I did miss somethingor someone important please send a note to me about it with that information,this won’t be the last book I write, and who knows, we might even have a secondedition : : :

A Side Note—Lawyers

Except for their mothers, not many people like lawyers. In the last decade or twoa new group of lawyers has cropped up—the intellectual property (IP) harvesters.These are lawyers, who make deals with patent holders, the IP owners, to pursueviolators of their IP. Sometimes the deals involve the lawyers buying the IP. It’s

1“3D” means a geometric model using three dimensions to describe it. It is not the same as astereovision “3D movie”. We refer to stereovision 3D as “S3D” to distinguish it.

xi

Page 12: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xii Preface

a questionable practice and in my opinion one that has been abused. However, ithas had an interesting beneficial side effect—it has created historians out of manytechnologists as they try to trace the origins of IP to defend their inventions anddiscoveries. These technologists come in three forms, the defendant, the plaintiff,and the expert witness, and all three of them have, and still are, digging through oldnotebooks, patents, and conducting interviews. In addition, a great deal of that workhas thankfully turned up on the web. Therefore, I must give a begrudging note ofthanks to the IP lawyers for being the catalyst for a lot of really important researchand the rescuing of potentially lost history.

The Inventors, Discoverers, and Architects

As we trace the origins of the developments of 3D on computers, we find that in thevery early times an individual was the discoverer of a concept, a law of science, ora novel idea. As we move from the industrial revolution to the computer age, the in-dividual starts to become more difficult to identify, and the credit for a developmentor discovery goes to the organization. No doubt in the past several people workedon problems but usually only one person got credit for it. Today the teams are so bigit’s almost impossible to find the person responsible for the original idea.

Compounding the problem is that some of the developments are so large andcomplex the discoverer can’t be the implementer.

This then is a bit of an apology to those creative, imaginative, and certainly hardworking individuals that have contributed to the developments I have listed in thisbook. If your name isn’t mentioned it’s my fault for not digging deeper or harder. Inaddition, if you would like to tell me of your contributions and accomplishments, Iwarmly and strongly encourage you to do so.

No Plotters

Even though I got my official introduction to computer graphics by working on thedesign of a large lofting flatbed plotter at Litton Industries that we delivered to Fordin 1963, I have not included plotters in this discussion about 3D in computers. It wasa difficult decision and the many people who helped develop the plotter industry maycriticize me for it—my apologies to them. My rationale is that a plotter produces anon-interactive, flat, static 2D representation of a model or image. Whereas it canbe argued that a display also produces a flat 2D representation, the difference (inmy mind at least) is that the display can be interactive and can bring the viewer to astate of suspended disbelief.2

2Suspension of disbelief is a term coined in 1817 by the poet and aesthetic philosopher SamuelTaylor Coleridge, who suggested that if a writer could infuse a “human interest and a semblance oftruth” into a fantastic tale, the reader would suspend judgment concerning the implausibility of thenarrative. Today we suspend disbelief when we play a game or watch a computer generated movie,but only if the artifacts of the creation are not apparent.

Page 13: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Preface xiii

The other argument for including a plotter could be the development of 3Dplotters using sintering techniques for rapid prototyping. Whereas this does producea physically tangible 3D model, it still is just a static representation, and so I haveexcused myself from discussing it in this book.

Jon Peddie Research Jon PeddieTiburon, CA, USA

Page 14: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
Page 15: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Geometry and Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 The History of Visual Magic in Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Looking Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.5 Computer Graphics References and Links to Resources . . . . . . . . . . . . 8

1.5.1 May the Pixel Be with You. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Getting to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2 The Foundation of 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3 The Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Notation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.4 The First 3D – �5000–3000 BCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.5 Learning to Count (2500–500 BCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.6 Numbering System (5000–460 BCE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Panini (520–460 BCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.7 Geometry (600–300 BCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.1 Thales of Miletos (624–546 BCE) . . . . . . . . . . . . . . . . . . . . . . . . . 172.7.2 Pythagoras of Samos (Greek: 580–490 BCE) . . . . . . . . . . . . . 182.7.3 Euclid of Alexandria (323–283 BCE) . . . . . . . . . . . . . . . . . . . . . 19

2.8 Zero – Where Would We Be Without It? (300 BCE) . . . . . . . . . . . . . . . . 202.9 Apollonius of Perga (262–190 BCE), and Conic Sections . . . . . . . . . . 222.10 Matrix Math (100 BCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10.1 Jiu Zhang Suan Shu (100 BCE–50 CE) . . . . . . . . . . . . . . . . . . . 232.10.2 Father of the Negative Number? . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 3D Math (50 CE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.11.1 Heron of Alexandria (10 CE–70 CE),

the Father of 3D? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.12 The Beginnings of Algebra: Cubic Equation (10–1080).. . . . . . . . . . . . 26

2.12.1 Omar Khayyam (1048–1131 CE) . . . . . . . . . . . . . . . . . . . . . . . . . . 262.13 The Renaissance (1300–1600) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.14 3D Perspective and Coordinate Systems (1400–1600) . . . . . . . . . . . . . . 28

2.14.1 Filippo Brunelleschi (1377–1446) .. . . . . . . . . . . . . . . . . . . . . . . . 29

xv

Page 16: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xvi Contents

2.14.2 Piero della Francesca (1412–1492) . . . . . . . . . . . . . . . . . . . . . . . . 302.14.3 Rene Descartes (1596–1650).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.14.4 James Joseph Sylvester (1814–1897) Matrix Notation . . . 33

2.15 Epilogue .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.1 Math History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Developing the 3D Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.2 Synthesizing 3D in Computers (1959– � � � ) . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Developing the Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.2.2 Using the Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Generating the Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.3.1 Normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.3.2 Flat, Phong and Gouraud Shading (1971�1974) . . . . . . . . . 573.3.3 Texture, Bump, and Environment Mapping (1974�1978) 603.3.4 Image Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633.3.5 Ray Tracing (1980) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653.3.6 Human Skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.3.7 3D Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.1 SIGGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72A.2 National Computer Graphics Association .. . . . . . . . . . . . . . . . 74A.3 Eurographics .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Developing the Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.2 Playing Around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 First Electromechanical Game PlayingComputer (1940).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Missile Simulation Game 1947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.2.3 First Interactive Computer Game 1949 .. . . . . . . . . . . . . . . . . . . 814.2.4 NIMROD, the First Electronic Game

Computer (1951).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824.2.5 Computer Chess Program (1951) . . . . . . . . . . . . . . . . . . . . . . . . . . 834.2.6 First Video Game on a Computer (1952) .. . . . . . . . . . . . . . . . . 844.2.7 First (Analog) Computer Game (1958) .. . . . . . . . . . . . . . . . . . . 864.2.8 First Digital Graphics Computer Game (1962) . . . . . . . . . . . 884.2.9 Games Led to UNIX (1969) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904.2.10 The Origin of Video Arcade Games (1971) . . . . . . . . . . . . . . . 924.2.11 The First 3D Multiplayer Game (1974) . . . . . . . . . . . . . . . . . . . 934.2.12 First 3D Maze Game – Forerunner

to the First-Person Shooter (1974) . . . . . . . . . . . . . . . . . . . . . . . . . 95

Page 17: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Contents xvii

4.2.13 The First Arcade 3D Game (1983) . . . . . . . . . . . . . . . . . . . . . . . . 964.2.14 First 3D FPS on a PC (1992) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Getting Serious (1962) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974.3.1 Sketchpad (1963) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014.5 CAD the Daddy of It All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.1 GM the Daddy of CAD (1958) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034.5.2 MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034.5.3 CAD Explodes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Molecular Modeling (1964) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064.7 Simulation, Visualization, Modeling, and Virtualization . . . . . . . . . . . . 107

4.7.1 Simulate – Save Lives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104.7.2 Visualizing a Virtual Human Body . . . . . . . . . . . . . . . . . . . . . . . . 1104.7.3 Not Quite Real Enough.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114.7.4 Find Oil, Explode Bombs, Design Wings,

and Predict Hurricanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144.8 When Is a Simulation/Visualization a Game? . . . . . . . . . . . . . . . . . . . . . . . . 115

4.8.1 Where Is the Work Done? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194.8.2 Physically Accurate and Tricking the Eye. . . . . . . . . . . . . . . . . 120

4.9 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Developing the Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255.2 The Industrial Revolution (1740–1880) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275.3 Mechanics (200 BCE–1800) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.1 The Antikythera Device (80 BCE) . . . . . . . . . . . . . . . . . . . . . . . . . 1275.3.2 Clocks and Gears (1400 BCE–1240) . . . . . . . . . . . . . . . . . . . . . . 1295.3.3 The Escapement Mechanism (725–1237 CE) . . . . . . . . . . . . . 130

5.4 Mechanical Computers (1750–1805) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315.4.1 Mechanical Androids Talking, Dancing Dolls . . . . . . . . . . . . 1315.4.2 The Jacquard Loom (1801–1805).. . . . . . . . . . . . . . . . . . . . . . . . . 1325.4.3 Charles Babbage FRS (1791–1871) . . . . . . . . . . . . . . . . . . . . . . . 133

5.5 Electricity and Electronics (1767–1930) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1355.5.1 Benjamin Franklin (1706–1790) .. . . . . . . . . . . . . . . . . . . . . . . . . . 1365.5.2 Ferdinand Braun’s CRT (1897) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375.5.3 Nikola Tesla: The Logic Gate (1903) . . . . . . . . . . . . . . . . . . . . . . 139

5.6 The Electronic Computer Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405.6.1 Vannevar Bush (1890–1974) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405.6.2 The Turing Machine (1936) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405.6.3 First Programmable Digital Computer (1941) . . . . . . . . . . . . 1425.6.4 The First Electronic Digital Computer

Atanasoff-Berry (1939–1944).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Page 18: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xviii Contents

5.6.5 ENIAC Early Programmable ElectronicComputer (1943–1946).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6.6 Whirlwind Computer – The Beginningof Computer Graphics (1949) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6.7 SAGE and the Light Gun (1950s) . . . . . . . . . . . . . . . . . . . . . . . . . 1505.7 Early Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7.1 IBM 704 First Floating-Point Computer(1954–1960) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.8 The Minicomputer (1965) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1545.8.1 RISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555.8.2 RISC Minicomputers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.9 The First Workstation (1959) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575.9.1 The Workstation (1970) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585.9.2 UNIX .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595.9.3 The Age of the Workstations (1980) .. . . . . . . . . . . . . . . . . . . . . . 1605.9.4 Workstations Proliferate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1615.9.5 Apollo to Tractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1625.9.6 The Democratization of Scientific Computing .. . . . . . . . . . . 1665.9.7 Graphics Workstations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1675.9.8 Other Graphics Workstations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1715.9.9 ACE Consortium Advanced Computing Environment . . . 173

5.10 Microcomputers (1970–1980) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1745.10.1 First Relay-Based PC (1950).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1755.10.2 First Vacuum Tube PC (1957) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1765.10.3 First Solid-State PC (1970) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.11 The Beginning of Video Game Machines (1971) . . . . . . . . . . . . . . . . . . . . 1815.11.1 Video Arcade Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1815.11.2 Home Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1825.11.3 Handheld Game Consoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1845.11.4 Gaming PCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1865.11.5 Tablets, Phones, and Specialized Devices . . . . . . . . . . . . . . . . . 186

5.12 3D Is Here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1905.13 Evolution to PCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1915.14 Personal Computers Appear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1925.15 From Digitizers to Tablet (1880–1970) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.15.1 Tablets Not a New Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1965.15.2 Tablets (1980) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1975.15.3 Tablet Computers (1990) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1985.15.4 Mobile Devices (2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1995.15.5 Tablets (2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.16 Lots of Processors Working Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2015.17 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.1 Home and Personal Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Page 19: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Contents xix

6 The Development of 3D Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2116.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2116.2 The Hardware .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2136.3 The First Generation – Graphics in a Vacuum (1940s–1960s) . . . . . . 2146.4 Analog to Digital Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156.5 Big Boards to Plug-In Boards (1970s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2166.6 Bus Wars (1987–1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.6.1 The PCI Bus (1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2196.7 The Market Bifurcates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.7.1 First PC Graphics Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2226.7.2 First Bit-Mapped PC Graphics Board . . . . . . . . . . . . . . . . . . . . . 2236.7.3 Professional or High-End Graphics . . . . . . . . . . . . . . . . . . . . . . . . 225

6.8 Graphics Chips Enter the Market (1980s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2296.8.1 The Evolution of PC Graphics Controllers . . . . . . . . . . . . . . . . 230

6.9 The Software .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2326.10 API Wars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.10.1 Evolution of APIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2376.10.2 Plot 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2376.10.3 CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2386.10.4 GKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2386.10.5 PHIGS.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2396.10.6 IRIS GL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2396.10.7 DGIS – Direct Graphics Interface Standard .. . . . . . . . . . . . . . 2406.10.8 OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

6.11 The PC API Wars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2436.11.1 HOOPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2436.11.2 Reality Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2436.11.3 VAGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2436.11.4 3DRender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2446.11.5 WinG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2446.11.6 Glide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2446.11.7 Microsoft and DirectX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2456.11.8 Apple QuickDraw 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2466.11.9 The Fahrenheit Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2466.11.10 Quesa Graphics Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2476.11.11 Khronos and OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2486.11.12 DirectX Takes Over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2486.11.13 Direct3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2486.11.14 The End of OpenGL?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2506.11.15 Mesa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2506.11.16 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2516.11.17 GPU Computing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.12 The Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2526.13 New Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.13.1 Cirrus Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Page 20: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xx Contents

6.13.2 Chips and Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2536.13.3 ATI Technologies .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2546.13.4 3Dlabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2606.13.5 S3 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2626.13.6 Nvidia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2626.13.7 3Dfx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2686.13.8 Intel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2696.13.9 Workstation to AIB Company Twists . . . . . . . . . . . . . . . . . . . . . . 2736.13.10 Apple’s QuickDraw 3D Accelerator AIB . . . . . . . . . . . . . . . . . 2746.13.11 Pixel Planes to Talisman to Mobile Phones . . . . . . . . . . . . . . . 2746.13.12 Retrofitting Down Falls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.14 The Market Explodes Then Implodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2766.14.1 AIB Suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2766.14.2 Consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2776.14.3 Integration Continues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

6.15 PC Graphics Trifurcate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2786.15.1 The Office . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2796.15.2 Let the Games Begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

6.16 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.1 Technical Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

7 Development of Displays: Getting to See 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2877.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.1.1 Everything Is 3D.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2897.2 Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

7.2.1 Father of the Term Pixel (1874) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2907.3 Displaying What You Compute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

7.3.1 More Than Just Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2967.3.2 Cold to Hot (1922) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2977.3.3 The Magnetic Defection CRT (1912).. . . . . . . . . . . . . . . . . . . . . 297

7.4 Vector and Raster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2987.4.1 Vector Used for First Computers. . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.5 The Cold War and Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3007.5.1 Whirlwind Was the First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3017.5.2 The SAGE – Semi-Automatic Ground

Environment System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3027.6 The First Video Display Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

7.6.1 Plasma Displays (1964) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3107.6.2 Graphics Terminals Become Stand-Alone

Products (1960s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3117.6.3 A Vision of Affordable Graphics Display Terminals . . . . . 311

7.7 Vector Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3137.7.1 The Plug Compatible Manufacturers . . . . . . . . . . . . . . . . . . . . . . 314

Page 21: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

Contents xxi

7.7.2 Differentiation Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3167.7.3 Rise and Fall of Vector Display Suppliers . . . . . . . . . . . . . . . . . 319

7.8 Storage Tube Display Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3207.9 The First Raster-Scan Terminals (1970) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.9.1 Color CRTs (1954) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3267.9.2 Graphics Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3317.9.3 Color IN the Home and Office . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

7.10 What Are You Looking At? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3387.10.1 Enter the LCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3387.10.2 OLED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3397.10.3 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3407.10.4 Touch Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3417.10.5 Resolution and Screen Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.11 The More You Can See—the More You Can Do. . . . . . . . . . . . . . . . . . . . . 3447.11.1 Multiple Projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3487.11.2 White Boards That Fill Walls and Are Active. . . . . . . . . . . . . 3497.11.3 Curved Gaming Displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3517.11.4 Where Does the Display Stop

and the Computer Begin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3527.12 High Dynamic Range and Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

7.12.1 Refresh Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3537.12.2 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

7.13 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355A Appendix .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

A.1 Pioneering Companies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355A.2 Calculation of Monitor PPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356A.3 Moore’s Law .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

B IBM and Video Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356B.1 EGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357B.2 VGA and the PS/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357B.3 IBM 8514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358B.4 VESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358B.5 DDC/SDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360B.6 DVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360B.7 HDMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361B.8 DisplayPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362B.9 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364B.10 The Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366B.11 Those GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366B.12 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

8 Stereoscopic 3D in Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3738.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

8.1.1 The Basic Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Page 22: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxii Contents

8.2 Is History Destiny? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3768.3 Stereoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3778.4 First Stereo Viewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3778.5 The First Stereo Movie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3798.6 Stereoplotters and Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3818.7 3D Stereo Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3838.8 What Is S3D? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3858.9 Auto-Stereoscopic Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

8.9.1 Screen Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3888.9.2 Head/Eye Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

8.10 Active Shutter Glasses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3908.11 Passive Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3918.12 S3D Platforms and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

8.12.1 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3958.13 Applications.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

8.13.1 Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3968.13.2 Engineering and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4008.13.3 Stereovision in Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4048.13.4 Stereovision and Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . 4128.13.5 CAVEs and VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4198.13.6 Run and Shoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

8.14 Seeing Is Believing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4238.15 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

A.1 The History of S3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425A.2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

9 The Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4299.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4299.2 The Future of 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4309.3 The Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4319.4 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Page 23: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures

Fig. 1.1 Basic block diagram of a 3D graphics computer . . . . . . . . . . . . . . . . . . . 2Fig. 1.2 A computer generated architectural rendering of an

interior (© Koncept Info Technologies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Fig. 1.3 Basic representation of 3D space with 3-Axis . . . . . . . . . . . . . . . . . . . . . . 4Fig. 1.4 Three axis or dimensions to describe the size of a book . . . . . . . . . . . 5Fig. 1.5 Car model courtesy of Nvidia (Advanced Rendering

Center), rendered with mental ray® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Fig. 1.6 Smoke and hair—all simulations created in a computer

(© Jos Stam and Henrik Jensen & Andrew Selle andMichael Lentine, respectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Fig. 1.7 The History of Visual Magic in Computers traces acomplex and exciting path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Fig. 1.8 Penetration of 3D into computing platforms . . . . . . . . . . . . . . . . . . . . . . . . 7

Fig. 2.1 The math is the foundation of all 3D graphics . . . . . . . . . . . . . . . . . . . . . . 12Fig. 2.2 “Mr. 3D guy”, a computer-generated image of a face

(Courtesy of Takayoshi Sato and Sheen Hara). . . . . . . . . . . . . . . . . . . . . . 13Fig. 2.3 Triangle mesh for computer-generated image of a face;

a head of less than 2,500 triangles driven by 36 bones(Courtesy of Takayoshi Sato and Sheen Hara). . . . . . . . . . . . . . . . . . . . . . 14

Fig. 2.4 Georges Seurat – The Side Show (1888) – detailshowing pointillism technique (Copyright free, imageis in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Fig. 2.5 Pyramids represented the first successfulimplementations of 3D mathematics (© Historylink101.com) . . . . 16

Fig. 2.6 Thales, the father of science (Copyright free, image isin the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Fig. 2.7 Pythagoras gave us the fundamental equation forcalculating the triangle, the basic element of all 3D(Courtesy of Galilea (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Fig. 2.8 The triangle is the elemental component of allcomputer graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Fig. 2.9 Euclid, the father of geometry (Copyright free, imagereleased into the public domain by Mark A. Wilson) . . . . . . . . . . . . . . 20

xxiii

Page 24: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxiv List of Figures

Fig. 2.10 Hellenistic mathematician Euclid details geometricalalgebra to bystanders (Copyright free, image is in thepublic domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Fig. 2.11 Babylonian base 10 positional number systems . . . . . . . . . . . . . . . . . . . . 21Fig. 2.12 Conic sections, curves created by slicing through a

cone (courtesy of Magister Mathematicae (CC BY-SA 3.0)) . . . . . . 22Fig. 2.13 Apollonius of Perga and author “Conic Sections”

(Courtesy of eBooks@Adelaide) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Fig. 2.14 A 3 � 3 Magic Square give a sum value of 15 in any direction .. . . 23Fig. 2.15 Jiu Zhang Suan Shu, the father of Matrix mathematics

(Courtesy of University of Lisbon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Fig. 2.16 Myan numbering system with a zero character . . . . . . . . . . . . . . . . . . . . . 25Fig. 2.17 Heron, father of 3D (Copyright free, image is in the

public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Fig. 2.18 Omar Khayyam the father of Algebra (Copyright free,

image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Fig. 2.19 Omar Khayyam’s geometric solution to cubic

equations (© Pieter Kuiper). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Fig. 2.20 The understanding of perspective evolved to a science

during the renaissance (Courtesy of the NationalUniversity of Singapore) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fig. 2.21 Filippo Brunelleschi the father of perspective(Copyright free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . 29

Fig. 2.22 Brunelleschi’s perspective drawing of the Church ofSanto Spirito (Copyright free, image is in the public domain) . . . . . 30

Fig. 2.23 Piero della Francesca (Courtesy of the Art Renewal Center) . . . . . . 30Fig. 2.24 Piero della Francesca’s The Flagellation (Copyright

free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Fig. 2.25 Rene Descartes the father of the coordinate system

(Copyright free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . 32Fig. 2.26 The basic Cartesian system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Fig. 2.27 An example of matrix notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Fig. 2.28 Pyramid template (© Gijs Korthals Altes: http://www.

korthalsaltes.com) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Fig. 3.1 The software algorithms used for creating 3D images . . . . . . . . . . . . . 38Fig. 3.2 Curved surfaces are created using the tangential

intersections of parametric planes (©MassachusettsInstitute of Technology/MIT I-Tango Project) . . . . . . . . . . . . . . . . . . . . . . 41

Fig. 3.3 A French curve templates (Courtesy of Radomił Binek(CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Fig. 3.4 A conic is the intersection of a plane and a right circular cone . . . . 42Fig. 3.5 Lofting table with flexible ruler and ducks (Courtesy of MIT) . . . . 43Fig. 3.6 North American Aviation’s WWII P51 Mustang (U.S.

Air Force Photo; copyright free, image is in the public domain) . . 43

Page 25: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxv

Fig. 3.7 Graphics representation of the Coons patch (Copyrightfree, image released into the public domain by StuRat) . . . . . . . . . . . . 45

Fig. 3.8 NURBS surface (Courtesy of Maksim (CC BY-SA 3.0)) . . . . . . . . . . 45Fig. 3.9 Control points influence the directions the surface

takes three-dimensional NURBS surfaces can havecomplex, organic shapes, line spline lines, dependingupon the number of control points used (Courtesy ofGreg A L (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Fig. 3.10 Bresenham’s line algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Fig. 3.11 IBM 2250 display unit circa 1965 (Courtesy of Frank

da Cruz, Columbia University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Fig. 3.12 TRON Light cycle characters compete to be the last

one riding (Copyright free, GNU General Public License) . . . . . . . . 49Fig. 3.13 Construction and destruction using primitives in CSG

(Courtesy of Captain Sprite (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . 50Fig. 3.14 Using implicit modeling to blend two spheres

(Courtesy of Brian Wyvill) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Fig. 3.15 Jim Blinn’s Blobby Man (Courtesy of Brian Wyvill) . . . . . . . . . . . . . . 52Fig. 3.16 Implicit Sea Anemone on implicit Rock (Courtesy of

Mai Nur) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Fig. 3.17 Implicit engine (Courtesy of Herbert Grassberger) .. . . . . . . . . . . . . . . . 53Fig. 3.18 An example of a FEA of a body under stress (Courtesy

of Bal 79 (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Fig. 3.19 A simple 3D cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Fig. 3.20 A cube can be turned into a truncated pyramid

(Courtesy of Darren Irvine) (Irvine drew the truncatedpyramids using AutoCAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Fig. 3.21 Triangle man (Courtesy of Takayoshi Sato and Sheen Hara) . . . . . . 57Fig. 3.22 A surface normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Fig. 3.23 Flat vs. Gouraud shading (Copyright free, image

released into the public domain by Lukas Buricin) . . . . . . . . . . . . . . . . . 59Fig. 3.24 Flat vs. Phong shading (Copyright free, image released

into the public domain by Jalo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Fig. 3.25 The Utah Beatle image (Courtesy of the University of Utah) . . . . . . 60Fig. 3.26 Phong vs. Blinn-Phong (Courtesy of Brad Smith

(CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Fig. 3.27 The Utah tea pot (Reprinted from Blinn and Newell [31]) .. . . . . . . . 62Fig. 3.28 Applying a texture map to achieve a bumpy surface

(Courtesy of www.paulsprojects.net).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Fig. 3.29 The Utah teapot with and without anti-aliasing

(Courtesy of the University of Utah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Fig. 3.30 Comparison of trilinear filtering vs. anisotropic

(Courtesy of Lampak (CC BY-SA 3.0)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Fig. 3.31 Ray tracing (Courtesy of Henrik (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . 66

Page 26: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxvi List of Figures

Fig. 3.32 Ray tracing of three shinny balls (Reprinted fromWhitted [41]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Fig. 3.33 Particle system used to create a simulation of a bombexploding (Courtesy of Sameboat (CC BY-SA 3.0)) . . . . . . . . . . . . . . . 68

Fig. 3.34 Fire with cellular patterns (©Jeong-Mo Hong andTamar Shinar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Fig. 3.35 Smoke and fire example using fluid dynamics(Courtesy of Sitni Sati, FumeFX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Fig. 3.36 Nvidia’s Dawn’s skin was rendered in real time in2001 on a consumer class graphics board (©2012Nvidia Corporation. All rights reserved) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Fig. 3.37 With his ‘separable subsurface scattering’, graphicsresearcher Jorge Jimenez cracked the problemof rendering realistic human skin in real-time onconsumer-level hardware (©Jorge Jiminez: http://www.iryoku.com/separable-sss-released) . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Fig. 3.38 Cube of cubes by Fredrik Alfredsson (©Fredrik Alfredsson) .. . . . . 71

Fig. 4.1 The applications .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Fig. 4.2 3D applications .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Fig. 4.3 Engineers evaluating a proposed automobile’s interior

(© Mercedes-Benz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Fig. 4.4 Westinghouse’s electromechanical NIM computer

(Reproduced from The American MathematicalMonthly vol. 49, 1942, courtesy of The MathematicalAssociation of America) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Fig. 4.5 Charlie Adams, the original programmer, inventedthe Bouncing Ball Program, the solution of threedifferential equations (© 2004 Wayne E. Carlson) . . . . . . . . . . . . . . . . . 82

Fig. 4.6 The NIMROD computer, the second instance of adigital computer designed specifically to play a game(Courtesy of Pete Goodeve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Fig. 4.7 Dr. Dietrich Prinz loading chess program into aFerranti Mark I computer (1955) (Courtesy ofHulton-Deutsch Collection/CORBIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Fig. 4.8 Digital Equipment Corp PDP 6 developed in 1963(Courtesy of Vintchip.com) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Fig. 4.9 EDSAC I, 9-in. tubes used for monitoring (Copyright© Computer Laboratory, University of Cambridge.Reproduced by permission (CC BY 2.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Fig. 4.10 Simulation of the EDSAC CRT used for Ti-Tac-Toe(Courtesy of David Winter: www.pong-story.com) . . . . . . . . . . . . . . . . 86

Fig. 4.11 Tennis for Two on a CRT at the Brookhaven NationalLaboratory (© U.S. Department of Energy) . . . . . . . . . . . . . . . . . . . . . . . . 87

Page 27: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxvii

Fig. 4.12 Higinbotham’s Brookhaven Tennis game setup (©U.S. Department of Energy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Fig. 4.13 PDP-1 circa 1960 computer (Frank da Cruz, ColumbiaUniversity Computing History) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Fig. 4.14 The Spacewar! needle and the wedge (Courtesy of JoiIto: http://www.flickr.com/people/joi/ (CC BY 2.0)) . . . . . . . . . . . . . . . 89

Fig. 4.15 Spacewar! first digital computer game (Courtesy ofMassachusetts Institute of Technology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Fig. 4.16 Part of the evolution of computers has been thedevelopment of gaming platforms .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Fig. 4.17 Early Pong console in an arcade (courtesy ofProhibitOnions (CC BY 2.5)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Fig. 4.18 Students on the PLATO system (Photo copyright © bythe Board of Trustees, University of Illinois) . . . . . . . . . . . . . . . . . . . . . . . 94

Fig. 4.19 The Maze point of view – first 3D puzzle game (©Digibarn Computer Museum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Fig. 4.20 An example of the text-based Adventure game .. . . . . . . . . . . . . . . . . . . . 97Fig. 4.21 Wolfenstein 3D was the first PC-based 3D First-person

shooter (© id Software, LLC, a ZeniMax Media company) . . . . . . . 98Fig. 4.22 Arma 3 (©2013 Bohemia Interactive). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Fig. 4.23 Ivan Sutherland demonstrating Sketchpad (Courtesy of MIT) . . . . . 100Fig. 4.24 First computer graphics human body done by William

Fetter at Boeing in 1964 (© William Allan Fetter) . . . . . . . . . . . . . . . . . 102Fig. 4.25 First interactive CAD system, DAC-1, circa 1959

(Courtesy of IBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Fig. 4.26 Early molecule model on a vector display (courtesy of

Peter Murray-Rust (CC-BY 2.5)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Fig. 4.27 Image drawn by a molecular modelling program

developed by Nelson Max, Ken Knowlton, andLorinda Cherry, showing three protein subunits, fromthe model created by Arthur Olson, at The ScrippsResearch Institute (Image courtesy the LawrenceBerkeley National Laboratory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Fig. 4.28 The uncanny valley is the region of negative emotionalresponse towards robots that seem “almost human”.Movement amplifies the emotional response (Courtesyof Smurrayinchester (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Fig. 4.29 Facial realism and avoiding the uncanny valley(Courtesy of Takayoshi Sato and Sheen Hara). . . . . . . . . . . . . . . . . . . . . . 112

Fig. 4.30 Mr. 3D guy’s 2,500 triangles (Courtesy of TakayoshiSato and Sheen Hara) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Fig. 4.31 Good lighting, physical movements, and reasonablelip-synch make characters inanimations entertaining(Courtesy of Blender Foundation) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Page 28: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxviii List of Figures

Fig. 4.32 3D Geophysical simulation-visualization (Courtesy ofKerry Key, SCRIPPS Institution of Oceanography) .. . . . . . . . . . . . . . . 115

Fig. 4.33 3D simulation-visualization of a laser target capsulefor nuclear testing (Courtesy of Lawrence LivermoreNational Laboratory) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Fig. 4.34 Temperature simulation (Courtesy of AVS/Express) . . . . . . . . . . . . . . . 116Fig. 4.35 747 cockpit simulator circa 1992 (© NASA) . . . . . . . . . . . . . . . . . . . . . . . 117Fig. 4.36 Wolfenstein 3D circa 1992 (© id Software, LLC, a

ZeniMax Media company) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Fig. 4.37 Microsoft’s Flight Simulator (© Microsoft®). . . . . . . . . . . . . . . . . . . . . . . 118Fig. 4.38 Ghost Recon (© Ubisoft Entertainment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Fig. 4.39 CPU processing done in a game (© Qualcomm Incorporated) . . . . 120Fig. 4.40 SRC7 convertible image created by Kheang Chrun

using the Lightworks rendering engine (Courtesy ofLightwork Design. Copyright Kheang Chrun) . . . . . . . . . . . . . . . . . . . . . . 120

Fig. 4.41 Car racing game example of surface reflections, XMotor Racing (2012) (Courtesy of X-Motor Racing) . . . . . . . . . . . . . . 121

Fig. 5.1 The computer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Fig. 5.2 The ancient Antikythera Greek mechanism (Courtesy

of Marsyas (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Fig. 5.3 Grecian water clock (Copyright free, image is in the

public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Fig. 5.4 The verge escapement in Giovanni de’ Dondi’s

Astrarium’ s tracing of an illustration originally fromhis 1364 clock treatise, Il Tractatus Astarii (Copyrightfree, image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Fig. 5.5 Jacquard loom cards (Copyright free, image releasedinto the public domain by George H. Williams) . . . . . . . . . . . . . . . . . . . . 133

Fig. 5.6 An IBM punch card based on the Hollerith code(Courtesy of the IBM Corporate Archive) . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Fig. 5.7 Charles Babbage designer of the Difference Enginecomputer (Copyright free, image is in the public domain) .. . . . . . . . 134

Fig. 5.8 The London Science Museum’s replica DifferenceEngine, built from Babbage’s design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Fig. 5.9 Ben Franklin discovers electricity – an artisticrendition of the kite experiment by Benjamin West(Copyright free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . 136

Fig. 5.10 Ferdinand Braun (1850–1918) the father ofsemiconductors and the CRT (Copyright free, image isin the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Fig. 5.11 The Braun CRT (Courtesy of The Cathode Ray TubeSite [17]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Fig. 5.12 Nikola Tesla (1856–1943) the inventor of the logicAND gate (Copyright free, image is in the public domain) . . . . . . . . 139

Page 29: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxix

Fig. 5.13 Vannevar Bush (Copyright free, image released intothe public domain by the United States Library of Congress) . . . . . 141

Fig. 5.14 Vannevar Bush’s differential analyzer (Copyright free,image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Fig. 5.15 Alan Turing (1912–1954) (Photo courtesy of IanWatson [111]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Fig. 5.16 Konrad Zus (Courtesy of ArtMechanic (CC BY-SA 3.0)) . . . . . . . . . 143Fig. 5.17 Zuse Z1 replica in the German Museum of Technology

in Berlin (Courtesy of BLueFiSH.as (CC BY-SA 3.0)) . . . . . . . . . . . . 143Fig. 5.18 John Atanasoff (© (www.computer-enthusiast.

com) and Clifford Berry and courtesy of Iowa StateUniversity, respectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Fig. 5.19 The ABC Atanasoff-Berry computer (Courtesy ofIowa State University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Fig. 5.20 ENIAC (Electronic Numerical Integrator AndComputer) in the Ballistic Research Laboratorybuilding 328 in Philadelphia, Pennsylvania (U.S.Army Photo, image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . 147

Fig. 5.21 Whirlwind: first interactive computer graphicscomputer. Stephen Dodd, Jay Forrester, RobertEverett, and Ramona Ferenz at Whirlwind I testcontrol in the Barta Building, 1950 (Courtesy of MIT) . . . . . . . . . . . . 149

Fig. 5.22 Seeburg Ray-O-Lite game machine 1936 (Courtesy of ‘biggles’) . 151Fig. 5.23 Using a light gun on a SAGE air defense screen to pick

a target aircraft (Courtesy of IBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Fig. 5.24 IBM 704 at Lawrence Livermore National Labs

(Courtesy of Lawrence Livermore National Labs (www.llnl.org)) 153Fig. 5.25 Data General Nova 800 minicomputer with tape deck

(Courtesy of Dave Fischer (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . 155Fig. 5.26 IBM 1620 “CADET” personal scientific computer,

circa 1959 (Courtesy of Crazytales (CC BY-SA 3.0)) . . . . . . . . . . . . . . 157Fig. 5.27 Alan Kay, inventor of the Dynabook and the Alto

(Courtesy of PARC, a Xerox company) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159Fig. 5.28 Xerox Alto workstation (Courtesy of PARC, a Xerox company) .. 160Fig. 5.29 Apollo DN330, one of the first stand-alone

workstations (Courtesy of Jim Rees (CC BY-SA 2.5)) . . . . . . . . . . . . . 162Fig. 5.30 The SUN-1 workstation computer, circa 1983 (©SUN

Microsystems, Inc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Fig. 5.31 The long path of graphics workstation development to

a graphics AIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Fig. 5.32 SGI’s IRIS 2000 graphics workstation (circa 1985)

(Courtesy of Silicon Graphics International) . . . . . . . . . . . . . . . . . . . . . . . 168Fig. 5.33 HP’s 9826 Technical computer (circa 1981)

(©Hewlett-Packard) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171Fig. 5.34 IBM RT CADAM workstation (Courtesy of IBM) . . . . . . . . . . . . . . . . . 172

Page 30: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxx List of Figures

Fig. 5.35 The workstation market saw a rise of companies in theearly 1980s, and their decline as proprietary systemswere made obsolete in the early 1990s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Fig. 5.36 First use of the term “Microcomputer”, was by IsaacAsimov in 1956 (Copyright free, image released intothe public domain by the United States Library ofCongress following donation of image by New YorkWorld-Telegram & SUN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Fig. 5.37 Edmund C. Berkeley shows his relay-based personalcomputer in 1950 (Courtesy of Frank da Cruz,Columbia University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Fig. 5.38 The IBM 610 Auto-Point “Personal” computer(Courtesy of Frank da Cruz, Columbia University) . . . . . . . . . . . . . . . . 177

Fig. 5.39 Datapoint 2200 – an early VDT or PC (Courtesy ofJack Frassanito) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Fig. 5.40 Jonathan Titus how-to article predated the Altair (©Dr. Jonathan A. Titus/Florida Gulf Coast University) . . . . . . . . . . . . . . 179

Fig. 5.41 Popular Electronics Announces the Altair 8800 –January 1975 (Courtesy of Professor Gabriel Robins) . . . . . . . . . . . . . 180

Fig. 5.42 The evolution of game computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182Fig. 5.43 Typical video arcade machine, Space Invaders, circa

1978 (Courtesy of Billy Hicks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Fig. 5.44 Magnavox-Odyssey game console circa 1978

(Courtesy of Evan-Amos).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184Fig. 5.45 First handheld LCD game console (Courtesy of Evan-Amos) .. . . . 185Fig. 5.46 Sony’s PSP was the first truly capable 3D handheld

game console (Courtesy of Evan-Amos) .. . . . . . . . . . . . . . . . . . . . . . . . . . . 185Fig. 5.47 Nintendogs—a virtual pet (Photo: Jon Peddie Research) . . . . . . . . . . 186Fig. 5.48 Archos Android-based dedicated game device

(Courtesy of Archos) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Fig. 5.49 Nvidia’s Project Shield Android-based handheld game

machine (Courtesy of Nvidia) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188Fig. 5.50 Ouya game cube (Courtesy of Ouya) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188Fig. 5.51 Xi3’s Piston Steam Box game machine (Courtesy of Xi3) . . . . . . . . 189Fig. 5.52 The cost of a 3D capable computer has dropped

logarithmically for the last six decades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191Fig. 5.53 The shift in 3D displays and computers over time. . . . . . . . . . . . . . . . . . 192Fig. 5.54 The Commodore PET had a 9-in. screen and a

resolution of 320 � 200 (Courtesy of Tomislav Medak(CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Fig. 5.55 Examples of using a home computer for 2D and 3Dgraphics (©Byte Magazine, issue December 1977) . . . . . . . . . . . . . . . . 194

Fig. 5.56 Apple Macintosh was the first commercially availablebi-mapped system (Courtesy of Macintosh128) .. . . . . . . . . . . . . . . . . . . 195

Page 31: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxxi

Fig. 5.57 The telautograph is a system with which messageswritten in longhand at one station may be reproducedsimultaneously drawn at one or more other stations(Copyright free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . 196

Fig. 5.58 Tom Ellis, one of the inventors of the RAND tablet atwork. He has a metal-like pen tool in his right hand(Courtesy of the RAND Corporation) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Fig. 5.59 Grid System’s GridPad 1910, 1989 (Image courtesy ofwww.ComputingHistory.org.uk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Fig. 5.60 Digital Equipment Corporation’s Lectrice prototype(1995) Virtual Book tablet computer (©Hewlett-Packard) .. . . . . . . . 199

Fig. 5.61 Viewing CAD drawings is a popular use for a tablet (© CNews.ru) 201

Fig. A.1 Evolution of Intel processors (©Intel Corporation) . . . . . . . . . . . . . . . . 206

Fig. 6.1 The graphics controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Fig. 6.2 Basic elements of a computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213Fig. 6.3 Development of the graphics controller market . . . . . . . . . . . . . . . . . . . . 214Fig. 6.4 The Whirlwind computer (reconstructed at the Boston

Museum of Science) demonstrates the total integrationof computer, display controller, and display. (copyrightfree, image released into the public domain by Daderot) . . . . . . . . . . 215

Fig. 6.5 An S-100 video board (Courtesy of John Monahan:www.S100Computers.com).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Fig. 6.6 Micro Channel Adaptor graphics add-in board(Courtesy of Appaloosa (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Fig. 6.7 EISA graphics AIB with MCA bus (Courtesy ofKonstantin Lanzet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Fig. 6.8 VL bus graphics AIB (Courtesy of Konstantin Lanzet) . . . . . . . . . . . . 218Fig. 6.9 Popular AIB buses 1981–2003 (© Mark Edward Soper) . . . . . . . . . . 219Fig. 6.10 PCIe graphics AIBs, as they’ve gotten more powerful

they require more powerful (and larger) cooling aswell as additional power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Fig. 6.11 A PC motherboard with PCI Express (red) graphicsboard slots on the right (© 2012 EVGA). . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Fig. 6.12 IBM’s CGA Add-in board (Courtesy of Hiteched) . . . . . . . . . . . . . . . . . 222Fig. 6.13 Matrox 512S-100m graphics board circa 1979

(Courtesy of Dan’s Collection of S-100 Boards) . . . . . . . . . . . . . . . . . . . 223Fig. 6.14 A 5 � 7 dot matrix character displayed in a 9 � 14

cell (Courtesy of “Computer Peripherals” at NanyangTechnological University, Singapore) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Fig. 6.15 Hercules AIB – HGC (Courtesy of Konstantin Lanzet(CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Fig. 6.16 Matrox SM 640 first 3D commercial PC graphicsboard (circa 1987) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Fig. 6.17 Basic graphics pipeline pre GPU (©2012 Khronos Group) . . . . . . . . 231

Page 32: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxxii List of Figures

Fig. 6.18 PC graphics controllers evolved while the number ofsuppliers expanded and then contracted .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Fig. 6.19 The role of APIs and drivers in 3D computing . . . . . . . . . . . . . . . . . . . . . 234Fig. 6.20 Microsoft blue screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235Fig. 6.21 Organization of APIs to operating system and other components . 236Fig. 6.22 Tektronix’s 4010 graphics terminal plot 10 library

became the de-facto industry standard (Courtesy ofMuseum Waalsdorp NL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Fig. 6.23 DirectX helped revolutionize the PC and make it 3Dcapable (Used with permission from Microsoft) . . . . . . . . . . . . . . . . . . . 245

Fig. 6.24 The Fahrenheit project was a good idea that didn’twork out (Used with permission from Microsoft) . . . . . . . . . . . . . . . . . . 247

Fig. 6.25 The new DirectX logo (Used with permission from Microsoft) . . . 249Fig. 6.26 News of my death has been highly exaggerated

(Copyright free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . 251Fig. 6.27 ATI’s first graphics AIB, the ATI Wonder (Courtesy of

Appaloosa (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255Fig. 6.28 The long path of FGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256Fig. 6.29 SGI started it, AMD finished it – 3D console graphics. . . . . . . . . . . . . 257Fig. 6.30 ATI introduced Ruby in to highlight the company’s

GPU power (Courtesy of AMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258Fig. 6.31 A bigger world with six displays; AMD’s Eyefinity

(Courtesy of AMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258Fig. 6.32 ATI’s Radeon 9700 PRO, based on R300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 259Fig. 6.33 ATI’s “Rending with Natural Light” Demo . . . . . . . . . . . . . . . . . . . . . . . . . 260Fig. 6.34 3Dlabs’ Permedia workstation AIB (Courtesy of

Mac3216 (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261Fig. 6.35 Saga fighter screen shot from NV1 – 1995 (Courtesy of Nvidia) . . 263Fig. 6.36 Nvidia’s 3.5M transistor NV3 RIVA 128 (Courtesy of Nvidia) . . . 265Fig. 6.37 GeForce 256 integrated Transform and Lighting in

to the graphics processor enabling a leap in modelcomplexity (GeForce demo shots courtesy Nvidia) . . . . . . . . . . . . . . . . 266

Fig. 6.38 Nvidia’s first Quadro workstation AIB, notice thesimilarity to the GeForce AIB (Copyright free, imagereleased into the public domain by Hyins) . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Fig. 6.39 Nvidia Dawn demo rendered in real-time on a GeForceFX – 2003 (GeForce demo shots courtesy of Nvidia) . . . . . . . . . . . . . . 267

Fig. 6.40 Intel’s Multibus iSBX 275 graphics board (Courtesy of Intel) . . . . 269Fig. 6.41 Intel i740 AIB with AGP connector (Courtesy of

www.SSSTjy.com) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270Fig. 6.42 Intel’s Larabee graphics AIB (Courtesy of ComputerBase.De) . . . 271Fig. 6.43 Ray-traced scene from the game Wolfenstein

(Courtesy of Intel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272Fig. 6.44 Growth of 3D chip suppliers since the introduction of

the IBM PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Page 33: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxxiii

Fig. 6.45 Growth of AIB suppliers since the microcomputer .. . . . . . . . . . . . . . . . 277Fig. 6.46 A vector based font (Copyright free, image released

into the public domain by Max Naylor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279Fig. 6.47 Market of systems used for graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Fig. 7.1 The display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288Fig. 7.2 Evolution of computer display technology.. . . . . . . . . . . . . . . . . . . . . . . . . 289Fig. 7.3 3D computers have penetrated every platform.. . . . . . . . . . . . . . . . . . . . . 289Fig. 7.4 Father of the term Pixel, Hermann W. Vogel, scanned

from his book (Copyright free, image is in the public domain) . . . . 291Fig. 7.5 A Crookes tube is the precursor of the cathode ray tube

(Copyright free, image released into the public domainby Alchaemist) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Fig. 7.6 Williams Crooks and his electronic discharge tube(Courtesy of A History of Electronic Television: http://www.n-atlantis.com/televisionhistory.htm) .. . . . . . . . . . . . . . . . . . . . . . . . 293

Fig. 7.7 Joseph John (J.J.) Thompson discovered electrons andtheir properties (Copyright free, image is in the public domain) . . 293

Fig. 7.8 Basic construction of a CRT as used in an oscilloscopeor vector-scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Fig. 7.9 Ferdinand Braun, father of the CRT (Copyright free,image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Fig. 7.10 Lissajous figure on an oscilloscope, displaying a 3:1relationship between the frequencies of the vertical andhorizontal sinusoidal inputs, respectively (Courtesy ofOliver Kurmis (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Fig. 7.11 Oscillon 3 (© Ben F. Laposky) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295Fig. 7.12 Monitor and Control ‘Node’ of the replica SSEM. The

CRT in this image is used as the output device, and thered switches near the bottom left of the photo are usedas the input device (Copyright free, image releasedinto the public domain by Ben.Green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Fig. 7.13 A 14-in. cathode ray tube showing its deflection coilsand electron guns .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Fig. 7.14 Raster-scan tracing (During the “flyback“ (Red #2, andblue line #3) the beam is turned off) (Reproduced withpermission from Computer Desktop Encyclopedia ©1981–2013 The Computer Language Co. Inc. (www.computerlanguage.com)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Fig. 7.15 DEC’s model 30 display and PDP-1 computer(Courtesy of Frank da Cruz, Columbia University) . . . . . . . . . . . . . . . . 299

Fig. 7.16 Soviet Tupolev TU 85 long-range bomber (circa1950) unwittingly helped propell the development ofcomputer graphics (Courtesy of Virtual Aircraft Museum) . . . . . . . . 300

Page 34: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxxiv List of Figures

Fig. 7.17 Jack Gilmore looking at the 5-in. Tektronix scope usedfor graphics on the Whirlwind I computer in 1950 (©The MITRE Corporation) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Fig. 7.18 The AN/FSQ-7 SAGE computer filled a room(Courtesy of Bud Silloway, Former USAF ComputerTechnician, NORAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Fig. 7.19 Built by IBM in the 1950s, the SAGE terminalsintroduced several new concepts that would be usedin computer graphics for the next half century andbeyond (Courtesy of IBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Fig. 7.20 Jay Forester led the advanced aircraft flight simulatorproject at MIT which evolved into the Whirlwindcomputer (Courtesy of Massachusetts Institute of Technology) . . . 304

Fig. 7.21 Burroughs’ AN/GSA-51RADAR course directingBack Up Interceptor Control system (BUIC) terminal(©Charles Babbage Institute at University of Minnesota) . . . . . . . . . 306

Fig. 7.22 The IBM 610 Auto-Point Computer’s CRT-basedterminal, circa 1948—the small 3-in. CRT is on thefar left of the terminal (Courtesy of Frank da Cruz,Columbia University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Fig. 7.23 Early 3D Levinthal wireframe molecular modelcompared to modern 3D with solid atoms andcolor (Early: courtesy of Massachusetts Institute ofTechnology, Modern: courtesy of Jennifer A. Doudna) . . . . . . . . . . . . 309

Fig. 7.24 A DEC 340 graphics display console, used inmolecular modeling with the ‘globe’ (right of display)that served to control the direction and rate of rotationof the image. The PDP-7 to the right managed thedisplay (Courtesy of Martin Zwick) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Fig. 7.25 First generation (circa 1972) plasma PLATO IVterminal (Photo copyright © by the Board of Trustees,University of Illinois) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Fig. 7.26 IBM 2250 rectangular vector display with light pen(Courtesy of Frank da Cruz, Columbia University) . . . . . . . . . . . . . . . . 312

Fig. 7.27 Sanders & Associates System 900 developed in 1968and first sold in 1969 (Courtesy of DVQ.com) . . . . . . . . . . . . . . . . . . . . . 314

Fig. 7.28 An IBM plug-compatible IDI display at TheComputing & Automation divisions of RutherfordHigh Energy Physics Labs UK, circa 1968 (Courtesyof Rutherford Appleton Laboratory and the Scienceand Technology Facilities Council (STFC): http://www.stfc.ac.uk/chilton) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Fig. 7.29 IBM (Sander’s built) 3250 graphics terminal (Courtesyof IBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Page 35: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxxv

Fig. 7.30 CDC’s 274 Digigraphics vector display terminal(Courtesy of University of Minnesota) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Fig. 7.31 Adage AGT 30 (Courtesy of Wayne Carlson [51] atThe Ohio State University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Fig. 7.32 The rapid rise of companies entering the vectorgraphics display market and their decline as rastersystems were introduced .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Fig. 7.33 The automation surveillance radar for air traffic controlcalled ARTS. It came into use at over 60 of the busiestUS airports by the 1970s (Photo © FAA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Fig. 7.34 Direct-view storage tube (Courtesy of Joanne Ng &Andrew Marriot, Curtin University of Technology,Computer Graphics On-Line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Fig. 7.35 Tektronix T4002 computer terminal with DVST(Copyright © Tektronix. All Rights Reserved.Reprinted with permission) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Fig. 7.36 A 3D image displayed on Tektronix’s famous andpopular 4014 graphics storage tube terminal (Courtesyof Atlas Computing Division, Rutherford Laboratory, UK) . . . . . . . 324

Fig. 7.37 Basic color CRT construction (Courtesy of Juan M. Gomez). . . . . . 326Fig. 7.38 A printout of the image of Einstein from a character

printer (Courtesy of John Foust of The JeffersonComputer Museum) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Fig. 7.39 RGB is an additive color process, use in displays . . . . . . . . . . . . . . . . . . 328Fig. 7.40 CMYK is a subtractive color scheme, primarily used in printers . . 329Fig. 7.41 The RGB and CYM color models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329Fig. 7.42 The HSV and HLB color models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330Fig. 7.43 Gamut of the CIE RGB primaries and location of

primaries on the CIE 1931 xy chromaticity diagram .. . . . . . . . . . . . . . 331Fig. 7.44 DEC GT40 with PDP 11, light pen and remote

keyboard showing a 3Dimensional Lissajous curve(Courtesy of Brouhaha (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Fig. 7.45 AED 512 graphics terminal circa 1976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333Fig. 7.46 Introduced in 1983 the VT240 and VT241 were DEC’s

first raster graphics terminals, supporting Digital’sReGIS graphics and Tektronix vector graphics(Courtesy of ClickRick (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Fig. 7.47 Every company that entered the graphics terminalmarket either disappeared (shutdown, bankruptcy, orwas acquired and assimilated) or moved into other markets . . . . . . . 334

Fig. 7.48 Jupiter System’s Jupiter 12 high-resolution bit-mappedgraphics terminal (© Jupiter Systems) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Fig. 7.49 IBM color raster display circa 1985 with 3D pendulum(Courtesy of IBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Page 36: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxxvi List of Figures

Fig. 7.50 First microprocessor-based color system, IntelligentSystems’ Intecolor 8001 circa 1975 (Courtesy ofCharles Muench) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Fig. 7.51 View of a typical LCD display, clearly showing thesub-pixel structure (Courtesy of Akpch (CC BY-SA 3.0)) . . . . . . . . . 339

Fig. 7.52 Magnified image of the AMOLED screen (Courtesy ofMatthew Rollings (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Fig. 7.53 The PLATO IV plasma screen with touch input(Courtesy of the University of Illinois Archives) . . . . . . . . . . . . . . . . . . . 342

Fig. 7.54 HP introduced the first commercially availabletouch screen computer in 1983 (scan from PersonalComputing, December 1983 courtesy of Retro Scan ofthe Week: www.vintagecomputing.com).. . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Fig. 7.55 Apple introduced the high-resolution Retina display in2012 (© 2012 Apple Inc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Fig. 7.56 Stock traders led the deployment of multiple displays(Courtesy of FxRebateGurus.com) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Fig. 7.57 Design engineer workstation with three monitors inportrait mode (Courtesy of Siim Teller) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Fig. 7.58 An example of Windows configuring three monitors,one in portrait mode, and all of them with different resolutions. . . 346

Fig. 7.59 A laptop workstation with three external displays . . . . . . . . . . . . . . . . . . 346Fig. 7.60 A computer game spanned across six displays driven

by a single graphics board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347Fig. 7.61 Five displays in portrait mode give a better view and

can be wrapped around to support peripheral vision . . . . . . . . . . . . . . . 347Fig. 7.62 Uncompensated projectors with a curved screen

(Courtesy of Behzad Sajadi and Aditi Majumder) . . . . . . . . . . . . . . . . . 349Fig. 7.63 Analyzing and aligning images from multiple

projectors (Courtesy of Behzad Sajadi and Aditi Majumder) .. . . . . 350Fig. 7.64 A three-sided rear-projection cave with Sajadi and

Majumder’s compensation (Courtesy of Behzad Sajadiand Aditi Majumder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Fig. 7.65 Digital Wall Covering and curved surfaces can becreated with low cost off the shelf components (©2012 Scalable Display Technologies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Fig. 7.66 White boards that can sense drawings and projectthe drawn image while adjusting the database data toreflect changes in real-time (© 2012 Scalable DisplayTechnologies) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Fig. 7.67 A rear-projected, immersive gaming display with S3Dpotentiality (© 2012 Scalable Display Technologies) . . . . . . . . . . . . . . 352

Fig. 7.68 HP’s all-in-one 27-in. workstation (©Hewlett-Packard) . . . . . . . . . . . 353

Page 37: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxxvii

Fig. 7.69 The monitor doesn’t have the dynamic range to allowyou to see things in the dark shadows, but in real lifeyour eyes could resolve such detail (©Valve Corporation).. . . . . . . . 354

Fig. 7.70 IBM’s 1987 ubiquitous VGA connector can still befound on PCs and monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Fig. 7.71 BNC (co-axial) connector (Courtesy of Meggar (CCBY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Fig. 7.72 BNC video connectors (© 2012 The Render Q) . . . . . . . . . . . . . . . . . . . . 359Fig. 7.73 DVI connector types (Copyright free, image released

into the public domain by Hungry Charlie) . . . . . . . . . . . . . . . . . . . . . . . . . 361Fig. 7.74 DisplayPort (full-size) connector (Courtesy of Oliver

Abisys (CC BY-SA 3.0)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362Fig. 7.75 Mini DisplayPort connector is about one-fourth the

size of a standard DisplayPort connector . . . . . . . . . . . . . . . . . . . . . . . . . . . 364Fig. 7.76 Six displays driven by one AIB made possible by mini

DisplayPort (©2012 Advanced Micro Devices, Inc) . . . . . . . . . . . . . . . 364Fig. 7.77 The Universal Serial Bus connector (Courtesy of

Afrank99 (CC BY-SA 2.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365Fig. 7.78 DisplayLink USB to DVI dongle (©2012 DisplayLink) . . . . . . . . . . . 365Fig. 7.79 Acer’s B223 Vista monitor with just a USB connector

(© Acer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366Fig. 7.80 Rear panel of high-end projector (Courtesy of Vivitek) . . . . . . . . . . . . 367Fig. 7.81 DVI TMDS “eye” (© 2004 Silicon Image, Inc) . . . . . . . . . . . . . . . . . . . . 368

Fig. 8.1 Stereoscopic displays and visualization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 374Fig. 8.2 How do you view 3Dimensional data on a 2D surface?

(Courtesy of Divahar Jayaraman) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375Fig. 8.3 Block diagram of basic data flow in S3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 375Fig. 8.4 100 years ago T. Enami photographed Japan : : : in 3D

(Copyright free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . 377Fig. 8.5 ‘The Annunciation’, by Fra Carnevale (1488),

photographed by Lee Sandstead at the NationalGallery of Art, Washington D.C. (Copyright free,image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Fig. 8.6 The image only gives the impression of depth from aspecific viewing point. Lego Terracotta Army designedby Leon Keer (Courtesy of Dufois (CC BY-SA 3.0))and street paint of Stocznia Szczecinska done byManfred Stader in October 2010 in Szczecin, Poland(Courtesy of Piotr Kuczynski (CC BY-SA 3.0)) .. . . . . . . . . . . . . . . . . . . 379

Fig. 8.7 A Holmes-type stereoscope circa 1850 (Copyrightfree, photo released into the public domain by Dave Pape) . . . . . . . . 380

Fig. 8.8 Early table top stereo viewer (Courtesy Central PacificRailroad Photographic History Museum, © 2012,CPRR.org) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Page 38: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xxxviii List of Figures

Fig. 8.9 View-Master (Courtesy of Wolfgang Sell) . . . . . . . . . . . . . . . . . . . . . . . . . . 381Fig. 8.10 Durer’s perspective drawing instrument (Copyright

free, image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382Fig. 8.11 Kelsh projection stereoplotter circa 1968 (Courtesy

of Riverside County Flood Control and WaterConservation District) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Fig. 8.12 StereoGraphics CrystalEyes first shutter glasses(Courtesy of Lenny Lipton) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Fig. 8.13 Researchers viewing, with stereo glasses, an Atta (antcutter) colony in a volumetric model on immersivescreen (Courtesy of Carol LaFayette) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Fig. 8.14 3D can be thrilling (© 3-D Revolution Productions:www.the3drevolution.com) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Fig. 8.15 The image in d (the left plate), which is slightly offsetfrom the image in c (the plate on the right), and seensimultaneously via the mirrors a and b (Copyrightfree, image is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Fig. 8.16 Comparison of parallax-barrier and lenticularauto-stereoscopic displays (Courtesy of Cmglee(CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Fig. 8.17 Head-tracking app for tablet (© Jeremie Francone &Laurence Nigay). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Fig. 8.18 Anaglyph glasses (Image courtesy of ShenzhenYishitongda Trade Co., Ltd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Fig. 8.19 Students in MSU Baroda university evaluate S3D(Courtesy of 3D India) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Fig. 8.20 Dolby’s color filter 3D glasses (© 2012 Dolby EuropeLicensing Limited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Fig. 8.21 RealD 3D glasses (Copyright free, released into thepublic domain by Fritz Jorn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Fig. 8.22 ZScreen (Courtesy of Inition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396Fig. 8.23 A (NH3CH2CH2C(OH)(PO3H)(PO3H)-) molecule

(Courtesy of Jmol: an open-source Java viewer forchemical structures in 3D. http://www.jmol.org/) . . . . . . . . . . . . . . . . . . 397

Fig. 8.24 First vectorscope implementation of molecularmodeling, with early track ball (called the kludge) thatcontrolled the direction and speed of image rotation(Courtesy of Martin Zwick) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Fig. 8.25 Ferranti Argus 500 computer (Copyright free, imagereleased into the public domain by Leo Capaldi) . . . . . . . . . . . . . . . . . . . 398

Fig. 8.26 We Are Born Of Stars, (1985) first anaglyph singleprojector 3D film (Courtesy of BigMovieZone.com) . . . . . . . . . . . . . . 399

Fig. 8.27 Nelson’ Max’s computer generated DNA model(Courtesy Nelson Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Page 39: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Figures xxxix

Fig. 8.28 Plotting stereo images of molecules (Courtesy of theOak Ridge National Laboratory, managed for the U.S.Dept. of Energy by UT-Battelle, LLC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Fig. 8.29 CAD visualization makes extensive use of stereovision(© 2012 Nvidia Corporation) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Fig. 8.30 The zStation is for engineers and designs (© Z Space) . . . . . . . . . . . . 402Fig. 8.31 Planar System’s 2005 prototype stereovision viewer

(© Planar Systems, Inc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403Fig. 8.32 Smith Engineering/Western Technologies 1983

GCE Vectrex game machine (Courtesy of StaffanVilcans/liftarn (CC BY-SA 2.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Fig. 8.33 The Vectrex stereovision headset. Notice the colorwheel in front of the girl’s face (courtesy Vectrexnow.com) .. . . . . . 405

Fig. 8.34 Nintendo Virtual-Boy has a stationary headset-likeviewer for S3D (Wikipedia) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Fig. 8.35 David Cook showing S3D at CES 2008 (Photocourtesy Neil Schneider, MTBS3d.com) .. . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Fig. 8.36 Nintendo’s 3DS stereographic glasses-free handheldgame machine (circa 2011) (Courtesy Evan-Amos) .. . . . . . . . . . . . . . . 409

Fig. 8.37 Total emersion with wrap-around 120 Hz screens andS3D (Courtesy of JPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Fig. 8.38 AMD Eyefinity 3D (Courtesy of mtbs3D.com) . . . . . . . . . . . . . . . . . . . . 411Fig. 8.39 Sensorama (© Morton Heilig) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413Fig. 8.40 Probably the first computer-driven, head-mounted

viewing device developed by Ivan Sutherland (©University of Utah, Salt Lake City, Utah) . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Fig. 8.41 The Helmet-Mounted Display System developed forthe F-35 Lightning II (Copyright free; this image or fileis in the public domain because it contains materialsthat originally came from the United States MarineCorps. As a work of the U.S. federal government, theimage is in the public domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Fig. 8.42 The head-mounted display system, tracked clippingtool, and magnetic field generator (white box,center-right) are shown in a clinical setting duringan attempted mitral valve replacement on an animal(© 2012 SPIE, reprinted with permission from Peterset al. [32]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Fig. 8.43 Dr. Eric Muth, a VIRTE researcher from ClemsonUniversity, is shown in one of the VIRTE pods at NavalResearch Laboratories wearing the NVIS, nVisor ST,head mounted display unit (Image is in the publicdomain, originally produced by U.S. Naval Research Laboratory) 417

Fig. 8.44 NASA’s head-mounted display and wired gloves(1986) (© NASA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Page 40: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

xl List of Figures

Fig. 8.45 Toshiba’s Head Mounted Display For ‘Full 360-DegreeView’ (2006) (© 2012 Toshiba Information Systems, Ltd) . . . . . . . . 418

Fig. 8.46 Oculus headset (Courtesy of Oculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418Fig. 8.47 A simulation of the Holodeck (a simulation of a simulation) . . . . . . 420Fig. 8.48 A CAVE is a six-sided rear projection room. The

images are shown in stereo 3D (S3D) (Copyright free,image released into the public domain by Dave Pape) . . . . . . . . . . . . . 420

Fig. 8.49 The CAVE at EVL (1992 CAVE™ virtual-realityenvironment images courtesy of the ElectronicVisualization Laboratory, University of Illinois at Chicago) . . . . . . . 421

Fig. 8.50 Proposed CAVE for the Earth Simulator Center(Courtesy of Japan Agency for Marine-Earth Scienceand Technology (JAMSTEC)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Fig. 8.51 Khairi Reda, an EVL research assistant and computerscience PhD candidate, shows this visualization ofa balls-and-sticks model of a molecular chemistrydataset to fellow students in EVL’s CAVE2virtual-reality environment. The clouds represent thedensity of electrons around atoms (1992 CAVE™virtual-reality environment images courtesy of theElectronic Visualization Laboratory, University ofIllinois at Chicago) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Fig. 8.52 VirtuSphere consists of a 10-ft hollow sphere, which isplaced on a special platform that allows the sphere torotate freely in any direction according to the user’s steps . . . . . . . . . 423

Fig. 8.53 The Sphinx – The boy looking through a stereoscope,January 14, 1922 (© Norman Rockwell). . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Fig. 8.54 Egyptian hieroglyphic for the Eye of Horus illustratingthe symbolic aspect of pictographs (Courtesy of BenoıtStella alias BenduKiwi (CC BY-SA 3.0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Fig. 9.1 Epic’s Unreal engine Samaritan demo (© Epic Games, Inc) . . . . . . 430

Page 41: TheHistoryofVisualMagicinComputers978-1-4471-4932-3/1.pdfstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

List of Tables

Table 4.1 Historical sketch of the pioneer CAD companies. . . . . . . . . . . . . . . . . . 105

Table 5.1 Characteristics of first computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Table A.1 A listing of old computers (Old Computers.net,created by Steven Stengel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Table 6.1 Computer buses characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221Table 6.2 Development of PC graphics controller/ processor standards . . . . . 232Table 6.3 Microsoft DirectX versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Table 6.4 Major graphics chip introductions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Table 7.1 Pioneering hardware companies in computer graphics . . . . . . . . . . . . 355Table 7.2 Popular display resolutions and their names . . . . . . . . . . . . . . . . . . . . . . . 368

Table 8.1 Combinations of S3D systems and display techniques .. . . . . . . . . . . 395

xli