the separated radial and orbital parts of the schrodinger equation: note that the angular momentum...

19

Post on 20-Dec-2015

213 views

Category:

Documents


1 download

TRANSCRIPT

( )[ ] )1(sin

1

sin

cos1222

22

2

2

2

2

22

+−=−⎥⎦

⎤Θ+⎢

⎡ Θ

Θ−=−+⎥

⎤⎢⎣

⎡+ ll

h l θθθθ

θm

dd

dd

rUEmr

drdR

rdrRd

Rr

( )[ ] )1(22

2

2

2

22

+−=−+⎥⎦

⎤⎢⎣

⎡+ ll

hrUE

mrdrdR

rdrRd

Rr

)1(sin

1

sin

cos12

22

2

+−=−⎥⎦

⎤Θ+⎢

⎡ ΘΘ

− lll θθθθ

θm

dd

dd

The separated radial and orbital parts of the Schrodinger equation:

Note that the angular momentum equation does not depend on the form of the potential, but it does relate the “magnetic quantum number” to the angular

momentum quantum number.

The radial equation does depend on the form of the potential…it relates the total energy to the angular momentum.

Note that the magnetic quantum number is independent of the energy. This leads to degenerate states.

ErUd

d

rmd

d

d

d

rmdr

dR

rdr

Rd

mR=+

ΦΘ

−⎥⎦

⎤⎢⎣

⎡ Θ+

ΘΘ

−⎥⎦

⎤⎢⎣

⎡+

−)(

sin1

2cot

12

22 2

2

22

2

2

2

2

2

2

22

φθθθ

θhhh

Θ+−=Θ−Θ

)1(sin

1

sin

cos2

22

2

lll θθθθ

θm

dd

dd

( )φφ

Φ−=Φ 22

2

lmdd

( ) ( ) ( ) ( ) ( )rERrRrUrRmrdr

dR

rdr

Rd

m=+

++⎥⎦

⎤⎢⎣

⎡+−

2

2

2

22

2

12

2

hllh

tim eYrRtr ωφθφθ −=Ψ ),()(),,,( ll

The Schrodinger equation for a spherically symmetric potential:

where:

The final separated forms:Gives us three quantum numbers…analogous to Ex, Ey, and Ez in the cartesian case…

lKh ll ±±±== ,,2,1,0mmLz

Lz must be less than L, and cannot equal L, otherwise Lx=Ly=0, and all three components of the momentum would be known simultaneously in violation of the uncertainty principle!

)1(cos

+==

lllmLz

Lθ e v

A revolving charge gives rise to a magnetic field.

−h2

2m

d2R

dr2+

2

r

dR

dr

⎣ ⎢

⎦ ⎥+

l l +1( )h2

2mr2R r( ) +U r( )R r( ) = ER r( )

L2

2mr2

Korbital =1

2mv 2

L = mvr

∴Korbital =m

2

L

mr

⎝ ⎜

⎠ ⎟

2

=L

2

2mr2

energykineticradial

dr

rRd

dr

dR

rdr

Rdr

2

2

2

2 )(2=⎥

⎤⎢⎣

⎡+

the potentialexpression for kinetic energy

kinetic plus potential energy gives the total energy

kpm

pKE h== ;

2

2kp

m

pKE h== ;

2

2

position x x

momentum p

potential energy U U(x)

kinetic energy K

total energy E

xi ∂∂h

2

22

2 xm ∂∂

−h

ti

∂∂

h

observable

operator

Eigenvalues are a constant of the motion.

Consider the time independent Schrodinger equation…

Ψ=Ψ⎥⎦

⎤⎢⎣

⎡+

−ExU

dx

d

m)(

2 2

22h

When applied to a wavefunction, this expression yields E…energy eigenvalues

For example these are the energy eigenvalues you find when applying this to a simple harmonic oscillator potential

02012

3

0

aZr

ea

Z −

⎟⎟⎠

⎞⎜⎜⎝

( )rRn nll

02

0

23

0

22

02 aZr

ea

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

02

0

23

0

232

12 aZr

ea

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

03

2

00

23

0 27

2

3

212

303 a

Zr

ea

Zr

a

Zr

a

Z −

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟⎟

⎞⎜⎜⎝

03

00

23

0 61

3

24

313 a

Zr

ea

Zr

a

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

03

2

0

23

0 527

22

323 a

Zr

ea

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

,...3,2,12 2

2

0

2

=⎭⎬⎫

⎩⎨⎧

−= nnZ

ake

En

n=1 E=-13.6 eV

n=2 E= -3.4 eV

n=3 E= -1.5 eV

n=4 E= -0.8 eV

allowed transitions

forbidden transition

l=3

l=2

l=1

angular momentum must be conserved

…photons carry angular momentum.

1,2,1,0 −= nKl 1,2,1,0 −= nKl

ll l ≤≤− m ll l ≤≤− m

K,3,2,1=n K,3,2,1=nEnergy: ,...3,2,12 2

2

0

2

=⎭⎬⎫

⎩⎨⎧

−= nnZ

ake

En

Assuming that no more than one electron can occupy each state, there are a total of states.2n

There are a total of orbitals within each subshell.

12 +l

There are a total of n subshells.

Preview: Actually, we will find in Chapter 9 that two electrons can occupy the same orbital if they have different “spin”.

02012

3

0

aZr

ea

Z −

⎟⎟⎠

⎞⎜⎜⎝

( )rRn nll

02

0

23

0

22

02 aZr

ea

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

02

0

23

0

232

12 aZr

ea

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

03

2

00

23

0 27

2

3

212

303 a

Zr

ea

Zr

a

Zr

a

Z −

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟⎟

⎞⎜⎜⎝

03

00

23

0 61

3

24

313 a

Zr

ea

Zr

a

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

03

2

0

23

0 527

22

323 a

Zr

ea

Zr

a

Z −

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

( ) timn eYrRtr ωφθφθ −=Ψ ,)(),,,( l

ll( ) tim

n eYrRtr ωφθφθ −=Ψ ,)(),,,( lll

22

22

)()(generally

shell symmetricy sphericall afor 4)(

rRrrP

drrrP

=

Ψ= π

drrRrdrrP )()(1 2

00 ∫∫∞∞

==

∫∫∞∞

==0

3

0)()( drrRrdrrrPr