the sedov solution - anu

53
Astrophysical Gas Dynamics: Bubbles 1/53 The Sedov Solution 1 Similarity solutions Equation of motion of pendulum: (1) mg l d 2 dt 2 --------- g l -- sin =

Upload: others

Post on 16-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Sedov Solution - ANU

The Sedov Solution

1 Similarity solutions

Equation of motion of pendulum:

(1)

mg

l

d2dt2---------

gl--- sin–=

Astrophysical Gas Dynamics: Bubbles 1/53

Page 2: The Sedov Solution - ANU

Suppose solution of the form:

(2)

Since f is a dimensionless function it cannot depend upon the di-mensions of t, l, or g.Hence we need to combine t, l and g intosome dimensionless combination, the only possible one being

and the solution is of the form

(3)

f 0 t l g =

tgl---

f 0 tgl---

=

Astrophysical Gas Dynamics: Bubbles 2/53

Page 3: The Sedov Solution - ANU

In this problem the variable is a similarity variable. We con-

struct analogous variables in constructing useful solutions to theEuler equations.

tgl---

Astrophysical Gas Dynamics: Bubbles 3/53

Page 4: The Sedov Solution - ANU

2 Spherically symmetric hydrodynamics

2.1General equations

Take the spherically symmetric Euler equations:

(4)

The last equation is equivalent to

(5)

t 1

r2-----

r

r2v + 0=

tv

vr

v 1---

rp

+ + 0=

t

p – vr

p – + 0=

p K s =dK s

dt--------------

t

K s vr

K s + 0= =

Astrophysical Gas Dynamics: Bubbles 4/53

Page 5: The Sedov Solution - ANU

The independent variables in this problem are r and t. In generalwe need to solve partial differential equations in r and t to obtaina solution.

In the self-similar approach we look for solutions of one variable

, leading to ordinary differential equations. However, weneed some physical basis for choosing .

2.2 Point explosion in a uniform medium

Terrestrial application: Analysis of Atom Bombs

Astrophysical application: 2nd phase of supernova remnants

rt

Astrophysical Gas Dynamics: Bubbles 5/53

Page 6: The Sedov Solution - ANU

We expect the general features of the explosion to be a sphericalexpansion preceded by a shock wave advancing into the undis-turbed gas.

EDensity 0= Shock

Astrophysical Gas Dynamics: Bubbles 6/53

Page 7: The Sedov Solution - ANU

2.3Dimensional analysis

In order to find an appropriate similarity variable, we look at thedimensions of the parameters involved.

(6)

Thus an appropriate (dimensionless) similarity variable for thisproblem is

(7)

E V2 L3 =

E0------ L5T 2– LT 2 5/– 5= =

E0------ 1 5/

LT 2 5/–=

E0------ 1 5/–

rt 2 5/–

Astrophysical Gas Dynamics: Bubbles 7/53

Page 8: The Sedov Solution - ANU

We aim to construct the similarity variable so that the radius ofthe shock produced by the explosion is at . We thereforetake

(8)

where is to be determined later.

It is not envisaged that all features of such an explosion are de-fined by taking the fluid variables to be functions of . However,what is envisaged is that after some time, the resultant flow willsettle down to a similarity solution in which the parameters , and the variables and are combined into one similarity varia-ble. This is a general feature of similarity solutions.

1=

E0------ 1 5/–

rt 2 5/–=

E r t

Astrophysical Gas Dynamics: Bubbles 8/53

Page 9: The Sedov Solution - ANU

3 Self-similar form of the Euler equations

3.1Self similar forms of variables and derivatives

Guided by the dimensions of the dynamica variables, we take:

(9)

0G =

v Art--U =

cs2 B

r2

t2-----Z =

Astrophysical Gas Dynamics: Bubbles 9/53

Page 10: The Sedov Solution - ANU

The constants A and B will be chosen to make the ensuing equa-tions as simple as possible. This form of the fluid variables ischosen in such a way that they are dimensionally correct. (Obvi-ously, there is a strong connection between dimensional analysisand self-similarity.)

The momentum equation is expresed in the following form:

(10)t

vv

rv

+1---

rp

–1---

p

r

– cs21---

r

– cs2

r

ln–= = = =

Astrophysical Gas Dynamics: Bubbles 10/53

Page 11: The Sedov Solution - ANU

The final form of the Euler equations is:

(11)

Since

(12)

t

vr

r

v 2vr

---------+ + + 0=

tv

vr

vcs

2r ln+ + 0=

t---- v

r-----+

p – ln 0=

p – 1---p----- 1– – 1

---cs

2 1– –= =

Astrophysical Gas Dynamics: Bubbles 11/53

Page 12: The Sedov Solution - ANU

then the last of the above equations can be written

(13)

We adopt the general self-similar variable:

(14)

where in the constant background density case dis-

cussed above. Other values of are relevant when the back-ground density is non-uniform.

t---- v

r-----+

cs2 1– ln–ln 0=

Crt=

25---–=

Astrophysical Gas Dynamics: Bubbles 12/53

Page 13: The Sedov Solution - ANU

W e have to do the following preliminaries, since differentiationof functions of involves differentiation of with respect to and .

Derivatives of

(15)

tr

r

Ctr--= =

t Crt 1–

t--= =

Astrophysical Gas Dynamics: Bubbles 13/53

Page 14: The Sedov Solution - ANU

Derivatives of density

(16)

Derivatives of velocity

(17)

r 0G

r--=

lnr

------------1r---G G

-----------------=

t 0

t

------G = lnt

------------t---G G

-----------------=

tv

Ar

t2---- U – U + =

rv A

t--- U U + =

Astrophysical Gas Dynamics: Bubbles 14/53

Page 15: The Sedov Solution - ANU

Derivatives of sound speed:

Since

(18)

then

(19)

cs2ln constant ln 2 r

t--ln Zln+ +=

t---- cs

2ln1t--- 2– Z

Z ----------------+=

r----- cs

2ln1r--- 2

Z Z

----------------+=

Astrophysical Gas Dynamics: Bubbles 15/53

Page 16: The Sedov Solution - ANU

3.2 Euler equations in self-similar form

3.2.1 Continuity equation

This is:

(20)

Substituting the expressions for , and derivatives:

(21)

t

vr

r

v2vr

------+ + + 0=

v

0t

------G Art--U 0G

r--+

0G At--- U U + 2

r---0G Ar

t--U + + 0=

Astrophysical Gas Dynamics: Bubbles 16/53

Page 17: The Sedov Solution - ANU

The various terms have a common multiplicative factor of

, which cancels out. The terms can then be combined to

give the following equation:

(22)

which is, on dividing by

(23)

Note the appearance of terms such as

which often appear when we are dealing with self similar solu-tions.

0t 1–

AU + G AG U 3AU G + + 0=

G

AU + G G

----------------- AU 3AU + + 0=

G G

-----------------d G ln

d ln---------------------=

Astrophysical Gas Dynamics: Bubbles 17/53

Page 18: The Sedov Solution - ANU

3.2.2 Momentum equation

We can treat the momentum equation similarly.

tv

vr

vcs

2r ln+ + 0=

Ar

t2---- U– U' + A

rt--U A

t--- U U' + +

Br2

t2-----Z

r--

G' G -------------+ 0=

Astrophysical Gas Dynamics: Bubbles 18/53

Page 19: The Sedov Solution - ANU

A factor of cancels and we can then collect terms in ,

and to obtain the final result:

(24)

3.2.3 Entropy equation

Similarly, the entropy equation becomes:

(25)

r

t2---- U'

U G'

A AU + U AU AU 1– +

BZ G G

-----------------+ 0=

Z Z

---------------- 1– G G

-----------------–2 AU 1– AU +

---------------------------------+ 0=

Astrophysical Gas Dynamics: Bubbles 19/53

Page 20: The Sedov Solution - ANU

3.3Final form of self-similar equations

The set of self-similar equations is:

AU + G AG U 3AU G + + 0=

A AU + U AU AU 1– BZ G G

-----------------+ +

0=

Z Z

---------------- 1– G G

-----------------–2 AU 1– AU +

---------------------------------+ 0=

Astrophysical Gas Dynamics: Bubbles 20/53

Page 21: The Sedov Solution - ANU

For the point explosion problem in a constant density back-

ground, we have . Therefore, 25---–=

25---– AU + G AG U 3AU G + + 0=

A25---– AU + U 2

5---U 2

5---U 1– BZ G

G -----------------+ +

0=

Z Z

---------------- 1– G G

-----------------–2 AU 1–

25---– AU +

---------------------------------+ 0=

Astrophysical Gas Dynamics: Bubbles 21/53

Page 22: The Sedov Solution - ANU

The above equations are simplified, if we take

(26)

The final self-similar form is:

(27)

A25---= B

25--- 2 4

25------= =

U 1– d Glnd ln-------------

dUd ln----------- 3U+ + 0 (Continuity)=

U 1– dUd ln----------- U U

52---– Z

d Glnd ln-------------+ + 0 (Momentum)=

d Zlnd ln------------ 1– d Gln

d ln-------------–

2 U 5 2– U 1–

----------------------------+ 0 (Entropy)=

Astrophysical Gas Dynamics: Bubbles 22/53

Page 23: The Sedov Solution - ANU

4 Conditions at outgoing shock

4.1 Development of boundary conditions

The surface is to represent the outgoing shock wave.Since

(28)

(29)

1=

E0------ 1 5/–

= rt 2 5/–

Radius of shock Rs 1– E0------ 1 5/

t2 5/= =

Velocity of shockdRsdt

---------25--- 1– E

0------ 1 5/

t 3 5/– 25---

Rst

------= = =

Astrophysical Gas Dynamics: Bubbles 23/53

Page 24: The Sedov Solution - ANU

Within the constraints of this self-similar solution the only sortof shock that we can contemplate is an infinitely strong shock. Ifwe were to introduce another parameter into the solution corre-sponding to say, the strength of the shock, then our initial as-sumption that the solution only depends upon E, , r and t

would be invalid and the self-similar solution could no longer besatisfied.

0

v1'v2'

In frame of shock

v1'drsdt

--------=v1' v2'–

Frame of stationary gas

rsrs

Astrophysical Gas Dynamics: Bubbles 24/53

Page 25: The Sedov Solution - ANU

We use the relationships for a strong shock:

(30)

In view of the self-similar relationship between v and U, viz.

, this boundary condition becomes:

(31)

v2 1–

1+-----------v1

=

v rs v1 v2

–=

2 1+-----------v1

2 1+-----------

25---

rt--

= =

v25---

rt--U =

U 1 2 1+-----------=

Astrophysical Gas Dynamics: Bubbles 25/53

Page 26: The Sedov Solution - ANU

Using the density ratio for a strong shock, the density just insidethe shock wave is given by:

(32)

In the present notation the relationship between shock velocity,pressure and density is:

(33)

rs 0G 1 1+ 1–-----------0= =

G 1 1+ 1–-----------=

v1 2 1+

2-----------

p rs

0------------= p rs 2

1+-----------0

drsdt--------

2=

Astrophysical Gas Dynamics: Bubbles 26/53

Page 27: The Sedov Solution - ANU

Hence, the sound speed just inside the shock is given by:

(34)

Since

(35)

then the boundary condition on is

(36)

cs2 rs

p rs

rs ---------------

2 1– 1+ 2

----------------------drsdt--------

2 2 1– 1+ 2

----------------------425------

rs2

t2-----= = =

cs2 4

25------

r2

t2-----Z =

Z

Z 1 2 1– 1+ 2

----------------------=

Astrophysical Gas Dynamics: Bubbles 27/53

Page 28: The Sedov Solution - ANU

4.2Summary of boundary conditions

(37)

U 1 2 1+-----------=

G 1 1+ 1–-----------=

Z 1 2 1– 1+ 2

----------------------=

Astrophysical Gas Dynamics: Bubbles 28/53

Page 29: The Sedov Solution - ANU

5 First integral via energy equation

5.1Conservation laws for a moving surface

When considering conservation laws earlier, we took the surface

enclosing a given volume to be stationary. Let us now considerthe case when the enclosing surface is moving. We consider the

S

V

ni UiVi

Astrophysical Gas Dynamics: Bubbles 29/53

Page 30: The Sedov Solution - ANU

generic conservation law:

(38)

corresponding to conservation of a density f with correspondingflux density .

tf Fi

xi--------+ 0=

t---- fd3x

V FinidS

S+ 0=

Fi

Astrophysical Gas Dynamics: Bubbles 30/53

Page 31: The Sedov Solution - ANU

When the surface S is moving with velocity it “sweeps up” f

and the corresponding flux into S is . Hence the corre-

sponding conservation law is:

(39)

5.2 Application to the Sedov solution

In our development of the Sedov solution we have the movingsurfaces .

Ui

fUini

t---- fd3x

V FinidS

S+ fUini Sd

S=

t---- fd3x

V Fi fUi– nidS

S+ 0=

constant=

Astrophysical Gas Dynamics: Bubbles 31/53

Page 32: The Sedov Solution - ANU

Energy within :

(40)

1 2 3

E0------ 1 5/–

rt 2 5/–=

1=Shock

constant=

E 4 12---V2

---+

r2dr0

r

=

Astrophysical Gas Dynamics: Bubbles 32/53

Page 33: The Sedov Solution - ANU

Now

(41)

(42)

---

1 1–-----------

P---

1 1– -------------------

P

------1

1– -------------------

P

------1

1– -------------------cs

2= = = =

E 4 12---V2

cs2

1– -------------------+

r2dr0

r

=

Astrophysical Gas Dynamics: Bubbles 33/53

Page 34: The Sedov Solution - ANU

We have

(43)

r 1– E0------ 1 5/

t2 5/=

dr 1– E0------ 1 5/

t2 5/ d=

v2 r t 425------

r2

t2-----U2 =

cs2 4

25------

r2

t2-----Z =

Astrophysical Gas Dynamics: Bubbles 34/53

Page 35: The Sedov Solution - ANU

Therefore the energy becomes:

(44)

The terms explicitly involving r and t combine to give:

(45)

so that the energy is

(46)

E 4 0G 12---

425------

r2

t2-----U2 1

1– -------------------

425------

r2

t2-----Z +

0

=

3– E0------ 3 5/

t6 5/ 2d

r2t 4 5/– 2– 2 E0------ 2 5/

=

E 1625

---------= 5– E 4G 12---U2 1

1– -------------------Z + d

0

Astrophysical Gas Dynamics: Bubbles 35/53
Page 36: The Sedov Solution - ANU

One important aspect of this result is that is independent ofthe time t. We shall use this result shortly. The other importantresult is that it gives the way of calculating . The energy within

must be equal to the total energy of the blast, so that and

(47)

The parameter can be calculated from this once expressionsare obtained for and .

E

1=E 1 E=

5 1625

--------- 4G 12---U2 1

1– -------------------Z + d

0

1

=

U Z

Astrophysical Gas Dynamics: Bubbles 36/53

Page 37: The Sedov Solution - ANU

5.3 First integral

The conservation of energy applied to the time evolving volumeenclosed by is

(48)

constant=

t---- 1

2---V2+

d3x0

r

V12---V2 h+ 1

2---V2+

dr dt

-------------– r2d+ 0=

Astrophysical Gas Dynamics: Bubbles 37/53

Page 38: The Sedov Solution - ANU

Since the energy is independent of time, the surface integralmust be zero. The terms in the integrand are independent of an-gle and therefore the integrand itself must be zero. Thus,

(49)

v12---v2 h+ 1

2---v2+

dr dt

-------------=

25---

rt--U 1

2---v2 h+ 2

5---

rt-- 1

2---v2+=

U 12---v2

cs2

1–-----------+

---

12---v2+

cs2

1– -------------------

12---v2+= =

Astrophysical Gas Dynamics: Bubbles 38/53

Page 39: The Sedov Solution - ANU

Using the self-similar substitutions for v and gives

(50)

This is easily solved for Z to give:

(51)

This is the energy integral!

cs2

U 12---U2 1

1–-----------Z +

Z 1– -------------------

12---U2 +=

Z 1– 2

-------------------U2 1 U –

U 1– ------------------------------------------=

Astrophysical Gas Dynamics: Bubbles 39/53

Page 40: The Sedov Solution - ANU

One can see that this integral automatically satisfies the bound-ary conditions

(52)

(exercise).

U 1 2 1+-----------=

Z 1 2 1– 1+ 2

----------------------=

Astrophysical Gas Dynamics: Bubbles 40/53

Page 41: The Sedov Solution - ANU

6 Final solution

Since we have first integral of the equations, the number of in-dependent equations is now reduced from three to two. The eas-iest equation to drop out of the previous set of 3 is themomentum equation and the most convenient form of the equa-tions to derive the final solution is

(53)

1 U– –d Glnd ln-------------

dUd ln----------- 3U+ + 0 (Continuity)=

d Zlnd ln------------ 1– d Gln

d ln-------------–

2 U 5 2– U 1–

----------------------------+ 0 (Entropy)=

Z 1– 2

-------------------U2 1 U –

U 1– ------------------------------------------ (First integral)=

Astrophysical Gas Dynamics: Bubbles 41/53

Page 42: The Sedov Solution - ANU

Plan

• Eliminate from continuity and entropy equations giving

a differential equation connecting U and Z.• Use the first integral also connecting Z and U to solve for as a function of V.

Elimination of from continuity and entropy equations

gives

(54)

d Glnd ln-------------

d Glnd ln-------------

dUd ln-----------

1 U– 1–

------------------d Zlnd ln------------–

5 3 1– U– 1–

--------------------------------------– 0=

Astrophysical Gas Dynamics: Bubbles 42/53

Page 43: The Sedov Solution - ANU

Multiply this through by gives

(55)

Now we eliminate from this equation using the firstintegral which can be expressed as:

(56)

d lndU

-----------

11 U– 1–

------------------d ZlndU

------------–5 3 1– U–

1–--------------------------------------

d lndU

-----------– 0=

d Zln dU

Zln 1– 2

-------------------ln 1 U– ln 2 Uln U 1– ln–+ +=

d ZlndU

------------ 1–1 U–-------------

2U----

U 1–----------------–+=

Astrophysical Gas Dynamics: Bubbles 43/53

Page 44: The Sedov Solution - ANU

Substitution of this expression into the above yields, after somesimplification:

(57)

All that remains to do at this stage is to expand the factors andintegrate giving

(58)

d lndU

-----------

5 3 1– U–---------------------------------

2 1 U– U 5 3 1– U– ------------------------------------------–=

1 U– U 1– 5 3 1– U–

-----------------------------------------------------------+

5 ln132 7– 12+ 2 1+ 3 1–

---------------------------------------- 5 3 1– U– ln–=

2 Uln–5 1– 2 1+

------------------- U 1– ln constant+ +

Astrophysical Gas Dynamics: Bubbles 44/53

Page 45: The Sedov Solution - ANU

The constant is determined by the condition

(59)

The result is:

(60)

U 1 2 1+-----------=

5 1+2

-----------U2– 1+

7 –----------- 5 3 1– U–

1 1+ 1–----------- U 1–

2=

1132 7– 12+ 2 1+ 3 1–

----------------------------------------–=

25 1– 2 1+

-------------------=

Astrophysical Gas Dynamics: Bubbles 45/53

Page 46: The Sedov Solution - ANU

Solution for G

Using the continuity equation:

(61)

1 U– –d Glnd ln-------------

dUd ln----------- 3U+ + 0=

d GlndU

-------------1

1 U–-------------

3U1 U–-------------

d lndU

-----------+=

Astrophysical Gas Dynamics: Bubbles 46/53

Page 47: The Sedov Solution - ANU

We can express in terms of U using eqn. (57) and then in-

tegrate to obtain . The result is:

(62)

d lndU

-----------

G U

G 1+ 1–-----------

1+ 1–----------- U 1–

3 1+7 –----------- 5 3 1– U–

4=

1+ 1–----------- 1 U–

5

Astrophysical Gas Dynamics: Bubbles 47/53

Page 48: The Sedov Solution - ANU

where

(63)

33

2 1+---------------=

4

12 –-----------–

132 2– 12+3 1– 2 – 2 1+

--------------------------------------------------------= =

52

2 –-----------–=

Astrophysical Gas Dynamics: Bubbles 48/53

Page 49: The Sedov Solution - ANU

7 Determination of

Change the variable of integration of the integral for from to. Note that corresponds to

(64)

The last integral can be easily integrated numerically given all of

the previous expressions for , etc. (One point to note

is that the integral contains a removable singularity at )

U 0= U 1 =

5 1625

--------- 4G 12---U2 1

1– -------------------Z + d

0

1

=

1625

--------- 5G U 12---U2 1

1– -------------------Z U +

d lndU

-----------dU1

2 1+

=

5 U d lndU

-----------

U 1 =

Astrophysical Gas Dynamics: Bubbles 49/53

Page 50: The Sedov Solution - ANU

Typical results are

(65)

8 Application of Sedov solution to supernova remnants

Take relationship between

(66)

The locus of the outgoing blast wave is given by

1.4= 0.968=

53---= 0.868=

r

r E0------ 1 5/

t2 5/=

1=

Astrophysical Gas Dynamics: Bubbles 50/53

Page 51: The Sedov Solution - ANU

Knowing the radius of the blast wave and the time we can calcu-late the energy released by the supernova.

(67)

Take ISM number density

(68)

E 0

rBW

t2 5/-------------

5

=

05– rBW

5 t 2–=

n 1 cm 3– 106 m 3–

E nm 5– rBW5 t 2–

5.84210 J

n

106--------- rBW

pc------- 5 t

100 yrs ------------------- 2–

=

Astrophysical Gas Dynamics: Bubbles 51/53

Page 52: The Sedov Solution - ANU

e.g. Crab nebula

(69)

Velocity of expansion

(70)

rBW 3pc = t 1992 1054– 938 yrs= =

E 1.64310 J

drdt-----

25---

rt--=

Vsh 3900 km/sr

pc----- t

100 yrs------------------ 1–

=

1250 km/s for Crab=

Astrophysical Gas Dynamics: Bubbles 52/53

Page 53: The Sedov Solution - ANU

Velocity of shocked gas

For a strong shock . This

velocity is typical of the expansion velocity of the Crab nebulafilaments.

V1V2V1 V2– V 0=

V214---V1=

V1

V1 V2–34---V1 940 km/s for Crab= =

Astrophysical Gas Dynamics: Bubbles 53/53