the nanobender: a new x-ray mirror bender with nanometer ... · carles colldelram medsi2016...

23
Carles Colldelram MEDSI2016 Barcelona 16/09/2016 The Nanobender: a New X-Ray Mirror Bender with Nanometer Figure Correction Carles Colldelram 1 , Josep Nicolas 2 , Claude Ruget 1 Llibert Ribo 1 , Albert Tomàs 3 , Carlos Martín-Nuño 3 , David Úbeda 3 1. ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain 2. SLAC national accelerator laboratory, Menlo Park, United States 3. Sener Ingenieria y Sistemas, Cerdanyola del Vallès, Barcelona, Spain

Upload: others

Post on 12-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    The Nanobender: a New X-Ray Mirror Bender with Nanometer Figure

    CorrectionCarles Colldelram1, Josep Nicolas2, Claude Ruget1Llibert Ribo1, Albert Tomàs3, Carlos Martín-Nuño3,

    David Úbeda31. ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain

    2. SLAC national accelerator laboratory, Menlo Park, United States3. Sener Ingenieria y Sistemas, Cerdanyola del Vallès, Barcelona, Spain

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Summary 2

    Presentation Summaryo Precedents

    o New concepts

    o Bender design

    o Correctors design

    o Construction

    o Measurements & Results

    o Next Steps

    o Active Optics

    o Conclusions

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Precedents 3

    o Protein Crystallography Beam Lineo Vertical Focusing Mirror: Outsourced

    o Include a Gravity compensatorso We request to place more compensator

    to play with figure correction

    ALBA BL13 Beam Line

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Precedents 2010 4

    BL13 VFM Optimization

    o We corrected the slope error by means the gravity compensatorso Optimization of the compensators positiono Manual compensatorso This compensators are not thought for this function: not friendly

    adjustment

    This 300 mm long mirror was optimized from 0,242 µrad to 0,055 µradBy means two of the gravity compensators both pushing from below

    Mirror by InsyncBender by Irelec

    Before Correction: 0,242 µradAfter Correction: 0,055 µrad

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Precedents 2012 5

    BL13 VFM In-Situ measurement

    -150 -100 -50 0 50 100 150-2

    -1

    0

    1

    2

    3

    4

    Position (mm)

    Res

    idua

    l Pro

    file

    (nm

    )

    NOMIn situ

    In-Situ measurement after 2 years agrees with the laboratory optimization and measurement

    The simulation of the beam by means ray-tracing with the measured corrected mirror

    figure

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    New concepts 6

    Geometrical vs Force constrains

    Applied Forces

    Optical surface with slope error

    The hard way The soft way

    …By means of stable-force actuators”

    By means Rigid mechanics which introduce the required deformation vs

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Bender design

    Bender Mechanism:Encapsulated

    Correctors

    Lay-out

    Mirror

    PusherPuller

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Bender design

    Bender Mechanismo Based on compression springs

    o Convectional motion system for the compression

    Range

    o Force gauge measurement

    o Off-axis relieving Force transmission

    o Punctual contacts

    o Flexion at 25 mm from the support

    o Radius of curvature: 500 m

    o Forces up to 500 N

    o Force Resolution: 0,001 N

    o Focus independent of figure correction

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Bender design

    The correctorso 22 mm width

    o High resolution force correctors

    o Ultra low k springs

    o Forces up to 40 N, ±20 N.

    o Resolution up to 0,001 N

    o High stability:

    o Independent to the set curvature, no

    crosstalk

    o No parasitic torsions

    o UHV compatible (adaptive optics)

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Construction

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Measurements & results

    ALBA NOMo This is a 1,5 m long highly accurate scanning

    deflectometer by air bearings

    o Ironless linear motor

    o Optical set-upo Autocolimatoro Pentaprism

    Date07/13 07/14 07/15 07/16

    Tem

    pera

    ture

    [deg

    C]

    22.3

    22.305

    22.31

    22.315

    22.32

    22.325

    22.33

    22.335

    22.34

    22.345

    22.35

    The laboratory temperature is stabilized by means of a PID controlled post-heating system

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Measurements & results

    Mathematical deformation Modelo LINEAR model, allows superposition

    o Curvature of deformation is a piecewise linear function

    o Surface deformation is a piecewise cubic polynomial

    Euler – Bernoulli law

    For an induced deformation of >600 nmafter removing curvature, the model isaccuarate below 1 nm

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Measurements & results

    Bending performance

    Strain Gauge [N]-55 -50 -45 -40 -35

    E3-

    Err

    or [n

    rad

    RM

    S]

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40E3 vs Gauge

    Strain Gauge [N]-55 -50 -45 -40 -35

    E2-

    Err

    or [n

    rad

    RM

    S]

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100E2 vs Gauge

    Bending range 0-500 NBending resolution

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Measurements & results

    Correctors performance

    20 N is the force estimated to correct 0.5 μrad

    rms mirrors for errors with period down to 22 mm

    Resolution of 0.001N allows sub nanometer

    correction, as well as stability

    Measurement count5 10 15 20 25 30 35 40

    Forc

    e in

    crem

    ent [

    mN

    ]

    0

    1

    2

    3

    4

    5

    6

    Resolution: 250 steps

    Experiment count5 10 15 20

    Forc

    e D

    evia

    tion

    [mN

    ]

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2Contact repeatability at 3.23 N, σ=0.47 mN

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Measurements & results

    Correctors performance

    Repeatability on recovering a position between

    motions to random points

    Stability for 130h

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Measurements & results

    Mirror OptimizationInitial slope error: 0,87 µrad RMSCorrected slope error: 0,115 µrad RMS

    Position [mm]-200 -100 0 100 200

    Hei

    ght e

    rror [

    nm]

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    AchievedOptimalDifference

    Position [mm]-200 -100 0 100 200

    Hei

    ght e

    rror [

    nm]

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    Initial surface error: 23,2 nm RMS Corrected surface error: 0,858 nm RMS

    The mathematical model:

    • Optimizes the correctors position

    • Optimizes the corrector force (and its sense)

    The model predicts the deformation of the mirror with accuracy better than 0.08 nm RMS

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Next steps

    Corrector Improvements

    o Corrector Repeatability: Done

    o Remove the bender mechanics encapsulation

    o Compact the bender mechanism

    o Compact the correctors

    Repeatability Long Range

    Repeatability Short Range

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Next steps

    Corrector Improvementso -k magnet system for spring k compensation

    o Insensibility to magnet position in a ±1 mm

    Mirr. Position [mm]-3 -2 -1 0 1 2 3

    Forc

    e D

    evia

    tion

    [N]

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.162.92 N3.54 N4.09 N6.30 N10.95 N

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Next steps

    Corrector ImprovementsTo be implemented soon

    o Spring length reduction by means the force compensation system:o Test prototype done and measured.o -k spring with magnet.

    o Removal of the bearing friction on the spring articulation:o Test prototype doneo Zero-torque frictionless articulationo By means a flexure and magnet system

    See the poster :ID: 2029 - MOPE01 Stabilization Methods for Force Actuators and Flexures

    ES P201631142ES P201630506ES P201530735

    Three patens

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Next steps

    Active Optics

    o With such figure error accuracy and resolution it is possible to

    correct beam wavefront distortions

    o With a double spring the corrector can switch from pusher to

    puller just by moving along the range.

    o Change the Stepper motor for a UHV compatible one.

    o mount as many correctors as space allows.

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Conclusions

    o The proposed solution of a bender with figure correctors based in force

    constrains works at nanometer level

    o A mirror bender with correctors without crosstalk is achieved.

    o A very stable correctors have been design and implemented.

    o New –k compensated correctors have been designed and tested. They keep

    force constant within 1 mN in a range of motion of the mirror up to 2 mm.

    o New, frictionless, torque free articulation has been designed, and is being

    currently tested.

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    Acknowledgments

    Joan Casas

    Jose Ferrer

    Gabriel Peña

    Llibert Ribó

    Pablo Pedreira

  • Carles Colldelram MEDSI2016 Barcelona 16/09/2016

    23

    Thanks for your attention …

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /CreateJDFFile false /SyntheticBoldness 1.000000 /Description >>> setdistillerparams> setpagedevice