the mm5 prognostic meteorological model

44
The MM5 Prognostic Meteorological Model ine the physics of the domain properly the meteorology fields will be define perly.

Upload: amity

Post on 02-Feb-2016

82 views

Category:

Documents


0 download

DESCRIPTION

The MM5 Prognostic Meteorological Model. Define the physics of the domain properly and the meteorology fields will be defined properly. Current CCOS Episodes. July 09-13, 1999 July 31, -August 02, 2000. Meteorology Field Evaluations. Objective Approaches: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The MM5 Prognostic Meteorological Model

The MM5 PrognosticMeteorological Model

Define the physics of the domain properlyand the meteorology fields will be defined properly.

Page 2: The MM5 Prognostic Meteorological Model

Current CCOS Episodes

July 09-13, 1999

July 31, -August 02, 2000

Page 3: The MM5 Prognostic Meteorological Model

Meteorology Field Evaluations

Objective Approaches:-- statistical evaluation simulated and observed

meteorological parameter values-- statistical evaluation of observed and simulated

air quality parameter values

Subjective Approaches:-- spatial comparison-- conceptual review

Page 4: The MM5 Prognostic Meteorological Model

1

3

33i

sitesi

obs

i

obs

i

sim

OOOMNB

Air Quality Model Performance

Ozone Model : Ozone Concentration = 85 ppb

Mean Normalized Bias +/- 15 %

Page 5: The MM5 Prognostic Meteorological Model

Alternative Wind Fields

CALMET (objective/prognostic hybrid)

MM5 Prognostic without Obs. FDDA1/

MM5 Prognostic with Obs. FDDA1/

1/ numerious itternations

Page 6: The MM5 Prognostic Meteorological Model

Jul 31 Aug 01 Aug 02 UPkR NB UPkR NB UPKR NB ppb % ppb % ppb %---------------------------------------------------CMHb ModelSF Bay Area 0.97 +06 1.14 -04 1.16 -41Sacramento 1.35 +09 0.99 00 0.99 -10Southern SJV 1.10 -02 1.03 -10 0.88 -09

MM5_N1 Model (w/ FDDA)SF Bay Area 0.88 +01 1.05 -11 1.04 -37Sacramento 1.22 +02 1.00 -10 0.90 -18Southern SJV 0.95 -07 0.88 -17 0.73 -19

MM5_N2 Model (wo/ FDDA)SF Bay Area 0.98 +03 1.11 -23 1.16 -14Sacramento 1.32 +08 0.93 -18 0.96 -03Southern SJV 1.06 -03 1.03 -11 0.78 -19---------------------------------------------------

Ozone Model Performance (USEPA, 1991)* for the CCOS July/August, 2000 Episode Using CAMx/SAPRC99f

UPkR -- Unpaired Peak Ratio NB -- Paired Mean Normalized Bias

* simulations meeting USEPA model performance guidelines are highlightedCalifornia Air Resources Board/PTSD April, 2005

Page 7: The MM5 Prognostic Meteorological Model

“There are 3 kinds of lies:lies,damn lies,and statistics”

(attrib: Benjamin Disraeli)

Statistical Analysis

Page 8: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500 500

500

500

500

500500

500

500

10001000

1000

2000

2000

2000

3000

Observed surface winds for July 31, 2000 at 0200 PDT. Windvectors are shown as 1-hour wind run.

Page 9: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500 500

500

500

500

500500

500

500

10001000

1000

2000

2000

2000

3000

Observed surface winds for August 01, 2000 at 0200 PDT. Windvectors are shown as 1-hour wind run.

Page 10: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500 500

500

500

500

500500

500

500

10001000

1000

2000

2000

2000

3000

Observed surface winds for August 02, 2000 at 0200 PDT. Windvectors are shown as 1-hour wind run.

Page 11: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500 500

500

500

500

500500

500

500

10001000

1000

2000

2000

2000

3000

Simulated surface winds for August 02, 2000 at 0200 PDT using the MM5 model without observational FDDA (MM5_N2)

Page 12: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500 500

500

500

500

500500

500

500

10001000

1000

2000

2000

2000

3000

Simulated surface winds for August 02, 2000 at 0200 PDT using the MM5 model with observational FDDA (MM5_N1)

Page 13: The MM5 Prognostic Meteorological Model

USEPA. 2005. “Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hour OzoneNAAQS” Draft Final. USEPA. February, 2005.

“…if used improperly, FDDA can significantly degrade overallmodel performance and introduce computational artifacts.Inappropriately strong nudging coefficients can distort the magnitude of the physical terms in the underlying … equationsand result in ‘patchwork’ meteorological fields with stronggradients between near-site grid cells and the remainder of thegrid.”

Guidance on Use of Data Assimilation

Page 14: The MM5 Prognostic Meteorological Model

1500

1500

1500 1500

1500

1500

1500

1500

1500

1500

1500

15001500

1500

1500

1500

1500

1500

2000

2000 2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000 2000

2000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

Simulated Mixing Heights (m) for August 01, 2000 at 1700 PDTusing the MM5 model without FDDA (MM5_N2)

Page 15: The MM5 Prognostic Meteorological Model

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

15001500

1500

1500

1500

1500

1500 1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000 2000

2000

2000

2000

2000

2000

20002000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

3000

3000

3000

3000

3000

3000

3000

3000

3000

30003000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

Simulated Mixing Heights (m) for August 01, 2000 at 1700 PDT using the MM5 model with observational FDDA (MM5_N1)

Page 16: The MM5 Prognostic Meteorological Model

1500

1500

1500

15001500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

20002000

2000

2000

2000

2000

2000

2000

2000

2000

2000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

Simulated Mixing Heights (m) for August 02, 2000 at 1700 PDT using the MM5 model with observational FDDA (MM5_N1)

Page 17: The MM5 Prognostic Meteorological Model

1500

1500

1500

1500

1500 15

00

1500

1500

1500

1500

1500

1500

15001500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000 20

00

2000

2000

2000

2000

2000

2000

20002000

20002000

2000

2000

2000

2000

2000

2000

2000

2000

20002000

2000

2000

2000

3000

3000

3000

3000

Simulated Mixing Heights (m) for July 11, 1999 at 1700 PDT using the MM5 model with observational FDDA (MM5_N1)

Page 18: The MM5 Prognostic Meteorological Model

1500

1500

1500

1500

1500

1500

1500

1500

1500 1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

20002000

2000

2000

2000

2000

2000

3000

3000

3000

30003000

Simulated Mixing Heights (m) for July 12, 1999 at 1700 PDT using the MM5 model with observational FDDA (F02)

Page 19: The MM5 Prognostic Meteorological Model

ABL Height Comparisons

(Colored contours are TKE, and dots indicate the observed ABL height)

Page 20: The MM5 Prognostic Meteorological Model

Simulated 500-m winds for August 01, 2000 at 0600 PDT using the MM5 model with without FDDA (MM5_N2)

Page 21: The MM5 Prognostic Meteorological Model

Simulated 500-m winds for August 01, 2000 at 0600 PDT using the MM5 model with observational FDDA (MM5_N1)

Page 22: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

500500

500

1000

1000

1000

2000

2000

2000

2000

2000

Simulated surface winds for August 01, 2000 at 1400 PDT using the MM5 model with without FDDA (MM5_N2)

Page 23: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

500500

500

1000

1000

1000

2000

2000

2000

2000

2000

Simulated surface winds for August 01, 2000 at 1400 PDT using the MM5 model with observational FDDA (MM5_N1)

Page 24: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

Simulated surface winds for July 31, 2000 at 1700 PDT using the MM5 model with without FDDA (MM5_N2)

Page 25: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

Simulated surface winds for July 31, 2000 at 1700 PDT using the MM5 model with observational FDDA (MM5_N1)

Page 26: The MM5 Prognostic Meteorological Model

CAMx/MM5 (w/FDDA)/SAPRC99 July 31, 2000

Page 27: The MM5 Prognostic Meteorological Model

Simulated Surface winds for and ozone concentrations for July 31, at 1300 PDTusing the MM5 model with observational FDDA (B01) and CAMx/SAPRC99

Page 28: The MM5 Prognostic Meteorological Model

Simulated Surface winds for and ozone concentrations for July 31, at 1400 PDTusing the MM5 model with observational FDDA (B01) and CAMx/SAPRC99

Page 29: The MM5 Prognostic Meteorological Model

Simulated Surface winds for and ozone concentrations for July 31, at 1500 PDTusing the MM5 model with observational FDDA (B01) and CAMx/SAPRC99

Page 30: The MM5 Prognostic Meteorological Model

Simulated Surface winds for and ozone concentrations for July 31, at 1600 PDTusing the MM5 model with observational FDDA (B01) and CAMx/SAPRC99

Page 31: The MM5 Prognostic Meteorological Model

Simulated Surface winds for and ozone concentrations for July 31, at 1700 PDTusing the MM5 model with observational FDDA (B01) and CAMx/SAPRC99

Page 32: The MM5 Prognostic Meteorological Model

July, 1990 Episode

Page 33: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

1000

2000

Simulated surface winds for July 9, 1999 at 1100 PDT using the MM5 model with observational FDDA (F02)

Page 34: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

1000

2000

Simulated surface winds for July 10, 1999 at 1100 PDT using the MM5 model with observational FDDA (F02)

Page 35: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

1000

2000

Simulated surface winds for July 11, 1999 at 1100 PDT using the MM5 model with observational FDDA (F02)

Page 36: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

1000

2000

Simulated 500-m winds for July 10, 1999 at 1100 PDT using the MM5 model with observational FDDA (F02)

Page 37: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

1000

2000

Simulated 500-m winds for July 11, 1999 at 1100 PDT using the MM5 model with observational FDDA (F02)

Page 38: The MM5 Prognostic Meteorological Model

500

500

500

500

500

500

500

1000

1000

2000

Simulated 500-m winds for July 12, 1999 at 1100 PDT using the MM5 model with observational FDDA (F02)

Page 39: The MM5 Prognostic Meteorological Model

Jul 10 Jul 11 Jul 12 Jul 13 UPkR NB UPkR NB UPKR NB UPKR NB -na- % -na- % -na- % -na- %--------------------------------------------------------------

CMHb ModelSF Bay Area 1.11 +07 1.09 -10 0.92 -08 1.19 -24Sacramento 1.04 -03 1.07 -12 1.20 -04 1.08 -07Central SJV 1.09 -14 0.91 -10 1.05 +01 1.03 +09Southern SJV 0.92 -17 0.88 -25 1.39 -02 1.29 +10

F02 Model (w/ FDDA)SF Bay Area 0.91 -14 1.04 -07 0.99 -02 -- --Sacramento 0.74 -25 0.93 -18 1.13 -09 -- --Central SJV 0.81 -20 0.78 -26 0.85 -21 -- --Southern SJV 0.72 -33 0.78 -29 1.28 -13 -- --

--------------------------------------------------------------

Ozone Model Performance (USEPA, 1991)* for the CCOS July, 1999 Episode Using CAMx/SAPRC99f

UPkR -- Unpaired Peak Ratio NB -- Paired Mean Normalized Bias

* simulations meeting USEPA model performance guidelines are highlightedCalifornia Air Resources Board/PTSD April, 2005

Page 40: The MM5 Prognostic Meteorological Model

Hypothesis

Meteorological fields generated using MM5 will tend to be more diffusive with lower pollutant concentrations spread over largerareas.

Page 41: The MM5 Prognostic Meteorological Model

Inert Tracer Analysis

Arbitrary Grid Cell in the Delta: ~ Pittsburg ~ San Francisco

Daily Inert Surface-Level Emissions: 0600-0800 PDT

Concentration Intervals: ~ * 3.1

Color Tags: CAMx/MM5 CAMx/CALMET

Page 42: The MM5 Prognostic Meteorological Model

Concluding Remarks

Aside from the uncertainties inherent in the MM5 Prognostic model, the use of observational FDDA distorts the simulated wind fields leading to inconsistent flow patterns, incoherent mixing heights, and increased mass divergence,. These effects may misrepresent ozone formation in complex modeling domains, and overestimate the dilution of air pollutants transported over any significant distance.

Page 43: The MM5 Prognostic Meteorological Model

Concluding Remarks (cont.)

Using almost any standard of objective or subjective comparison, based on either meteorological or air quality simulation results, the meteorological fields generated using the MM5 prognostic model are not as satisfactory those generated using the CALMET hybrid model.

Page 44: The MM5 Prognostic Meteorological Model

Concluding Remarks (cont.)

The successful application of the MM5 model for the generation of meteorological inputs required for air quality modeling in California will not happen until a number of deficiencies are addressed. Among them:

-- the model is too sensitive to changes in terrain elevation. -- relatively large air temperature errors suggest poor representation of the surface energy balance. -- observational FDDA can not be relied upon to improve wind field performance in a fine-scale domain with complex topography