the influence of pleat geometry on the pressure drop in deep-pleated cassette filters

7
abstract translations A s a serv i ce to r e ade r s w ho understand G e r ma n, Fr ench or Spanis h be tt er than E ngli sh, the ab str ac ts for t he R e se arch arti cle in this i ssue follow in the se lan guage s. The Influence of Pleat Geometry on the Pressure Drop in Deep-pleated Cassette Filters Dr.-lng. Thomas Caesar Drdng. Thomas Schroth Der Einfluss von Faltengeometrie auf den Druckabfall bei Kassettenfiltern mit Tieffalten Dr.-lng. Thomas Caesar 6 DipI.-lng. Thomas Schroth Im Bereich der Luftfiltration stellt der Druckabfall eines Filters bei einer definierten Abfangleistung einen wichtigen Parameter dar. In dem vorliegenden Referat werden die Veranderlichen erortert, die sich auf den Druckabfall bei Luftfiltern mit Tieffaltenmedien auswirken. Bei kassettenartigen Feinfiltern gem& EN 779 oder bei HEPAiULPA Filtern gem aR EN 1822 sind die am weitesten verbreiteten Medien papierahnliche Stoffe einer Starke von weniger als 1 mm, die dem durchfliefienden Luftstrom ziemlich hohen Widerstand entgegensetzen. Hersteller sind daher bemuht, ein HochstmaR an Filtermediumfldche in einem moglichst kleinen Rau m unterzubringen. Urn sicherzustellen, dass die bei Zuluft-, Abluft- und Umluftfiltration ublichen Druckabfalle gewahrleistet sind, ist das Filtermedium daher in schmalen, tiefen Falten ausgelegt. Insbesondere bei der Handha bung groi3er Luftmengen pro Filterelement ist es vorteilhaft, das Filtermedium in Tiefen von 1.50 mm bis 280 mm zu falten. Die art der Filtertechnik und die sich daraus ableitende Faltengeometrie uben einen entscheidenden Einfluss auf den jeweiligen Druckabfall aus. (5 sn., 8 figs., 0 tabs., 7 refs.) Influence de la giomitrie du plissage sur la perte de charge des fil tres-cassettes profonds Or-lng, Thomas Caesar et DipI.-lng. Thomas Schroth 8 plis Dans les applications de filtration d’air, la perte de charge pour une efficacite don&e de separation constitue un important parametre du filtre. Cet article traite des variables influengant la perte de charge dans les filtres a air dont le media filtrant est a plis profonds. Pour les filtres-cassettes fins (suivant EN 779)) ou pour l es filtres HEPAPAIULPA (suivant EN 1822), les media filtrants les plus couramment utilises sont les mattriaux semblables au papier avec une epaisseur de moins dun mm offrant une resistance relativement importante a l’air qui les traverse. Les fabricants s’efforcent de loger un maximum de surface filtrante dans u n espace minimum. Afin de permettre des pertes de charge convenables dans les filtrations avec aspiration, refoulement ou recirculation, le media filtrant est par consequent dispose en plis etroits et profonds. En particulier, lorsque les debits d’air par element filtrant sont elevts i l est avantageux de plisser le media avec des profondeurs de 150 a 280 mm. La technique de conversion et la geometric du plissage exercent une influence cruciale sur la perte de charge. (5 pags., 8 figs., 0 tabs., 7 refs.) La lnfluencia de la Geometria Ondulada sobre la Caida de la Presion en Filtros de Cassette de Profunda Ondulaciun Dr.-lng. Thomas Caesar y Dipl.-lng. Thom as Schroth En aplicaciones de filtration de aire, la caida de la presion de un filtro a una eficacia de captacion definida es un parametro importante. Esta ponencia discute las variables que influencian la caida de la presion en filtros de aire con medios de filtration de profunda ondulacion. Para 10 s filtros finos de1 tipo cassette, de acuerdo con EN 779, o para filtras HEPAIULPA, de acuerdo con EN 1822,los medios mas comunmente usados son 10s materiales de1 tipo papel con un espesor de menos de 1 mm, que ofrecen una relativamente alta resistencia al aire que fluye a traves de 10s mismos. Los fabricantes, por lo tanto, procuran facilitar un maxim0 de area de1 medio de filtration en un pequeno espacio. Para permitir la seguridad de la caida de presion normal en la filracion de1 aire de entrada, de exhaustacion y recirculada, el medio de filtracibn se dispone, por lo tanto, en ondulaciones estrechas y profundas. Especialmente cuando se esta tratando con grandes cantidades de aire por element0 de filtration, es ventajoso ondular el medio de filracion en profundidades de 150 mm a 280 mm. La tecnica de conversion y la geometria ondulada resultante ejercen una influencia crucial sobre la caida de presion en cuestion. (5 pigs., 8 figs., 0 tabs., 7 refs.) 48 November 2002 www.filtsep.com

Upload: jorge-cuadros-blas

Post on 16-Oct-2015

43 views

Category:

Documents


1 download

TRANSCRIPT

  • abstract translations

    As a service to readers who understand German, French or Spanish better than English, the abstracts for the Research article in this issue follow in these languages.

    The Influence of Pleat Geometry on the Pressure Drop in Deep-pleated Cassette

    Filters Dr.-lng. Thomas Caesar & Drdng. Thomas Schroth

    Der Einfluss von Faltengeometrie auf den Druckabfall bei Kassettenfiltern mit Tieffalten Dr.-lng. Thomas Caesar 6 DipI.-lng. Thomas Schroth

    Im Bereich der Luftfiltration stellt der Druckabfall eines Filters bei einer definierten Abfangleistung einen wichtigen

    Parameter dar. In dem vorliegenden Referat werden die Veranderlichen erortert, die sich auf den Druckabfall bei Luftfiltern

    mit Tieffaltenmedien auswirken. Bei kassettenartigen Feinfiltern gem& EN 779 oder bei HEPAiULPA Filtern gemaR

    EN 1822 sind die am weitesten verbreiteten Medien papierahnliche Stoffe einer Starke von weniger als 1 mm, die dem

    durchfliefienden Luftstrom ziemlich hohen Widerstand entgegensetzen. Hersteller sind daher bemuht, ein HochstmaR an

    Filtermediumfldche in einem moglichst kleinen Raum unterzubringen. Urn sicherzustellen, dass die bei Zuluft-, Abluft- und

    Umluftfiltration ublichen Druckabfalle gewahrleistet sind, ist das Filtermedium daher in schmalen, tiefen Falten ausgelegt.

    Insbesondere bei der Handhabung groi3er Luftmengen pro Filterelement ist es vorteilhaft, das Filtermedium in Tiefen von

    1.50 mm bis 280 mm zu falten. Die art der Filtertechnik und die sich daraus ableitende Faltengeometrie uben einen

    entscheidenden Einfluss auf den jeweiligen Druckabfall aus.

    (5 sn., 8 figs., 0 tabs., 7 refs.)

    Influence de la giomitrie du plissage sur la perte de charge des filtres-cassettes profonds Or-lng, Thomas Caesar et DipI.-lng. Thomas Schroth

    8 plis

    Dans les applications de filtration dair, la perte de charge pour une efficacite don&e de separation constitue un important

    parametre du filtre. Cet article traite des variables influengant la perte de charge dans les filtres a air dont le media filtrant

    est a plis profonds. Pour les filtres-cassettes fins (suivant EN 779)) ou pour les filtres HEPAPAIULPA (suivant EN 1822), les

    media filtrants les plus couramment utilises sont les mattriaux semblables au papier avec une epaisseur de moins dun mm

    offrant une resistance relativement importante a lair qui les traverse. Les fabricants sefforcent de loger un maximum de

    surface filtrante dans un espace minimum. Afin de permettre des pertes de charge convenables dans les filtrations avec

    aspiration, refoulement ou recirculation, le media filtrant est par consequent dispose en plis etroits et profonds. En

    particulier, lorsque les debits dair par element filtrant sont elevts il est avantageux de plisser le media avec des profondeurs

    de 150 a 280 mm. La technique de conversion et la geometric du plissage exercent une influence cruciale sur la perte de

    charge.

    (5 pags., 8 figs., 0 tabs., 7 refs.)

    La lnfluencia de la Geometria Ondulada sobre la Caida de la Presion en Filtros de Cassette de Profunda Ondulaciun Dr.-lng. Thomas Caesar y Dipl.-lng. Thomas Schroth

    En aplicaciones de filtration de aire, la caida de la presion de un filtro a una eficacia de captacion definida es un parametro

    importante. Esta ponencia discute las variables que influencian la caida de la presion en filtros de aire con medios de

    filtration de profunda ondulacion. Para 10s filtros finos de1 tipo cassette, de acuerdo con EN 779, o para filtras

    HEPAIULPA, de acuerdo con EN 1822,los medios mas comunmente usados son 10s materiales de1 tipo papel con un

    espesor de menos de 1 mm, que ofrecen una relativamente alta resistencia al aire que fluye a traves de 10s mismos. Los

    fabricantes, por lo tanto, procuran facilitar un maxim0 de area de1 medio de filtration en un pequeno espacio. Para

    permitir la seguridad de la caida de presion normal en la filracion de1 aire de entrada, de exhaustacion y recirculada, el

    medio de filtracibn se dispone, por lo tanto, en ondulaciones estrechas y profundas. Especialmente cuando se esta tratando

    con grandes cantidades de aire por element0 de filtration, es ventajoso ondular el medio de filracion en profundidades de

    150 mm a 280 mm. La tecnica de conversion y la geometria ondulada resultante ejercen una influencia crucial sobre la

    caida de presion en cuestion.

    (5 pigs., 8 figs., 0 tabs., 7 refs.)

    48 November 2002 www.filtsep.com

  • article

    In air filtering applications, a filters pressure drop at a defined collection efficiency constitutes an

    important parameter. This paper discusses the variables influencing the pressure drop in air filters

    featuring deep-pleated filter media. For cassette-type fine filters in accordance with EN 779

    or for HEPA/ULPA filters in accordance with EN 1822, the most commonly used media are

    paper-like materials with a thickness of less than 1 mm, which offer a relatively high resistance to the

    air flowing through them. manufacturers accordingly endeavour to accommodate a max;mum of filter

    medium area in a small space. To enable the pressure drops customary in intake, exhaust

    and re-circulated air filtration to be assured, the filter medium is therefore arranged in narrow,

    deep pleats. Particularly when large quantities of air are being handled per filter element, it is

    advantageous to pleat the filter medium in depths of 150 mm to 280 mm. The conversion technique

    and the resultant pleat geometry exert a crucial influence on the pressure drop concerned,

    Dr.-lng. Thomas Caesar & DipA-lng. ~bo~as ~c~rotb Freudenberg Vliesstoffe KG, D-69465 Weinheim, Germany.

    Tel: +49 6202 806264; Fax: +49 6202 886299.

    Corresponding author (E-mail: [email protected])

    ; . he fundamentals for calculating the pressure drop when a gas flows through a zig-zag shaped pleated filter medium

    are derived below. It is here assumed that the filter

    mediums rigidity is sufficiently high, i.e. that the air flow does

    not affect the specified pleat geometry, and therefore that the

    pleats can be regarded as completely rigid. This applies in good

    approximation, particularly for paper-like media at the face

    velocities customarily employed for air filters in indoor climate

    control systems.

    Figure 1 shows a V-shaped pleat geometry in diagrammatic

    form. The air flows out of the surroundings onro the pleat

    system at the velocity W,, and enters the pleat at z = 0, causing

    the air to accelerate because the flow cross-sectional area

    narrows at a ratio of b(z = 0) i F,. Inside the pleat, the air flows

    in z-direction at a velocity w(z), passes through the filter medium

    at a point z at the velocity v,(z~, and exits again from the pleat

    system at z = F,. The flow velocity decreases here, due to the

    widening of the cross-sectional area in the ratio F,/b(z = 0).

    Three components can be differentiated for the total pressure

    drop of such a deep-pleated filter element: l pressure difference Ap, inside the pleat due to friction losses

    and dynamic pressure gain; l pressure drop due to contraction ApE and expansion Ap,

    when entering and leaving the pleat system; and . pressure drop ApM while flowing through the filter medium.

    For these three components approxil~ation equations are

    derived below, which can be solved (analytically or numerically)

    to calculate the total pressure drop.

    Due to the flow conditions inside a pleat and the resultant

    friction losses and dynamic pressure gain, there is a pressure

    difference between the pleat entry and the point at which the air

    flows through the filter medium. If we assume a stationary flow

    field inside the pleat, the pressure difference in the main

    direction of flow can be described by the Navier-Stokes equation

    below:

    where u, v and w are the velocity components in the x, y and z

    b :Free -prt h d directions, p the air density and 1-1 the viscosity. Equation 1 is a

    &:DkOMQd+?W *)-_.__ ._ ,_~. ..__._- __.) Fr.pfestdepm I

    three-dimensional partial second-order differential equation, not

    amenable to Drecise analvtical solution. For the geometrv under Figure 1: Pleat geometry and specification of d . , 1

    Y lscusslon, however, it is possible to find a one-dimensional

    coordinate system. differential equation for the pressure difference using appropriate

    Filtration+Separation November 2002 49

  • ; : . . -::article

    0

    3 4 5 6 7 8 9 10

    Pleatdi&anceinmm

    Figure 2: V-shaped pleat geometry: dependence of the total pressure drop and the components entailed by the medium and the pleat geometry on the pleat

    distance (F,) for a filter medium with $, = 9350 m/s (pleat depth = 290 mm).

    approximations and simplifications. It is amenable to numerical

    solution through a suitable computer programme on normal

    PCs, with a comparatively small amount of calculation work.

    The following simplifying assumptions can be made:

    a) In the x and y directions, the pressure p is almost constant.

    We thus obtain:

    dp, 3~ -=F dz &

    b) The Navier-Stokes equation (Equation 1) is considered only

    along the axis of symmetry (y = 0), where u = v = 0

    c) The velocity profile of w(z, y, x) can be approximated with

    sufficient accuracy in the x and y directions by a parabolic area.

    We thus obtain:

    P $+ =-12.pLw(z)lbZ(z) i I JY

    where W(z) is the flow velocity in z direction averaged in x and y

    directions.

    Using these three assumptions, the Navier-Stokes equation

    (Equation 1) reduces to:

    dp,_ dz

    __2,2517.wdM/-12~wlb2+1,5~dZ (2) dz dz2

    Together with the continuity equation, from whose

    numerical solution we obtain the mean velocities W(Z) as

    discrete values along a calculation lattice, Equation 2

    can be solved numerically

    When the air enters and leaves the filter, a pressure drop

    is generated by the alterations in cross-sectional area as

    the air flows into the pleat and flows out of the pleat.

    With W_ as the face velocity, and the air density p, these

    contraction and expansion pressure drops can be

    calculated using:

    Ap, =fp.k,(K_-Z(z=O))*

    b :MldmMOlp0n

    Figure 3: Diagrammatic representation of a rectangular pleat geometry with separators

    as spacers. The fundamentals of the calculation described in the

    section above have been converted into a computer

    50 November 2002 www.filtsep.com

    Using

    F ii;(z=O)=W,.A

    b(z = 0)

    it follows that:

    APE.4 =ApPE+ApPA=+&+kA) (3)

    where the constants k, and k, will depend on the sharpness of

    the entry and exit edges.

    For filter media customarily used in ventilation and air-

    conditioning systems, and the operating conditions

    predominantly encountered, the validity of Darcys Law

    can be stipulated. Thus, the pressure drop while flowing through

    the filter medium is proportional to the flow velocity vM:

    APP, =~P&,.v~z) (4)

    where

  • article

    programme, which was used to calculate the results

    presented here. The influence of V-shaped and

    rectangular pleat geometries on the pressure drop in

    deep-pleated filters, plus the influence of different pleat

    depths and pleat distances, are discussed below. A

    distinction is drawn here between two components of

    the pressure drop: the pressure drop ApM caused by the

    filter medium and the pressure drop attributable to flow

    through the pleat structure Apt-,,. The pressure drop

    caused by the filter medium has been calculated using

    Equation 4 approximated with the mean flow velocity _ vhf, which follows from the assumption that the volume

    flow is distributed evenly over the entire filter area. Thus,

    the media pressure drop depends only on the face

    velocity, the filter area and the material constant 5,. The

    geometrical component is obtained from the difference

    between the total pressure drop calculated using the

    above-mentioned computer programme and the media

    pressure drop: ApGCO = ApTot - Ap,.

    $ 500 0 400 ij g 300

    @

    t! 200

    100

    Qf 6? d R? p i$ I 3 !:i i> 3 * A- i*$ $_~y&rqp~~ ,

  • 52

    80%

    60%

    3 4 5 6 7 8 9 10

    Pleat distance in mm

    Figure 6: Component of the pressure drop caused by the pleat geometry in % (relative geometrical

    component) as a function of the pleat distance (Fe] for V-shaped pleats, with different pleat depths

    (100 mm, 200 mm and 260 mm) at a face velocity of 1 m/s. And for a 260 mm pleat depth at a face velocity of 2.9 m/s and 10 m/s for a filter medium

    with

  • 80%

    60%

    20%

    0%

    3 4 5 6 7 8 9 10

    Pleat distance in mm

    Figure 8: Proportion of pressure drop caused by the pleat geometry in % (relative geometrical component) as a function of the pleat distance (Fe) for V-shaped

    pleats with a pleat depth of 280 mm. Two filter media with different air permeability at a face

    velocity of 2.8 m/s.

    exhibits a significantly weaker dependence on the air-

    permeability of the medium concerned. Accordingly, the

    percentage of the total pressure drop attributable to the

    geometry increases with diminishing $. In the example shown in

    Figure 8, the proportion of the total pressure drop attributable to

    the pleat geometry is 22 % for 6, = 9350 m/s for a pleat distance

    of 6 mm. Media with this air-permeability are mostly used in the

    field of HEPA filtration, with Classes HlO to H14 in accordance

    with EN 1822. For media with $, = 935 m/s, a typical value for a

    filter medium in the field of fine filtration with Classes FS to F9

    in accordance with EN 779 - the geometrical component is 76%

    for a pleat distance of 6 mm.

    The results discussed show that the pleat geometry, and thus

    the conversion technique used for deep-pleated cassette filters,

    exerts a significant influence on the pressure drop of the filter

    elements concerned. In the case of deep pleats in filter media of

    high air-permeability, the pleat geometry is a particularly

    dominant influence on the filter elements pressure drop. The

    V-shape created when using the patented thermal embossing

    process, for example, is to be regarded as the optimum pleat

    geometry. Every deviation from this ideal geometry leads to an

    increase in the pressure drop overall. With the separator and

    mini-pleat designs, a V-shaped pleat geometry is impossible to

    implement in any satisfactory form. But even production-

    entailed deviations from the ideal pleat geometry, such as a

    curvature of the pleats in the main direction of flow, will have a

    seriously adverse effect on the pressure drop.

    An air filters pressure drop at a defined collection efficiency

    constitutes an important parameter. The basis for calculating the

    pressure drop in a deep-pleated cassette filter is the Navier-

    Stokes equation for stationary flows. Using appropriate

    assumptions, a one-dimensional differential equation system can

    be found, amenable to numerical solution with comparatively

    little computation work. The results it supplies show that the

    pleat geometry exerts a crucial influence on the pressure drop of

    the entire filter, particularly when large pleat depths and small

    pleat distances are involved. The V-shaped pleat geometry, as can

    be achieved, for example, using the patented thermal embossing

    process, can be regarded as ideal. Deviations from this ideal

    pleat geometry have a seriously adverse (i.e. increasing) effect on

    the pressure drop. In the case of fine filters with large pleat

    depths, particularly, the pleat geometry is the dominant factor in

    the pressure drop. The choice of conversion technique for

    producing the pleat structure is thus more important for these

    filters than the air-permeability of the medium employed. If an

    unsuitable conversion technique is chosen, no significant

    reduction in the filters pressure drop can be achieved even if the

    filter medium itself is optimized. l

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    EN 779: Particulate air filters for general ventilation. 1994.

    Beuth Verlag GmbH, Berlin, Germany,

    EN 1822: High efficiency particulate air filters (HEPA and

    ULPA). 199812001. Part l-5, Beuth Verlag GmbH, Berlin,

    Germany.

    Forster B. 1999. Ein neues Zellenmodell zur Bestimmung

    von Abscheidegrad und Druckverlust der in der

    Klimatechnik verwendeten Filtermedien. Dissertation

    Universitiit GHS Essen, Germany

    Loffler F. 1988. Staubabscheiden. Georg Thieme Verlag,

    Stuttgart, Germany

    Nietzold I. 1979. Luftfiltration. Reihe Luft- und

    Kaltetechnik, VEB Verlag, Berlin, Germany.

    Schroth T. 1996. New HEPAiULPA Filters for Clean-Room

    Technology Filtration+Separation, 33 (3),

    p.245-250.

    Zierep J. 1997. Grundziige der Stromungslehre. Springer

    Verlag, Berlin, Germany.

    54 November 2002 www.filtsep.com