the group of units of centralizer near-rings

29
This article was downloaded by: [McGill University Library] On: 21 November 2014, At: 04:17 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Algebra Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lagb20 The group of units of centralizer near-rings J.R. Clay a , C.J. Maxson b & J.D.P. Meldrum c a Dept. of Mathematics , University of Arizona , Tucson, Arizona, 85721, U.S.A b Dept. of Mathematics , Texas A. & M. Univ , College Station, Texas, 77843, U.S.A c Dept, of Mathematics , King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland Published online: 27 Jun 2007. To cite this article: J.R. Clay , C.J. Maxson & J.D.P. Meldrum (1984) The group of units of centralizer near-rings, Communications in Algebra, 12:21, 2591-2618, DOI: 10.1080/00927878408823122 To link to this article: http://dx.doi.org/10.1080/00927878408823122 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions

Upload: jdp

Post on 27-Mar-2017

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The group of units of centralizer near-rings

This article was downloaded by: [McGill University Library]On: 21 November 2014, At: 04:17Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

Communications in AlgebraPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/lagb20

The group of units of centralizer near-ringsJ.R. Clay a , C.J. Maxson b & J.D.P. Meldrum ca Dept. of Mathematics , University of Arizona , Tucson, Arizona, 85721, U.S.Ab Dept. of Mathematics , Texas A. & M. Univ , College Station, Texas, 77843, U.S.Ac Dept, of Mathematics , King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, ScotlandPublished online: 27 Jun 2007.

To cite this article: J.R. Clay , C.J. Maxson & J.D.P. Meldrum (1984) The group of units of centralizer near-rings,Communications in Algebra, 12:21, 2591-2618, DOI: 10.1080/00927878408823122

To link to this article: http://dx.doi.org/10.1080/00927878408823122

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) containedin the publications on our platform. However, Taylor & Francis, our agents, and our licensors make norepresentations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose ofthe Content. Any opinions and views expressed in this publication are the opinions and views of the authors,and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be reliedupon and should be independently verified with primary sources of information. Taylor and Francis shall not beliable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilitieswhatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out ofthe use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in anyform to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Page 2: The group of units of centralizer near-rings

COMMUNICATIONS I N ALGEBRA, 12 (?.I), 2591-26 18 (1984)

THE GROUP OF UNITS OF CENTRALIZER NEAR-RINGS

J . R . Clay C. J. Maxson J.D.P. Meldrum

Dept. of Mathematics, Dept. of Mathematics, Dept. of Mathematics, Un ive r s i ty of Arizona, Texas A . & M . Univ. , King's Bu i ld ings , Tucson, Col lege S t a t i o n , Mayfield Road, Arizona 85721, Texas 77843, Edinburgh EH9 352, U.S.A. U.S.A. Scot land.

Let G be a group w r i t t e n a d d i t i v e l y , bu t no t n e c e s s a r i l y a b e l i a n

and l e t A be a group of automorphisms o f G w r i t t e n m u l t i p l i -

c a t i v e l y a c t i n g on t h e l e f t of G . Denote by C(A;G) t h e s e t of

a l l mappings of G i n t o i t s e l f which commute wi th A and map t h e

i d e n t i t y t o i t s e l f , t h e mappings a c t i n g on t h e r i g h t of G .

Hence

C(A;G) = {f : G + G ; (ax ) f = a ( x f J , a E k , x E G , O f = 0 } . G G

Then C(A;G) i s a nea r - r ing under pointwise a d d i t i o n of func t ions

and composit ion of f u n c t i o n s . That i s (C(A;G),+) is a group,

(not n e c e s s a r i l y a b e l i a n ) (C(A;G),.) i s a semigroup and

f (g+h) = f g + f h f o r a l l f , g , h i n C(A;G) . See P i l z [6] f o r -

b a s i c d e f i n i t i o n s and r e s u l t s a l though he uses t h e r i g h t d i s -

t r i b u t i v e law i n s t e a d of t h e l e f t d i s t r i b u t i v e law t h a t we u s e .

Moreover o u r nea r - r ings a r e a l l zero-symmetric, i . e . Of = 0 = fO,

where 0 i s t h e a d d i t i v e i d e n t i t y of C(A;G) . In t h i s paper we

a r e concerned wi th i d e n t i f y i n g t h e group of u n i t s of C(A;G) and

Copyright @ 1984 by Marcel Dekker, Inc.

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 3: The group of units of centralizer near-rings

2592 CLAY, MAXSON, AND MELDRUM

establishing the existence of a determinant-like function on this ,

group of units.

In paragraph 1 we prove some group theoretical results which

are needed later on. Paragraph 2 introduces the group of units.

The next section deals with the determinant-like function. Our

final section gives an application.

1. Some group theory

For a set X , possibly infinite, we denote the symmetric

group on X by SymX or EX . Let H be any group and K a

subgroup of SymX. Construct H' , the set of all functions

from X to H . This is made into a group by defining the product as

fg(x) = f (x) . g(x) . What we now have is the Cartesian product of copies of H

indexed by the elements of X . We define K as a group of

automorphisms of H' by letting it permute the factors of HX

in the natural way. Formally

k f (x) = f(xk-l)

where f E H' , k E K , x E X . The wreath product of H by K

is the semidirect product of HA by K determined by this

X definition of K as a group of automorphisms of H , denoted

X H Wr K . Its elements are pairs {(k,f) ; k E K , f E H } with

the product given by

Technically this is the complete or unrestricted permutational

wreath product of H by K . See Scott [ I ] for further details

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 4: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2593

I t i s easy t o s e e t h a t t h e correspondence f + ( e , f ) , f o r

f E HX , e t h e i d e n t i t y of K , is an embedding of H' i n

H W r K , and t h e correspondence k + ( k , e ) , f o r k E K , e

t h e i d e n t i t y of HX is an embedding of K i n H W r K . I f

we i d e n t i f y HX and K w i t h t h e subgroups of H W r K t o which

they a r e isomorphic, we n o t i c e t h e fo l lowing: HX 4 H W r K ( a

means is a normal subgroup o f ) , K 5 H W r K , H W r K = H ~ K , X

and H n K = { e l . I n gene ra l t h i s means t h a t (k , f ) can be

k -1 w r i t t e n a s kf and t h a t f k = k f , s i n c e k f k = f k . This

is j u s t s ay ing t h a t when we " t r a n s f e r " t h e automorphism which

k E K induces i n H' t o t h e copy i n H W r K , it becomes t h e

r e s t r i c t i o n t o H~ of t h e i n n e r automorphism induced by K . Our f i r s t r e s u l t s concern de r ived groups. For an a r b i t r a r y

group M , t h e de r ived group is denoted M ' and

M' = ~ p ( [ m ~ , m ~ ] ; ml,m2 E M)

-1 -1 where [ml,m2] = m m2 mlm2 . Note t h a t M' q M and M/N i s

a b e l i a n i f and only i f N _> M' where N a M . We w r i t e

M M f = [M,M] . I f M = Gp (Y) then M y = G~ (rY1, y2] ; y1,y2 E Y) ,

i . e . t h e de r ived group is t h e normal c l o s u r e of t h e subgroup

genera ted by where y1,y2 run through a s e t of

gene ra to r s of M . We w r i t e M" f o r t h e der ived group of M ' . A t t h e o t h e r end of t h e spectrum, we d e f i n e t h e c e n t r e of M,Z(M),

by

Z(M) = {m E M ; mx = xm f o r a l l x E M} . Again Z(M) 0 M , and i s obviously a b e l i a n .

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 5: The group of units of centralizer near-rings

2594 CLAY, MAXSON, AND MELDRUM

We now r e t u r n t o wreath products , H W r K . Consider

Hx = { f E HX ; f ( y ) = e f o r a l l Y E X\{x}} , f o r some d i s -

t ingu i shed element x E X . Clear ly H i s a subgroup of H'

and f -t f ( x ) is an isomorphism from Hx t o H . I f f E Hx

and f ( x ) = h , we can w r i t e f a s hx . In t h i s case , i f

k - k E K , hx - hxk . In p a r t i c u l a r i f X i s f i n i t e , say

X = 1 , 2 , n , then f E H' can be w r i t t e n f = h"), . . h (n ) 1 n '

where f ( i ) = h( i ) . We need one more d e f i n i t i o n be fo re our

f i r s t r e s u l t . Let X = { 1 , 2 , ..., n) and l e t L be a subgroup

of H . Then de f ine

A ( L ) = i f E H' ; f ( l ) ... f ( n ) E LI

I t i s a r o u t i n e m a t t e r t o v e r i f y t h a t A(L) is a normal subgroup

of H' i f L 2 H I . Lemma 1.1. Let H be a group, X = { 1 , 2 , . . . , n} , K = S Y ~ X . Then

Proof . This proof p a r a l l e l s t h e work of P.M. Neumann [ 5 ] on - t h e s t andard wreath product , a s p e c i a l case of t h e permutat ional

wreath product .

We pick a s a s e t Y of genera to r s of H W r K t h e s e t H u K 1

From t h e remarks above t h i s is obviously a generat ing s e t Y f o r

H W r K . So (H W r K)' = G P ( [ Y ~ , Y ~ ] ; y1,y2 E Y) and thus

(H W r K)' _3H'K1 . Now (H W r K) ' a H W r K and (Hi)* = H ' 1 1 k

f o r a l l k E K . A s K i s t r a n s i t i v e on X , i t follows t h a t

H.' C (H W r K)' f o r 1 6 i 6 n . Hence (H W r K)' _ > H ' H ' . . . H A K ' . 1 - 1 2

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 6: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS

Now l e t f E A(H') . Then f ( 1 ) . . . f ( n ) = h E H 1 . So

-1 f 1 = f h s a t i s f i e s f ' ( 1 ) . . . f ' ( n ) = f ( 1 ) . . . f (n) h-I = e .

1

Thi s shows t h a t A(HV) 5 A({e}) H i . . . H ' . A s t h e r e v e r s e n

i n c l u s i o n is obvious , we have A(H1) = A({~})H; . . . H; . Now

( i ) -1 ( i ) ,k i ] = (hl hlki . Choose ki such t h a t l k . = i .

Then [ f ( i ) ( i ) -1 ( i ) , k i l = (hl ) hi . So

Hence f E (H W r K) ' and so A({e}) C (H W r K)' . This

enab le s us t o say A (H ' )K ' - C (H W r K) ' . We have shown t h a t i f

- 1 h . h . E X f o r a l l j , 1 5 i , j n , t hen A({e}) C X f o r 1 J

any subgroup X . We now need t h e r e v e r s e i n c l u s i o n . To do t h i s we show t h a t

A(H')K1 is a normal subgroup of H W r K con ta in ing a l l e lements

o f t h e form [ y , y ] w i th y . E Y = HI u K and use t h e remark 1 2

a t t h e beginning of t h e p roof . I f yl and y2 both come from K

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 7: The group of units of centralizer near-rings

2596 CLAY, MAXSON, AND MELDRUM

o r both from H1 , then [y1,y2] obviously l i e s i n A(H1)K' .

Since [y2,yl] = [ ~ ~ , y ~ ] - l , we only need t o cons ide r

y1 E HI , y E K t o cover a l l cases . Let yl = hl,y2 = k . 2

Then [hl ,k] = h-'hk = h-'h and t h i s obviously l i e s i n 1 1 1 l k

~ ( { e ) ) 5 A(H') . Hence A(H')K1 3 {[Y1,y2] ; yiE Y) . A l l

t h a t is l e f t is t o show t h a t A(H1)K' 0 H W r K . Note t h a t

X A ( H . ) a H , s i n c e A ( H ? ) 2 H;. . . H I = (H')* . ~ e t

n

f EA(H1) , k E K . Let f k = f 1 say. Then

-1 -1 - f ' (1 ) . . . f ' (n) = f ( l k ) . . . f (nk ) = f (1 ) . . . f (n) mod H ' s i n c e

- 1 k is a permutation of 1 , n . Since f ( 1 ) . . . f ( n ) E H '

s o does 1 f ( n , i . . f ' E A(H7) . Thus A(H1) is

X normalised by H' and K , so i s normal i n H K = H W r K .

-k Let k E K ' , f E H' . Then kf = f - lk f = k f f = k f * say.

Now f * ( i ) = f- ' ( ik-l) f ( i ) s o f * ( l ) . . . f*(n) =

-1 -1 -1 -1 f ( l k ) f l f (nk ) f ( n ) 2 e mod H ' s i n c e by rea r rang ing

t h e o r d e r of t h e f a c t o r s we get e . So f* E A(Ht) and

kf E K1b(H') = A(H1)K' a s A(HT) a N Wr K . A l l t h e conjugates

of elements of K ' by elements of H' l i e i n A(H')K1 . So

do a l l conjugates of elements of K ' by elements of K . Hence

A(H7)K' H W r K . This f i n i s h e s t h e proof .

Note t h a t a l l we r e a l l y need i s t h a t K i s a t r a n s i t i v e per-

mutation group on X . But we only use t h e r e s u l t when

K = Sym X .

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 8: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS

Lemma 1 . 2 . Let H be a group X = { 1 , 2 , ..., n}, n 2 5 ,

K = Sym X . Then

(H W r K)" = (H W r K)' = A(H')K1 . Proof . I t is only t h e f i r s t e q u a l i t y t h a t needs t o be proved.

We w i l l show t h a t A(H1)K' 5 (H W r K)" which i s s u f f i c i e n t ,

s i n c e (H W r K)" - C (H W r K) ' . Since K t i s t h e a l t e r n a t i n g

group on n symbols and n > 5 , K ' i s non-abelian s imple .

Hence K" = K ' and K ' 5 (A(H1)K') ' = (H W r K)" . Note t h a t K '

i s t r a n s i t i v e on f l , ..., n} . Let i j j be e lements o f X ,

and l e t i k = j . Let R E K ' , i R = j , jR = i . Since n b 5 ,

aga in we can f i n d such an R i n K ' . Then

-1 - 1 -1 [hihi*, a] = h , h , h h = h:' h .h .h-' = hi2h2 . s i n c e

1 j i R j R 1 J J ~ j

-1 - 1 -2 2 hihik = [hi ,k] , i t fol lows t h a t hi h . E (H W r K)" f o r a l l

J

h € H , i j E 1 . n . Now choose d d i f f e r e n t from i , j . Let m E K ' s a t i s f y i m = d , and p E K' such t h a t

i p = d , dp = j . Since K ' i s t h e a l t e r n a t i n g group on X , t h i s

i s always p o s s i b l e . Then h h-',p] = h i l h . h h-I = [ i i m i m i p imp

-1 2 -1 h . h h E (H W r K)" . Then 1 d j

By t h e proof of lemma 1.1, i t fol lows t h a t A({e}) 5 (H W r K)" . Let h(1) ,h(2) E H . Then D

ownl

oade

d by

[M

cGill

Uni

vers

ity L

ibra

ry]

at 0

4:17

21

Nov

embe

r 20

14

Page 9: The group of units of centralizer near-rings

2598 CLAY, MAXSON, AND MELDRUM

Hence k h ( l ) ) - l h : l ) , h i 2 ) E (H W r K ) I 1 , s i n c e (H W r K) a H Sfr K . 1 = [(hi1))-. , h i2 ) ] (H W r K ) . Hence H : 1 - c (H W r K) and a s

(H W r K)" 4 H W r K , H; . . . H I C (H W r K)" . n -

Thus A({~})H;. . . H I K ' C (H W r K ) " , and a s A(H1) = A ( { ~ } ) H ; . . . H I n - n

(proof of lemma 1 . 1 ) , we deduce t h a t A(H')K' - C (H W r K)" . This

f i n i s h e s t h e p roof .

Note t h a t i f n 6 4 , t hen K " C K t and t h e r e s u l t of lemma 1.2

holds no longer .

We now c h a r a c t e r i s e t h e normal c l o s u r e of K i n H W r K .

Then

KH W r K = A(Ht)K . Proof . Let L denote

KH W r K . Then L i s t h e group genera ted

by a l l conjugates of elements of K by elements of H W r K . X

Now H W r K = H K = KH' s i n c e H' a H W r K . So a t y p i c a l

gene ra to r of L is kf , where k ,k E K , f E H' . But kl 1

k kl E K . So

f X L = ~ p ( k ~ , k ; k l , k E K , f E H )

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 10: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2599

Let h . E Hi . Then [k ,h i ] = h y l h E L . Hence by t h e l a s t 1 lk 1

p a r t of t h e f i r s t h a l f of t h e proof of lemma 1.1, i t fol lows

t h a t A({e}) 5 L , s i n c e K is t r a n s i t i v e on X . The l a s t

p a r t of t h e proof of lemma 1 . 2 showed t h a t H I C (H W r K)". . 1 -

This only used t h e f a c t s t h a t f o r a l l i f j i n

~ , h ~ ' h . E (H W r K)" and (H W r K)" Q H W r K . Since K i s 1 3

-1 t r a n s i t i v e on X , h . h . E L and L a H W r K , t h e same method

lk 1

shows t h a t H: C L . Hence A ( { ~ ] ) H ; ... H ' = A(H') 5 L . We 1 - n

hi have t h a t L 2 A(H1)K . Conversely k = k[k,hi ] E KA(H1) =

A(H1)K , s i n c e [ k , h . ] E A(H') by t h e proof of lemma 1.1, and

A(Ht) a H W r K . Hence L 5 A(Ht)K . This f i n i s h e s t h e p roof .

The l a s t two lemmas enab le us t o d e s c r i b e L' where

L = K H W r K .

Lemma 1 . 4 . Let H be a group, X = { 1 , 2 , . . . , n} , n 2 5 ,

K = SymX, L = K Wr . Then

and

I L : ~ ' 1 = 2 . Proof. By lemmas 1.1 and 1 .3 ,

(H W r K)' = A(H1)K' 5 L = A(H')K 5 H W r K . A s (H W r K)" = (H W r K)' it fol lows t h a t L' = A(H1)K' and

L' = L" . The f i n a l p a r t fo l lows s i n c e K ' i s t h e a l t e r n a t i n g

group on n symbols and s o I K : K ' I = 2 . Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 11: The group of units of centralizer near-rings

2600 CLAY, MAXSON, AND MELDRUM

The f i n a l r e s u l t i n t h i s s e c t i o n concerns t h e c e n t r e of H W r K . We use Z(G) t o denote t h e c e n t r e of G . We a l s o need t h e

c e n t r a l d iagonal subgroup D of H W r K def ined by

X D = ( f E H ; f ( i ) = f ( j ) f o r a l l i , j E X , f ( i ) E Z(H)) .

Lemma 1 . 5 . Let H be a group, X a s e t , K = Sym X . Then

Z(H W r K) = D . Proof . Let kf E Z(H W r K) where k E K , f E H' . Assume

t h a t k # e . Choose i E X such t h a t i k f i and l e t

h E H , h f e . Then

k kfhi = h . k f = k h . f = kh f .

i k

This f o r c e s fhi = hikf . Take t h e "i" component on both s i d e s :

f ( i ) h = f ( i ) , s i n c e i k # i . Hence h = e , a c o n t r a d i c t i o n .

X So we must have k = e and Z(H W r K) C H . Let

f E Z(H W r K) and assume t h a t t h e r e e x i s t s i j i n X such

t h a t f ( i ) # f ( j ) . Choose k E K such t h a t i k - I = j . A s

f E Z(H W r K) , it fol lows t h a t f k = f , and hence

k f ( i ) = f (i) = f ( i k - l ) = f ( j ) , a c o n t r a d i c t i o n . So we must

have f (i) = f ( j ) f o r a l l i , j . F i n a l l y

X X Z(H W r K) - C Z(H = Z(H) by a s t andard r e s u l t from group theory .

Thus Z(H W r K) 5 D . Conversely l e t f E D , f ' E H' . Then f f ' ( i ) = f ( i ) f t ( i ) =

f f = f f f o r a l l i E X , s i n c e f ( i ) E Z(H) . So

every element of D commutes wi th every element of H' . Let

k -1 k E K . Then f ( i ) = f ( i k ) = f ( i ) f o r a l l i E X , a s f E D .

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 12: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2601

So f k = f f o r k E K and hence every element of D commutes

X with every element of K . Thus D 5 Z(H K) = Z ( H W r K) . This

proves t h e r e s u l t .

2 . The group of u n i t s

We s t a r t w i th a key r e s u l t due t o Betsch [A] concerning t h e

e x i s t e n c e of maps i n C(A;G) , A proof of i t can be found i n

Maxson and Smith [z] o r Meldrum and Oswald [z]. I n o r d e r t o

s t a t e t h i s we need t h e fo l lowing d e f i n i t i o n . We denote by S t ( x )

t h e s t a b i l i s e r i n A of an element x of G , t h a t is

S t ( x ) = { a € A ; ax = x) . The fol lowing r e s u l t i s d u e t o B e t s c h [ l ] . -

Lemma 2 .1 . Let x ,y E G . There is an element f E C(A;G)

which s a t i s f i e s xf = y i f and only i f S t ( x ) C S t ( y ) . We denote t h e group of u n i t s of C(A ; G ) by U . An immediate

consequence of Be t sch ' s Lemma is t h e fo l lowing c o r o l l a r y .

Coro l l a ry 2 . 2 . Let f € U , x , y E G . I f xf = y , then

S t ( x ) = S t ( y ) . We s t a t e two more r e s u l t s about s t a b i l i z e r s which a r e wel l known,

and a r e s t a t e d h e r e a s they form a key p a r t of t h e sequence of

r e s u l t s .

Lemma 2.3 . Let x E G , a E A . Then

S t ( a x ) = aS t (x ) a-' . Coro l l a ry 2 .4 . The s e t of s t a b i l i z e r s o f t h e elements of an

o r b i t of A on G forms a conjugacy c l a s s of subgroups of G .

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 13: The group of units of centralizer near-rings

2602 CLAY, MAXSON, AND MELDRUM

Hence we speak of t h e conjugacy c l a s s of: s t a b i l i z e r s

a s s o c i a t e d wi th an o r b i t of A on G . D e f i n i t i o n 2 . 5 . We say t h a t two o r b i t s Ax,Ay of A on G a r e

synonymous i f t h e same conjugacy c l a s s of s t a b i l i z e r s i s

a s s o c i a t e d wi th each o r b i t .

The fo l lowing r e s u l t is r o u t i n e .

Lemma 2.6 . The r e l a t i o n "synonymous" i s an equivalence r e l a t i o n .

From t h e d e f i n i t i o n of C(A ; G ) it fol lows t h a t f E C(A ; G)

maps o r b i t s of A on G t o o r b i t s : (Ax)f = A(xf) . This is

t h e background f o r t h e next r e s u l t

Lemma 2 .7 . Let f E U . Then (Ax)f i s synonymous t o Ax . Proof . We use c o r o l l a r y 2.2, lemma 2.3 and c o r o l l a r y 2.4.

Since S t ( x ) = S t ( x f ) t h e conjugacy c l a s s a s s o c i a t e d w i t h Ax

i s t h e same a s t h a t a s s o c i a t e d wi th A(xf) = (Ax)f . Coro l l a ry 2 .8 . Let f E U . Then f permutes t h e o r b i t s i n a

given equivalence c l a s s of synonymous o r b i t s amongst themselves.

Let {Ej ; j E J) be t h e s e t of equivalence c l a s s e s of o r b i t s .

Let E = {Oij ; i E I . I be t h e s e t of o r b i t s i n E j '

Choose j J

a r e p r e s e n t a t i v e x E 0 . . f o r each o r b i t . Without l o s s of i j IJ

g e n e r a l i t y , we may assume t h a t S t ( x . . ) = S t ( x ) f o r a l l 1 J k j

i,k E I j *

We use f o r t h i s lemma 2.3 and t h e d e f i n i t i o n of t h e

equivalence c l a s s e s . Denote S t ( x i j ) by S j accordingly .

Define H = {x E I)O . S t ( x ) = s . I . Let j x i j ' J

-1 N ( s . ) = {b E A ; b S.b = S . 1 . I f u E H , a € N (S . ) , then

A J J J j A J

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 14: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2603

-1 S t (au) = a S t ( u ) a = S t ( u ) . So we have most of t h e fo l lowing

r e s u l t .

Lemma 2 . 9 . The elements of N (S ) / S j a c t f i x e d p o i n t f r e e on A 5

t h e elements of H j '

Proof . We have a l r eady shown t h a t t h e elements of N (S ) A j

permute t h e elements of H . Since S t ( u ) = S f o r a l l j j

u E H t h e r e s t fo l lows immediately. j '

- NA(Sj)/Sj I f a E N (S ) we denote t h e image of a i n

A j by a

and then f o r u E H . J '

Lemma 2.10. Let f E U

P roof . J u s t apply c o r o l

- we w r i t e au = au .

. Then H.f = H f o r a l l j E J . J j

l a r y 2 . 2 , c o r o l l a r y 2 . 8 and t h e

d e f i n i t i o n of H These show t h a t H . f C H A s f has an j J - j '

i n v e r s e i n U , i t must be a permutat ion when r e s t r i c t e d t o H j '

Let B denote t h e s e t of permutat ions of H which commute j j

wi th t h e a c t i o n of N (S .) , i . e . A J

B. = I f : H , -+ H ; f a b i j e c t i o n and (au) f = h u f ) f o r a l l J J j

E N (S ) / S j and u E H . ) . A j J

Then B is a m u l t i p l i c a t i v e group and s o i s II B t h e j jEJ j '

complete o r Car t e s i an product of B , j E 3 j

Theorem 2.11. U i s isomorphic t o II B jEJ j

Proof . We remark t h a t f E C(A ; G ) i s uniquely de f ined by t h e

images of a s e t of o r b i t r e p r e s e n t a t i v e s . Now d e f i n e

9 : u - + n B by f 0 = ( f j ) j e J where f i s t h e r e s t r i c t i o n jEJ j j

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 15: The group of units of centralizer near-rings

CLAY, MAXSON, AND MELDRUM

of f to H . By lemma 2.10 and lemma 2.9, it follows that 8 j

does indeed map U to II B . That it is a group homomorphism J j

is obvious from the definition. Since u H contains a jEJ j

complete set of orbit representatives, the set Ifj ; j E J}

uniquely determines f . Hence 9 is a monomorphism.

It remains to show that 8 is a surjection. Let f E C(A;G) . Then f is completely determined by the images of a set of

orbit representatives, since (ax)f = a(xf) for all

is a map from

set {hjIjEJ

define a map

. By corollary 2.2, if f E U , then

determined uniquely by a set {hj} jEJ

{x. ; i E I to H . Conversely 1 j J j

of maps from {x. ; i E I. to H 1 j J j '

x. .f E H 1 J j '

where h j

given such a

we can

f E U by (ax. .)f = a(x h.) . To check that f 1 J ij J

and is in U is routine. Hence there is a 1 - 1 correspondence between the elements of U and {{hjljEJ ;hj is

a map from {xij ; i E I . ) to H . } . On the other hand, by a J J

similar argument, an element of B is uniquely determined by j

its action on the representatives of orbits of N (S ) on H A j j -1

If a E A and u E H j '

then St(au) =aSt(u)a andso

au E H if and only if j a E NA(Sj)

. Hence the orbits of

N (S ) on H. are just the intersection of the orbits of A A j J

with H. . Thus, as for f E U , the elements of B. are in J J

1 - 1 correspondence with maps from x . . ; i E I . to H 1 J J j

This is enough to prove that 8 is a surjection.

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 16: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2605

W e conclude t h i s s e c t i o n by p r e s e n t i n g ano the r c h a r a c t e r i z a t i o n

of t h e groups B If we w r i t e A f o r N (S ) /S A j j ' t hen B j ' j j

i s t h e group of permutat ions of H . which commute wi th t h e J

f i x e d p o i n t f r e e a c t i o n of A . on H j

From t h e proof of J

theorem 2 .11 a

Theorem 2.12.

Proof . Let f

where

and a ( f ) ( i ) =

I j

s e t of o r b i t r e p r e s e n t a t i v e s of t h e o r b i t s o f

given by { x . . ; i € I.] , 1 J J

B is isomorphic t o A . W r Sym(1 .) . j J J

E B Then x . . f = a .x .1 f o r some j ' 1 J 1 1 j

I . . We map B t o A . W r Sym(1.) by t h e map 6 J j J J

f0 = a ( f ) ~ ( f ) ,

ai , ~ ( f ) E Sym(Ij) maps i t o i ' . C e r t a i n l y

a ( f ) E A j - Since f i s a permutation of H and maps o r b i t s j

t o o r b i t s , i t fol lows t h a t f permutes t h e o r b i t s . This induced

permutation i s p r e c i s e l y T ( f ) . So 0 maps B t o j

A . W r Sym(1.) . Note t h a t i n t h e express ion f o r f0 we w r i t e J J

lj t h e element of A f i r s t , t h e element of Sym(1.) a f t e r ,

j J

which is t h e o p p o s i t e of t h e usua l n o t a t i o n i n s e c t i o n 1. Since

we can choose t h e images of o r b i t r e p r e s e n t a t i v e s a r b i t r a r i l y ,

i t fo l lows t h a t 0 is a s u r j e c t i o n . Since f i s uniquely

determined by t h e images of t h e o r b i t r e p r e s e n t a t i v e s , 8 is an

i n j e c t i o n . To f i n i s h t h e proof we need t o show t h a t 6 is a

homomorphism.

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 17: The group of units of centralizer near-rings

2606 CLAY, MAXSON, AND MELDRUM

Let f , h E B , f9 = a ( f ) a ( f ) , h9 = a ( h ) ~ ( h ) . Then j

x ( f h ) = (aixi, j)h i j

- - a . (xi, j > h 1

t - - aiairXiwj

where a = a ( f ) ( i ) , a;, = a ( h ) ( i l ) , iw = i r a ( h ) , i

t h a t i s in = i ~ ( f ) a ( h ) . Hence

But

and

= a ( f ) ( i ) a ( h ) ( i r ) . Thus f0h0 = ( fh )8 and 0 i s a homomorphism.

Combining theorems 2 . 1 1 and 2 .12 we o b t a i n

Corol lary 2 .13. U is isomorphic t o

n (N (S ) / S . ) W r Sym(1.) . jEJ A j J J

Spec ia l Case 1. I f A a c t s f ixed po in t f r e e on G , then U

i s isomorphic t o A W r Sym(1) , where I i s an index s e t of

t h e o r b i t s of A on G . Spec ia l Case 2 . I f C(A;G) i s r e g u l a r , t h a t i s , i f a l l

s t a b i l i z e r s s a t i s f y S t ( x ) C S t ( y ) impl ies S t (x) = S t ( y )

(Meldrum and Oswald [?I, Z e l l e r [ g ] , Meldrum and Z e l l e r [s] ) , then t h e H . a r e subgroups and one f i n d s t h a t

.I

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 18: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS

where A and H are as defined above. Hence j j

3. A determinant like function

In this section we consider a function from C(A;G) to an

abelian group which will turn out to behave somewhat like a

determinant function does for rings of matrices. As might be

expected in such a case, certain finiteness conditions have to be

imposed before the function can be defined. In order to keep the

situation as general as possible, we obtain the desired finite-

ness by restricting the domain of definition of the function. We

use the notation developed in the later part of section 2.

Definition 3.1. An element f E C(A;G) is said to be amenable

if given any equivalence class E of synonymous orbits, there j

is only a finite set of orbits (0; ; 1 6 k < n} where n

depends on j , such that OLf E E j '

Let (Ab)j he the abelianized A i.e. the quotient group of j

A . by its derived group. We now define a function D from the J

amenable elements of C(A;G) to J(Ab)j u {o} , the complete

product of the (Ab)j together with 0 , a zero element. Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 19: The group of units of centralizer near-rings

2608 CLAY, MAXSON, AND MELDRUM

D(f) = 0 if for some j E J , there is an 0 . . E E such that 1 5 j

Gf n Oij = g . D(f) = 0 if for some 1 6 k # k t $ n , 0' f = 0 ' f ,

k k'

D(f) = (aj)jEJ ,

where a. is defined as follows. If {O; ; 1 6 k 6 n} is the J

finite set of orbits mapped into E. by f , then J

a = ( II a(k))Aj , where x'f = a(k)~~(~) , xi is the j l<k<n

chosen representative of oi,Aj is the derived group of A. J

and a(k) E A j '

This function D is our determinant-like function. The most

obvious case in which it is defined on all of C(A;G) is when

there are only a finite number of orbits of A on G . We will

now prove that D has some determinant-like properties. First

we will show that its value is independent of the choice of

representatives {xij ; i E I. , j E J} which we will call in J

future a basis.

Theorem 3.2. Let f be an amenable element of C(A;G) . Then

the value of D(f) is independent of the choice of basis.

Proof. Let two bases be u . ; i € I. , j J and 1 J J

{vij ; i E I. j E J} and the corresponding values of D(f) J

be (aj)jEJ and (bj)jEJ respectively. Further

let v =c u , i E I. , j E J where c. E A . If for some ij ij ij J 1 j

j E J , there is an 0. . E E such that Gf n 0 . = p , then 1 3 j 1 j

D(f) = 0 irrespective of the choice of a basis. So there is

nothing to prove in this case.

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 20: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS

W e can t h e r e f o r e assume t h a t f o r each j E J , and each

C Gf . Since f is amenable t h i s f o r c e s each E i E I j , O i j - j

t o be f i n i t e . Again, t o exclude t h e t r i v i a l c a s e D(f) = 0 , we

may assume t h a t f induces a 1 - 1 map of t h e s e t of o r b i t s

onto themselves. Consider a p a i r of o r b i t s O1 and O 2 such

t h a t 0 f = 0 1 2 ' with r e p r e s e n t a t i v e s u1 ,u2 i n t h e o l d b a s i s ,

vl,v2 i n t h e new b a s i s vl = clul , v2 = c u 2 2 '

I f u f = au 1 2 '

v f = b v 1

, t hen c u f = bc u 1 1 . So clau2 = bc2u2 and

- 1 b E c1a(St(u2))c2 . The elements a (k ) i n t h e d e f i n i t i o n of

D(f) a r e only determined up t o a cose t of S . = S t ( x J i ( k ) j ) '

- 1 we may assume wi thout l o s s of g e n e r a l i t y t h a t b = c ac . The

1 2

element a i n t h e d e f i n i t i o n of D(f) i s a product of elements j

of A . / A ! , an a b e l i a n group. So we may reo rde r t h e product of J J

-1 t h e elements of t h e form b = c ac wi thout l o s s of

1 2

g e n e r a l i t y .

S ince f induces a 1 - 1 map from t h e s e t of non-zero o r b i t s

on to i t s e l f , every o r b i t occurs once a s "0 " and once a s "02". 1

So t h e corresponding "c and "c-l" a l l occur once. Using 1 2

commutativity, we s e e t h a t they cancel i n p a i r s , showing t h a t

D(f) i s uniquely de f ined .

We p o i n t ou t he re t h a t i f some E . i s i n f i n i t e , then by t h e J

d e f i n i t i o n of amenable and of t h e func t ion D , i t fol lows t h a t

D(f) = 0 f o r a l l amenable elements f . So t o avoid t r i v i a l i -

t i e s , we r e s t r i c t ou r se lves from now on t o t h e case t h a t E . i s J

f i n i t e f o r a l l j E J .

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 21: The group of units of centralizer near-rings

2610 CLAY, MAXSON, AND MELDRUM

Lemma 9.3. The funct ion D i s a s u r j e c t i o n .

Proof . Given ( a . ) E II (Ab) , we choose b . E A such J jEJ jEJ J j

t h a t b .A: = a and f i x i E I j . Define a m a p f by J J j

x f = b x and x f = x i l j

f o r a l l i E 1 i } . Then i j j i j i ' j J

D(f) = ( a . ) a s des i red . J jEJ

We now show t h a t D i s a homomorphism from U t o j:J(Ab) J .

Theorem 3.4. The func t ion D is a homomorphism from U t o

n ( ~ b ) . j€ J

Proof . Let f , f 7 E U and f i x j E J . A s E i s f i n i t e w e 3

w i l l w r i t e t h e o r b i t s i n E a s 01, . . . , 0, with r e p r e s e n t a t i v e s j

x 1 . . . , x . Note t h a t f and f ' permute these o r b i t s . Let n

a , a be t h e permutations of E l , . . . , n} such t h a t x f E Oi , i n

- - (a:)jEJ . We have x f ' E Oi . Let D(f) = ( a j ) jEJ , D(f l ) i Q

x f = a ( i ) x i ' f ' = a l ( i ) x Then

i a i '

x iaa f f l = ( a ( i a ) x i a ) f t = a ( i a ) a V ( i ) x So i

where b = ( n a ( i a ) a r ( i ) ) A ! = ( n a ( i j l ~ i ~ n i < i < n

This proves t h e r e s u l t .

Note t h a t we use t h e f a c t t h a t i s a permutation of { I , . . . , n}

and t h a t modulo A ' t h e elements of A commute. j j

We now r e s t r i c t our se lves t o cons ide r ing D a s a homomorphism

from U t o fl (Ab)j i n t h e case when a l l E a r e f i n i t e . We jEJ j

w i l l use N t o denote Ker D . This w i l l correspond t o t h e

ke rne l of t h e determinant func t ion , namely t h e s p e c i a l l i n e a r

group of ma t r i ces , i n t h e way t h a t U corresponds t o t h e general

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 22: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2611

l i n e a r group of ma t r i ces . Using c o r o l l a r y 2.13 we w i l l w r i t e

U a s Jl A . W r Sym(Ij) , where A , = NA(Sj)/Sj . Let K jEJ J J j

denote Sym(Ij) . Write u E U a s

where a E K j , f . E A1' . From t h e d e f i n i t i o n of D , app l i ed j J J

t o t h e s p e c i a l case of t h e group of u n i t s , we o b t a i n t h e fol lowing

formula.

Lemma 3.5 . Let u = (a f ) be given a s above. Then j j jEJ

The proof of t h i s lemma is immediate us ing t h e d e f i n i t i o n s . We

can now i d e n t i f y N . Theorem 3.6. N = Ii A(Af)K

j E J j j '

Proof . From lemma 3 .5 , i t i s obvious t h a t A(A1)K C N f o r each j j -

j E J , and t h a t II A(A!)K. C N . On t h e o t h e r hand it i s a l s o jEJ J J -

obvious from t h e d e f i n i t i o n of a wreath product t h a t t h e map

obta ined by r e s t r i c t i n g t h e formula of lemma 3 .5 t o a f i x e d

A . W r K has a s ke rne l A(A;)Kj . This shows t h a t J 5

N = n A(A!)K s i n c e each f a c t o r can be t r e a t e d independent ly . jEJ J j

Corol lary 3 .7 . Let J be f i n i t e of o rde r n . Then N ' has

index 2n i n N and U 1 = N' = N f t . Proof . Apply lemmas 1 . 2 , 1 . 3 and 1 .4 t o t h e r e s u l t of theorem

Note h e r e t h e s l i g h t depar tu re from t h e corresponding behaviour

f o r matr ix groups, where GL(n,K) ' = SL(n,K)' = SL(n,X) except

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 23: The group of units of centralizer near-rings

CLAY, MAXSON, AND MELDRUM

i n very s p e c i a l c a s e s .

We next look a t t h e c e n t r e of U

Theorem3.8 . Z(U) = II Z(A.WrK.) = I I D where D i s t h e jEJ J J j E J J j

c e n t r a l d iagonal subgroup of A . W r K. J j '

P roof . The proof fo l lows e a s i l y from lemma 1 .5 .

Since D . Z(A.) , we a l s o have t h e fo l lowing. J J

Coro l l a ry 3.9. Z(U) 2 .II Z(A,) . JEJ J

Theorem 3.10. Let n . be t h e ( f i n i t e ) number of e lements i n J

I Then j '

n Z(U) n N = { f E Z(U) ; f ( i ) j E A ' f o r each j E J) .

j

P roof . This fo l lows immediately from t h e previous r e s u l t s and

d e f i n i t i o n s .

We conclude t h i s s e c t i o n wi th a r e s u l t t h a t g ives a d i s t i n g u i s h e d

s e t of gene ra to r s f o r U and f o r N , genera to r s which resemble

somewhat t h e "nice" gene ra to r s of t h e corresponding groups of

m a t r i c e s . We w i l l d e f i n e t h r e e types of elements of C(A;G) . ( i ) For some j , and some p a i r i f i1 i n I and f o r some

j

-1 a E A j , xi j f = a x i l j , x i t j f = a x . and f f i x e s eve ry th ing

i j

o u t s i d e 0 . . u Oi, . 13

( i i ) For some j , some i E I and some a E A; , xi j f = ax j i j

and f f i x e s eve ry th ing o u t s i d e Oi j . ( i i i ) For some j , some i I and some a E A j , xijf = ax

j i j

and f f i x e s eve ry th ing o u t s i d e oij .

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 24: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2613

Then t h e fol lowing is an easy deduction from s tandard group

t h e o r e t i c r e s u l t s and t h e e a r l i e r work,

Theorem 3.11. Let J be f i n i t e . Then t h e elements of types ( i )

and ( i i ) generate N , and t h e elements of types ( i ) and ( i i i )

generate U . Proof . Corol lary 2 .13 desc r ibes t h e s t r u c t u r e of U . Since any

permutation o f I . can be w r i t t e n a s a product of t r anspos i - J

t i o n s , a s u i t a b l e product o f elements of type ( i ) w i l l g ive us f

such t h a t f6 = v f o r any given TT E K . , using t h e n o t a t i o n J

of Theorem 2.12. Then elements of type ( i i i ) w i l l g ive us f

such t h a t 16 i s an a r b i t r a r y element of A K j . This covers j

t h e case of U . Theorem 3.6 can be used i n t h e same way t o

o b t a i n t h e r e s t of the theorem: elements of type ( i ) g ive us f

such t h a t f0 i s an a r b i t r a r y element of K o r A(ie3) while j

elements of type ( i i ) g ive us f such t h a t f6 i s an a r b i t r a r y

element of A; ... A ' using t h e n o t a t i o n of paragraph 1. n '

4 . Some a p p l i c a t i o n s

We now consider how some of t h e p r o p e r t i e s of t h e determinant of

matr ices t r a n s f e r t o t h e func t ion D def ined i n t h e l a s t sec t ion .

The f i r s t "matrix proper ty" we consider i s : d e t A = 0 i f and

only i f A i s not an i n v e r t i b l e ma t r ix , i . e . not a u n i t .

A s we remarked j u s t be fo re lemma 3 .3 , i f some E is i n f i n i t e , j

then D(f) = 0 f o r a l l amenable elements f , s o hencefor th we

assume the fol lowing.

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 25: The group of units of centralizer near-rings

2614 CLAY, MAXSON, AND MELDRUM

(4 .1 ) . Each equivalence c l a s s E of synonymous o r b i t s c o n s i s t s j

o f a f i n i t e number of o r b i t s .

We p o i n t ou t t h a t un les s (4 .1) ho lds , t h e i d e n t i t y map i n C(A;G)

i s not amenable, ano the r reason f o r making t h e assumption.

Lemma 4 .2 . Let f be amenable. Then D(f) # 0 i f and only i f

f induces a permutat ion of t h e s e t of o r b i t s .

P roof . Note t h a t by t h e d e f i n i t i o n of C(A;G) , f maps o r b i t s

t o o r b i t s . So f induces a map from t h e s e t of o r b i t s t o i t s e l f

The f i r s t p a r t of t h e d e f i n i t i o n shows t h a t t h i s induced map must

be s u r j e c t i v e i f D(f) # 0 . The second p a r t of t h e d e f i n i t i o n

shows t h a t i t must be one-one. So i f D(f) # 0 t hen f induces

a permutation of t h e s e t of o r b i t s .

Conversely, suppose t h a t f induces a permutation of t h e s e t of

o r b i t s . Then, i n t h i s case D(f) E II(Ab). a s can be seen from t h e j J

d e f i n i t i o n of D and s o D(f) # 0 . We have t h u s proved t h e

r e s u l t .

The fo l lowing ques t ion now a r i s e s . I s i t p o s s i b l e t o f i n d a p a i r

(A;G) which s a t i s f i e s ( 4 . 1 ) , and an element f E C(A;G) such

t h a t f induces a permutation on t h e s e t of o r b i t s bu t i s no t a

u n i t ? We con jec tu re t h e answer t o be yes . The fo l lowing

d e f i n i t i o n g ives an i n d i c a t i o n of where t o s t a r t looking.

D e f i n i t i o n 4 .3 . We say t h a t t h e p a i r (A;G) s a t i s f i e s t h e

f i n i t e n e s s cond i t ion ( f . c . ) i f given a E A , g E G then

-1 S t ( x ) g a-' S t ( x ) a impl i e s S t ( x ) = a S t ( x ) a . This d e f i n i t i o n was used by Z e l l e r [t3] . I t i s a s t r o n g e r

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 26: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS 2615

cond i t ion than t h e one used i n Meldrum and Z e l l e r [ ? I , bea r ing

t h e same name.

Lemma 4.4 . Let (A;G) not s a t i s f y f . c . but s a t i s f y ( 4 . 1 ) . Then

t h e r e e x i s t s f E C(A;G) such t h a t D(f) f 0 and f i s not a

u n i t . Proof . Since ( A ; G ) does not s a t i s f y f . c . t h e r e e x i s t s a E A ,

g E G such t h a t S t ( x ) C as t (x)aml . Define f E C(A;G) by

xf = ax , and f i s t h e i d e n t i t y map on G \ { A X } . Since

(A;G) s a t i s f i e s ( 4 . 1 ) , f is amenable. Also f induces t h e

i d e n t i t y map on t h e s e t of o r b i t s . So D(f) f 0 . But

- 1 S t ( a x ) = a S t ( x ) a 3 S t ( x ) . Hence by c o r o l l a r y 2 .2 , f is

not a u n i t .

I f t h e index s e t J of t h e equivalence c l a s s e s of synonymous

o r b i t s i s i n f i n i t e t h e fol lowing s i t u a t i o n could a r i s e . Without

l o s s of g e n e r a l i t y assume t h a t J > Z , t h e s e t of i n t e g e r s . - Suppose t h a t 0; is an o r b i t i n En and t h a t r e p r e s e n t a t i v e s

X n of {OA}nEZ can be chosen s o t h a t S t ( x n ) C S ~ ( X ~ + ~ ) f o r

a l l n E Z . Then d e f i n e f E C(A;G) by x f = x ~ + ~ and f n

a c t s a s t h e i d e n t i t y on G \ u {Axn} . Then, a s i n lemma 4 . 4 , nEZ

D(f) f 0 but f is no t a u n i t

We now add t h e fol lowing assumption t o ( 4 . 1 ) , t o hold f o r t h e

r e s t of t h i s paper .

( 4 . 5 ) . The p a i r (A;G) s a t i s f i e s the f . c . and t h e s e t J of

equivalence c l a s s e s of synonymous o r b i t s i s f i n i t e .

In f a c t (4 .1) and (4 .5) a r e equivalent t o :

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 27: The group of units of centralizer near-rings

2616 CLAY, MAXSON, AND MELDRUM

(4 .6) t h e p a i r (A;G) s a t i s f i e s t h e f . c . and t h e r e a r e only a

f i n i t e number of o r b i t s .

We now show t h a t i f 4.6 i s s a t i s f i e d then D(f) # 0 i f and only

i f f i s a u n i t . F i r s t l e t us n o t e t h a t an element f E C(A;G)

i s a u n i t i f and only i f f i s a b i j e c t i o n . For i f f i s a

-1 b i j e c t i o n then f : G + G i s wel l -def ined. I t remains t o

- 1 show t h a t f E C(A;G) . Let y E G - 103 , a E A and l e t

yf-l = x , ( a y ) f - l = z . Then z f = ay = a ( x f ) = ( ax ) f s i n c e

f E C(A;G) . But then z = ax s i n c e f i s a b i j e c t i o n s o

- 1 (ay)f- ' = a(yf ) a s d e s i r e d .

Theorem 4 .7 . Under t h e assumption (4.6) f o r f E C(A;G) ,

D(f) # 0 i f and only i f f i s a u n i t .

P roof . From lemma 4.2 we know D(f) # 0 i f and only i f f

induces a permutat ion on t h e s e t of o r b i t s which is f i n i t e . So

given xl E G , we can f i n d x 2 , . . . , ~ i n G such t h a t m

x . f E , i = 1 , 2 , . . . , m - 1 and x f E Axl . Thus us ing m

B e t s c h ' s lemma we o b t a i n S t (x l ) 5 S t ( x l f ) 5 S t (ax l ) f o r some

a E A . From t h e f i n i t e n e s s cond i t ion t h i s g ives

S t ( x l ) = S t ( x l f ) . Since x was a r b i t r a r y S t ( x ) = S t ( x f ) f o r 1

a l l x E G . Now suppose D(f) f 0 . From t h e f i r s t p a r t of t h e

d e f i n i t i o n of D,Gf must i n t e r s e c t every o r b i t and consequen t ly f

must be s u r j e c t i v e . I f xf = yf then we must have Ax = Ay f o r

o the rwise D(f) = 0 . I f y = bx then xf = yf impl i e s

xf = bxf and s o b E S t ( x f ) = S t ( x ) . But then x = y and s o f

is a b i j e c t i o n and hence a u n i t . The converse is obvious .

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 28: The group of units of centralizer near-rings

CENTRALIZER NEAR-RINGS

Recal l t h a t a p a i r (A;G) i s r e g u l a r i f f o r

x ,y E G - ( 0 ) , S t ( x ) C_ S t ( y ) impl ies S t ( x ) = S t ( y ) . Since

r e g u l a r i t y impl ies f . c . we have t h e fol lowing s p e c i a l c a s e of

theorem 4.7.

Coro l l a ry 4.8. Let (A;G) be r e g u l a r wi th a f i n i t e number of

o r b i t s . For f E C(A;G) , D(f) 9 0 i f and only i f f i s a u n i t .

We next look a t t h e a l t e r n a t i n g p roper ty of t h e ma t r ix determinant.

A s t h e " e n t r i e s " i n our case come from a group and not a r i n g , we

use t h e fol lowing form: i f a matr ix has two columns ( o r rows)

i d e n t i c a l , then i t s determinant i s ze ro .

Theorem 4 .9 . I f t h e element f E C(A;G) maps two d i s t i n c t

o r b i t s t o t h e same o r b i t , then D(f) = 0 . Proof . Di rec t from t h e d e f i n i t i o n of D , o r from lemma 4 . 4 ,

s i n c e a map on a f i n i t e s e t is a permutation i f and only i f i t is

1 - 1 .

Let f E C(A;G) , and suppose g E C(A;G) d i f f e r s from f only

i n t h e e f f e c t on one o r b i t , say Ax and t h a t axf = xg . Theorem 4.10. Let f , g i n C(A;G) be def ined a s above. Then

D(f) .aA1 = D(g) j

where (Ax) f E E j '

Proof. The r e s u l t i s immediate from t h e d e f i n i t i o n of D . Again, a s t h e " e n t r i e s " i n our case a r e from a group, t h i s is

t h e form t h e m u l t i l i n e a r p roper ty of t h e ma t r ix determinant t a k e s .

F i n a l l y we mention t h e concept of e igenvalues - e igenvec to r s .

Because o r b i t s of A r ep lace one-dimensional subspaces , and G

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014

Page 29: The group of units of centralizer near-rings

CLAY, MAXSON, AND MELDRUM

i s t h e s e t - t h e o r e t i c union of i t s o r b i t s , an e igenvec to r of f

i s an element x of G such t h a t xf = ax . So t h e e x i s t e n c e

of an e igenvec to r f o r a given element of C(A;G) w i l l be obvious

from t h e d e f i n i t i o n of t h e e lement . I f t h e b a s i s i s n o t a b a s i s

of e igenvec to r s then t h e r e i s no p o s s i b i l i t y of changing t h e

b a s i s t o o b t a i n a b a s i s of e igenvec to r s .

References

[I] G . Betsch. Near-rings of group mappings. Oberwolfach

Conference 1976.

[2] C . J . Maxson, K . Smith. The c e n t r a l i z e r o f a s e t of group

automorphisms. Corn. i n Algebra 8 (1980), 211-230.

[3] J .D.P. Meldrum, A . Oswald. Near-rings of mappings. Proc.

Royal Soc. E d i n b u r g h , e A (1979), 213-223.

[4 ] J.D.P. Meldrum, M . Z e l l e r . The s i m p l i c i t y of nea r - r ings of

mappings. Proc. Royal Soc. Edinburgh. =A (1981), 185-193.

[5] P.M. Neumann. The s t r u c t u r e of s t andard wreath p roduc t s .

Math. Z. - 84 (1964) . 343-373.

[6] G . P i l z . Near-rings. North Holland/American E l s e v i e r .

Amsterdam, New York 1977.

[7 ] W.R. S c o t t . Group Theory. P r e n t i c e Hall.Englewood C l i f f s ,

New J e r s e y 1964.

[8] M . Z e l l e r . C e n t r a l i z e r near- r ings on i n f i n i t e groups.

Doctora l d i s s e r t a t i o n . Texas A . & M . Un ive r s i ty 1980.

Received: J u l y 1982

Revised: June 1984

Dow

nloa

ded

by [

McG

ill U

nive

rsity

Lib

rary

] at

04:

17 2

1 N

ovem

ber

2014