the future of nano-computing - georgia institute of … - the...the future of nano-computing george...

55
2/5/2003 Intel Corp. George Bourianoff 1 The future of nano-computing George Bourianoff Intel Corporation Presented to International Engineering Consortium and Electrical and Computer Engineering Department Heads Jan. 27, 2003 San Jose, Ca

Upload: doankhanh

Post on 28-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

2/5/2003 Intel Corp. George Bourianoff 1

The future of nano-computing

George BourianoffIntel Corporation

Presented toInternational Engineering Consortium and

Electrical and Computer Engineering Department Heads

Jan. 27, 2003 San Jose, Ca

2/5/2003 Intel Corp. George Bourianoff 2

Future of Nanocomputing

Silicon highway

Scalable newtechnology

Scalable newtechnology

originscharacteristics

limits

criteria

criteria

taxonomyelements

2/5/2003 Intel Corp. George Bourianoff 3

Key messages

• CMOS scaling will continue for next 12 –15 years

• Alternative new technologies will emerge and begin to be integrated on CMOS by 2015

• Nanoscience research is needed to facilitate radical new scalable technologies beyond 2020

2/5/2003 Intel Corp. George Bourianoff 4

The future of nanocomputing

• Introduction• Scaled CMOS• Nano-computing, nano-technology and

nano-science• Radical new technologies• Challenges• Conclusions

2/5/2003 Intel Corp. George Bourianoff 5

The foundations of microelectronics

Central Breakthroughs:

•Band structure concept

•Minute amounts of impurities control properties

•Advances in purification and high quality crystal growth of Siand Ge

Most basic semiconductor devices were demonstrated within 12 years

Beginning about 1946, we began to utilize this knowledge base

Government funded research in solid state physics in 1930’s and 40’s laid the foundation

Bipolar transistor 1948

Field effect transistor 1953

LED 1955

Tunnel diode 1957

IC 1959

Laser 1960

2/5/2003 Intel Corp. George Bourianoff 6

The beauty of silicon

1 GB64 MB4 MBDRAMs

Cost per Megabit

12”8”6”Wafer diameter

0.15 µm0.35 µm0.8 µmFeature size

200019951990

1. Scaling device dimensions downward

For four decades, the semiconductor industry has steadily reduced the unit cost of IC components by

$6.50 $3.14 $0.10

2. Scaling wafer diameter upward

2/5/2003 Intel Corp. George Bourianoff 7

200870 nm

201150 nm

201435 nm

6.00 10.00 13.509 9-10 103 4 4

2.1 E6 3.7 E6 4.6 E6140 100 70165 120 851.9 2.1 2.2 - 2.39 7 5

210 145 1102.5/2.3 2.7/2.4 2.9/2.5

30 22 17

0 0 0330 240 170

2.8/2.9 2.9/3.0 3.0/3.155 38 20

14.1 16.1 23.11.8 < 1.8 < 1.80 0 0

1.4 <1.5 <1.5

Brick Walls on the ITRSYEAR

TECHNOLOGY NODE1999

180 nm2002

130 nm2005

100 nmOn-chip local frequency (MHz) 1.25 2.10 3.50Number of metal levels - Logic 6-7 7-8 8-9Number of optional levels 0 2 2Jmax (A/cm2) - wire (at 105oC) 5.8 E5 9.6 E5 1.4 E6Local wiring pitch - DRAM non-contacted (nm) 360 260 200Local wiring pitch - Logic (nm) 500 325 230Local wiring AR-Logic (Cu) 1.4 1.5 1.7Cu local dishing (nm) 18 14 11Intermediate wiring pitch - Logic (nm) 560 405 285Intermediate wiring h/w AR - Logic (Cu DD via/lin) 2.0/2.1 2.2/2.1 2.4/2.2Cu intermediate wiring dishing - 15 um wide wire (nm) 64 51 41Dielectric erosion, intermediate wiring 50% density (nm) 64 51 41Global wiring pitch - Logic (nm) 900 650 460Global wiring h/w AR - Logic - Cu DD via/line (nm) 2.2/2.4 2.5/2.7 2.7/2.8Cu global wiring dishing, 15 um wide wire (nm) 116 95 76Contact aspect ratio - DRAM, stacked cap 9.3 11.4 13Conductor effective resistivity (uohm -cm) 2.2 2.2 2.2Barrier/cladding thickness (nm) 17 13 10Interlevel metal insulator effective dielectric constant (k) - Logic 4.0 - 3.5 3.5 - 2.7 2.2 - 1.6

Solutions ExistSolutions being pursuedNo known solutions

200870 nm

201150 nm

201435 nm

6.00 10.00 13.509 9-10 103 4 4

2.1 E6 3.7 E6 4.6 E6140 100 70165 120 851.9 2.1 2.2 - 2.39 7 5

210 145 1102.5/2.3 2.7/2.4 2.9/2.5

30 22 17

0 0 0330 240 170

2.8/2.9 2.9/3.0 3.0/3.155 38 20

14.1 16.1 23.11.8 < 1.8 < 1.80 0 0

1.4 <1.5 <1.5

2/5/2003 Intel Corp. George Bourianoff 8

Silicon Nanotechnology is Here!1000010000

10001000

100100

1010

1010

11

0.10.1

0.010.01

MicronMicron NanoNano--metermeter

1970 1980 1990 2000 2010 20201970 1980 1990 2000 2010 2020

Nominal feature sizeNominal feature size

NanotechnologyNanotechnology

130nm130nm90nm90nm

70nm70nm50nm50nm

Gate WidthGate Width

2/5/2003 Intel Corp. George Bourianoff 9

The ingredients of scaling Material Evolution in MOSMaterial Evolution in MOS

2000’s

60’s70’s

80’s

90’s

Al

SiO2

Al-Si

SiO2

Poly

Al-Cu

SiO2

WSi2/Poly

Ti/TiN

Al-Cu

SiO2

TiSi2/Poly

Ti/TiN

W

Al-Cu

SiO2

TiSi2/Poly

Ti/TiN

W

Low K

Al-Cu

SiO2/SiN

CSi2/Poly

Ti/TiN

W

ELK

Cu

Silicon Silicon Silicon Silicon Silicon Silicon

New materials

Improved processing

New geometries

Scaling Will continue as long as (δ cost) /(δ performance) < alternate technologies

2/5/2003 Intel Corp. George Bourianoff 10

Transistor Scaling

70nm transistorfor 0.13µm process

2001 production

70nm

30nm transistor Prototype

30nm

Demo: 2000

15nm15nm transistor

prototype Source: Intel (IEDM, Dec 2001)

0

100200

300400

500

0 0.2 0.4 0.6 0.8Drain Voltage (V)

Dra

in C

urre

nt (µ

A/µm

)

Vg = 0.8V

0.7V

0.6V

0.5V0.4V0.3V

15nm NMOS

100nm100nm

Influenza virusSource: CDC

2/5/2003 Intel Corp. George Bourianoff 11

New Materials

GateGateSilicideSilicideaddedadded

ChannelChannelStrainedStrainedsiliconsilicon

ChangesChangesMadeMade

FutureFutureOptionsOptions

HighHigh--kkgategate

dielectricdielectric

NewNewtransistortransistorstructurestructure

TransistorTransistorSource: Intel

The problem: High Ioff currentThe problem: High The problem: High IoffIoff currentcurrent

2/5/2003 Intel Corp. George Bourianoff 12

New Geometries

SourceSourceDrainDrain

GateGate

GateGate

SiliconSilicon

DrainDrain

SourceSource

00 0.30.3 0.60.6 0.90.9 1.21.2

Id (

Id ( m

Am

A/µ

m)

/µm

)

00 0.30.3 0.60.6 0.90.9 1.21.2VdVd (V) (V)

0.20.2

0.40.4

0.60.6

0.80.8

1.01.0

1.21.2

Source: Intel Source: Intel (ISSDM, Sep 2002)(ISSDM, Sep 2002)

Source: Intel

2/5/2003 Intel Corp. George Bourianoff 13

Improved processing

EUV EUV LithographyLithographyPrototype Exposure ToolPrototype Exposure Tool

50nm Lines Printed50nm Lines Printedwith EUV Lithographywith EUV Lithography

EUV lithography in commercialization phaseCost effectiveness is key challenge

EUV lithography in commercialization phaseCost effectiveness is key challenge

Source: Source: SandiaSandia

2/5/2003 Intel Corp. George Bourianoff 14

The limits of logic scaling

• For an arbitrary switching device made of of a single electron in a dual quantum well– Operating at room temperature

• It can be shown a power dissipation limit of 100 W/cm**2

• Will limit the operational frequency to ~100 GHz at length scales ~ 4 nm

2/5/2003 Intel Corp. George Bourianoff 15

CMOS device circa 2016

• Cost 10-11 $/gate

• Size 8 nm / device

• Speed 0.2 ps /operation

• Energy 10-18 J/operation

2/5/2003 Intel Corp. George Bourianoff 16

The future of nanocomputing

– Introduction– Scaled CMOS– Nano-computing, nano-technology and nano-science

• A taxonomy• New devices• New architectures• Alternative state variables

– Radical new technologies– Challenges– Conclusions

2/5/2003 Intel Corp. George Bourianoff 17

Architecture

Devices

State variables

Data represent

ations

A taxonomy for nano-computing

CNT FETs

Molecular Spintronics Quantum

CNN Crossbar QuantumBoolean

Molecular state

Spin orientation

Flux quanta Quantum stateElectric charge

associativepatterns

analogue

Digital

Scaled CMOS

probabilities

Heir-archy

biotech

Memory devices sensors

Time

2/5/2003 Intel Corp. George Bourianoff 18

The future of nanocomputing– Introduction– Scaled CMOS– Nano-computing, nano-technology and nano-science

• A taxonomy• New devices• New architectures• Alternative state variables

– Radical new technologies– Challenges– Conclusions

2/5/2003 Intel Corp. George Bourianoff 19

2/5/2003 Intel Corp. George Bourianoff 20

CNT-FET Device StructureE-beam Ti/Au gate

Mo S/D 8 nmZrO2

1.4 nm diameter single wall CNT

McEuen et. al, . Cornell Universwity

2/5/2003 Intel Corp. George Bourianoff 21

Nanowire Gating Geometries

S

D

GSiO2

Si

Back gate

S

DGTop gate

S

D

GCoaxial gateC. Leiber et. al. , Harvard U

2/5/2003 Intel Corp. George Bourianoff 22

Top-gated p-Si Nanowire Transistors

S

DG

1500

1000

500

0

-I DS (n

A)

-2 -1 0 1 2VGS (V)

0.01

0.1

1

10

100

1000

-IDS (nA)

700 nA/V

250 mV/dec

VDS= -1 V

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

I DS

(µA)

-4 -3 -2 -1 0VDS (V)

-2.0 VGS

-1.5 VGS

-1.0 VGS

-0.5 VGS

0.0 VGS

+0.5 VGS

Si

SiOx

D

S

G

1 µm

1 µm

C. Leiber et. al. , Harvard U

2/5/2003 Intel Corp. George Bourianoff 23

Crossed Nanowire Structures: A Powerful Strategy for Creation &

Integration of Nanodevices

Nanowires serve dual purpose: both active devices and interconnects.All key nanoscale metrics are defined during synthesis and subsequent assembly. Crossed nanowire architecture provides natural scaling and potential for integration at highest densities.No additional complexity (with added material).C. Leiber et. al. , Harvard U

2/5/2003 Intel Corp. George Bourianoff 24

Crossed Nanowire FETs

400

200

0

-200

-400

Cur

rent

(nA

)

-1.0 -0.5 0.0 0.5 1.0Bias (V)

S D

G

Vg(V):0

1

23

10-2

100

102

Cur

rent

(nA

)

543210Gate (V)

In crossed nanowire FETs (cNW-FET), all critical nanoscale metrics are defined by synthesis and assembly:

• channel width by the active nanowire diameter (to 2 nm)• channel length by the gate nanowire diameter (to 1-2 nm)• gate dielectric oxide coating on the nanowires (to 1 atomic layer)

The conductance of cNW-FETs can be changed by more than 105-times with less than 0.1 V variation in the nano-gate.

Huang, Duan, Lieber et al., Science 294, 1313 (2001)

2/5/2003 Intel Corp. George Bourianoff 25

Device DemonstratedP-N Junction

Lieber/Harvard

2/5/2003 Intel Corp. George Bourianoff 26

Room temperature Single Electron Transistor (SET)

••Single electron Single electron in “island” in “island” controls current controls current flow from flow from source to drainsource to drain

••Typical sizes Typical sizes of theof the TiOxTiOxlines are 15lines are 15--25 25 nm widths and nm widths and 3030--50 nm 50 nm lengths. lengths.

••Typical island Typical island sizes are 30sizes are 30--50 50 nm by 35nm by 35--50 50 nmnm Courtesy, NEC, IEDM 2000, PP 481

2/5/2003 Intel Corp. George Bourianoff 27

Spin resonance transistor (SRT)

• Transistors that control spins rather than charge

• More energy efficient than conventional transistors

• Combines magnetic and electrostatic fields

• May enable quantum computing

Courtesy Eli Courtesy Eli YablanovitchYablanovitch, UCLA, UCLA

2/5/2003 Intel Corp. George Bourianoff 28

A Molecular Electronic Switch(2-amino-4-ethyinylphenyl-4-ethylphenyl-5-

nitro-1-benzenethiolate)Au

Silicon Nitride

1000 Self AssembledMolecules (SEM)

AuIV Characteristics11

0.00 0.50 1.00 1.50 2.00 2.50 3.00Voltage (V)

Cur

rent

(pA)

Source: M.Reed & others,Yale Univ and Rice Univ

(@T=60K)

2/5/2003 Intel Corp. George Bourianoff 29

The future of nanocomputing

– Introduction– Scaled CMOS– Nano-computing, nano-technology and nano-science

• A taxonomy• New devices• New architectures• Alternative state variables

– Radical new technologies– Challenges– Conclusions

2/5/2003 Intel Corp. George Bourianoff 30

Emerging Research Architectures

ARCHITECTURE 3-D INTEGRATION QUANTUM CELLULAR AUTOMATA

DEFECT TOLERANT

ARCHITECTURE

MOLECULAR ARCHITECTURE

CELLULAR NONLINEAR NETWORKS

QUANTUM COMPUTING

DEVICE IMPLEMENTATION

CMOS with dissimilar material systems

Arrays of quantum dots

Intelligently assembles

nanodevices

Molecular switches and

memories

Single electron array

architectures

Spin resonance transistors,

NMR devices, Single flux quantum devices

ADVANTAGES

Less interconnect

delay, Enables mixed

technology solutions

High functional density. No

interconnects in signal path

Supports hardware with

defect densities >50%

Supports memory based

computing

Enables utilization of

single electron devices at

room temperature

Exponential performance

scaling, Enables

unbreakable cryptography

CHALLENGES

Heat removal, No design

tools, Difficult test

and measurement

Limited fan out, Dimensional control (low temperature operation), Sensitive to background

charge

Requires pre-computing test

Limited functionality

Subject to background

noise, Tight

tolerances

Extreme application limitation, Extreme

technology

MATURITY Demonstration Demonstration Demonstration Concept Demonstration Concept

NO 2

H2 N

2/5/2003 Intel Corp. George Bourianoff 31

Quantum Cellular Automata

Adder circuit with carry executed in QCA logic

Example of asynchronous, CNN, nearest neighbor architecture

Courtesy of Notre Dame

2/5/2003 Intel Corp. George Bourianoff 32

Fault tolerant architecture• All-memory architecture• Defect tolerant• Potentially self-repairing and

reconfigurableJ. Heath, R. S. Williams et al, UCLA and HP

2/5/2003 Intel Corp. George Bourianoff 33

Phase logic• Store information in the

relative phase of 2 signals• Multi-valued logic

possible depending on frequencies of 2 signals

• Tunneling Phase logic devices use RTDs to create one of the signals

Courtesy: R Courtesy: R KeihleKeihle, University of , University of MinnesotaMinnesota

2/5/2003 Intel Corp. George Bourianoff 34

Quantum ComputerSelected technological implementations•Liquid-state NMR

•Linear ion trap

•Coupled quantum dots

•Deterministically doped semicondustor structures

31P 31P

e-28SiBarrier layer

- - - + + +A-Gate J-Gate A-Gate

2/5/2003 Intel Corp. George Bourianoff 35

The future of nanocomputing– Introduction– Scaled CMOS– Nano-computing, nano-technology and nano-science

• A taxonomy• New devices• New architectures• Alternative state variables

– Radical new technologies– Challenges– Conclusions

2/5/2003 Intel Corp. George Bourianoff 36

Alternative state variables

• Electric charge

• Molecular state

• Spin orientation

• Electric dipole orientation

• Photon intensity• Photon polarization• Quantum state• Phase state• Mechanical state

2/5/2003 Intel Corp. George Bourianoff 37

The future of nanocomputing– Introduction– Scaled CMOS– Nano-computing, nano-technology and nano-science

• A taxonomy• New devices• New architectures• Alternative state variables

– Radical new technologies– Challenges– Conclusions

2/5/2003 Intel Corp. George Bourianoff 38

Economic criteria

• Economic relevance criteria– The risk adjusted ROI for any new technology must

exceed that of silicon

• Caution– Sufficiently advanced technologies will create their

own applications. New technologies cannot necessarily be justified by current day applications.

2/5/2003 Intel Corp. George Bourianoff 39

Technical criteria

• CMOS compatibility• Energy efficiency• Scalability• Performance• Architectural compatibility• Sensitivity to parametric variation• Room temperature operation• Stability and reliability

2/5/2003 Intel Corp. George Bourianoff 40

Existence proof for alternate models

The brain is the ultimate model for its ability to deal with complexity

• Little understanding on its architecture & organization• It is however

– Orders of magnitude more powerful than the best microprocessor– Self assembled– Parallel operation– Self repairing to a significant degree– Fault tolerant– Runs on ~ 10W

2/5/2003 Intel Corp. George Bourianoff 41

Breakthrough scientific investigation is needed

1952 Achievements• Bulk band structure

of solids

• Doping

• Crystal growth

2002 Needs• geometry dependent

energetic structure of nanostructures

• precise location of atoms

• self organization of matter in complex structures

2/5/2003 Intel Corp. George Bourianoff 42

The integration challenge

ScalabilityScalabilityPort SwitchPort Switch

MemoryMemory MemoryMemoryScalabilityScalability

NodeNodeControllerController

I/O HubI/O Hub

PCIPCI--(X)(X)BridgeBridge

InfiniBand*InfiniBand*BridgeBridge

I/OI/OBridgeBridge

PCIPCI--(X)(X)BridgeBridge

InfiniBand*InfiniBand*BridgeBridge

I/OI/OBridgeBridge

ScalabilityScalabilityPort SwitchPort Switch

ScalabilityScalabilityNodeNode

ControllerController

I/O HubI/O Hub

IntelIntel®® 8287082870 44--way & 8way & 8--way Server Configurationsway Server Configurations

2/5/2003 Intel Corp. George Bourianoff 43

Conclusions

• CMOS scaling will continue for next 12 –15 years

• Alternative new technologies will emerge and begin to be integrated on CMOS by 2015

• Nanoscience research is needed to facilitate radical new scalable technologies beyond 2020

2/5/2003 Intel Corp. George Bourianoff 44

For further information on Intel's silicon technology, please visit the Silicon Showcase at

www.intel.com/research/silicon

2/5/2003 Intel Corp. George Bourianoff 45

Backup

2/5/2003 Intel Corp. George Bourianoff 46

For about four decades now we have exploited (mined) our investment in basic science and we have continuously evolved the devices based on this understanding

2/5/2003 Intel Corp. George Bourianoff 47

Leakage is the limiter to SiO2 scalingIntegration is the key challenge to High K

Leakage is the limiter to SiO2 scalingLeakage is the limiter to SiO2 scalingIntegration is the key challenge to High KIntegration is the key challenge to High K

Silicon substrateSilicon substrate

GateGate

3.0nm High3.0nm High--kk90nm process90nm process

1X1X1X1X

Experimental highExperimental high--kk1.6X1.6X

< 0.01X< 0.01XCapacitanceCapacitance

LeakageLeakage

Silicon substrateSilicon substrate

1.2nm SiO1.2nm SiO22

GateGate

Source: Intel

Transistor gate oxide thickness trend

1

10

100

1970 1980 1990 2000 2010 2020First year in production

Dim

ensi

on (n

m) SiO2

High KSi-O bond:0.16nm

Nanotechnology for Gate Dielectrics

2/5/2003 Intel Corp. George Bourianoff 48

What new basic science is needed?

• Spin manipulation, e.g. transport, storage, detection, creation, …

• Geometry related quantum effects, e.g. quantum wedge, parabolic wells, …

• Precise location of atoms e.g. coherent manipulation of entangled wavefunctions

Rs →r

P+ P+

B-

Si

Source Drain

2/5/2003 Intel Corp. George Bourianoff 49

Transport in Si-Ge Core-Shell Structures-2.5

-2.0

-1.5

-1.0

-0.5

0.0

I DS

(µA)

-4 -3 -2 -1 0VDS (V)

VGS= -1.1 V

-0.7

-0.9

-0.5

-0.3

0.0

S

DG Si

GeSiOx

1000

800

600

400

200

0

-I DS (n

A)

-1.0 0.0 1.0VGS (V)

0.01

0.1

1

10

100

1000

-IDS (nA)

VDS= -1 V

1300 nA/V

330 mV/dec

G

S D

500 nm

2/5/2003 Intel Corp. George Bourianoff 50

Coaxially-Gated Si-Ge-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

I DS(µ

A)

-1.5 -1.0 -0.5 0.0VSD (V)

O VGS

-1 VGS

-2 VGS

3.0

2.5

2.0

1.5

1.0

0.5

0.0

I DS (µ

A)

-2 -1 0 1 2VGS (V)

0.1

1

10

100

1000

IDS (nA)

1.5 µA/V

450 mV/dec.

+1 VDS

Si

GeSiOx

Ge

2/5/2003 Intel Corp. George Bourianoff 51

Devices DemonstratedNanowire FET

Lieber/Harvard

2/5/2003 Intel Corp. George Bourianoff 52

Photonic devices

Man-made crystals produced by etching precisely placed holes in silicon or III-V material

Can produce, detect and manipulate light more efficiently than naturally occurring materials

2/5/2003 Intel Corp. George Bourianoff 53

System software design needs to facilitate emerging technologies

Challenge• CMOS is based on Boolean logic and binary data

representation• Alternative technologies will require “native”

logic systems and data representations to optimize their performance

Solution?• Design science must provide functional

abstractions and interfaces to couple multiple, dissimilar technologies into a single functional system

2/5/2003 Intel Corp. George Bourianoff 54

Nano-computing, nano-technology and nano-science

2/5/2003 Intel Corp. George Bourianoff 55

Changing architectural paradigmsCurrent

• Boolean logic• Binary data

representation

• 2D• Homogeneous• Globally interconnected• Synchronous• Von Neuman• 3 terminal

Future• Neural networks, CNN,

QCA,…• Associative, patterned,

memory based, … data representations

• 3D• Non homogeneous• Nearest neighbor• Asynchronous• Integrated memory/logic• 2 terminal