the ecophysiology of foliar anthocyanin

Upload: larisa-stoian

Post on 02-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    1/13

    T h e B o t a n i c a l R e v i e w 6 9 2 ) : 1 4 9 - 1 6 1

    Th e Ecoph ys io logy of Fol ia r n thocyanin

    D U G A L D C . CLOS E 1 AND HRISTOPHER L. BEAOCE t 2

    ~ C o o p e r at iv e R e s e a r c h C e n t r e f o r S u s t a i n a b l e P r o d u c t i o n F o r e s t r y

    G P O B o x 2 5 2 - 1 2

    H o b a r t 7 0 01 Ta s m a n i a

    2 C S I R O F o r e s t r y a n d F o r e s t P r o d u c t s

    G P O B o x 2 5 2 - 1 2

    H o b a r t 7 0 01 Ta s m a n i a

    I. A b stra ct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149II. I ntr od uc tio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 0

    III . Anthocy anin Accumu la t ion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150A. Expanding Leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150B. Autumn Senescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5C . N u tritio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151D . U ltr av io le t L ig ht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151E . H e rb iv o ry a nd D isease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 52

    IV. Anthocyanin and Photoprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153A . O sm o tic A d ju stm e nt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 53B . A n tio x id an ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153C . L ig ht A tte nu atio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 54

    1. I nte rn a l L e a f D is tr ib u tio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 542. Seedlings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543. Does Light Absorpt ion by Anthocy anin Provide Photoprotec tion? . . . . . . . . . . 155

    V. C o nc lu sio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 56V I. A c kn ow le dg m en ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7

    V II. L iteratu re C ite d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 57

    I A b s t r a c t

    T h e a c c u m u l a t i o n o f f o l ia r a n t h o c y a n i n s c a n b e c o n s i s te n t l y a tt r ib u t e d to a s m a l l r a n g e o fc o n t e x ts . F o l i a r a n t h o c y a n i n a c c u m u l a t e s i n y o u n g , e x p a n d i n g f o li a g e, i n a u t u m n a l f o l ia g e o fd e c i d u o u s s p e c ie s , i n r e s p o n s e t o n u t r i e n t d e f i c ie n c y o r u l t r a v io l e t U V ) r a d i a t i o n e x p o s u r e ,a n d i n a s s o c ia t io n w i t h d a m a g e o r d e f e n s e a g a i n s t b r o w s i n g h e r b i v o r e s o r p a t h o g e n i c f u n g a li n f ec t io n . A c o m m o n t h r e a d t h r o u g h t h e s e c a u s a t i v e f a c to r s i s lo w p h o t o s y n t h e t i c c a p a c i ty o f

    f o l ia g e w i t h a c c u m u l a t e d a n t h o c y a n i n r e la t iv e t o l e a v e s a t d i f f er e n t o n t o g e n e t i c s t a g e s o r u n a f -f e c t e d b y t h e e n v i r o n m e n t a l f ac t o r i n q u e s ti o n .

    T h e e c o p h y s i o l o g i c a l f u n c ti o n o f a n t h o c y a n i n h a s b e e n h y p o t h e s i z e d a s : 1 ) a c o m p a t i b l es o l u t e c o n t r i b u t i n g t o o s m o t i c a d j u s t m e n t to d r o u g h t a n d f r o s t s tr e s s ; 2 ) a n a n t i o x i d a n t ; 3 ) a

    C o p i e s o f t h is i ss u e [ 6 9 2 ) ] m a y b e p u r c h a s e d f r o m t h e N Y B G P r e s s ,T h e N e w Y o r k B o t a n i c a l G a r d e n , B r o n x , N Y 1 0 4 5 8 - 5 1 2 8 , U . S . A .;n y b g p r e s s @ n y b g . o rg . P l e a s e i n q u i r e a s t o p r ic e s .

    I s s u ed 1 6 D e c e m b e r 2 0 0 39 2 0 0 3 T h e N e w Yo r k B o t a ni c al G a r d e n 1 4 9

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    2/13

    150 THE BOTA NICALREVIEW

    U V protectant; and 4) protection from visible light. Review o f the internal le af distribution o fanthocyanin, o f experimental evidence u sing seedlings, and o f studies tha t directly investigatedl ight absorpt ion by anthocyanin and i t s development re la t ive to recognized processes ofpho topro tection support the hyp othes is that anthocyanins prov ide protection from visible light.

    I I In t roduc t ion

    A n t h o c y a n i n s ~ r e e kanthos (flower) andkyanos (dark b lue )~a re colored p igments tha tgiv e flowers their characteristic red, purple, an d blue hues. Less recog nized is the occu rrenc eo f antho cya nins in fruits, stems, and leaves. T he first section o f this rev iew considers the eco -physiolog ical role o f anthocyanin accum ulat ion in leaves that is associated with on togenetic(expanding and senescing leaves), abiotic (nutrient deficie ncy and UV light) and bio tic (her-bivo ry and pa thogen infection) effects . In the sec ond sect ion, the hypothesis that anthocyan incan prov ide a photoprotective role is developed in the context o f evidence for i ts function as an

    antioxidant, its distribution in leaves, and its synthesis in seedlings. The various studies thatprovide direct evidence for its role in light attenuation are examined.

    I lL A n t h o c y a n i n A c c u m u l a t i o n

    A ccu m ulatio n of anthoeyanin is defined as an increase in foliar an thocy anin concentrationthat leads to increased absolute anthocyanin content. This can be consistently attributed to arelatively small range o f contexts. A nth oc yan in accumulation is often observe d in expandingfoliage. S uch foliag e is no t photostable beca use levels o f light utilization and its capa city todissipate excess e nerg y are low, creating a relatively high risk o f photodamage. An tho cya nin isalso clos ely associated with the co lors in the autumn foliage of deciduous species. V irtually allsuc h species exhibit visu ally striking anthocyan ins, tho ug h also carotenoids, d uring this stageo f leaf ontogeny. A ccu m ulation o f antho cyan in is also associated with m acronutrient deficien-cies, particularly with intensively m anag ed agricultural, horticultural, or forest prod uction w herethe nutrients con tained in pro du ce are remo ve d from the system and replaced th roug h fertilizerapplication. R esearch investigating the potential effects o f atmosph eric o zo ne depletion ha veindicated that exposure to increased levels of U V radiation induces the accumu lation o f foliaranthocyanin. Ac cum ulation of foliar anthocyanin m ay be linked to brows ing risk by herbivoresand to d efense against patho gen ic fungal infection.

    A. EXPANDINGLEAVES

    Photostability o f leaves during lea f expansion, m easu red as resistance to degradation o f thepho tosyn thetic apparatus und er natural light, is attained o nly after a critical am ou nt of chloro-phy ll has accu m ulated (Drumm -Herrel Mohr, 1985). This accumulation is associated withthe dev elopm ent of leaf anatom y and structure and coincides with an increase in photosyn-thetic rate (Drum m-H errel Mo hr, 19 85 ). Photostability is usu ally attained gra du ally duringlea f expansion (Drumm -Herrel Moh r, 1985; Tu oh y Choinski, 1990; Choinski John son,1993; Choinski W ise, 1999), tho ug h delay ed until after full expansion in m any rain-forestplants (K ursar Coley, 1992; Nii et al., 1995; Do dd et al., 1998; W oodall et al., 1998; Ka rimet al., 199 9). A ntho cya nin has been associated with both gradual (Drumm -Herrel Mohr,1985) and delaye d (Dod d et al., 199 8; W oodall et al., 1998 ) chloroph yll accumulation duringleaf expansion. Drum m-H errel and Mo hr (1985) sh owe d that photostabil ity was l inked to an-thoc yan in prod uction and that its accum ulation in exp and ing leaves contributed to greater ph o-tostability in inapsis alba than in esamum indicumseedlings.

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    3/13

    FOLIAR ANTHOCYANIN 151

    B. AUT UM N SENESCENCE

    It has been suggested that anthocy anin screens senescing fol iage from high levels o f inci-dent light (Ho ch et al. , 2001), the reby red ucing the potential for photoinhibition. This createsan env ironm ent for the efficient res orption o f foliar nutrients durin g a period o f restrictedpho topro tective capacity. Sp ecies at risk of photoinhibition durin g leaf senescence, such as latesuccessional species o r those occu rring in cold environments, are hyp othe sized to emp loy an-thoc yan in synthesis as a m ech anism o f pho topro tection (Ho ch et al., 2001). In contrast, Matile(2000: 155 ) considered anthocya nin accum ulat ion to represent a kind o f extravaga ncy with-out a vital function . To support this argument, h e contends that levels o f anth ocy anin acc um u-lation var y betw een yea rs, betw een individuals within a species, and within individuals andthat senescence in som e species---e.g., in copp er varieties o f bee chFa gus sylvatica)and h azelCorylus eornuta)-- ispreceded by the loss o f anthocyanin (Matile, 2000).

    C. NUTRITION

    Nutrient, and particularly nitrogen (N), deficits detrimentally affect ph otosy nthe tic functionand eff iciency and decrease the levels o f Calvin Cy cle enzym es (Terashima & E vans, 1988;Sugiharto et al ., 1990). This co m m on ly induce s or enha nces the accu m ulat ion o f fol iar antho-cyanin in leaves o f m any plant species (Ni tt le r & Kenny, 1976; Ho dges & Noz zol i l lo , 1996;K um ar & Shann a, 1999; Close e t a l. , 2000 , 2001 a , 2000b). H igher concent ra t ions of antho-cyan in in sheaths and lea f blades, t issues o f low er photosy nthetic com pete nce than leaves,occurred in N-def ic ient than N-suff ic ientZ e a m a y s(Law anso n et al. , 1975). Bon gue-B artels-m an and Phill ips (1995) dem onstrated that N stress pro duc es effects on expression o f gen es

    encoding enzym es associa ted wi th anthocyanin b iosynthes is . Pho sphorus (P) def ic it, wh ichrestr icts pho spha te levels essential to energ y m etabo lism (Salisbury & R oss, 1992), increasedanthocyanin content in a range o f mo noc otyledo nou s and d icoty ledono us p lants (Atkinson,1973). M axim um levels of anthocyanin accum ula t ion in Zmays occurred af ter 5 days underpotass ium (K) def ic iency (K def ic i t impai rs photosynthet ic enzyme funct ion; Bhandal &M alik, 1988), 10 day s und er P deficiency, and 15 day s under N d eficienc y (La wa nso n et al. ,1972).

    D. ULTRAVIOLETLIGHT

    Expo sure to ultraviolet (UV ) l ight prom otes the produc tion of fol iar a nthocyanin (Lindo o& Caldwell , 1978), and i t has been hypothesized that anthocy anin provides a UV sunscreen(Lee & Low ry, 1980). An thocy anin isolated from juvenile fol iageofSyzgium luehmanniiandS. wilsoniicontributed little to the total absorbance o f U V -A an d UV -B radiation (Woodall &Stewart, 1998), with similar findings inZea mays(Begg s & W ellman, 1985) andLycopersiconesculentum (Brandt et al. , 19 95). The oc currence of anthocyan in in palisade an d/ o r spo ngym esop hy ll tissues o f m ost species investigated to date contradicts the theory that antho cyan inhas a UV -B filtering role (Gou ld & Q uinn, 1999; Lee & Collins, 2001).

    Coleus blumeivar. Red W izard, wh ich was high in anthocyanin, had high er quantum y ieldand photosynthetic rate when ex posed to UV B and UV -C radiat ion than d idC. blumeivar.Green Rainbow, wh ich was low in anthocy anin: Each had similar chlorop hyll and carotenoidcharacteristics (Bu rger & Edwards, 199 6). Krause et al. (1999) hav e shown, u sing filters thatseparately absorb or transmit UV radiat ion, that photoche m ical eff iciency of t ropical rain-forest understory plants was increased when ei ther UV A or UV-B radiat ion was excluded.This was particularly evident in shade leaves exposed to full sunlight. Moreover,Pinguicula

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    4/13

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    5/13

    FOLIAR ANTHOCYANIN 153

    IV Anthocyanin and Photoprotec t ion

    Three well-characterized mechanisms, the xantho phy ll cyc le, antioxidant activity, and ex-ternal foliar waxes, contribute to photop rotection across plant species. The xa ntho phy ll cyc le isubiquitous in hig he r plants (Mtfller et al., 2001). In this cy cle , tw o carotenoids, zea andantheraxanthin, are epoxidized to a third, violaxanthin, and in so doing light energ y abso rbedin excess is harmlessly dissipated (De m m ig-A dam s A dam s, 1992). Antioxidants (e.g., glu-tathione, ascorbate, tocopherols) occur in plant cells and scavenge free radicals arising fromelectron leakage fro m photosynthesis (Niy ogi, 1999). Levels of free radicals increase wh en thecapa city to utilize or dissipate excess light en ergy is depressed, for example, un der conditionso f nutrient deficit or co ld-in du ced photoinhibition (Polle et al., 1992; Po lle Renn enberg,1996; Lo ga n et al., 1999). External foliar w ax es reflect light, thereby pro vid ing a photoprotectivefunction (Robinson et al., 1993; Ro binso n Os m ond , 1994; Bark er et al., 1997).

    Patterns o f anthocyanin dev elopm ent across different families an d orders o f plants suggest

    strong conv ergen ce, and it has been hypothesized that the sam e ph ysio logica l basis has led tothis conve rgence (Kursar Coley, 19 92). However, the ecoph ysiological role o f foliar antho-cyanin remains contentious. Le af color has been described as a by-p roduc t of the general me -tabolism of f lavonoids, the color being expressed through anthocyanin as one o f the by-produ cts(Lee et al., 198 7). Conversely, it has been argue d that anthocyanin has fo ur important func -tions, as a compatible solute contributing to osmotic adjustment to drought and frost stress(Chalker-Scott, 199 9), as an antioxidant (Rice -Eva ns et al., 1996; Yam asaki et al., 1996; W anget al., 199 7), as a U V protectant (Lee Lowry, 1980; Bu rger Edwards, 1996; Jay aku m ar etal., 1999), and as protection from visible light through light attenuation (Gould et al., 1995;K rol et al., 1995; Ba rke r et al., 1997; D od d et al., 1998; Pietrini M assacci, 1998; M en de z etal., 1999; Neill Gou ld, 199 9; C lose et al., 2001a). C urrently, its role in light attenuationattracts the most support.

    A. OSMOTICADJUSTMENT

    It has been a rgued that foliar anthocyanin co nfers cold and drou ght hardiness b y contributing toosm otic adjustment in lea f tissues (C halker-Scott, 1999). Circum stantial evidence, that cold-hardy(Kakegawa et al. , 198 7; Len g et al. , 1993; Foo t et al. , 1996; Oren-Shamir Levi-Nissim, 1997)and drought-hardy (Tuohy Choinski, 19 90 ; Choinski Johnson, 199 3; Ronchi et al. , 1997;Sherwin Fan'ant, 1998) tissues contain anthocyanin, has been presented (Chalker-Scott, 1999).How ever, this evidence d id not exclude the possibility that cold- or drought-induced photoinhibitionoccurred in these studies. Thus anthocyanins may have been synthesized for photoprotection inresponse to photoinhibition rather than osmotic adjustment. Foliar anthocyanin does not alwayscorrelate with frost hardiness (e.g., Nozz olillo et al., 1989; Toivonen et al., 19 91). Leaves o fE u c alyp tus n i t ensseedlings exposed to freezing temperatures but protected from high light by open-topped shade-cloth shelters had negligible anthocyanin content compared with exposed seedlings(Close et al . , 2001a, 2002). Chalker-Scott (1999) concludes that anthocyanin may providephotoprotection but also prevents ice nucleation and desiccation through osm otic effects. It is notclear how this mechanism m ay explain anthocyanin accum ulation under low but no t freezing tem-

    peratures (Tan, 1979; Arm itage Carlson, 1 98 1; Cristie et al., 1994 ; B oo et al., 1997).

    B. ANTIOXIDANTS

    A nth ocy an in functions as an antioxidant in vitro (Rice-E van s et al. , 1996; Yamasaki et al. ,1996; Wan g et al., 1997) and, by implication, in viv o (Yam asaki, 1997). Yam asaki (199 7)

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    6/13

    154 THE BOTANICAL REVIEW

    argued that the prod uction o f dam agin g reactive ox yg en intermediates, by high light intensityand/or abiot ic s tress, prov ided evidenc e for an antioxidant role o f anthocyanin in the fol iage o fstressed plants. However, in two field studies (Grace et al., 1998; Close et al., 2001a), seasonalvariation in anthoc yan in levels was not associated with variation o f foliar com po un ds o f pro-

    posed antioxidant capacity.

    C. LIGH TATTENUATION

    1 I n t e r n a l L e a f D i s t ri b u ti o n

    An thocya nin is widely distributed in the palisade and/or spon gy mesoph yll cel ls o f m anyplant species (G ou ld & Quirm, 1 999; Le e & Collins, 2001). It abso rbs light between ca. 400and 60 0 nm (Pietrini & Massacci, 1998; Clo se et al., 2001a). This suggests that anthocyaninscan act to screen visible light. Sun et al. (1998) have sh ow n that green light can drive ca rbonfixation below the pal isade layer, where the sp ong y mesophy ll can contr ibute as mu ch as 40%o f carb on dioxide carbo xylation (Nishio et al. , 1993). Chloroplasts in outer leaf layers are welladapted to excess light absorption throu gh the activity o f the xanthophyll cyc le (e.g., Dem m ig-Ad am s & Adam s, 1992). Sudden chang es in levels o f incident l igh t--fo r example, sun f lecksthrough an o ve rsto ry- -ca n induce excess l ight absorption that requires pho toprotect ion via thexanthophylls cy cle (Lo gan et al., 1997; Thiele et al. , 1998 ). Shade-adapted chloroplasts o f lowchlorophyll a:b ratio may require photoprotection via anthocyanin during sun-fleck events toensure tha t they fix significant amounts o f carb on (G ould et al., 2000).

    Du ring leaf expansion (Lee & L ow ry, 1980; Tu ohy & Choinski, 1990; Choinski & Joh nson,1993; Woodall et al., 1998), during senescence (Matile et al., 1992; Feild et al., 2001), and in

    respo nse to abiotic stress (Tevini et al. , 1991; Krol et al. , 1995; Bu rger & Edwards, 1996; Closeet al., 2001 a, 2002), leaves syn thesize a nth oc ya nin in, or imm ediately b elow, epidermal layers.Th e requirement for photoprotection is large if the leaves are expo sed to high light conditions;this is consistent with anth ocy anin provid ing a photoprotective role.

    2 S e e d l i n g s

    Seedlings provide a mo del system for investigat ion o f the e cophy siological role o f antho-cyanin becau se yo un g leaves hav e an inherently low cap acity for l ight uti lization due to lowlevels o f chloro phy ll (Krause et al. , 1995; B arker et al., 1997; Do dd et al., 1998; Close et al.,

    200 0, 2001b). Seedlings are also less adapted to abiotic stress su ch as frost- an d cold-inducedphotoinhibition associated with radiative c oo ling (Jordan & Sm ith, 19 95) and cold -air stratifi-catio n (Jordan & Sm ith, 19 94 ), drought, an d waterlogging (Burdett, 1990; Close, 2001). Seed-lings suffer transplant sh oc k du ring acclimation to ne w field environm ents (Sp unda et al.,1993; M oh am m ed & Parker, 1999; Close et al., 2000). Th us leaves of seedlings are oftenexp osed to conditions that require m ax im um photoprotective effort.

    Anthocy anin content inPinus banksianawa s twofold greater in seedlings expo sed to 5~com pared with 15~ and in high l ight com pared with low light und er similar temperatureconditions (No zzollilo et al. , 1989 ). An tho cya nin coloration wa s linked to nutrient d eficit un-der low-temperature and high -light conditions in P.sylvestris(Toivonen et al. , 19 91). A nth o-cya nin conten t w as no t linked to photoinhibition or photop rotection in either o f these studies.Ho we ver, Krol et al. (1995) sho we d that the prod uction o f foliar antho cya nin is correlated withtolerance o f photoinhibition in seedlings o fP banksianaand proposed tha t an thocyanin canredu ce sensitivity to cold-indu ced photoinhibition. The re w as a two fold difference in qua ntumyield o f oxyg en evolution and in photoche mical eff iciency after t ransfer o f seedlings from a

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    7/13

    FOL IAR ANTHOCY ANIN 155

    , l / . 5

    , : ',, . . t :9 . - '~ . 5

    ~ 1 0

    .~ - - ~ - - - ~ - - - 1- 0 .5

    [ e - , ' ~ ' I ' ' 4 I I I I I I I o

    9 14 16 18 21 24 27 30 35

    Day o f l ea f deve lopment

    Fig. 1. O verall reflectance of incident light from 400 to 700 nm ( leaf reflectance, ), an estimate ofrelative wax d evelopm ent ( /2) (wa x developm ent), and anthocyan in content (relative absorption at 530nm per gram leaf fresh weight) of developingCotyledon orbiculataleaves.Source:Adapted from Barkeret al., 1997.

    20~ environ me nt to a 5~ environ me nt (Kro l et a l . , 1995). Photoin hibi t ion indu ced by nutr i -en t def ic i t was l inked to the dev elopm ent of fo l ia r an thocyanin in seedl ings ofEucalyptusnitens (Close e t a l . , 2001a) . Anthocyanin synthes is and breakdown were a l so l inked to thesever i ty of co ld- induced photo inhib i tion in seedl ings ofE nitensand E globulussoon af terthey w ere t ransp lanted from the nurse ry to the f ield (Close et a l ., 2000). This asso ciat ion be-tween an thocyanin content and the sever i ty of photo inhib i t ion was s imi la r ly demo nst ra ted us-i n g s h a d e - c l o t h s h e l t e r s , w h e r e t h e i r s u b s e q u e n t r e m o v a l i n d u c e d p h o t o i n h i b i t i o n a n danthocy anin synthesis (Close et a l . , 2002). Such repo rts s t rongly implica te synthesis of fol iaran thocyanin as a m echanism of photopro tec tion .

    3 Doe s Light Absorp t ion by Anthocyanin Provide Photopro tec t ion?

    Go uld e t a l . (1995) have a rgued tha t an thocyanin-conta in ing m esophyl l ce l l s pro tec t shade-adapted ch loroplast s deep w i th in the lea f as they absorb wavelengths be tween 500 and 600 nmthat over lap tha t o f ch lorophyl l b . Subsequent s tud ies have suppor ted th i s hypothes is . Youngleaves o f t he CA M p lan tCotyledon orbiculatad id no t deve lop dense ep ide rma l wax un t il 21 -24 days of deve lopment , a f te r which leaves re flec ted c lose to 60 of inc ident l igh t (F ig . 1 )(Barker e t a l . , 1997). Pr ior to day 24 , xan thophyl l -cyc le p igments p er un i t ch lorophy l l were a tthe i r h ighes t (da ta not shown) . Low ref lec tance ( ind ica tive of l igh t a ttenuation) was assoc ia tedwi th h igh leve ls of fo l ia r an thocyanin (F ig . 1 ). Thus , photopro tec t ive s t ra teg ies of deve loping

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    8/13

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    9/13

    FOLIAR ANTHOCYANIN 157

    p h y l l s, a n t io x i d a n t s , a n d e p i d e r m a l w a x e s . T h e s e l i m i t a ti o n s m a y b e o v e r c o m e t h r o u g h t h e u s eo f m u t a n t s t h a t ar e u n a b l e t o s y n t h e s i z e a n t h o c y a n i n . Wo r k o n g e n e s t h a t s i g n a l a n t h o c y a n i na c c u m u l a t i o n h a s l a r g el y b e e n l a c k in g , p a r t i c u la r l y i n t h e c o n t e x t o f e c o p h y s i o l o g i c a l i n v e s t i-g a t io n s . T h u s , a n a l o g o u s t o s t u d ie s o f t h e x a n t h o p h y l l c y c le a n d p h o t o p r o t e c t i o n i n m u t a n t s , i t

    m a y b e p o s s i b l e to u n e q u i v o c a l l y d e m o n s t r a t e t h a t t h e e c o p h y s i o l o g i c a l r o le o f a n t h o c y a n i n isp h o t o p r o t e c t i o n .

    V I . A c k n o w l e d g m e n t s

    O u r t h a n k s t o D r s . M a m o r u M a t s u k i a n d C a r o l i n e M o h a m m e d f o r r e v i e w i n g o u r m a n u -s c ri p t. D u g a l d C l o s e i s s u p p o r t e d b y a n A u s t r a l ia n R e s e a r c h C o u n c i l p o s t d o c t o r a l f e l lo w s h i p .

    V I I . L i t e r a t u r e C i t e d

    Ar m itage , A. M. W. H. C ar lson. 1981. The effec t of quantum f lux densi ty, day and n ight tempera tureand ph osph orus and p otassium status o n antho cyanin and chlorophyll content in marigold leaves.J. Am er. Soc. Hort. Sci. 1 06 : 63 9-6 42 .

    Atkinson D. 197 3. Som e general effects o f phos phoru s deficiency on grow th and development. NewPhytol. 72: 101-111.

    Ba jaj, K. L., D. Sin gh G. K ao r. 1989. Biochemical basis o f relative field resistance of eggplantSolanummelongena)to the sho ot and fruit borerLeucinodes orbonalisGuen.). Ve g. Sci. 16: 145 -149.

    Ba rke r, D. H., G. G. R. Seato n S. A. Rob inso n. 199 7. Internal and external photoprotection in devel-oping leaves of the CAM plantCotyledon orbiculata.PI. Cell Environ. 20: 617-6 24.

    Begg s, C. J . E. W ellm an n. 19 85. An alysis of l ight controlled an thocy anin form ation in coleopti les o fZea maysL.: The role of U V -B , blue, red and far-red light. Photochem. Photobiol. 41: 481-48 6.

    Bh au da l, I. C. P. M alik. 198 8. Potassium estimation, uptake and its role in the phy siology and me-tabolism o f flowering plants. Int. Rev. Cytol. 11 0: 20 5-2 54 .

    Bo ng ue -B arte lsm an , M . D. A. Phil l ips. 1995. Nitrogen stress regulates gene expression o f enzym es inthe f lavonoid biosy nthetic pathw ay of tomato. PI. Physiol . Biochem , 33: 539 -546 .

    Boo, H. , Y. Tom itaka , M. l sh im ur a M. K am ur a . 1997. Effec t of envi ronmenta l fac tors on anthocya-nin synthes is and sugar co ntent inCichorium intybusL. var. foliosum. En viron . Control B iol. 35:9 1 - 9 8 .

    Braudt K., A. Gia nn ini B. Ler ear i . 1995. Photomo rphologenic responses to UV radiat ion , I I I: Acom parative study of U V -B effects on a nthocy anin and flavon oid accumulation in wild-type andaurea mu tant of tomatoLycospericon esculentumMill .) Photochem. Photobiol. 62 :10 81 -10 87 .

    Bu l lard , R. W. , P. P. W oronec ki , R. A. Dolbe er J . R. Maso n. 1989. Biochemical and morphological

    characterist ics in maturin g achen es from purple-hu lled and oilseed sunflow er cult ivars. J . Agric.Food Chem. 37: 886-890.

    Burden A. N. 1990 . Physiological processes in plantat ion establishm ent and the dev elopm ent of specifi-cations for forest plan ting stock. Canad. J. Fores t Res. 20: 415- 42 7.

    Burger J . G. E. Ed w ard s . 1996. Photosynthet ic eff ic iency and photodam age by UV and vis ib leradiation, in red versus g reen le af coleu s varieties. P1. Cell Physiol. 37: 3 95 -39 9.

    Ch alke r-S cott , L . 1999. Env ironm ental s ignificance ofa ntho cya nin s in plant stress responses. Photochem.Photobiol. 70: 1-9.

    Ch oin ski , J . S. J . M. Joh ns on . 1993. Chan ges in photosynthesis and water status of develop ing leavesofBrachystegia spiciformisBen th. Tree Physiol. 13: 17-27.

    - - R. R. W ise . 1999. Leaf grow th and develop men t in re la t ion to gas exchange inQuercus

    marilandicaMu enehh. J . Pl . Physiol . 154 : 302 -309 .Close, D. C . 2001. Cold-induced pho toinhibit ion, pigm ent chemistry, gro wth an d nutri t ionof Eucalyptus

    nitensand E. globulusseedlings du ring establishment. Ph.D. diss., Un iversity o f Tasmania., C. L. Bea dle, P. H. Br ow n G. K. Holz. 2000. Cold-induced pho toinhibit ion affects establish-

    men t o fEucalyptus nitens(Deane and M aiden) Maiden andEucalyptus globulusLabill. Trees 15:3 2 - 4 1 .

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    10/13

    1 58 T H E B O TA N I C A L R E V I E W

    , N. W. Davies & C. L . Be adle . 2001a. Tem pora l var ia t ion of tannins (ga l loylg lucoses), f lavonolsand an thocyan ins i n l e aves o fEucalyptus nitensseedl ings : Impl ica t ions for l igh t a t tenuat ion andantioxid ant act ivi t ies . Austral . J . P1. Phys iol . 28: 1-10 .

    , C . L . Bead le & M . J . I tov end en. 20 0lb . Cold- induced photo inhib i tion and fo l ia r p igm ent dy-namics o fEucalyptus nitensseedlings during establ ishm ent. Austral . J . P1. Physiol . 28:1 133 -114 1.

    , - - , G . K . l to l z & P. H B r o w n . 2 00 2. E f f e c t o f s h a de c lo t h t re e s h el te r s o n c o l d- i nd u c e dphoto inhib i t ion , fo l ia r an thocyanin and g rowth o fEucalyptus globulusLabill. and E. nitens(Deaneand M aiden) M aiden seedl ings dur ing es tab l i shment . Aus t ra l . J. Bot . 50 : 15-20 .

    Coley, P. D. & T. M. A ide . 1989. Red co lora t ion of t ropica l you ng leaves : A poss ib le an t i fungal defence ?J. Trop. Ecol . 5: 293-300.

    - - & T. A. K urs ar. 1996. Ant i -herb ivore defenses of young t ropica l leaves : Phys io logica l cons t ra in tsand ecolog ica l trade-offs . Pp . 30 5-335in S. S . Mulkey, R. L . Ch azdon & A . P. Smi th (eds . ), Tropica lfores t p lan t ecophys io logy. Chapm an & Hal l , Ne w York .

    Co s t a -A rbu ln , C . , E . G iano l i , W. L . Go nza l e s & I t . M . N iemeye r. 2001 . Feed ing by t he aph idSiphaf lava produ ces a reddish spot on leavesof Sorghum halapense:an indu ced defense? J . Chem . Ecol .27: 273-283.

    Cr l s t i e , P. J . , M . R . A l f en l t o & V. W a lbo t . 1994. Im pac t o f low t empera tu re s t re s s on pheny lp ropano idand antho cyanin pa thways : Enh ancem ent of transcr ip t abundan ce and an thocyanin p igm enta t ion inma ize seedl ings . P lan ta 194: 541-54 9.

    D e m m i g - A d a m s ,B. & W. W . A da m s I lL 1992 . Pho top ro tec t ion and o the r r e sponses o f p l an t s t o h ighlight s tress . An nua l Rev. P1. Phy siol . P1. M olec. B iol . 43: 59 9-62 6.

    D o d d , I . C . , C . Cr i teh ley , C~ S . Woo dal l & C~ R. S tew ar t . 1998. Photo inhib i t ion in d i fferen t ly co louredjuven i l e l e aves o fSyzygiumspecies. J . Exp. Bot . 49: 1437-1445.

    D r u m m - H e r r e l ,H. & I t . M oh r. 1985. Photos tab i l i ty of seedl ings d iffe r ing in the i r po ten t ia l to synthe-size anthocyanin. Physiol . P1. (Copenhagen) 64: 60-456.

    Fe i l d , T. S ., D . W. Le e & N . M . H o lb roo k . 2001 . W hy l eaves t u rn r ed i n au tumn: The ro l e o f an thocya -n ins in senesc ing leaves of red-os ie r dogwo od. P1. Phys io l . (Lancas te r) 127: 566-574.

    Foo t , J . E , S . J . M. Ca po rn , J . A . Lee & T. W. Ashe nd en . 1996. The e ff ec t o f l ong t e rm ozone fumiga -t ion on the grow th , phys io log y and f ros t sens i tiv i ty ofCalluna vulgaris.New Phy to l. 133 :503 -511 .

    Go u ld , K . S . & B . D . Q u inn . 1999 . Do an thocyan ins p ro t ec t l e aves o f New Zea l and na ti ve spec ie s f romUV -B ? New Zea l and J . Bo t . 37 : 175 -178 .

    - - , D , N . K u h n , D . W. L e e & S . E O b e r b a u e r. 1 99 5. W h y le av es a re s o m e ti m e s r ed . N a tu re 37 8:2 4 1 - 2 4 2 .

    - - , K . R . M a r k h a m , R . t t. S m i t h & J . J . G o r is . 2 00 0. Fu n ct io n al r ol e o f a n th o cy a ni ns i n t he l ea v eso f Quintinia serrataA. Cunn. J . Exp. Bot . 51: 1107-1115.

    G r a c e , S . C . , B . A . Log an & W. W . Ad am s I I I . 1998. Seasonal d i f f er ences i n fo li a r con t en t o f ch lo ro -genic ac id , a pheny lpropan oid an t ioxidant , inMahonia repens.Pl . Cel l Envi ron . 21 513-521 .

    H a m m e r s e h m i d t ,R. & R . L . N ieho l son . 1977. R es i st ance o f m a ize an th racnose : Changes i n hos t pheno l s

    and p igments . Phytopatholog y 67: 251-258 .He im , D . , R . L . N ich o l son , S . F Pasch o la t i , A . E . H ag e rm an & W . B i i l e tt . 1983. E t io l at ed ma ize

    meso coty ls : A tool for inves t iga t ing d isease in te rac t ions . Phytopatho logy 73: 424 -428.Hip sk ind , J . , K . W ood & R . L . N icho l son . 1996. Loca l i sed s timu lat ion o f an thocyan in accumula ti on

    and de l inea t ion o f pa thogen ingress in m aize genet ica l ly res is tan t toBiplaris maydisrace O. Phy s io l .& M olec . P1. Pa thol . 49 : 247-25 6.

    H o c h , W. A. , E . L . Ze ld in & B . H . M cC ow n . 2001. Phys io log i cal s i gn if i cance o f an thocyan ins du r ingautumnal leaf senescence . Tree Phys io l . 21: 1-8 .

    H o d g e s , D. M . & C. N ozzol i l lo . 1996. Anth ocyan in and an thocyan oplas t content of c ruc i fe rous seed-l ings sub jected to m ineral nutr ien t deficien cies. J . P1. Phy siol . 1 47: 749-75 4.

    Ism an , M . B. & S . S . Duffey . 1982. Toxic i ty of tomato phenol ic compo unds to the f ru i tworm ,Heliothiszea. Ento mo logia Exper imenta l i s e t App l ica ta 31: 370-376.

    J a yak um a r, M . , M . E y in i , P. S e lv in t h angn du ra i , K . L ingakum ar, A . P r em kum ar G . Ku land a ive lu .1999. Ch anges in p igm ent com posi t ion and photosy nthe t ic ac t iv i ty of aquat ic fe rnAzolla microphyllaKaulf . ) exposed to low doses of UV ~C (254 n m) rad ia t ion . Photosy nthe t ica 37: 33-38 .

    J o rd a n , D. N. & W . K. S m i th . 1994. Energy ba lance ana lys is of n ight - t ime leaf tempera tures and f ros tformat ion in a subalp ine envi ronment . Agr ic . Fores t Meteoro l . 77 : 359-3 72.

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    11/13

    F O L I A R A N T H O C YA N I N 1 59

    - - . 1995. Microc l imate fac tors inf luencing the f requen cy and dura t ion of grow th seasonfros t for sub-a lp ine p lan ts . Agr ic . Fores t Meteoro l . 77 : 17-30 .

    K a k e g a w a , K. , Y. Ka nek o , E . Ha t to r i , K . Ko ike lC Takeda . 1987. Ce l l cu l tu r e s o fCentaurea cyanusproduce m alonated an thocyanin in UV l ight . Phy tochem is t ry 26: 2261-2263 .

    Ka r im , A . , K . Ko eda N . N ii . 1999 . Changes in ana tomica l f eatu re s , p igmen t con t en t and pho tosyn -the t ic ac t iv ity re la ted to age o f ' I rw in ' m ang o leaves . J. Jap . Soc . Hor t . Sc i. 68 : 1090-1098.

    Kr au se , GL H. , A. Virg n K. Win ter. 1995. High suscept ib i l i ty to photo inhib i t ion o f youn g leaves oft ropical fores t t rees . P lan ta 197: 583-591.

    - - , C . Sehm nde , H . Ga rd en , O . Y. Koro l eva K . Win t e r. 1999 . E ff ect s o f so la r u ltr av io le t r ad ia tionon the potential eff iciency o f photosystem II in leaves of t ropical plants. PI . Physiol . 121 :1349 -1358 .

    Kro l , M. , G . R . Gray, V. M . Hur ry , L . Oqu i s t , L . M a lek N . P. A . Hune r. 1995. Low t empera tu res t ress and photoper iod effec t an increased to le rance to photo inhib i t ion inPinus banksianaseed -lings. Canad. J. Bot. 73: 1119-1127.

    Ku ma r, V. S . S . Sh a rm a . 1999. Nu t r i en t de f i c i ency -dependen t an thocyan in deve lopm en t i nSpirodelapolyrhiza L. Schled. Biol. P1. 42: 621~524.

    Kursar, T. A. P. D. Coley. 1992. Delayed deve lopm ent of the photosy nthe t ic appara tus in t ropica l ra infores t spec ies . Func . Ecol . 6 : 411-42 2.

    Lawan son , A . O. , B . B . Ak inde l e , P. B . Fasa lo jo B . L . Ak pe . 1972. Time-cou r se o f an thocyan informat ion dur ing def ic ienc ies of n i t rogen , phosp horus and p otass ium in seedl ingsofZea maysLinn.var. E. S. 1. Z. Pflan zenp hysio l . 66: 251 -25 3.

    - - , A . O j e n i y i, C . E . N d u k a S . O . O s u e k e . 1 97 5. D i s tr ib u ti o n o f c y a n id i n -3 - g al ac t os id e a n dpelargonid in-3-g lucos ide in m inera l -def ic ien t ma ize seedl ings . Phyton 33: 187-191.

    Lee , D. W. T. M . Col l ins . 2001. Phylog enet ic and ontogenet ic inf luences on the d is t r ibu t ion of an tho-cyan ins and be tacyan ins in leaves of t ropical plants . Int. J . P1. Sci. 162 : 1141-1 153.

    - - J . B . Low ry. 1980 . Young- l ea f an thocyan in and so l ar u l tr av io l et . B io t rop . 12: 75 -76 .- - , S . B r a m m e l e r A . P. S m i t h . 1 98 7. T h e s el ec ti v e a d v a nt ag e s o f a n th o c y an i n s i n d e v e lo p i n g

    leaves of m ango and cacao . Bio t ropica 19: 40-4 9 .Leng , E , H . I t am ur a H . Ya m am ura . 1993. F reez ing t o l er ance o f s eve ra l D iospy ros spec i e s and khak i

    cult ivars as related to anthocyanin formation. J . Jap. Soc. Hort . Sci . 61: 795-804.Lindoo, S . J . M. M. Caldw el l .1978. U l t rav io le t -B rad ia t ion- induced inhib i tion o f leaf expan s ion and

    prom ot ion o f an thocyanin product ion . P1 . Phys io l . 61: 278-28 2.Logan, B . A . , D . H . B a r k e r , W. W. A d a m s I I I B . D e m m i g - A d a m s . 1 9 97 . T h e re s p o n se o f x a n th o p h y ll

    cyc l e -depen den t ene rgy d i s s ipa t ion i nAlocasia brisbanesisto sun f lecks in a subt ropica l ra infores t.Austral . J . P1. Phys iol . 24: 2 7-3 3.

    - - , B . D e m m i g - A d a m s T. N . R o s e n s t ie l . 1 99 9. E f f e c t o f n i tr o g e n l im i ta ti o n o n f o li ar a n ti ox i -dants in re la t ionship to o ther m etabol ic charac ter is t ics . P lan ta 209: 213-2 20.

    Mach , J . M . , A . R . Cas t i l lo , R . Ho ogs t r a t en J . T. Gr een be r g . 2001 . TheArabidopsis acceleratedce l l -dea th gene ACD2 encodes red ch lorophyl l ca tabol i te reductase and suppresses the spread ofd isease symptom s. Proc . Nat l . Acad . U .S .A. 98: 7 71-776.

    M at i le , E 2000. Bioc hem is t ry of Indian summer : Ph ys io logy of au tumnal leaf co lora t ion . Exp. Geront .35: 145-158.

    - - , B . F l a c h B . E l l er. 19 92 . S p e c tr a l o p t ic a l p r o p e rt ie s , p i g m e n t s a n d o p t ic a l b r i g h te n e r s i nau tumn l eaves o fGinko bolobaL. Bot. Ac ta 105: 13 -17.

    M e n d e z , M . , D .G w y n n J o n e s Y. M an etas . 1999. Enhan ced UV-B radia t ion under f ie ld condi t ionsinc rea ses an thocyan in and r edu ces t he r i sk o f pho to inh ib i t ion bu t d oes no t a f f ec t g row th i n t hecarn ivorous p lan tPinguicula vulgaris.New Phyto l . 144: 275-282.

    M oh am m ed , C~ H. W. C. Parker . 1999. Photosynthe t ic acc l imat ion in eas te rn hem lock[Tsuga canadensis(L.) Carr.] seedlings fol lowing transfer of sha de-g row n seedlings to high l ight. T rees 13: 117-124.

    M ii l le r, P. , X-P. Li K. K. Niyogi . 2001. No n-pho tochem ica l quenching: A respon se to excess l igh tenergy. P1. Physiol . 125: 1558-1566.

    Nei l l, S . K. S . Gou ld . 1999. Opt ica l proper t ies o f leaves in re la tion to an thoeyanin concent ra t ion anddistr ibution. Canad. J . Bot . 77: 1777-1782.

    Ni i, N . , T. W a tan abe , K . Yam agueh i M . N i sh im ura . 1995. Changes o f ana tomical f ea tu r e s, pho to -syn thes i s and r i bu lo se b i sphospha t e ca rboxy la se -oxygenase con t en t o f ma ngo l eaves . Ann . B o t .,n.s . , 76 (Oxford): 649~556.

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    12/13

    1 60 T H E B O TA N I C A L R E V I E W

    Nishio J . N. , J . D. Sun T. C. Vo geim ann . 1993. Carbon f ixa tion gradien ts across sp inach leaves donot fol low internal l ight gradients . P1. Cell 5: 953-961.

    Ni t t le r, L . W. T. J . Ke nn y. 1976. Effec t o f am m oniu m to n i t rate ra t io on grow th and an thocyan indevelo pm ent of perennia l ryegrass cu l tivars. Agron . J . 68 : 68 0-682.

    Niyogi , K . K . 1999. Photopro tec t ion rev is i ted : Genet ic and m olecular approaches . Annual R ev. P l. Phy s io l .PI . Molec. Biol . 50: 333-359.

    Nozznl i l ln , C . , P. I sabe l le G. Das . 1989. Seasonal changes in phenol ic cons t i tuents of jack p ine seed-l ings Pinus banksiana)in re la t ion to the purp l ing phenom enon . Canad. J . Bot . 68 : 2010-201 7.

    Ore n -S ham i r, M. A . Lev i -N i s s im . 1997 . UV- l igh t e f f ec t on t he l e a f p igmen ta ti on o fCotinus coggygria'Royal Purp le ' . Sc i . Hor t . (Amsterdam) 71: 59-66 .

    Pie t r in i , 17. A. M assae e i . 1998. Le af an thocyanin content chang es inZea maysL. grown a t low tem-pera ture : S igni f icance for the re la t ionship be twe en quantum yie ld of PS I I and the apparent quantumyie ld o f CO 2 ass imi la t ion . Photosyn . R es . 58 : 213-21 9.

    Pol le , A. H. Ren ne nb erg . 1996. Photooxida t ive s t ress in t rees. Pp . 199-217in C. H. Foy er P. M .M ul l ineaux (eds . ) , Causes o f photooxida t ive s t ress and am el iora tion of defen se sys tems in p lan ts .CRC Pre s s, London .

    , M . M 6s sn an g A. von Seh~inborn . 1992. F ie ld s tudies on No rway spruce t rees a t h igh a l t i-tudes , I : Minera l , p igmen t and so luble pro te in contents of the needles as a ffec ted by c l imate andpol lu t ion . N ew Phyto l . 121 : 89-97 .

    Qu i ro s , C . F., M. A . S t evens , C . M. R ick M . L . Kok-Yok omi . 1977. Res is t ance i n t oma to t o t he p inkfo rm o f t he po t ato aph idMacrosiphum euphorbiaeThom as) : The ro le of ana tomy, ep idermis ha i rs ,and fo l iage comp osi t ion . J . Am er. Soc . Hor t . Sc i. 102: 166-171.

    R ice -Ev ans , C . A . , N . J . M i l l e r G . Pag ang a . 1996. S t ruc tu re- an t iox idan t a c t iv i t y r e l a ti onsh ips o ff lavonoids and phenol ic ac ids . Free Radica l Bio l . M ed. 20: 933-95 6.

    Robinson S. A. C. B. O sm on d. 1994. In te rna l gradien ts of ch lorophyl l and caro tenoid p igm ents inre la tion to p hotopro tec t ion in th ick leaves o f p lan ts wi th Crassu lacean ac id m etabol i sm. Aus t ra l . J .P1. Physiol . 21: 497-506.

    - - , C . E . L n v e l o ek C . B . O s m o n d . 1 99 3. Wa x a s a m e c h an i sm f or p r ot ec ti on a g ai ns tp h o t o i n h i b i t io n - - A s tu d y o fCotyledon orbiculata.Bot . Ac t a 106 :307 -312 .

    Ro ne hi , A. , G. Fa r in a , E . Go zzo C. Tonel l i . 1997. Effec ts of a t r iazol ic fungic ide on maize p lan tmetabo lism: Mod ificat ions o f t ranscript abun dance in resis tance-related pathway s. PI. Sci. 130 :51- 62.

    Sa l i sb ury, F. B. C. W. Ross . 1992. P lan t Phys io logy. Ed . 4 . W adswor th Publ i sh ing Co. , Belm ont , CA .Sa t yan a ray ana , E . , S . V. S . Sh as t ry P. R . R R eddy . 1987 . Re l a t ionsh ip o f r e s is t ance t o r i c e ga l l

    m i d g e Pachydiplosis oryzaeWood-Mason) wi th t i l l e r number, p lan t he ight and p igmenta t ion inr ice. Ann. Agr ic . Res . 8 : 4 -7 .

    She rwln , H . W. M . Fa r r an t . 1998. P ro tec t ion mechan i sm s aga in st exces s l igh t i n t he r e su rr ec ti onplants Craterostigma wilmsiiand Xerophyta viscosa.P1. Grow th R egula tor 24: 203-21 0.

    Ski l lm an, J . B ., B . R. S t ra in C. B. Os m on d. 1996. Cont ras ting pa t te rns of photosynthe t ic acc l imat ionand photo inhib i tion in two evergreen herbs f rom a w in ter dec iduous fores t . Oecologia 107: 446-455.

    S p u n d a , V., J . K a l i n a , J . N a u s , R . K u r o p a t w a , M . M a s l a n M . M a r e k . 1 99 3. R e s p o n s es o f p h o t o sy s -te rn I I photoch emis t ry and p igm ent composi t ion in needles o f Norw ay spru ce sapl ings to increasedradia tion leve l . Photosyn the t ica 28: 40 1-413 .

    Stone , C. , L . Ch ish olm N. Coo ps . 2001. Spec t ra l re f lec tance charac teri s t ics of euca lypt fo l iage dam -aged by insects . Austral . J . Bot . 49: 687-698.

    Sug iha r to , B . , K . M iya t a , H . Nak am oto , H . Sasak awa T. Sug iy ama . 1990. Regu la ti on o f exp re s s iono f carbon-ass im i la t ing enzy me s by n i t rogen in maize leaf . P l. Phys io l . 92: 963-96 9.

    Su n, J . D . , J . N. Nish io T. C. Voge lma nn. 1998. Green l igh t dr ives CO 2 f ixa t ion deep wi th in leaves . PI .Cell Physiol . 39: 1020-1026.

    Tan, S . C. 1979. Rela t ionships and in te rac t ions be tween phenyla lan ine amm onia- lyase (PAL) , phenyla la -n ine am mo nia- lyase inac tiva t ing sys tem (PA S-IS) , and an thocyanin in apples . J. Amer. Soc . Hor t .Sci . 104: 581-586.

    Te rash im a, 1 . J . R . Ev ans . 1988. Effec ts o f l igh t and n i t rogen nut r i tion in sp inach . P1. Cel l Phys io l. 29 :143 -155 .

    Tevin i , M . , J . B rau n G. P ieser. 199 I . The pro tec t ive func t ion of the ep idermal layer of rye seedl ingsagains t u l t rav io le t-B rad ia tion . Photoch em. Photobio l . 53 : 329-333 .

  • 8/9/2019 the Ecophysiology of Foliar Anthocyanin

    13/13

    F O L I A R A N T H O C YA N 1 N 1 61

    Th ie l e , A . , G . I t . K rau se K . W in t e r. 1998.In situ s t u d y o f p h o t o i n h i b i t i o n o f p h o t o s y n t h e s i s a n dxan tho phy l l cyc l e ac t i v i t y i n p l an t s g rowing in na tu ra l gaps o f the t r op i ca l f o r e s t . Aus t ra l . J . P1 .Phys io l . 25 : 189 -195 .

    To i v o n e n , A . , R . R i k a l a , T. R e p o H . S m o l a n d e r. 1 99 1. A u t u m n c o l o u ra t io n o f f ir s t y e a rPinus sylvestrisseed l ings du r ing f ro s t ha rden ing . Scan f . J . Fo re s t Res . 6 :31 -39 .

    Tu o h y, J . M . J . S . C h o i n s l d . 1 99 0. C o m p a r a t i v e p h o t o s y n t h e s i s i n d e v e l o p i n g l e a v es o fBrachystegiaspiciformisBen th . J . Exp . Bo t . 41 : 919 -923 .

    W ang , H . , G . Ca o R . L . P r io r. 1997 . Ox ygen r ad ica l abso rb ing capac i t y o f an thocya n ins . J . Agr i c .F o o d C h e m . 4 5 : 3 0 4 - 3 0 9 .

    W ood a l l , G . S . G . R . S t ew ar t . 1998 . Do an tho cyan in s p l ay a ro l e i n UV p ro t ec t i on o f t he r ed j uven i l el eaveso f S y z g i u m ?J . Exp . Bo t . 49 : 1447 -1450 .

    -, I . C . Dod d G . R . S t ewar t . 1998 . Con t r a s t ing l ea f deve lopm en t w i th in t he genusSyzygiumJ . Exp . Bo t . 49 : 79 -8 7 .

    Yamasak i , H . 1997 . A func t ion o fco lou r. Trends P I . Sc i . 2 : 7 -8 .-, IL Ue fu j l Y. Sa ldh am a . 1996 . B leac h ing o f t he r ed an thocy an in induced by supe rox ide r ad i -

    ca l. Arch . B iochem . B iophys . 332 : 183 -186 .