the dust environment of main-belt comet p/2012 t1 ( pan-starrs )

16
The Dust Environment of Main-Belt Comet P/2012 T1 (Pan-STARRS) Moreno, F.(1); Cabrera-Lavers, A.(2,3,4); Vaduvescu, O.(2,5); Licandro, J.(2,3); Pozuelos, F. (1) (1): Instituto de Astrofísica de Andalucía, CSIC, Granada (2): Instituto de Astrofísica de Canarias (3): Universidad de La Laguna, Tenerife (4): Gran Telescopio Canarias (GTC Project) (5): Isaac Newton Group of Telescopes, La Palma EPSC London, September 10th, 2013

Upload: chanel

Post on 24-Feb-2016

58 views

Category:

Documents


0 download

DESCRIPTION

The Dust Environment of Main-Belt Comet P/2012 T1 ( Pan-STARRS ). Moreno, F .(1); Cabrera- Lavers , A.(2,3,4); Vaduvescu , O.(2,5); Licandro , J.(2,3); Pozuelos, F.(1) (1): Instituto de Astrofísica de Andalucía, CSIC, Granada (2): Instituto de Astrofísica de Canarias - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

The Dust Environment of Main-Belt Comet P/2012 T1 (Pan-STARRS)

Moreno, F.(1); Cabrera-Lavers, A.(2,3,4); Vaduvescu, O.(2,5); Licandro, J.(2,3); Pozuelos, F.(1)

(1): Instituto de Astrofísica de Andalucía, CSIC, Granada(2): Instituto de Astrofísica de Canarias(3): Universidad de La Laguna, Tenerife(4): Gran Telescopio Canarias (GTC Project)(5): Isaac Newton Group of Telescopes, La Palma

EPSC London, September 10th, 2013

Page 2: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

MBCs:• New comet reservoir ?• Most are dynamically stable ≈100 Myr• Recurrent activity• Earth’s water contribution

P/20

13 P5

New !!

Page 3: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

• Characterize a new Solar System family, the MBCs, by in situ investigation

• Understand the physics of activity on MBCs • Directly detect water in the asteroid belt• Test whether MBCs are a viable source for Earth´s

water• Use MBCs as tracers of planetary system formation

and evolution

CASTALIA: A MISSION TO A MAIN-BELT COMET

A mission proposal is being prepared to be submitted to the next ESA’s M4 call:

See poster by Boehnhardt et al.

Page 4: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

OBSERVATIONS OF P/2012 T1 (PANSTARRS)Roque de los Muchachos Observatory, La Palma

DATE (UT) DAYS AFTER PER. 

Tp=2012/09/10.9INSTRUM./TELESC. RESOLUTION m(1,1,0)

2012 Nov 13.1 63.2 PFIP/WHT 4.2m 265.8 km/px 16.9±0.2

2012 Nov 20.0 70.1 OSIRIS/GTC 10.4m 274.8 km/px 17.0±0.2

2012 Dec 13.9 94.0 OSIRIS/GTC 10.4m 307.1 km/px 17.3±0.2

2013 Jan 17.9 129.0 OSIRIS/GTC 10.4m 385.4 km/px 17.7±0.2

2013 Feb 17.9 160.0 OSIRIS/GTC 10.4m 466.4 km/px 18.9±0.2

2013 Feb 27.9 170.0 LIRIS/WHT 4.2m 485.0 km/px KS ≥22.8±0.1

2013 Feb 27.9 170.0 ACAM/WHT 4.2m 485.0 km/px --

Seeing conditions: 0.9”-1.1”

GTCWHT

Page 5: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

P/2012 T1 (PANSTARRS)                                                                                           OSIRIS@GTC                                                                                                                                       PFIP@WHT                                                                                                                                       Red bandpasses  

Moreno et al. ApJL 2013 in press

Nov 13, 2012 Nov 20, 2012

Feb 18, 2013

Dec 14, 2012 Jan 18, 2013

Moreno et al. 2013

Page 6: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

MONTE CARLO DUST TAIL/COMA MODEL (Moreno et al.)

DYNAMICAL/RADIATIVE CODE

- COMPUTE POSITION IN THE SKY PLANE OF PARTICLES EJECTED FROM NUCLEUS- CALCULATE TAIL BRIGHTNESS FROM LIGHT SCATTERING PROPERTIES OF DUST GRAINS

MODEL PARAMETERS:

1)EJECTION VELOCITY OF GRAINS AS FUNCTIONS OF SIZE: V(1-µ,t)=v1(t)(1-µ)1/k, k≥22)SIZE DISTRIBUTION: n(r)=Cr-α, GRAINS DISTRIBUTED IN SIZES FROM µm TO cm 3)MASS LOSS RATE4)EJECTION PATTERN

COMPARE SYNTHETIC TAIL WITH OBSERVATIONS AND COMPUTE STANDARD DEVIATION

Page 7: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )
Page 8: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

ObservationModel

Page 9: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

P/2012 T1(PANSTARRS)

ISOTROPICMODEL

Moreno et al. 2013

Nov.13 Nov.20

Dec.14 Jan.18

mR(Observed) mR(Model)

Oct. 11 19.8* 19.5

Feb.17 22.6 22.6*L. Buzzi (Wainscoat et al. 2012)

ObservationModel

Page 10: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

P/2012 T1(PANSTARRS)

ANISOTROPICMODEL

I=80°Φ=260°

Moreno et al. 2013

Nov.13 Nov.20

Dec.14 Jan.18

ACTIVE AREA AT LATITUDES [-90°,-45°]

ObservationModel

(Equivalent to north hemisphere conf.)

Page 11: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

        ISOTROPIC           ANISOTROPICP/2012 T1 (PANSTARRS) on Dec. 14th, 2012

Page 12: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

<2.2 kg/s Water production rate from HERSCHEL/HIFI (O’Rourke et al 2013)

Moreno et al 2013

 Nov

 13, 2012

 Dec 14, 201

2

 Nov

 20, 2012

 Jan 18

, 2013

 Feb

 18, 201

3 Feb

 28, 201

3

Broad size distribution, µm to cm rangePower index -3.5Terminal velocity v 1/r1/2 ȣ

Page 13: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

MBC P/2010 R2(La Sagra)

Moreno et al. 2011

Page 14: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

10.9 Oct 2010 16.0 Oct 2010 26.9 Oct 2010

04.8 Nov 2010 09.8 Jan 2011

ISOTROPIC  EJECTION  MODEL  FOR  P/2010 R2 (La Sagra)

Moreno et al. 2011

Obs.Model

Page 15: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

10.9 Oct 2010 16.0 Oct 2010 26.9 Oct 2010

04.8 Nov 2010 09.8 Jan 2011

ANISOTROPIC  EJECTION  MODEL  FOR  P/2010 R2 (La Sagra)

Moreno et al. 2011

Obs.Model

Page 16: The Dust Environment  of  Main-Belt Comet  P/2012 T1 ( Pan-STARRS )

CONCLUSIONS FROM P/2012 T1 (PANSTARRS) MODELING 

- CLEAR SUSTAINED ACTIVITY PATTERN WITH DURATION 4-6  MONTHS, UNKNOWN MECHANISM, LIKELY WATER-ICE-DRIVEN ACTIVITY.

- TOTAL EJECTED MASS: 5-30×106 kg

- PARTICLE SIZE SIZE DISTRIBUTION (µm TO cm) WITH POWER LAW α = -3.5

- AN ANISOTROPIC EJECTION PATTERN WITH ACTIVE AREA AT LATITUDES [+45°,+90°] INTERVAL, OR  [-90°,-45°] IS FAVORED 

- FOR THE ANISOTROPIC PATTERN, ROTATING AXIS IS NEAR THE ORBITAL PLANE, POINTING NEAR PERIHELION DIRECTION

- SIMILAR PATTERN AS MBC P/2010 R2 (LA SAGRA)

More details: Moreno et al., ApJ, 770, L30 (2013)