the atlas hybrid silicon pixel detector · the atlas pixel detektor. cbm, gsi darmstadt 14.5.2002,...

39
The ATLAS Hybrid Silicon Pixel Detector Peter Fischer Universität Bonn

Upload: others

Post on 21-Nov-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

The ATLAS

Hybrid Silicon Pixel Detector

Peter Fischer

Universität Bonn

Page 2: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

2CBM, GSI Darmstadt 14.5.2002, P. Fischer

Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The silicon sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor

Page 3: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

3CBM, GSI Darmstadt 14.5.2002, P. Fischer

Why Pixels ?

§ Avoid ambiguities (‚ghost hits‘) at high multiplicities ⇒ need true 2D detector !

§ Survive high radiation level ⇒ need very low noise

§ Note: Strip detectors have better resolution & shorter radiation length!

???

Page 4: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

4CBM, GSI Darmstadt 14.5.2002, P. Fischer

Bump pitch: 50µmdiameter: 20µm(IZM, Berlin)

Hybrid Pixel detectors

§ Every pixel is connected to a separate amplifier on the readout chip

§ Low input C ⇒ low noise ⇒ low threshold ⇒ can operate with thin detectors and small signals after irradiation ⇒ intrinsic radiation hardness

Page 5: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

5CBM, GSI Darmstadt 14.5.2002, P. Fischer

Requirements for the ATLAS pixel detector

§ Pixel Size 50 x 400 µm2 (as small as possible, limit is power)

§ Typical Signal 1fC = 6000 electrons (mip in 300µm silicon in pixel corner)§ Threshold 2000 electrons (quite a bit smaller than signal)§ Noise 200 electrons (quite a bit smaller than the threshold)§ Threshold dispersion 200 electrons (not larger than the noise)§ Leakage current tolerance 100nA / pixel (probably more than we need)

§ Speed 25ns timing precision (bunch crossing of LHC, 'time walk')§ Data storage up to 160 clock cycles (level 1 latency)

§ Radiation Tolerance 50 Mrad, 1015 n/cm2 (10 years operation)

§ Power 50µW / pixel (including periphery, ~ 10W / Module)§ Material ~ 1% X0 per layer

§ Track efficiency ≥ 99 % (including gaps between sensors)

§ Many channels 108 (must have zero suppression)

Page 6: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

6CBM, GSI Darmstadt 14.5.2002, P. Fischer

Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor

Page 7: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

7CBM, GSI Darmstadt 14.5.2002, P. Fischer

The ‚flex‘ Module

Flex capton solution:

§ Connections between FE-Chips,

module control chip, other components

and cable through a thin capton PCB

§ Size = 16.4 × 60.8 mm2

§ 16 chips with ~ 50000 pixels total§ ~ 2000 modules needed

§ Material:- silicon sensor 0.22 %- chips thinned to 200 µm 0.14 %- bumps, bonds, glue,... 0.10 %- support, cooling, caps,... 0.90 %

Total: 1.4 – 1.8 %

FE-Chip FE-Chip

sensorMCC

2 layer capton PCB control chip

Wire bonds

Larger pixels between chips

Page 8: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

8CBM, GSI Darmstadt 14.5.2002, P. Fischer

1st generation: ‚bare‘ module on rigid support

sensor

FE Chip FE Chip

ALL wire bondsmust be good!

Page 9: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

9CBM, GSI Darmstadt 14.5.2002, P. Fischer

2nd generation: flex module in mounting frame

frame

flex

MCC

FE chipsStand over

viewed from chip side

viewed from flex side

FE chips

FE-Chip FE-Chip

sensorMCC

Page 10: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

10CBM, GSI Darmstadt 14.5.2002, P. Fischer

Overall layout

~ 1m

§ Global support is a flat panel structure§ Made from carbon composite material

(IVW, Kaiserslautern)§ Total weight is 4.4kg§ 3 pieces, center part consists of two

half-shells to open

modules modules

3 barrels

2 x 3 disks

Page 11: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

11CBM, GSI Darmstadt 14.5.2002, P. Fischer

Cooling

§ Is very important

- Contributes significantly to material budget

- Limits the power / performance of electronics

- Detectors must stay below –6oC to limit damage from irradiation (see later)

§ ATLAS uses evaporative cooling:

- Cooling by evaporation of fluorinert liquid (C4F10 or C3F8) @ -20oC. Needs pumping.

- Low mass (gas!)

- small diameter tubes (only small pressure drops)

- Very large cooling capacity

- Aluminum tubes must withstand 6 atm if pumping stops and coolant develops its full vapor pressure.

§ All components must cope with thermal cycling 25oC ⇔ -20oC

Page 12: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

12CBM, GSI Darmstadt 14.5.2002, P. Fischer

Barrels and staves

§ Barrels are made from parallel staves§ One stave contains 13 modules which are shingled for overlap in z

Page 13: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

13CBM, GSI Darmstadt 14.5.2002, P. Fischer

Barrels and staves

§ Stave is a carbon structure with an Al tube for cooling§ Staves are tilted for overlap in phi (+change sharing)§ Production mainly in Germany, Italy, France

Al tube forcoolant

Carbon support

Shingled(dummy) modules

Pictures are from a mechanical test stave

Page 14: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

14CBM, GSI Darmstadt 14.5.2002, P. Fischer

Disks and Sectors

§ Disks are divided into sectors§ Coolant flows in tube between two C-C facings§ Modules are arranged on both sides for overlap§ Production in USA

cooling test of full disk(@ LBNL)Sector with 3

‚modules‘

Page 15: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

15CBM, GSI Darmstadt 14.5.2002, P. Fischer

The MCMD module concept

f

connection vias

MCMD module:

§ Capton is replaced by multi-layer structure

deposited onto the sensor

§ Very compact module, no wire bonds,

all pixels can have same size!

§ Slightly more material (‚balcony‘)

§ First working module had excellent

performance

Page 16: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

16CBM, GSI Darmstadt 14.5.2002, P. Fischer

MCMD technology

§ Production at Frauenhofer Institut IZM (Berlin), still yield problems

§ Bumping with lead-tin bumps at IZM

§ Very interesting concept for many future applications!

50 µm

20 µm

Page 17: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

17CBM, GSI Darmstadt 14.5.2002, P. Fischer

Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor

Page 18: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

18CBM, GSI Darmstadt 14.5.2002, P. Fischer

Radiation damage of silicon sensors

§ Irradiation of silicon leads to bulk damage and oxide charges at the surface§ Bulk damage:

- increased ileak → increased noise

- ‚reverse annealing‘ → keep sensor cold (- 60C)

- Type inversion → n-side readout

- Change in doping → increased depletion voltage (guard rings!) , partial depletion

§ Oxide charges:- increased field strength → special designs

1011 1012 1013 1014 1015

Φeq [cm-2]10-6

10-5

10-4

10-3

10-2

10-1

∆I /

V

[A/c

m3 ]

n-type FZ - 7 to 25 KΩcmn-type FZ - 7 to 25 KΩcmn-type FZ - 7 KΩcmn-type FZ - 7 KΩcmn-type FZ - 4 KΩcmn-type FZ - 4 KΩcmn-type FZ - 3 KΩcmn-type FZ - 3 KΩcm

n-type FZ - 780 Ωcmn-type FZ - 780 Ωcmn-type FZ - 410 Ωcmn-type FZ - 410 Ωcmn-type FZ - 130 Ωcmn-type FZ - 130 Ωcmn-type FZ - 110 Ωcmn-type FZ - 110 Ωcmn-type CZ - 140 Ωcmn-type CZ - 140 Ωcm

p-type EPI - 2 and 4 KΩcmp-type EPI - 2 and 4 KΩcm

p-type EPI - 380 Ωcmp-type EPI - 380 Ωcm

0 0.5 1 1.5 2 2.5 3 3.5Φeq [1014cm-2]

1

2

3

4

5

6

7

|Nef

f| [1

012 c

m-3

]100

200

300

400

Vde

p [V

] (3

00µm

)

neutronsneutrons

neutronsneutronspionspionsprotonsprotons

pionspionsprotonsprotons

oxygen rich FZ

standard FZstandard FZ

ileak

Neff

n p

Page 19: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

19CBM, GSI Darmstadt 14.5.2002, P. Fischer

Problem of type inversion

p+ pixels on n- material n+ pixels on n- material

Bulk is n- beforeirradiation

p- afterirradiation

Need fulldepletion!

Voltage drop onReadout side

Can be operated partially depletedL

Page 20: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

20CBM, GSI Darmstadt 14.5.2002, P. Fischer

ATLAS pixel sensor production has started

§ n+ pixels in n- sensor§ Multi guard ring structures hold up to 1000V§ Isolation of pixels with moderate dose p-spray

has highest field strength BEFORE irradiation§ Punch through dot and bias grid for testing

before bumping§ Use of oxygenated silicon

Bias grid

Punch through dot

Bump contact

P-sprayP-spray

Production sensor

Page 21: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

21CBM, GSI Darmstadt 14.5.2002, P. Fischer

Performance of irradiated sensor

§ Sensors are irradiated to fullATLAS fluence (1015 neq/cm2)§ They are then bump bonded to

rad-soft ATLAS Prototype FE-Chips§ Measurements are performed in

test beam with a Si-Strip telescopeas reference detector§ Pixel Chips give some information

about collected charge.

§ Vbias > 600V possible§ Homogenous charge collection

also in pixel corners§ 98.4% track efficiency§ These sensors will survive 10 years

of ATLAS operation

measured with threshold = 2000 e

RESULTS

Page 22: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

22CBM, GSI Darmstadt 14.5.2002, P. Fischer

Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor

Page 23: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

23CBM, GSI Darmstadt 14.5.2002, P. Fischer

Electronic Components of the Pixel System

1 Sensor16 front end chips (FE)1 module controller chip (MCC)2 VCSEL driver chips (VDC)1 PIN diode receiver (DORIC)

module control room

Optical receiversReadout Drivers (ROD)Readout Buffers (ROB)Timing Control (TIM)Slow Control, Supplies

Page 24: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

24CBM, GSI Darmstadt 14.5.2002, P. Fischer

The Front End Chip

§ Chip size: 7.4mm x 11mm§ Pixels: 18 x 160 = 2880§ Pixel size: 50µm x 400µm

§ Technologies: 0.8µm CMOS (FEA,FEB)0.8µm BiCMOS (FED)0.25µm CMOS (FEI)

§ Operates at 40 MHz§ Zero suppression in every pixel§ Data is buffered until trigger arrives§ Serial control and readout, LVDS IO

§ Analog part with- 40 µW power dissipation / Pixel- ~200 e noise - Amplitude measured via pulse width

Page 25: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

25CBM, GSI Darmstadt 14.5.2002, P. Fischer

Pixel Analog Part

feedback uses constant current- high stability for fast shaping- tolerates > 100 nA leakage- linear decay

Analog information- measure width of hit- works nicely due to

linear discharge

Individual adjustment of- Threshold (5 bit in FEI)- feedback current (FEI, 5 bit)- ranges are adjustable

Sensor isconnected

here

Page 26: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

26CBM, GSI Darmstadt 14.5.2002, P. Fischer

FED: Preamplifier Pulse Shapes

(Measured on FED test chip with internal chopper, no sensor)

Very linear discharge⇒ good ToT

Very smallshaping loss

Different injected charges Different feedback currents

200 mV/div, 200ns/div 200 mV/div, 200ns/div

1 mip

Page 27: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

27CBM, GSI Darmstadt 14.5.2002, P. Fischer

Data Readout

§ If a trigger arrives, the time of the hit (leading edge data) is compared to the time for hits associated to this trigger. Valid hits are flagged, older hits are deleted. § The trigger is queued in a FIFO

§ A time stamp (7bit Gray Code) is distributed to all pixels§ When a pixel is hit, the time of rising and

trailing edges are stored in the pixel

§ The hit is flagged to the periphery with a fast asynchronous scan

§ Time information and pixel number are written into a buffer pool (common to a column pair)

§ The hit in the pixel is cleared

§ All valid hits of a trigger are sent out serially. All triggers in the FIFO are processed.

4 simultaneous tasks are running permanently:

Page 28: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

29CBM, GSI Darmstadt 14.5.2002, P. Fischer

FEI design: from 0.8µm DMILL to rad hard 0.25µm

Example: 8 bit DAC+Regsfull custom layout:gain x 6 in area !

0.25µm80x200 µm2

DMILL500x200 µm2

0 1 2 30

50

100

150

200

250

300

DAC64 DAC128 DAC192 DAC255

Cur

rent

[µA

]

DAC Supply voltage VDDA [V]

0 32 64 96 128 160 192 224 256-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

INL

[LS

B] (

offs

et b

y 1

per

curv

e)

DAC setting

Page 29: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

31CBM, GSI Darmstadt 14.5.2002, P. Fischer

Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor

Page 30: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

32CBM, GSI Darmstadt 14.5.2002, P. Fischer

Results of single chip & module prototypes

Cable topower & DAQ

LVDS IO

Single chipwith sensor

HV(sensor bias)

Page 31: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

33CBM, GSI Darmstadt 14.5.2002, P. Fischer

Threshold adjustment on a single chip

0 320 640 960 1280 1600 19202000

2500

3000

3500

4000

4500

5000

FEA mit Detector IZM4, tuned

Sch

wel

le [e

- ]

Pixel

0 320 640 960 1280 1600 19202000

2500

3000

3500

4000

4500

5000

FEA mit Detector IZM4, untuned

Sch

wel

le [e

- ]

Pixel

§ Trim range can be selected to find best compromise betweendynamic range and resolution§ Situation is much better in FEI with 5 trim bits !

Threshold trimColumn structure, edge pixels! Still some bad thresholds !

Page 32: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

34CBM, GSI Darmstadt 14.5.2002, P. Fischer

Module thresholds & noise

§ Module with 16 chips, here FEB

§ Threshold and Noise arecomparable to single chips.

§ Performance of several modules:

Module type

Front-end

Bump Threshold [e]

Noise [e]

Bare FEB IZM 2000 140 Flex FEB IZM 2000 180 Bare FEC IZM 2500 140 Flex FEB IZM 3000 160 Flex FEB Alenia 3600 180

b

Threshold=3000 eSigma=170 e

Noise=160 e

Page 33: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

35CBM, GSI Darmstadt 14.5.2002, P. Fischer

Source measurement with 55Fe

§ 55Fe-source (6keV γ) deposits

only 1700 e-h-pairs

§ FE-C chip with thresholds tuned

to ~1200 e-

§ Some bump problems at edge(one of the first assemblies)

§ The chip can be operated at very low threshold

0 2 4 6 8 10 1 2 14 160

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Column

Row

Edge sensors are longer (600 µm)⇒ higher count rate

Page 34: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

36CBM, GSI Darmstadt 14.5.2002, P. Fischer

Source measurement on a module with 241Am

§ Spot of 241Am-source on two neighboring chips of a module§ Module without MCC: chips were illuminated one after the other

5 10 15 20 25 30 35

20

40

60

80

100

120

140

160

chip #4 chip #5

column

row

Higher count rate in600 µm long edge pixels

Page 35: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

37CBM, GSI Darmstadt 14.5.2002, P. Fischer

spatial resolution in test beam§ Consider short pixel dimension:

§ σ1hit = 22µm, σ2hit=5µm

§ σall = 13µmafter irradiation: 14.5µm = 50µm/√12§ Less 2 hit clusters after irradiation§ No improvement with analog info!

1 hit analog

1 hit digital

2 hit digital

2 hitanalog

Single hitsbad resolution

double hitsgood resolution

50µm

error

Page 36: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

38CBM, GSI Darmstadt 14.5.2002, P. Fischer

Time Walk

§ Detector is a capacitive load

⇒ preamplifier has slow rise time (limited by power!)

⇒ hits only slightly above threshold fire discriminator later

⇒ hit is lost if delay > 25ns

§ This is one of our biggest problems. Must still check performance of FEI.

§ Possible improvements: digital correction (FEI), zero crossing

t

Need ~1000 e- more thanthreshold for in-time hit

Page 37: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

39CBM, GSI Darmstadt 14.5.2002, P. Fischer

Track Efficiency

§ Despite marginal time walk, efficiency is ok after irradiation !

§ Here: Sensor is moderate p-spray with bias grid. Chip threshold is 3000 e-

Non-irradiatedefficiency = 99.1%

(ns) (ns)

Irradiated (1015 neqcm-2)efficiency = 98.4%

Delay between particlearrival and 40 MHz clock.

We can choose best timing!

Page 38: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

40CBM, GSI Darmstadt 14.5.2002, P. Fischer

Depletion Depth after irradiation

not depleted

depleted

track entrance point from beam telescope

Track depth

depth (mm)0

1000

2000

0 0.1 0.2 0.3

depletion 0.2868

-30*

depth (mm)0

1000

2000

0 0.1 0.2 0.3

depletion 0.1879

-30*

-600 V 1x1015

depth (mm)0

1000

2000

0 0.1 0.2 0.3

depletion 0.1047

-30*

-300 V 1x1015

non irradiated, full depletion

1x1015, 600 V, 190µm

1x1015 , 300 V, 105µm

Particle track

Depletion depth is 190 µm @ 600 Vafter 1015 cm-2 (full ATLAS dose!)

No chargeseen here

Page 39: The ATLAS Hybrid Silicon Pixel Detector · The ATLAS Pixel Detektor. CBM, GSI Darmstadt 14.5.2002, P. Fischer 32 Results of single chip & module prototypes Cable to power & DAQ LVDS

41CBM, GSI Darmstadt 14.5.2002, P. Fischer

ATLAS pixel: Status

We are (nearly) ready to build the detector- sensors are very mature & are ordered

- FEI radiation hard electronics (0.25µm):performance is good, radiation hardness has been confirmed

- bump bonding: process matured over 4 years

- all module production steps are established

- staves, disks and global support are being produced

Further development is needed for- cables for power & signals

- connections at module, patch panels etc.

- signal transmission ICs