the algebra and geometry of vectors - math 218 · the algebra and geometry of vectors math 218...

184
The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH

Upload: others

Post on 26-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Algebra and Geometry of VectorsMath 218

Brian D. Fitzpatrick

Duke University

November 1, 2019

MATH

Page 2: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Overview

MotivationWhat We KnowWhat We Want

Vectors in R2

Geometric InterpretationTails and TipsCoordinatesLength

Vectors in R3

Geometric InterpretationLength

Vectors in Rn

“Geometric” InterpretationLength

Scalar-Vector MultiplicationGeometric InterpretationAlgebraic ComparisonUnit VectorsNormalization

Vector AdditionGeometric InterpretationProperties

The Dot ProductDefinitionPropertiesLengthsAngles

Page 3: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

MotivationWhat We Know

So far, the vector operations we have learned are

scalar-vector muliplication c · #»v vector addition #»v + #»w

These operations are algebraic

c ·

v1...vn

=

c · v1...

c · vn

v1

...vn

+

w1...wn

=

v1 + w1...

vn + wn

Page 4: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

MotivationWhat We Know

So far, the vector operations we have learned are

scalar-vector muliplication c · #»v vector addition #»v + #»w

These operations are algebraic

c ·

v1...vn

=

c · v1...

c · vn

v1

...vn

+

w1...wn

=

v1 + w1...

vn + wn

Page 5: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

MotivationWhat We Know

So far, the vector operations we have learned are

scalar-vector muliplication c · #»v vector addition #»v + #»w

These operations are algebraic

c ·

v1...vn

=

c · v1...

c · vn

v1...vn

+

w1...wn

=

v1 + w1...

vn + wn

Page 6: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

MotivationWhat We Know

So far, the vector operations we have learned are

scalar-vector muliplication c · #»v vector addition #»v + #»w

These operations are algebraic

c ·

v1...vn

=

c · v1...

c · vn

v1

...vn

+

w1...wn

=

v1 + w1...

vn + wn

Page 7: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

MotivationWhat We Want

Can we interpret these operations geometrically?

Page 8: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 9: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 10: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 11: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 12: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 13: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 14: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x

#»y

#»z

Page 15: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 16: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Geometric Interpretation

Geometrically, a vector in R2 is represented by an arrow in thexy -plane.

x

y

#»a

b

#»v

#»w

#»x#»y

#»z

Page 17: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v

=# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 18: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v

=# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 19: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v

=# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 20: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v

=# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 21: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v

=# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 22: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 23: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 24: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 25: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w

=# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 26: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Tails and Tips

Every arrow emanates from a tail and terminates at a tip.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =# »

PQ

•P(−3,−1)

“tail”

•Q(2, 2)“tip”

#»w =# »

RS

•R(−2,−2)

“tail”

•S(3,−1)

“tip”

Page 27: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

The coordinates of #»v give the “tip to tail” displacement in the x-and y -directions.

v1 =

x1 − x0

v2 =

y1 − y0

#»v=〈v1, v2〉

(x0, y0)

(x1, y1)

Page 28: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

The coordinates of #»v give the “tip to tail” displacement in the x-and y -directions.

v1 =

x1 − x0

v2 =

y1 − y0

#»v=〈v1, v2〉

(x0, y0)

(x1, y1)

Page 29: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

The coordinates of #»v give the “tip to tail” displacement in the x-and y -directions.

v1 =

x1 − x0

v2 =

y1 − y0

#»v=〈v1, v2〉

(x0, y0)

(x1, y1)

Page 30: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

The coordinates of #»v give the “tip to tail” displacement in the x-and y -directions.

v1 = x1 − x0

v2 =

y1 − y0

#»v=〈v1, v2〉

(x0, y0)

(x1, y1)

Page 31: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

The coordinates of #»v give the “tip to tail” displacement in the x-and y -directions.

v1 = x1 − x0

v2 = y1 − y0#»v=〈v1, v2〉

(x0, y0)

(x1, y1)

Page 32: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

x

y

−3 −2 −1 1 2 3

−2

−1

1

2#»v = 〈2− (−3), 2− (−1)〉 = 〈5, 3〉

•P(−3,−1)

•Q(2, 2)

#»w = 〈3− (−2),−1− (−2)〉 = 〈5, 1〉

•R(−2,−2)

•S(3,−1)

Page 33: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Two arrows define the same vector if they have the samecoordinates.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =

〈−2, −1〉

#»w =

〈−2, −1〉

#»v = #»w

Page 34: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Two arrows define the same vector if they have the samecoordinates.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =

〈−2, −1〉

#»w =

〈−2, −1〉

#»v = #»w

Page 35: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Two arrows define the same vector if they have the samecoordinates.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =

〈−2, −1〉

#»w =

〈−2, −1〉

#»v = #»w

Page 36: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Two arrows define the same vector if they have the samecoordinates.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =〈−2, −

1〉

#»w =

〈−2, −1〉

#»v = #»w

Page 37: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Two arrows define the same vector if they have the samecoordinates.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =〈−2, −

1〉

#»w =

〈−2, −1〉

#»v = #»w

Page 38: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Two arrows define the same vector if they have the samecoordinates.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =〈−2, −

1〉

#»w =〈−2, −

1〉

#»v = #»w

Page 39: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Two arrows define the same vector if they have the samecoordinates.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v =〈−2, −

1〉

#»w =〈−2, −

1〉#»v = #»w

Page 40: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Without context, it is convention to plot vectors using the origin asthe tail.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v = 〈3, 2〉

#»w = 〈−3, 1〉

#»x = 〈−2,−2〉

Page 41: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Without context, it is convention to plot vectors using the origin asthe tail.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v = 〈3, 2〉

#»w = 〈−3, 1〉

#»x = 〈−2,−2〉

Page 42: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Without context, it is convention to plot vectors using the origin asthe tail.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v = 〈3, 2〉

#»w = 〈−3, 1〉

#»x = 〈−2,−2〉

Page 43: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Without context, it is convention to plot vectors using the origin asthe tail.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v = 〈3, 2〉

#»w = 〈−3, 1〉

#»x = 〈−2,−2〉

Page 44: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Coordinates

Without context, it is convention to plot vectors using the origin asthe tail.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

#»v = 〈3, 2〉

#»w = 〈−3, 1〉

#»x = 〈−2,−2〉

Page 45: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

The length of a vector #»v = 〈v1, v2〉 is ‖ #»v ‖ =

√v21 + v22 .

|v1|

|v2|‖ #»v ‖

Page 46: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

The length of a vector #»v = 〈v1, v2〉 is ‖ #»v ‖ =

√v21 + v22 .

|v1|

|v2|

‖ #»v ‖

Page 47: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

The length of a vector #»v = 〈v1, v2〉 is ‖ #»v ‖ =

√v21 + v22 .

|v1|

|v2|‖ #»v ‖

Page 48: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

The length of a vector #»v = 〈v1, v2〉 is ‖ #»v ‖ =√

v21 + v22 .

|v1|

|v2|‖ #»v ‖

Page 49: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Example

The lengths of #»r = 〈1, −1〉 and #»p = 〈3, 2〉 are

‖ #»r ‖ =√

(1)2 + (−1)2 ‖ #»p ‖ =√

(3)2 + (2)2

=√

1 + 1 =√

9 + 4

=√

2 =√

13

Page 50: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Example

The lengths of #»r = 〈1, −1〉 and #»p = 〈3, 2〉 are

‖ #»r ‖ =√

(1)2 + (−1)2

‖ #»p ‖ =√

(3)2 + (2)2

=√

1 + 1 =√

9 + 4

=√

2 =√

13

Page 51: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Example

The lengths of #»r = 〈1, −1〉 and #»p = 〈3, 2〉 are

‖ #»r ‖ =√

(1)2 + (−1)2

‖ #»p ‖ =√

(3)2 + (2)2

=√

1 + 1

=√

9 + 4

=√

2 =√

13

Page 52: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Example

The lengths of #»r = 〈1, −1〉 and #»p = 〈3, 2〉 are

‖ #»r ‖ =√

(1)2 + (−1)2

‖ #»p ‖ =√

(3)2 + (2)2

=√

1 + 1

=√

9 + 4

=√

2

=√

13

Page 53: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Example

The lengths of #»r = 〈1, −1〉 and #»p = 〈3, 2〉 are

‖ #»r ‖ =√

(1)2 + (−1)2 ‖ #»p ‖ =√

(3)2 + (2)2

=√

1 + 1

=√

9 + 4

=√

2

=√

13

Page 54: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Example

The lengths of #»r = 〈1, −1〉 and #»p = 〈3, 2〉 are

‖ #»r ‖ =√

(1)2 + (−1)2 ‖ #»p ‖ =√

(3)2 + (2)2

=√

1 + 1 =√

9 + 4

=√

2

=√

13

Page 55: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Example

The lengths of #»r = 〈1, −1〉 and #»p = 〈3, 2〉 are

‖ #»r ‖ =√

(1)2 + (−1)2 ‖ #»p ‖ =√

(3)2 + (2)2

=√

1 + 1 =√

9 + 4

=√

2 =√

13

Page 56: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Other Terms for “Length”

“norm” “magnitude”

Alternate Notation for ‖ #»v ‖Some people write | #»v | instead of ‖ #»v ‖.

Page 57: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R2

Length

Other Terms for “Length”

“norm” “magnitude”

Alternate Notation for ‖ #»v ‖Some people write | #»v | instead of ‖ #»v ‖.

Page 58: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

We think of vectors in R3 as objects in xyz-space.

x

y

z

3

3

−4

• P(3, 3,−4)

−4

4

5

• Q(−4, 4, 5)

Page 59: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

We think of vectors in R3 as objects in xyz-space.

x

y

z

3

3

−4

• P(3, 3,−4)

−4

4

5

• Q(−4, 4, 5)

Page 60: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

We think of vectors in R3 as objects in xyz-space.

x

y

z

3

3

−4

• P(3, 3,−4)

−4

4

5

• Q(−4, 4, 5)

Page 61: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 62: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 63: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 64: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 65: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 66: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 67: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 68: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Geometric Interpretation

Geometrically, a vector in R3 is represented by an arrow inxyz-space.

x

y

z

P(11, 2, 0)

Q(8,−4, 6)

R(−2, 2, 7)

S(1, 8, 1)

#»v

#»w

#»x

#»v =

−2− 82− (−4)

7− 6

=

−1061

#»w =

−2− 112− 27− 0

=

−1307

#»x =

1− 118− 21− 0

=

−1061

Note that #»v = #»x !

Page 69: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Length

DefinitionThe length of #»v = 〈v1, v2, v3〉 is ‖ #»v ‖ =

√v21 + v22 + v23 .

Example

The length of #»z = 〈−7, −8, 5〉 is

‖ #»z ‖ =√

(−7)2 + (−8)2 + (5)2

=√

49 + 64 + 25

=√

138

Page 70: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in R3

Length

DefinitionThe length of #»v = 〈v1, v2, v3〉 is ‖ #»v ‖ =

√v21 + v22 + v23 .

Example

The length of #»z = 〈−7, −8, 5〉 is

‖ #»z ‖ =√

(−7)2 + (−8)2 + (5)2

=√

49 + 64 + 25

=√

138

Page 71: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

“Geometric” Interpretation

The “visible” geometry of R2 and R3 is used to define geometry inhigher dimensions.

#»a

b

#»v

#»w

#»x#»y

#»z

We think of a vector #»v ∈ Rn as an “arrow” in Euclidean n-space.

Page 72: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

“Geometric” Interpretation

The “visible” geometry of R2 and R3 is used to define geometry inhigher dimensions.

#»a

b

#»v

#»w

#»x#»y

#»z

We think of a vector #»v ∈ Rn as an “arrow” in Euclidean n-space.

Page 73: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

“Geometric” Interpretation

The “visible” geometry of R2 and R3 is used to define geometry inhigher dimensions.

#»a

b

#»v

#»w

#»x#»y

#»z

We think of a vector #»v ∈ Rn as an “arrow” in Euclidean n-space.

Page 74: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

The length of #»v = 〈v1, v2, . . . , vn〉 is

‖ #»v ‖ =

√v21 + v22 + · · ·+ v2n

Even if we can’t “see” a vector, we can still compute its length.

Page 75: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

The length of #»v = 〈v1, v2, . . . , vn〉 is

‖ #»v ‖ =√v21 + v22 + · · ·+ v2n

Even if we can’t “see” a vector, we can still compute its length.

Page 76: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

The length of #»v = 〈v1, v2, . . . , vn〉 is

‖ #»v ‖ =√v21 + v22 + · · ·+ v2n

Even if we can’t “see” a vector, we can still compute its length.

Page 77: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

Example

The length of #»v = 〈4, 0, −2, −5, −1〉 is

‖ #»v ‖ =√

(4)2 + (0)2 + (−2)2 + (−5)2 + (−1)2

=√

16 + 0 + 4 + 25 + 1

=√

46

Example

Suppose #»a is an incidence vector of a graph on 40 nodes and 77arrows. Then #»a ∈ R40 and the length of #»a is ‖ #»a ‖ =

√2.

Page 78: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

Example

The length of #»v = 〈4, 0, −2, −5, −1〉 is

‖ #»v ‖ =√

(4)2 + (0)2 + (−2)2 + (−5)2 + (−1)2

=√

16 + 0 + 4 + 25 + 1

=√

46

Example

Suppose #»a is an incidence vector of a graph on 40 nodes and 77arrows. Then #»a ∈

R40 and the length of #»a is ‖ #»a ‖ =√

2.

Page 79: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

Example

The length of #»v = 〈4, 0, −2, −5, −1〉 is

‖ #»v ‖ =√

(4)2 + (0)2 + (−2)2 + (−5)2 + (−1)2

=√

16 + 0 + 4 + 25 + 1

=√

46

Example

Suppose #»a is an incidence vector of a graph on 40 nodes and 77arrows. Then #»a ∈ R40

and the length of #»a is ‖ #»a ‖ =√

2.

Page 80: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

Example

The length of #»v = 〈4, 0, −2, −5, −1〉 is

‖ #»v ‖ =√

(4)2 + (0)2 + (−2)2 + (−5)2 + (−1)2

=√

16 + 0 + 4 + 25 + 1

=√

46

Example

Suppose #»a is an incidence vector of a graph on 40 nodes and 77arrows. Then #»a ∈ R40 and the length of #»a is ‖ #»a ‖ =

√2.

Page 81: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vectors in Rn

Length

Example

The length of #»v = 〈4, 0, −2, −5, −1〉 is

‖ #»v ‖ =√

(4)2 + (0)2 + (−2)2 + (−5)2 + (−1)2

=√

16 + 0 + 4 + 25 + 1

=√

46

Example

Suppose #»a is an incidence vector of a graph on 40 nodes and 77arrows. Then #»a ∈ R40 and the length of #»a is ‖ #»a ‖ =

√2.

Page 82: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationGeometric Interpretation

QuestionGiven a vector #»v ∈ Rn and a scalar c ∈ R, what “should” c · #»vlook like?

#»v2·#»v

(1/2

) ·#»v

(−1/2

) ·#»v

−1·#»v

Definition (Geometric)

The scalar-vector product of c and #»v is the vector c · #»v whosemagnitude is |c | · ‖ #»v ‖ and whose direction is either the direction of#»v if c > 0 or the opposite direction of #»v if c < 0.

Page 83: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationGeometric Interpretation

QuestionGiven a vector #»v ∈ Rn and a scalar c ∈ R, what “should” c · #»vlook like?

#»v

2·#»v

(1/2

) ·#»v

(−1/2

) ·#»v

−1·#»v

Definition (Geometric)

The scalar-vector product of c and #»v is the vector c · #»v whosemagnitude is |c | · ‖ #»v ‖ and whose direction is either the direction of#»v if c > 0 or the opposite direction of #»v if c < 0.

Page 84: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationGeometric Interpretation

QuestionGiven a vector #»v ∈ Rn and a scalar c ∈ R, what “should” c · #»vlook like?

#»v2·#»v

(1/2

) ·#»v

(−1/2

) ·#»v

−1·#»v

Definition (Geometric)

The scalar-vector product of c and #»v is the vector c · #»v whosemagnitude is |c | · ‖ #»v ‖ and whose direction is either the direction of#»v if c > 0 or the opposite direction of #»v if c < 0.

Page 85: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationGeometric Interpretation

QuestionGiven a vector #»v ∈ Rn and a scalar c ∈ R, what “should” c · #»vlook like?

#»v2·#»v

(1/2

) ·#»v

(−1/2

) ·#»v

−1·#»v

Definition (Geometric)

The scalar-vector product of c and #»v is the vector c · #»v whosemagnitude is |c | · ‖ #»v ‖ and whose direction is either the direction of#»v if c > 0 or the opposite direction of #»v if c < 0.

Page 86: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationGeometric Interpretation

QuestionGiven a vector #»v ∈ Rn and a scalar c ∈ R, what “should” c · #»vlook like?

#»v2·#»v

(1/2

) ·#»v

(−1/2

) ·#»v

−1·#»v

Definition (Geometric)

The scalar-vector product of c and #»v is the vector c · #»v whosemagnitude is |c | · ‖ #»v ‖ and whose direction is either the direction of#»v if c > 0 or the opposite direction of #»v if c < 0.

Page 87: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationGeometric Interpretation

QuestionGiven a vector #»v ∈ Rn and a scalar c ∈ R, what “should” c · #»vlook like?

#»v2·#»v

(1/2

) ·#»v

(−1/2

) ·#»v

−1·#»v

Definition (Geometric)

The scalar-vector product of c and #»v is the vector c · #»v whosemagnitude is |c | · ‖ #»v ‖ and whose direction is either the direction of#»v if c > 0 or the opposite direction of #»v if c < 0.

Page 88: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationGeometric Interpretation

QuestionGiven a vector #»v ∈ Rn and a scalar c ∈ R, what “should” c · #»vlook like?

#»v2·#»v

(1/2

) ·#»v

(−1/2

) ·#»v

−1·#»v

Definition (Geometric)

The scalar-vector product of c and #»v is the vector c · #»v whosemagnitude is |c | · ‖ #»v ‖ and whose direction is either the direction of#»v if c > 0 or the opposite direction of #»v if c < 0.

Page 89: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationAlgebraic Comparison

This “geometric” interpretation coincides with our “algebraic”definition.

‖c · #»v ‖ = ‖〈c · v1, c · v2, . . . , c · vn〉‖

=√

(c · v1)2 + (c · v2)2 + · · ·+ (c · vn)2

=√

c2 · v21 + c2 · v22 + · · ·+ c2 · v2n

=√

c2 · (v21 + v22 + · · ·+ v2n )

=√c2 ·

√v21 + v22 + · · ·+ v2n

= |c | · ‖ #»v ‖

Page 90: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationAlgebraic Comparison

This “geometric” interpretation coincides with our “algebraic”definition.

‖c · #»v ‖ = ‖〈c · v1, c · v2, . . . , c · vn〉‖

=√

(c · v1)2 + (c · v2)2 + · · ·+ (c · vn)2

=√

c2 · v21 + c2 · v22 + · · ·+ c2 · v2n

=√

c2 · (v21 + v22 + · · ·+ v2n )

=√c2 ·

√v21 + v22 + · · ·+ v2n

= |c | · ‖ #»v ‖

Page 91: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationAlgebraic Comparison

This “geometric” interpretation coincides with our “algebraic”definition.

‖c · #»v ‖ = ‖〈c · v1, c · v2, . . . , c · vn〉‖

=√

(c · v1)2 + (c · v2)2 + · · ·+ (c · vn)2

=√

c2 · v21 + c2 · v22 + · · ·+ c2 · v2n

=√

c2 · (v21 + v22 + · · ·+ v2n )

=√c2 ·

√v21 + v22 + · · ·+ v2n

= |c | · ‖ #»v ‖

Page 92: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationAlgebraic Comparison

This “geometric” interpretation coincides with our “algebraic”definition.

‖c · #»v ‖ = ‖〈c · v1, c · v2, . . . , c · vn〉‖

=√

(c · v1)2 + (c · v2)2 + · · ·+ (c · vn)2

=√

c2 · v21 + c2 · v22 + · · ·+ c2 · v2n

=√

c2 · (v21 + v22 + · · ·+ v2n )

=√c2 ·

√v21 + v22 + · · ·+ v2n

= |c | · ‖ #»v ‖

Page 93: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationAlgebraic Comparison

This “geometric” interpretation coincides with our “algebraic”definition.

‖c · #»v ‖ = ‖〈c · v1, c · v2, . . . , c · vn〉‖

=√

(c · v1)2 + (c · v2)2 + · · ·+ (c · vn)2

=√

c2 · v21 + c2 · v22 + · · ·+ c2 · v2n

=√

c2 · (v21 + v22 + · · ·+ v2n )

=√c2 ·

√v21 + v22 + · · ·+ v2n

= |c | · ‖ #»v ‖

Page 94: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationAlgebraic Comparison

This “geometric” interpretation coincides with our “algebraic”definition.

‖c · #»v ‖ = ‖〈c · v1, c · v2, . . . , c · vn〉‖

=√

(c · v1)2 + (c · v2)2 + · · ·+ (c · vn)2

=√

c2 · v21 + c2 · v22 + · · ·+ c2 · v2n

=√

c2 · (v21 + v22 + · · ·+ v2n )

=√c2 ·

√v21 + v22 + · · ·+ v2n

= |c | · ‖ #»v ‖

Page 95: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖

= ‖(1/2) · 〈1, −1, −1, 1〉 ‖= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2= 1

Page 96: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖ = ‖(1/2) · 〈1, −1, −1, 1〉 ‖

= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2= 1

Page 97: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖ = ‖(1/2) · 〈1, −1, −1, 1〉 ‖= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2= 1

Page 98: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖ = ‖(1/2) · 〈1, −1, −1, 1〉 ‖= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2= 1

Page 99: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖ = ‖(1/2) · 〈1, −1, −1, 1〉 ‖= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2= 1

Page 100: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖ = ‖(1/2) · 〈1, −1, −1, 1〉 ‖= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2= 1

Page 101: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖ = ‖(1/2) · 〈1, −1, −1, 1〉 ‖= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2

= 1

Page 102: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

DefinitionA unit vector is a vector with length one.

Example

Let #»u = 〈1/2, −1/2, −1/2, 1/2〉 . Then

‖ #»u ‖ = ‖(1/2) · 〈1, −1, −1, 1〉 ‖= |1/2| · ‖〈1, −1, −1, 1〉 ‖

= (1/2) ·√

(1)2 + (−1)2 + (−1)2 + (1)2

= (1/2) ·√

1 + 1 + 1 + 1

= (1/2) ·√

4

= (1/2) · 2= 1

Page 103: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

Example

Consider the vectors

#»e 1 = 〈1, 0, 0〉 #»e 2 = 〈0, 1, 0〉 #»e 3 = 〈0, 0, 1〉

Each #»e 1, #»e 2, and #»e 3 is a unit vector.

DefinitionThese vectors form the standard basis of R3.

Important

Every vector #»v = 〈v1, v2, v3〉 satisfies

#»v = v1 · #»e 1 + v2 · #»e 2 + v3 · #»e 3

Every vector is a linear combination of the standard basis!

Page 104: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

Example

Consider the vectors

#»e 1 = 〈1, 0, 0〉 #»e 2 = 〈0, 1, 0〉 #»e 3 = 〈0, 0, 1〉

Each #»e 1, #»e 2, and #»e 3 is a unit vector.

DefinitionThese vectors form the standard basis of R3.

Important

Every vector #»v = 〈v1, v2, v3〉 satisfies

#»v = v1 · #»e 1 + v2 · #»e 2 + v3 · #»e 3

Every vector is a linear combination of the standard basis!

Page 105: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

Example

Consider the vectors

#»e 1 = 〈1, 0, 0〉 #»e 2 = 〈0, 1, 0〉 #»e 3 = 〈0, 0, 1〉

Each #»e 1, #»e 2, and #»e 3 is a unit vector.

DefinitionThese vectors form the standard basis of R3.

Important

Every vector #»v = 〈v1, v2, v3〉 satisfies

#»v = v1 · #»e 1 + v2 · #»e 2 + v3 · #»e 3

Every vector is a linear combination of the standard basis!

Page 106: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

Example

Consider the vectors

#»e 1 = 〈1, 0, 0〉 #»e 2 = 〈0, 1, 0〉 #»e 3 = 〈0, 0, 1〉

Each #»e 1, #»e 2, and #»e 3 is a unit vector.

DefinitionThese vectors form the standard basis of R3.

Important

Every vector #»v = 〈v1, v2, v3〉 satisfies

#»v = v1 · #»e 1 + v2 · #»e 2 + v3 · #»e 3

Every vector is a

linear combination of the standard basis!

Page 107: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationUnit Vectors

Example

Consider the vectors

#»e 1 = 〈1, 0, 0〉 #»e 2 = 〈0, 1, 0〉 #»e 3 = 〈0, 0, 1〉

Each #»e 1, #»e 2, and #»e 3 is a unit vector.

DefinitionThese vectors form the standard basis of R3.

Important

Every vector #»v = 〈v1, v2, v3〉 satisfies

#»v = v1 · #»e 1 + v2 · #»e 2 + v3 · #»e 3

Every vector is a linear combination of the standard basis!

Page 108: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =1

‖ #»v ‖· ‖ #»v ‖ = 1

The normalization v̂ of #»v is always a unit vector!

Page 109: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =1

‖ #»v ‖· ‖ #»v ‖ = 1

The normalization v̂ of #»v is always a unit vector!

Page 110: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =1

‖ #»v ‖· ‖ #»v ‖ = 1

The normalization v̂ of #»v is always a unit vector!

Page 111: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =1

‖ #»v ‖· ‖ #»v ‖ = 1

The normalization v̂ of #»v is always a unit vector!

Page 112: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =

1

‖ #»v ‖· ‖ #»v ‖ = 1

The normalization v̂ of #»v is always a unit vector!

Page 113: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =1

‖ #»v ‖· ‖ #»v ‖ =

1

The normalization v̂ of #»v is always a unit vector!

Page 114: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =1

‖ #»v ‖· ‖ #»v ‖ = 1

The normalization v̂ of #»v is always a unit vector!

Page 115: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Scalar-Vector MultiplicationNormalization

DefinitionThe normalization of #»v is v̂ = (1/‖ #»v ‖) · #»v .

#»v

Note that

‖v̂‖ =

∥∥∥∥ 1

‖ #»v ‖· #»v

∥∥∥∥ =

∣∣∣∣ 1

‖ #»v ‖

∣∣∣∣ · ‖ #»v ‖ =1

‖ #»v ‖· ‖ #»v ‖ = 1

The normalization v̂ of #»v is always a unit vector!

Page 116: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

To interpret #»v + #»w geometrically, start by forming a parallelogram.

The sum #»v + #»w is the diagonal of the parallelogram, obtained byfirst transversing #»v and then transversing #»w .

#»v

#»w

#»v

#»w#»v

+#»w

Page 117: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

To interpret #»v + #»w geometrically, start by forming a parallelogram.

The sum #»v + #»w is the diagonal of the parallelogram, obtained byfirst transversing #»v and then transversing #»w .

#»v

#»w

#»v

#»w#»v

+#»w

Page 118: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

To interpret #»v + #»w geometrically, start by forming a parallelogram.

The sum #»v + #»w is the diagonal of the parallelogram, obtained byfirst transversing #»v and then transversing #»w .

#»v

#»w

#»v

#»w#»v

+#»w

Page 119: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

To interpret #»v + #»w geometrically, start by forming a parallelogram.

The sum #»v + #»w is the diagonal of the parallelogram, obtained byfirst transversing #»v and then transversing #»w .

#»v

#»w

#»v

#»w

#»v+

#»w

Page 120: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

To interpret #»v + #»w geometrically, start by forming a parallelogram.The sum #»v + #»w is the diagonal of the parallelogram, obtained byfirst transversing #»v and then transversing #»w .

#»v

#»w

#»v

#»w

#»v+

#»w

Page 121: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

To interpret #»v + #»w geometrically, start by forming a parallelogram.The sum #»v + #»w is the diagonal of the parallelogram, obtained byfirst transversing #»v and then transversing #»w .

#»v

#»w

#»v

#»w#»v

+#»w

Page 122: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

This geometric interpretation allows us to construct vectordiagrams.

#»v#»w#»x

#»y =

#»v − #»x

#»z =

#»w − #»v

Page 123: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

This geometric interpretation allows us to construct vectordiagrams.

#»v#»w#»x

#»y = #»v − #»x

#»z =

#»w − #»v

Page 124: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionGeometric Interpretation

This geometric interpretation allows us to construct vectordiagrams.

#»v#»w#»x

#»y = #»v − #»x

#»z = #»w − #»v

Page 125: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionProperties

Properties of Vector Arithmetic

Vector arithmetic obeys the following laws.

additive commutativity #»v + #»w = #»w + #»v

additive associativity ( #»v + #»w ) + #»x = #»v + ( #»w + #»x )

multiplicitive associativity (c · d) · #»v = c · (d · #»v )

scalar distribution c · ( #»v + #»w ) = c · #»v + c · #»w

vector distribution (c + d) · #»v = c · #»v + d · #»v

additive identity the zero vector#»

O = 〈0, 0, . . . , 0〉satisfies the equation

O + #»v = #»v

NoteThe zero vector

O is the only vector whose length is zero ‖ #»

O‖ = 0.

Page 126: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionProperties

Properties of Vector Arithmetic

Vector arithmetic obeys the following laws.

additive commutativity #»v + #»w = #»w + #»v

additive associativity ( #»v + #»w ) + #»x = #»v + ( #»w + #»x )

multiplicitive associativity (c · d) · #»v = c · (d · #»v )

scalar distribution c · ( #»v + #»w ) = c · #»v + c · #»w

vector distribution (c + d) · #»v = c · #»v + d · #»v

additive identity the zero vector#»

O = 〈0, 0, . . . , 0〉satisfies the equation

O + #»v = #»v

NoteThe zero vector

O is the only vector whose length is zero ‖ #»

O‖ = 0.

Page 127: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionProperties

Properties of Vector Arithmetic

Vector arithmetic obeys the following laws.

additive commutativity #»v + #»w = #»w + #»v

additive associativity ( #»v + #»w ) + #»x = #»v + ( #»w + #»x )

multiplicitive associativity (c · d) · #»v = c · (d · #»v )

scalar distribution c · ( #»v + #»w ) = c · #»v + c · #»w

vector distribution (c + d) · #»v = c · #»v + d · #»v

additive identity the zero vector#»

O = 〈0, 0, . . . , 0〉satisfies the equation

O + #»v = #»v

NoteThe zero vector

O is the only vector whose length is zero ‖ #»

O‖ = 0.

Page 128: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionProperties

Properties of Vector Arithmetic

Vector arithmetic obeys the following laws.

additive commutativity #»v + #»w = #»w + #»v

additive associativity ( #»v + #»w ) + #»x = #»v + ( #»w + #»x )

multiplicitive associativity (c · d) · #»v = c · (d · #»v )

scalar distribution c · ( #»v + #»w ) = c · #»v + c · #»w

vector distribution (c + d) · #»v = c · #»v + d · #»v

additive identity the zero vector#»

O = 〈0, 0, . . . , 0〉satisfies the equation

O + #»v = #»v

NoteThe zero vector

O is the only vector whose length is zero ‖ #»

O‖ = 0.

Page 129: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionProperties

Properties of Vector Arithmetic

Vector arithmetic obeys the following laws.

additive commutativity #»v + #»w = #»w + #»v

additive associativity ( #»v + #»w ) + #»x = #»v + ( #»w + #»x )

multiplicitive associativity (c · d) · #»v = c · (d · #»v )

scalar distribution c · ( #»v + #»w ) = c · #»v + c · #»w

vector distribution (c + d) · #»v = c · #»v + d · #»v

additive identity the zero vector#»

O = 〈0, 0, . . . , 0〉satisfies the equation

O + #»v = #»v

NoteThe zero vector

O is the only vector whose length is zero ‖ #»

O‖ = 0.

Page 130: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionProperties

Properties of Vector Arithmetic

Vector arithmetic obeys the following laws.

additive commutativity #»v + #»w = #»w + #»v

additive associativity ( #»v + #»w ) + #»x = #»v + ( #»w + #»x )

multiplicitive associativity (c · d) · #»v = c · (d · #»v )

scalar distribution c · ( #»v + #»w ) = c · #»v + c · #»w

vector distribution (c + d) · #»v = c · #»v + d · #»v

additive identity the zero vector#»

O = 〈0, 0, . . . , 0〉satisfies the equation

O + #»v = #»v

NoteThe zero vector

O is the only vector whose length is zero ‖ #»

O‖ = 0.

Page 131: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

Vector AdditionProperties

Properties of Vector Arithmetic

Vector arithmetic obeys the following laws.

additive commutativity #»v + #»w = #»w + #»v

additive associativity ( #»v + #»w ) + #»x = #»v + ( #»w + #»x )

multiplicitive associativity (c · d) · #»v = c · (d · #»v )

scalar distribution c · ( #»v + #»w ) = c · #»v + c · #»w

vector distribution (c + d) · #»v = c · #»v + d · #»v

additive identity the zero vector#»

O = 〈0, 0, . . . , 0〉satisfies the equation

O + #»v = #»v

NoteThe zero vector

O is the only vector whose length is zero ‖ #»

O‖ = 0.

Page 132: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

QuestionWhat does it mean to multiply two vectors?

AnswerThere is no correct answer. There are several useful ways tomultiply vectors.

Page 133: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

QuestionWhat does it mean to multiply two vectors?

AnswerThere is no correct answer. There are several useful ways tomultiply vectors.

Page 134: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

DefinitionThe dot product of #»v = 〈v1, v2, . . . , vn〉 and #»w = 〈w1,w2, . . . ,wn〉is defined as

#»v · #»w = v1 · w1 + v2 · w2 + · · ·+ vn · wn

NoteThe dot product of two vectors is a scalar, not a vector.

NoteThe dot product #»v · #»w is only defined if #»v and #»w have the samenumber of coordinates.

Page 135: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

DefinitionThe dot product of #»v = 〈v1, v2, . . . , vn〉 and #»w = 〈w1,w2, . . . ,wn〉is defined as

#»v · #»w = v1 · w1 + v2 · w2 + · · ·+ vn · wn

NoteThe dot product of two vectors is a scalar, not a vector.

NoteThe dot product #»v · #»w is only defined if #»v and #»w have the samenumber of coordinates.

Page 136: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

DefinitionThe dot product of #»v = 〈v1, v2, . . . , vn〉 and #»w = 〈w1,w2, . . . ,wn〉is defined as

#»v · #»w = v1 · w1 + v2 · w2 + · · ·+ vn · wn

NoteThe dot product of two vectors is a scalar, not a vector.

NoteThe dot product #»v · #»w is only defined if #»v and #»w have the samenumber of coordinates.

Page 137: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

Example

Let #»v = 〈−1, −6, 1〉 and #»w = 〈−2, −3, −4〉 . Then

#»v · #»w = 〈−1, −6, 1〉 · 〈−2, −3, −4〉= (−1)(−2) + (−6)(−3) + (1)(−4)

= (2) + (18) + (−4)

= 16

Example

The dot product of

1−2

0

and

−1−2−1

0

is not defined!

Page 138: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

Example

Let #»v = 〈−1, −6, 1〉 and #»w = 〈−2, −3, −4〉 . Then

#»v · #»w =

〈−1, −6, 1〉 · 〈−2, −3, −4〉= (−1)(−2) + (−6)(−3) + (1)(−4)

= (2) + (18) + (−4)

= 16

Example

The dot product of

1−2

0

and

−1−2−1

0

is not defined!

Page 139: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

Example

Let #»v = 〈−1, −6, 1〉 and #»w = 〈−2, −3, −4〉 . Then

#»v · #»w = 〈−1, −6, 1〉 · 〈−2, −3, −4〉=

(−1)(−2) + (−6)(−3) + (1)(−4)

= (2) + (18) + (−4)

= 16

Example

The dot product of

1−2

0

and

−1−2−1

0

is not defined!

Page 140: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

Example

Let #»v = 〈−1, −6, 1〉 and #»w = 〈−2, −3, −4〉 . Then

#»v · #»w = 〈−1, −6, 1〉 · 〈−2, −3, −4〉= (−1)(−2) + (−6)(−3) + (1)(−4)

=

(2) + (18) + (−4)

= 16

Example

The dot product of

1−2

0

and

−1−2−1

0

is not defined!

Page 141: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

Example

Let #»v = 〈−1, −6, 1〉 and #»w = 〈−2, −3, −4〉 . Then

#»v · #»w = 〈−1, −6, 1〉 · 〈−2, −3, −4〉= (−1)(−2) + (−6)(−3) + (1)(−4)

= (2) + (18) + (−4)

=

16

Example

The dot product of

1−2

0

and

−1−2−1

0

is not defined!

Page 142: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

Example

Let #»v = 〈−1, −6, 1〉 and #»w = 〈−2, −3, −4〉 . Then

#»v · #»w = 〈−1, −6, 1〉 · 〈−2, −3, −4〉= (−1)(−2) + (−6)(−3) + (1)(−4)

= (2) + (18) + (−4)

= 16

Example

The dot product of

1−2

0

and

−1−2−1

0

is not defined!

Page 143: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductDefinition

Example

Let #»v = 〈−1, −6, 1〉 and #»w = 〈−2, −3, −4〉 . Then

#»v · #»w = 〈−1, −6, 1〉 · 〈−2, −3, −4〉= (−1)(−2) + (−6)(−3) + (1)(−4)

= (2) + (18) + (−4)

= 16

Example

The dot product of

1−2

0

and

−1−2−1

0

is not defined!

Page 144: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductProperties

Algebraic Properties of the Dot Product

The dot product obeys the following laws.

commutative #»v · #»w = #»w · #»v

distributive #»v · ( #»w + #»x ) = #»v · #»w + #»v · #»x

associative c · ( #»v · #»w ) = (c · #»v ) · #»w

Page 145: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductProperties

Algebraic Properties of the Dot Product

The dot product obeys the following laws.

commutative #»v · #»w = #»w · #»v

distributive #»v · ( #»w + #»x ) = #»v · #»w + #»v · #»x

associative c · ( #»v · #»w ) = (c · #»v ) · #»w

Page 146: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductProperties

Algebraic Properties of the Dot Product

The dot product obeys the following laws.

commutative #»v · #»w = #»w · #»v

distributive #»v · ( #»w + #»x ) = #»v · #»w + #»v · #»x

associative c · ( #»v · #»w ) = (c · #»v ) · #»w

Page 147: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductLengths

ObservationFor #»v = 〈v1, v2, . . . , vn〉, we have

#»v · #»v = v1 · v1 + v2 · v2 + · · ·+ vn · vn= v21 + v22 + · · ·+ v2n

= ‖ #»v ‖2

The dot product can be used to compute lengths!

Page 148: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductLengths

ObservationFor #»v = 〈v1, v2, . . . , vn〉, we have

#»v · #»v =

v1 · v1 + v2 · v2 + · · ·+ vn · vn= v21 + v22 + · · ·+ v2n

= ‖ #»v ‖2

The dot product can be used to compute lengths!

Page 149: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductLengths

ObservationFor #»v = 〈v1, v2, . . . , vn〉, we have

#»v · #»v = v1 · v1 + v2 · v2 + · · ·+ vn · vn=

v21 + v22 + · · ·+ v2n

= ‖ #»v ‖2

The dot product can be used to compute lengths!

Page 150: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductLengths

ObservationFor #»v = 〈v1, v2, . . . , vn〉, we have

#»v · #»v = v1 · v1 + v2 · v2 + · · ·+ vn · vn= v21 + v22 + · · ·+ v2n

=

‖ #»v ‖2

The dot product can be used to compute lengths!

Page 151: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductLengths

ObservationFor #»v = 〈v1, v2, . . . , vn〉, we have

#»v · #»v = v1 · v1 + v2 · v2 + · · ·+ vn · vn= v21 + v22 + · · ·+ v2n

= ‖ #»v ‖2

The dot product can be used to compute lengths!

Page 152: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductLengths

ObservationFor #»v = 〈v1, v2, . . . , vn〉, we have

#»v · #»v = v1 · v1 + v2 · v2 + · · ·+ vn · vn= v21 + v22 + · · ·+ v2n

= ‖ #»v ‖2

The dot product can be used to compute lengths!

Page 153: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

QuestionHow can we measure the angle θbetween two vectors #»v and #»w?

#»v

#»w

θ

#»v − #»w

AnswerForm a triangle. Measure ‖ #»v − #»w‖2 in two ways.

law of cosines ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 ‖ #»v ‖ · ‖ #»w‖ cos θ

dot product ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 #»v · #»w

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Page 154: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

QuestionHow can we measure the angle θbetween two vectors #»v and #»w?

#»v

#»w

θ

#»v − #»w

AnswerForm a triangle.

Measure ‖ #»v − #»w‖2 in two ways.

law of cosines ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 ‖ #»v ‖ · ‖ #»w‖ cos θ

dot product ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 #»v · #»w

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Page 155: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

QuestionHow can we measure the angle θbetween two vectors #»v and #»w?

#»v

#»w

θ

#»v − #»w

AnswerForm a triangle.

Measure ‖ #»v − #»w‖2 in two ways.

law of cosines ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 ‖ #»v ‖ · ‖ #»w‖ cos θ

dot product ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 #»v · #»w

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Page 156: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

QuestionHow can we measure the angle θbetween two vectors #»v and #»w?

#»v

#»w

θ

#»v − #»w

AnswerForm a triangle. Measure ‖ #»v − #»w‖2 in two ways.

law of cosines ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 ‖ #»v ‖ · ‖ #»w‖ cos θ

dot product ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 #»v · #»w

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Page 157: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

QuestionHow can we measure the angle θbetween two vectors #»v and #»w?

#»v

#»w

θ

#»v − #»w

AnswerForm a triangle. Measure ‖ #»v − #»w‖2 in two ways.

law of cosines ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 ‖ #»v ‖ · ‖ #»w‖ cos θ

dot product ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 #»v · #»w

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Page 158: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

QuestionHow can we measure the angle θbetween two vectors #»v and #»w?

#»v

#»w

θ

#»v − #»w

AnswerForm a triangle. Measure ‖ #»v − #»w‖2 in two ways.

law of cosines ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 ‖ #»v ‖ · ‖ #»w‖ cos θ

dot product ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 #»v · #»w

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Page 159: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

QuestionHow can we measure the angle θbetween two vectors #»v and #»w?

#»v

#»w

θ

#»v − #»w

AnswerForm a triangle. Measure ‖ #»v − #»w‖2 in two ways.

law of cosines ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 ‖ #»v ‖ · ‖ #»w‖ cos θ

dot product ‖ #»v − #»w‖2 = ‖ #»v ‖2 + ‖ #»w‖2 − 2 #»v · #»w

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Page 160: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Corollary (The Cauchy-Schwarz Inequality)

| #»v · #»w | ≤ ‖ #»v ‖ · ‖ #»w‖

Example

Let θ be the angle between #»v = 〈1, 2, 3〉 and #»w = 〈1, 1, 1〉.Compute cos θ.

cos θ =#»v · #»w

‖ #»v ‖ · ‖ #»w‖=

(1)(1) + (2)(1) + (3)(1)√12 + 22 + 32 ·

√12 + 12 + 12

=6√

14 ·√

3

Page 161: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Corollary (The Cauchy-Schwarz Inequality)

| #»v · #»w | ≤ ‖ #»v ‖ · ‖ #»w‖

Example

Let θ be the angle between #»v = 〈1, 2, 3〉 and #»w = 〈1, 1, 1〉.Compute cos θ.

cos θ =#»v · #»w

‖ #»v ‖ · ‖ #»w‖=

(1)(1) + (2)(1) + (3)(1)√12 + 22 + 32 ·

√12 + 12 + 12

=6√

14 ·√

3

Page 162: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Corollary (The Cauchy-Schwarz Inequality)

| #»v · #»w | ≤ ‖ #»v ‖ · ‖ #»w‖

Example

Let θ be the angle between #»v = 〈1, 2, 3〉 and #»w = 〈1, 1, 1〉.Compute cos θ.

cos θ =#»v · #»w

‖ #»v ‖ · ‖ #»w‖=

(1)(1) + (2)(1) + (3)(1)√12 + 22 + 32 ·

√12 + 12 + 12

=6√

14 ·√

3

Page 163: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

Theorem#»v · #»w = ‖ #»v ‖ · ‖ #»w‖ cos θ

Corollary (The Cauchy-Schwarz Inequality)

| #»v · #»w | ≤ ‖ #»v ‖ · ‖ #»w‖

Example

Let θ be the angle between #»v = 〈1, 2, 3〉 and #»w = 〈1, 1, 1〉.Compute cos θ.

cos θ =#»v · #»w

‖ #»v ‖ · ‖ #»w‖=

(1)(1) + (2)(1) + (3)(1)√12 + 22 + 32 ·

√12 + 12 + 12

=6√

14 ·√

3

Page 164: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then

#»v · #»w > 0 means θ is

acute (0 ≤ θ < π/2)

#»v · #»w < 0 means θ is

obtuse (π/2 < θ ≤ π)

#»v · #»w = 0 means θ is

right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 165: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is

acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is

obtuse (π/2 < θ ≤ π)

#»v · #»w = 0 means θ is

right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 166: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)

#»v · #»w < 0 means θ is

obtuse (π/2 < θ ≤ π)

#»v · #»w = 0 means θ is

right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 167: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is

obtuse (π/2 < θ ≤ π)#»v · #»w = 0 means θ is

right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 168: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is obtuse (π/2 < θ ≤ π)

#»v · #»w = 0 means θ is

right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 169: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is obtuse (π/2 < θ ≤ π)#»v · #»w = 0 means θ is

right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 170: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is obtuse (π/2 < θ ≤ π)#»v · #»w = 0 means θ is right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 171: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is obtuse (π/2 < θ ≤ π)#»v · #»w = 0 means θ is right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 172: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is obtuse (π/2 < θ ≤ π)#»v · #»w = 0 means θ is right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal?

Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 173: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

TheoremLet θ be the angle between two vectors #»v 6= #»

O and #»w 6= #»

O . Then#»v · #»w > 0 means θ is acute (0 ≤ θ < π/2)#»v · #»w < 0 means θ is obtuse (π/2 < θ ≤ π)#»v · #»w = 0 means θ is right (θ = π/2)

Definition#»v and #»w are orthogonal if #»v · #»w = 0

Example

Are #»v = 〈1,√

2, 1, 0〉 and #»w = 〈1,−√

2, 1, 1〉 orthogonal? Yes,since

#»v · #»w = (1)(1) + (√

2)(−√

2) + (1)(1) + (0)(1) = 1− 2 + 1 + 0 = 0

Page 174: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 175: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w =

0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 176: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0.

This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 177: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 178: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 =

3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 179: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3.

The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 180: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 181: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

=

w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 182: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 183: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.”

The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .

Page 184: The Algebra and Geometry of Vectors - Math 218 · The Algebra and Geometry of Vectors Math 218 Brian D. Fitzpatrick Duke University November 1, 2019 MATH. Overview Motivation What

The Dot ProductAngles

ProblemDescribe all vectors orthogonal to #»v = 〈1, −3, 8〉 .

The vectors orthogonal to #»v are the vectors #»w = 〈w1, w2, w3〉satisfying #»v · #»w = 0. This gives the equation

0 = #»v · #»w = 〈1, −3, 8〉 · 〈w1, w2, w3〉 = w1 − 3w2 + 8w3

Solving this equation for w1 gives w1 = 3w2 − 8w3. The vectorsorthogonal to #»v are thus given by

#»w =

w1

w2

w3

=

3w2 − 8w3

w2

w3

= w2

310

+ w3

−801

where w2 and w3 can be chosen “freely.” The vectors orthogonalto #»v are the linear combinations of 〈3, 1, 0〉 and 〈−8, 0, 1〉 .