tanque vertical 150m3 rev.c

103
Item: Tanque Deposito Vertical 150 m3 Vessel No: Customer: S.A. Lito Gonella e Hijo Date: Mayo 2015

Upload: gladys-esther-erbes

Post on 12-Jan-2016

26 views

Category:

Documents


1 download

DESCRIPTION

asdfasdfsa

TRANSCRIPT

Page 1: Tanque Vertical 150m3 Rev.C

Item: Tanque Deposito Vertical 150 m3

Vessel No:

Customer: S.A. Lito Gonella e Hijo

Date: Mayo 2015

Page 2: Tanque Vertical 150m3 Rev.C

Table of ContentsDeficiencies Summary............................................................................................................................................1/101

Nozzle Schedule......................................................................................................................................................2/101

Nozzle Summary.....................................................................................................................................................3/101

Pressure Summary.................................................................................................................................................4/101

Revision History......................................................................................................................................................6/101

Settings Summary...................................................................................................................................................7/101

Radiography Summary...........................................................................................................................................9/101

Thickness Summary.............................................................................................................................................10/101

Weight Summary...................................................................................................................................................11/101

Long Seam Summary...........................................................................................................................................12/101

Test Report............................................................................................................................................................14/101

Ellipsoidal Head #2...............................................................................................................................................15/101

Straight Flange on Ellipsoidal Head #2...............................................................................................................17/101

CD (N3)...................................................................................................................................................................23/101

E (N4)......................................................................................................................................................................31/101

Cylinder #1.............................................................................................................................................................36/101

Trunnion.................................................................................................................................................................42/101

Cylinder #2.............................................................................................................................................................53/101

Cylinder #3.............................................................................................................................................................59/101

B (N2)......................................................................................................................................................................65/101

F (N5)......................................................................................................................................................................73/101

Straight Flange on Ellipsoidal Head #1...............................................................................................................77/101

Ellipsoidal Head #1...............................................................................................................................................83/101

A (N1)......................................................................................................................................................................86/101

Support Skirt #1....................................................................................................................................................94/101

Skirt Base Ring #1.................................................................................................................................................98/101

i

Page 3: Tanque Vertical 150m3 Rev.C

Deficiencies Summary

Warnings Summary

Warnings for TrunnionThis vessel will likely require a horizontal to vertical rotational lift and should have a tailing lug. If a tailing lug is notspecified the lift lugs are only analyzed for a straight vertical lift. (warning)

1/101

Page 4: Tanque Vertical 150m3 Rev.C

Nozzle Schedule

Specifications

Nozzlemark Identifier Size Materials Impact

Tested Normalized Fine Grain Flange Blind

N1 A NPS 24 XS DN 600 Nozzle SA-106 B Smls. Pipe No No No NPS 24 Class 150SO A105 No

Pad SA-516 70 No No No

N2 B NPS 28 Sch 20 (XS) DN 700Nozzle SA-106 B Smls. Pipe No No No NPS 28 Class 150

WN A105

NPS 28Class 150

A105Pad SA-516 70 No No No

N3 CD NPS 3 Sch 80 (XS) DN 80 Nozzle SA-106 B Smls. Pipe No No No NPS 3 Class 150SO A105 No

Pad SA-516 70 No No No

N4 E NPS 2 Sch 160 DN 50Nozzle SA-106 B Smls. Pipe No No No NPS 2 Class 150

SO A105

NPS 2 Class150

A105Pad SA-516 70 No No No

N5 F NPS 1 Class 3000 - threaded Nozzle SA-106 B Smls. Pipe No No No N/A No

2/101

Page 5: Tanque Vertical 150m3 Rev.C

Nozzle Summary

Dimensions

Nozzlemark

OD(mm)

tn(mm)

Req tn(mm) A1? A2?

Shell ReinforcementPad Corr

(mm)Aa/Ar(%)

Nom t(mm)

Design t(mm)

User t(mm)

Width(mm)

tpad(mm)

N1 609.6 12.7 11.35 Yes Yes 25.4* 19.46 150 22.22 1.6 109.8

N2 711.2 12.7 11.35 Yes Yes 22.22 21.54 300 22.22 1.6 105.0

N3 88.9 7.62 7.31 Yes Yes 22.22* 19.46 50 19 1.6 131.4

N4 60.33 8.74 5.74 Yes Yes 22.22* N/A 50 19 1.6 Exempt

N5 44.45 5.52 3.54 Yes Yes 22.22 N/A N/A N/A 1.6 Exempt

*Head minimum thickness after forming

Definitions

tn Nozzle thickness

Req tn Nozzle thickness required per UG-45/UG-16

Nom t Vessel wall thickness

Design t Required vessel wall thickness due to pressure + corrosion allowance per UG-37

User t Local vessel wall thickness (near opening)

Aa Area available per UG-37, governing condition

Ar Area required per UG-37, governing condition

Corr Corrosion allowance on nozzle wall

3/101

Page 6: Tanque Vertical 150m3 Rev.C

Pressure Summary

Component Summary

IdentifierP

Design(kg/cm2)

T

Design(°C)

MAWP(kg/cm2)

MAP(kg/cm2)

MDMT(°C)

MDMTExemption

ImpactTested

Ellipsoidal Head #2 12 50 12.47 13.44 -29 Note 1 No

Straight Flange on Ellipsoidal Head #2 12 50 12.41 13.37 -29 Note 1 No

Cylinder #1 12 50 12.41 13.37 -29 Note 1 No

Cylinder #2 12 50 12.41 13.37 -29 Note 1 No

Cylinder #3 12 50 12.41 13.37 -29 Note 1 No

Straight Flange on Ellipsoidal Head #1 12 50 14.31 15.27 -10.1 Note 3 No

Ellipsoidal Head #1 12 50 14.39 15.36 -10.3 Note 2 No

A (N1) 12 50 12 12 -29 Nozzle Note 4 No

Pad Note 5 No

B (N2) 12 50 12 12 -29 Nozzle Note 6 No

Pad Note 5 No

CD (N3) 12 50 12 12 -29 Nozzle Note 7 No

Pad Note 8 No

E (N4) 12 50 12 12 -29 Nozzle Note 9 No

Pad Note 8 No

F (N5) 12 50 12 12 -105 Note 10 No

Chamber Summary

Design MDMT -10 °C

Rated MDMT -10.1 °C @ 12 kg/cm2

MAWP hot & corroded 12 kg/cm2 @ 50 °C

MAP cold & new 12 kg/cm2 @ 25 °C

(1) This pressure chamber is not designed forexternal pressure.

4/101

Page 7: Tanque Vertical 150m3 Rev.C

Notes for MDMT Rating

Note # Exemption Details

1. Material is impact test exempt per UG-20(f) UCS-66 governing thickness = 22.22 mm

2. Material impact test exemption temperature from Fig UCS-66M Curve B = -1°CFig UCS-66.1M MDMT reduction = 9.3°C, (coincident ratio = 0.8336) UCS-66 governing thickness = 25.4 mm

3. Material impact test exemption temperature from Fig UCS-66M Curve B = -1°CFig UCS-66.1M MDMT reduction = 9.1°C, (coincident ratio = 0.8379) UCS-66 governing thickness = 25.4 mm

4. Nozzle is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.3098).

5. Pad is impact test exempt per UG-20(f) UCS-66 governing thickness = 22.22 mm.

6.Nozzle impact test exemption temperature from Fig UCS-66M Curve B = -24.98°CFig UCS-66.1M MDMT reduction = 68.8°C, (coincident ratio = 0.3634)Rated MDMT of -93.78°C is limited to -48°C by UCS-66(b)(2)

UCS-66 governing thickness = 11.11 mm.

7. Nozzle is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0761).

8. Pad is impact test exempt per UG-20(f) UCS-66 governing thickness = 19 mm.

9. Nozzle is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0382).

10. Nozzle is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe).

5/101

Page 8: Tanque Vertical 150m3 Rev.C

Revision History

Revisions

No. Date Operator Notes

0 4/ 1/2014 HP New vessel created ASME Section VIII Division 1 [COMPRESS 2014 Build 7400]

6/101

Page 9: Tanque Vertical 150m3 Rev.C

Settings Summary

INSPECT 2015 Build 7500

ASME Section VIII Division 1, 2013 Edition Metric

Units MKS

Datum Line Location 0.00 mm from bottom seam

Vessel Design Mode Get Thickness from Pressure

Minimum thickness 1.5 mm per UG-16(b)

Design for cold shut down only Yes

Design for lethal service (full radiography required) No

Design nozzles for Design P only

Corrosion weight loss 100% of theoretical loss

UG-23 Stress Increase 1.20

Skirt/legs stress increase 1.3

Minimum nozzle projection 1 mm

Juncture calculations for α > 30 only Yes

Preheat P-No 1 Materials > 1.25" and <= 1.50" thick No

UG-37(a) shell tr calculation considers longitudinal stress No

Cylindrical shells made from pipe are entered as minimum thickness No

Nozzles made from pipe are entered as minimum thickness No

Pipe caps are entered as minimum thickness No

Butt welds Tapered per Figure UCS-66.3(a)

Disallow Appendix 1-5, 1-8 calculations under 15 psi No

Hydro/Pneumatic Test

Shop Hydrotest at user defined pressure 18 kg/cm2

Test liquid specific gravity 1.00

Maximum stress during test 90% of yield

Required Marking - UG-116

UG-116(e) Radiography RT1 (user specified, automatic determinationdeactivated)

UG-116(f) Postweld heat treatment None

Code Cases\Interpretations

Use Code Case 2547 No

Use Code Case 2695 No

Apply interpretation VIII-1-83-66 Yes

Apply interpretation VIII-1-86-175 Yes

7/101

Page 10: Tanque Vertical 150m3 Rev.C

Apply interpretation VIII-1-01-37 Yes

Apply interpretation VIII-1-01-150 No

Apply interpretation VIII-1-07-50 No

No UCS-66.1 MDMT reduction No

No UCS-68(c) MDMT reduction No

Disallow UG-20(f) exemptions No

UG-22 Loadings

UG-22(a) Internal or External Design Pressure Yes

UG-22(b) Weight of the vessel and normal contents under operatingor test conditions Yes

UG-22(c) Superimposed static reactions from weight of attachedequipment (external loads) No

UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles andlegs Yes

UG-22(f) Wind reactions No

UG-22(f) Seismic reactions No

UG-22(j) Test pressure and coincident static head acting during thetest: Yes

Note: UG-22(b),(c) and (f) loads only considered when supports are present.

8/101

Page 11: Tanque Vertical 150m3 Rev.C

Radiography Summary

UG-116 Radiography

ComponentLongitudinal Seam Top Circumferential Seam Bottom Circumferential Seam

MarkCategory

(Fig UW-3) Radiography / Joint Type Category(Fig UW-3) Radiography / Joint Type Category

(Fig UW-3) Radiography / Joint Type

UG-116(e) Required Marking: RT1 (user specified, automatic determination deactivated)

9/101

Page 12: Tanque Vertical 150m3 Rev.C

Thickness Summary

Component Data

ComponentIdentifier

Material Diameter(mm)

Length(mm)

Nominal t(mm)

Design t(mm)

Total Corrosion(mm)

JointE

Load

Ellipsoidal Head #2 SA-516 70 4,650 ID 1,184.72 22.22* 21.44 1.6 1.00 Internal

Straight Flange on Ellipsoidal Head #2 SA-516 70 4,650 ID 38.1 22.22 21.54 1.6 1.00 Internal

Cylinder #1 SA-516 70 4,650 ID 2,500 22.22 21.54 1.6 1.00 Internal

Cylinder #2 SA-516 70 4,650 ID 2,500 22.22 21.54 1.6 1.00 Internal

Cylinder #3 SA-516 70 4,650 ID 2,500 22.22 21.54 1.6 1.00 Internal

Straight Flange on Ellipsoidal Head #1 SA-516 70 4,650 ID 38.1 25.4 21.54 1.6 1.00 Internal

Ellipsoidal Head #1 SA-516 70 4,650 ID 1,187.9 25.4* 21.44 1.6 1.00 Internal

Support Skirt #1 SA-516 70 4,650 ID 470 22.22 3.44 3.2 0.55 Weight

*Head minimum thickness after forming

Definitions

Nominal t Vessel wall nominal thickness

Design t Required vessel thickness due to governing loading + corrosion

Joint E Longitudinal seam joint efficiency

Load

Internal Circumferential stress due to internal pressure governs

External External pressure governs

Wind Combined longitudinal stress of pressure + weight + windgoverns

Seismic Combined longitudinal stress of pressure + weight + seismicgoverns

10/101

Page 13: Tanque Vertical 150m3 Rev.C

Weight Summary

Weight (kg) Contributed by Vessel Elements

Component MetalNew*

MetalCorroded Insulation Insulation

Supports Lining Piping+ Liquid

OperatingLiquid Test Liquid Surface Area

m2

New Corroded New Corroded

Ellipsoidal Head #2 4,482.8 4,163.5 0 0 0 0 0 0 13,797.3 13,834.5 27.24

Cylinder #1 6,386.8 5,928.9 0 0 0 0 0 0 42,420.2 42,478.6 36.87

Cylinder #2 6,386.8 5,928.9 0 0 0 0 0 0 42,420.2 42,478.6 36.87

Cylinder #3 6,317.4 5,864.5 0 0 0 0 0 0 42,430.3 42,488.9 36.47

Ellipsoidal Head #1 5,076.8 4,761 0 0 0 0 0 0 13,866.7 13,904.6 27.03

Support Skirt #1 1,103.6 944.7 0 0 0 0 0 0 0 0 13.86

Skirt Base Ring #1 2,714.3 2,714.3 0 0 0 0 0 0 0 0 18.92

TOTAL: 32,468.6 30,305.8 0 0 0 0 0 0 154,934.8 155,185.2 197.28

*Shells with attached nozzles have weight reduced by material cut out for opening.

Weight (kg) Contributed by Attachments

Component Body Flanges Nozzles &Flanges Packed

BedsLadders &Platforms

Trays TraySupports

Rings &Clips

VerticalLoads

SurfaceAream2

New Corroded New Corroded

Ellipsoidal Head #2 0 0 18.1 17.4 0 0 0 0 0 0 0.11

Cylinder #1 0 0 0 0 0 0 0 0 486.4 0 0.98

Cylinder #2 0 0 0 0 0 0 0 0 0 0 0

Cylinder #3 0 0 740.1 737.6 0 0 0 0 0 0 1.6

Ellipsoidal Head #1 0 0 217.4 210.3 0 0 0 0 0 0 0.74

Support Skirt #1 0 0 0 0 0 0 0 0 0 0 0

TOTAL: 0 0 975.6 965.4 0 0 0 0 486.4 0 3.43

Vessel Totals

New Corroded

Operating Weight (kg) 33,931 31,758

Empty Weight (kg) 33,931 31,758

Test Weight (kg) 188,865 186,943

Surface Area (m2) 200.71 -

Capacity** (liters) 154,984 155,233

**The vessel capacity does not includevolume of nozzle, piping or otherattachments.

Vessel Lift Condition

Vessel Lift Weight, New (kg) 33,931

Center of Gravity from Datum (mm) 3,148.68

11/101

Page 14: Tanque Vertical 150m3 Rev.C

Long Seam Summary

Shell Long Seam Angles

Component Seam 1 Seam 2

Cylinder #1 30° 324.3138°

Cylinder #2 60° 354.3138°

Cylinder #3 30° 324.3138°

Support Skirt #1 60° 352.6237°

Shell Plate Lengths

Component StartingAngle Plate 1 Plate 2

Cylinder #1 30° 12,000 mm 2,678.21 mm

Cylinder #2 60° 12,000 mm 2,678.21 mm

Cylinder #3 30° 12,000 mm 2,678.21 mm

Support Skirt #1 60° 11,931.09 mm 2,747.12 mm

Notes

1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components.2) North is located at 0°

12/101

Page 15: Tanque Vertical 150m3 Rev.C

Shell Rollout

13/101

Page 16: Tanque Vertical 150m3 Rev.C

Test Report

Horizontal shop test based on user defined pressure

Gauge pressure at 25°C = 18 kgf/cm2

Horizontal shop test

IdentifierLocal testpressure(kgf/cm2)

Test liquidstatic head(kgf/cm2)

Stressduring test(kgf/cm2)

Allowabletest stress(kgf/cm2)

Stressexcessive?

Ellipsoidal Head #2 18.48 0.48 1,740.493 2,404.489 No

Straight Flange on Ellipsoidal Head #2 18.48 0.48 1,943.107 2,404.489 No

Cylinder #1 18.48 0.48 1,943.107 2,404.489 No

Cylinder #2 18.48 0.48 1,943.107 2,404.489 No

Cylinder #3 18.48 0.48 1,943.107 2,404.489 No

Straight Flange on Ellipsoidal Head #1 18.48 0.48 1,700.989 2,404.489 No

Ellipsoidal Head #1 18.48 0.48 1,522.589 2,404.489 No

A (N1) 18.28 0.28 2,448.002 3,606.733 No

B (N2) 18.02 0.02 3,004.838 3,606.733 No

CD (N3) 18.25 0.25 1,850.935 3,606.733 No

E (N4) 18.17 0.17 1,636.725 3,606.733 No

F (N5) 18.25 0.25 3,278.385 3,606.733 No

(1) PL stresses at nozzle openings have been estimated using the method described in Division2 Part 4.5.(2) 1.5*0.9*Sy used as the basis for the maximum local primary membrane stress at the nozzleintersection PL.(3) The zero degree angular position is assumed to be up, and the test liquid height is assumedto the top-most flange.

The field test condition has not been investigated.

The test temperature of 25 °C is warmer than the minimum recommended temperature of 6.9 °C so the brittlefracture provision of UG-99(h) has been met.

14/101

Page 17: Tanque Vertical 150m3 Rev.C

Ellipsoidal Head #2

ASME Section VIII Division 1, 2013 Edition Metric

Component Ellipsoidal Head

Material SA-516 70 (II-D Metric p. 22, ln. 6)

Attached To Cylinder #1

ImpactTested Normalized Fine Grain

Practice PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (kgf/cm2)

DesignTemperature (°C)

DesignMDMT (°C)

Internal 12 50 -10

Static Liquid Head

Condition Ps (kgf/cm2) Hs (mm) SG

Test horizontal 0.48 4,825 1

Dimensions

Inner Diameter 4,650 mm

Head Ratio 2

Minimum Thickness 22.22 mm

Corrosion Inner 1.6 mm

Outer 0 mm

Length Lsf 38.1 mm

Nominal Thickness tsf 22.22 mm

Weight and Capacity

Weight (kg)1 Capacity (liters)1

New 4,482.85 13,808.29

Corroded 4,163.52 13,845.44

Radiography

Category A joints Full UW-11(a) Type 1

Head to shell seam Full UW-11(a) Type 11includes straight flange

15/101

Page 18: Tanque Vertical 150m3 Rev.C

Results Summary

Governing condition internal pressure

Minimum thickness per UG-16 1.5 mm + 1.6 mm = 3.1 mm

Design thickness due to internal pressure (t) 21.44 mm

Maximum allowable working pressure (MAWP) 12.47 kgf/cm2

Maximum allowable pressure (MAP) 13.44 kgf/cm2

Rated MDMT -29°C

UCS-66 Material Toughness Requirements

Governing thickness, tg = 22.22 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -10°C.

Factor K

K = (1/6)*[2 + (D / (2*h))2]

Corroded K = (1/6)*[2 + (4,653.2 / (2*1,164.1))2] 0.9991

New K = (1/6)*[2 + (4,650 / (2*1,162.5))2] 1

Design thickness for internal pressure, (Corroded at 50 °C) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 12*4,653.2*0.999084 / (2*1,407.21*1 - 0.2*12) + 1.6= 21.44 mm

Maximum allowable working pressure, (Corroded at 50 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*1,407.21*1*20.62 / (0.999084*4,653.2 +0.2*20.62) - 0= 12.47 kgf/cm2

Maximum allowable pressure, (New at 25 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*1,407.21*1*22.22 / (1*4,650 +0.2*22.22) - 0= 13.44 kgf/cm2

% Extreme fiber elongation - UCS-79(d)

EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*22.22 / 801.61)*(1 - 801.61 / ∞)= 2.0789%

The extreme fiber elongation does not exceed 5%.

16/101

Page 19: Tanque Vertical 150m3 Rev.C

Straight Flange on Ellipsoidal Head #2

ASME Section VIII Division 1, 2013 Edition Metric

Component Cylinder

Material SA-516 70 (II-D Metric p. 22, ln. 6)

ImpactTested Normalized Fine Grain

Practice PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (kgf/cm2)

DesignTemperature (°C)

DesignMDMT (°C)

Internal 12 50 -10

Static Liquid Head

Condition Ps (kgf/cm2) Hs (mm) SG

Test horizontal 0.48 4,825 1

Dimensions

Inner Diameter 4,650 mm

Length 38.1 mm

Nominal Thickness 22.22 mm

Corrosion Inner 1.6 mm

Outer 0 mm

Weight and Capacity

Weight (kg) Capacity (liters)

New 97.34 647.02

Corroded 90.36 647.92

Radiography

Longitudinal seam Full UW-11(a) Type 1

Bottom Circumferentialseam Full UW-11(a) Type 1

17/101

Page 20: Tanque Vertical 150m3 Rev.C

Results Summary

Governing condition Internal pressure

Minimum thickness per UG-16 1.5 mm + 1.6 mm = 3.1 mm

Design thickness due to internal pressure (t) 21.54 mm

Design thickness due to combined loadings + corrosion 11.48 mm

Maximum allowable working pressure (MAWP) 12.41 kg/cm2

Maximum allowable pressure (MAP) 13.37 kg/cm2

Rated MDMT -29 °C

UCS-66 Material Toughness Requirements

Governing thickness, tg = 22.22 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -10°C.

Design thickness, (at 50 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 12*2,326.6 / (1,407.21*1.00 - 0.60*12) + 1.6= 21.54 mm

Maximum allowable working pressure, (at 50 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 1,407.21*1.00*20.62 / (2,326.6 + 0.60*20.62) - 0= 12.41 kg/cm2

Maximum allowable pressure, (at 25 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 1,407.21*1.00*22.22 / (2,325 + 0.60*22.22)= 13.37 kg/cm2

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*22.22 / 2,336.11)*(1 - 2,336.11 / ∞)= 0.4756%

The extreme fiber elongation does not exceed 5%.

18/101

Page 21: Tanque Vertical 150m3 Rev.C

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kg/cm2)

Allowable StressBefore UG-23

Stress Increase (kg/cm2)

Temperature (°C)

Corrosion C(mm) Load Req'd Thk Due to

Tension (mm)

Req'd Thk Dueto

Compression(mm)

St Sc

Operating, Hot & Corroded 12 1,407.2 887.7 50 1.6 Weight 9.88 9.88

Operating, Hot & New 12 1,407.2 906.5 50 0 Weight 9.87 9.87

Empty, Corroded 0 1,407.2 887.7 25 1.6 Weight 0.03 0.03

Empty, New 0 1,407.2 906.5 25 0 Weight 0.03 0.03

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 1,407.2 887.7 50 1.6 Weight 0.03 0.03

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHC = min(B, S) = 887.7 kg/cm2

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCC = min(B, S) = 887.7 kg/cm2

19/101

Page 22: Tanque Vertical 150m3 Rev.C

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScVC = min(B, S) = 887.7 kg/cm2

Operating, Hot & Corroded, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,326.6 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 10.8 / (π*2,336.912*1,407.21*1.00*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 4,180.9 / (2*π*2,336.91*1,407.21*1.00*1.00) * 102

= 0.02 mm

tt = tp + tm - tw(total required,tensile)

= 9.9 + 0 - (0.02)= 9.88 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0.02) - (9.9)|= 9.88 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(20.62 - 0 + (0.02)) / (2,326.6 - 0.40*(20.62 - 0 + (0.02)))= 25.06 kg/cm2

Operating, Hot & New, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,325 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 11.3 / (π*2,336.112*1,407.21*1.00*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 4,500.9 / (2*π*2,336.11*1,407.21*1.00*1.00) * 102

= 0.02 mm

tt = tp + tm - tw(total required,tensile)

20/101

Page 23: Tanque Vertical 150m3 Rev.C

= 9.9 + 0 - (0.02)= 9.87 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0.02) - (9.9)|= 9.87 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(22.22 - 0 + (0.02)) / (2,325 - 0.40*(22.22 - 0 + (0.02)))= 27.03 kg/cm2

Empty, Corroded, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 10.8 / (π*2,336.912*887.72*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 4,180.9 / (2*π*2,336.91*887.72*1.00) * 102

= 0.03 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.03)|= 0.03 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.03) - (0)= 0.03 mm

Empty, New, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 11.3 / (π*2,336.112*906.53*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 4,500.9 / (2*π*2,336.11*906.53*1.00) * 102

= 0.03 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.03)|= 0.03 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.03) - (0)= 0.03 mm

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0 mm (Pressure)

21/101

Page 24: Tanque Vertical 150m3 Rev.C

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 10.8 / (π*2,336.912*887.72*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 4,180.9 / (2*π*2,336.91*887.72*1.00) * 102

= 0.03 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.03)|= 0.03 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.03) - (0)= 0.03 mm

22/101

Page 25: Tanque Vertical 150m3 Rev.C

CD (N3)

ASME Section VIII Division 1, 2013 Edition Metric

Note: round inside edges per UG-76(c)

Location and Orientation

Located on Ellipsoidal Head #2

Orientation 0°

End of nozzle to datum line 8,800 mm

Calculated as hillside No

Distance to head center, R 0 mm

Passes through a Category A joint No

Nozzle

Description NPS 3 Sch 80 (XS) DN 80

Access opening No

Material specification SA-106 B Smls. Pipe (II-D Metric p. 14, ln. 19)

Inside diameter, new 73.66 mm

Nominal wall thickness 7.62 mm

Corrosion allowance 1.6 mm

Projection available outside vessel, Lpr 69.77 mm

Projection available outside vessel to flange face, Lf 77.39 mm

Local vessel minimum thickness 22.22 mm

Liquid static head included 0 kgf/cm2

Longitudinal joint efficiency 1

Reinforcing Pad

Material specification SA-516 70 (II-D Metric p. 22, ln. 6)

Diameter, Dp 188.9 mm

23/101

Page 26: Tanque Vertical 150m3 Rev.C

Thickness, te 19 mm

Is split No

Welds

Inner Fillet, Leg41 9.5 mm

Outer Fillet, Leg42 14 mm

Nozzle to vessel groove weld 22.22 mm

Pad groove weld 19 mm

ASME B16.5-2009 Flange

Description NPS 3 Class 150 SO A105

Bolt Material SA-193 B7 Bolt <= 64 (II-D Metric p. 352, ln. 31)

Blind included No

Rated MDMT -48°C

Liquid static head 0 kgf/cm2

MAWP rating 19.58 kgf/cm2 @ 50°C

MAP rating 19.99 kgf/cm2 @ 25°C

Hydrotest rating 30.59 kgf/cm2 @ 25°C

External fillet weld leg (UW-21) 8.43 mm (8.43 mm min)

Internal fillet weld leg (UW-21) 7.62 mm (7.62 mm min)

PWHT performed No

Impact Tested No

Notes

Flange rated MDMT per UCS-66(b)(1)(b) = -48°C (Coincident ratio = 0.6004)Bolts rated MDMT per Fig UCS-66 note (c) = -48°C

UCS-66 Material Toughness Requirements Nozzle

tr = 12*38.43 / (1,203.26*1 - 0.6*12) = 0.39 mm

Stress ratio = tr*E* / (tn - c) = 0.39*1 / (6.67 - 1.6) = 0.0761

Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) = -105°C

Material is exempt from impact testing at the Design MDMT of -10°C.

24/101

Page 27: Tanque Vertical 150m3 Rev.C

UCS-66 Material Toughness Requirements Pad

Governing thickness, tg = 19 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -10°C.

25/101

Page 28: Tanque Vertical 150m3 Rev.C

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)UG-45

Summary(mm)

For P = 12 kgf/cm2 @ 50 °C

The opening is adequately reinforcedThe nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

14.0384 18.4416 2.0735 3.2806 -- 12.3158 0.7716 6.4 6.67

UG-41 Weld Failure Path Analysis Summary (kgf)

All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

17,237 23,033 35,245 8,690 65,435 26,021 58,629

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 4.21 6.65 weld size is adequate

Pad to shell fillet (Leg42) 9.5 9.8 weld size is adequate

Calculations for internal pressure 12 kgf/cm2 @ 50 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(76.86, 38.43 + (7.62 - 1.6) + (22.22 - 1.6))= 76.86 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(22.22 - 1.6), 2.5*(7.62 - 1.6) + 19)= 34.05 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 12*38.43 / (1,203.2642*1 - 0.6*12)= 0.39 mm

Required thickness tr from UG-37(a)(c)

tr = P*K1*D / (2*S*E - 0.2*P)= 12*0.8994*4,653.2 / (2*1,407.2073*1 - 0.2*12)= 17.86 mm

26/101

Page 29: Tanque Vertical 150m3 Rev.C

Area required per UG-37(c)

Allowable stresses: Sn = 1,203.264, Sv = 1,407.207, Sp = 1,407.207 kgf/cm2

fr1 = lesser of 1 or Sn / Sv = 0.8551

fr2 = lesser of 1 or Sn / Sv = 0.8551

fr3 = lesser of fr2 or Sp / Sv = 0.8551

fr4 = lesser of 1 or Sp / Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= (76.86*17.86*1 + 2*6.02*17.86*1*(1 - 0.8551)) / 100= 14.0384 cm2

Area available from FIG. UG-37.1

A1 = larger of the following= 2.0735 cm2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= (76.86*(1*20.62 - 1*17.86) - 2*6.02*(1*20.62 - 1*17.86)*(1 - 0.8551)) / 100= 2.0735 cm2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= (2*(20.62 + 6.02)*(1*20.62 - 1*17.86) - 2*6.02*(1*20.62 - 1*17.86)*(1 - 0.8551)) / 100= 1.4226 cm2

A2 = smaller of the following= 3.2806 cm2

= 5*(tn - trn)*fr2*t= (5*(6.02 - 0.39)*0.8551*20.62) / 100= 4.9671 cm2

= 2*(tn - trn)*(2.5*tn + te)*fr2= (2*(6.02 - 0.39)*(2.5*6.02 + 19)*0.8551) / 100= 3.2806 cm2

A41 = Leg2*fr3= (9.52*0.8551) / 100= 0.7716 cm2

A42 = Leg2*fr4= (02*1) / 100= 0 cm2

(Part of the weld is outside of the limits)

27/101

Page 30: Tanque Vertical 150m3 Rev.C

A5 = (Dp - d - 2*tn)*te*fr4= ((153.72 - 76.86 - 2*6.02)*19*1) / 100= 12.3158 cm2

Area = A1 + A2 + A41 + A42 + A5

= 2.0735 + 3.2806 + 0.7716 + 0 + 12.3158= 18.4416 cm2

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet: tmin = lesser of 19 mm or tn or te = 6.02 mmtc(min) = lesser of 6 mm or 0.7*tmin = 4.21 mmtc(actual) = 0.7*Leg = 0.7*9.5 = 6.65 mm

Outer fillet: tmin = lesser of 19 mm or te or t = 19 mmtw(min) = 0.5*tmin = 9.5 mmtw(actual) = 0.7*Leg = 0.7*14 = 9.8 mm

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 12*38.43 / (1,203.2642*1 - 0.6*12) + 1.6= 1.99 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 1.99 , 0 ]= 1.99 mm

tb1 = 21.44 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 21.44 , 3.1 ]= 21.44 mm

tb = min[ tb3 , tb1 ]= min[ 6.4 , 21.44 ]= 6.4 mm

tUG-45 = max[ ta , tb ]= max[ 1.99 , 6.4 ]

28/101

Page 31: Tanque Vertical 150m3 Rev.C

= 6.4 mm

Available nozzle wall thickness new, tn = 0.875*7.62 = 6.67 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: 0.74*1,407.207 = 1,041.333 kgf/cm2

Nozzle wall in shear: 0.7*1,203.264 = 842.285 kgf/cm2

Inner fillet weld in shear: 0.49*1,203.264 = 589.599 kgf/cm2

Outer fillet weld in shear: 0.49*1,407.207 = 689.532 kgf/cm2

Upper groove weld in tension: 0.74*1,407.207 = 1,041.333 kgf/cm2

Strength of welded joints:

(1) Inner fillet weld in shear(π / 2)*Nozzle OD*Leg*Si = (π / 2)*88.9*9.5*589.599 = 7,821.73 kgf

(2) Outer fillet weld in shear(π / 2)*Pad OD*Leg*So = (π / 2)*188.9*14*689.532 = 28,644.05 kgf

(3) Nozzle wall in shear(π / 2)*Mean nozzle dia*tn*Sn = (π / 2)*82.88*6.02*842.285 = 6,601.24 kgf

(4) Groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*88.9*20.62*1,041.333 = 29,984.46 kgf

(6) Upper groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*88.9*19*1,041.333 = 27,629.02 kgf

Loading on welds per UG-41(b)(1)

W = (A - A1 + 2*tn*fr1*(E1*t - F*tr))*Sv

= (1,403.8389 - 207.3544 + 2*6.02*0.8551*(1*20.62 - 1*17.86))*1,407.207= 17,236.94 kgf

W1-1 = (A2 + A5 + A41 + A42)*Sv

= (328.0639 + 1,231.58 + 77.1611 + 0)*1,407.207= 23,033.26 kgf

W2-2 = (A2 + A3 + A41 + A43 + 2*tn*t*fr1)*Sv

= (328.0639 + 0 + 77.1611 + 0 + 2*6.02*20.62*0.8551)*1,407.207= 8,689.71 kgf

W3-3 = (A2 + A3 + A5 + A41 + A42 + A43 + 2*tn*t*fr1)*Sv

= (328.0639 + 0 + 1,231.58 + 77.1611 + 0 + 0 + 2*6.02*20.62*0.8551)*1,407.207= 26,020.61 kgf

Load for path 1-1 lesser of W or W1-1 = 17,236.94 kgf

29/101

Page 32: Tanque Vertical 150m3 Rev.C

Path 1-1 through (2) & (3) = 28,644.05 + 6,601.24 = 35,245.29 kgfPath 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or W2-2 = 8,689.71 kgfPath 2-2 through (1), (4), (6) = 7,821.73 + 29,984.46 + 27,629.02 = 65,435.21 kgfPath 2-2 is stronger than W2-2 so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or W3-3 = 17,236.94 kgfPath 3-3 through (2), (4) = 28,644.05 + 29,984.46 = 58,628.51 kgfPath 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

30/101

Page 33: Tanque Vertical 150m3 Rev.C

E (N4)

ASME Section VIII Division 1, 2013 Edition Metric

Note: round inside edges per UG-76(c)

Location and Orientation

Located on Ellipsoidal Head #2

Orientation 45°

End of nozzle to datum line 8,750 mm

Calculated as hillside Yes

Distance to head center, R 1,150 mm

Passes through a Category A joint No

Nozzle

Description NPS 2 Sch 160 DN 50

Access opening No

Material specification SA-106 B Smls. Pipe (II-D Metric p. 14, ln. 19)

Inside diameter, new 42.85 mm

Nominal wall thickness 8.74 mm

Corrosion allowance 1.6 mm

Opening chord length 47.87 mm

Projection available outside vessel, Lpr 161.97 mm

Projection available outside vessel to flange face, Lf 170.7 mm

Local vessel minimum thickness 22.22 mm

Liquid static head included 0 kgf/cm2

Longitudinal joint efficiency 1

Reinforcing Pad

Material specification SA-516 70 (II-D Metric p. 22, ln. 6)

31/101

Page 34: Tanque Vertical 150m3 Rev.C

Diameter, Dp 162.66 mm

Thickness, te 19 mm

Is split No

Welds

Inner Fillet, Leg41 9.5 mm

Outer Fillet, Leg42 14 mm

Nozzle to vessel groove weld 22.22 mm

Pad groove weld 19 mm

ASME B16.5-2009 Flange

Description NPS 2 Class 150 SO A105

Bolt Material SA-193 B7 Bolt <= 64 (II-D Metric p. 352, ln. 31)

Blind included Yes

Rated MDMT -48°C

Liquid static head 0 kgf/cm2

MAWP rating 19.58 kgf/cm2 @ 50°C

MAP rating 19.99 kgf/cm2 @ 25°C

Hydrotest rating 30.59 kgf/cm2 @ 25°C

External fillet weld leg (UW-21) 7.87 mm (7.87 mm min)

Internal fillet weld leg (UW-21) 8.29 mm (8.29 mm min)

PWHT performed No

Impact Tested No

Notes

Flange rated MDMT per UCS-66(b)(1)(b) = -48°C (Coincident ratio = 0.6004)Bolts rated MDMT per Fig UCS-66 note (c) = -48°C

UCS-66 Material Toughness Requirements Nozzle

tr = 12*23.02 / (1,203.26*1 - 0.6*12) = 0.23 mm

Stress ratio = tr*E* / (tn - c) = 0.23*1 / (7.65 - 1.6) = 0.0382

Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) = -105°C

Material is exempt from impact testing at the Design MDMT of -10°C.

32/101

Page 35: Tanque Vertical 150m3 Rev.C

UCS-66 Material Toughness Requirements Pad

Governing thickness, tg = 19 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -10°C.

33/101

Page 36: Tanque Vertical 150m3 Rev.C

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary(cm2)

UG-45Summary

(mm)

For P = 12 kgf/cm2 @ 50 °C The nozzlepasses UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 5.02 7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5 6.65 weld size is adequate

Pad to shell fillet (Leg42) 9.5 9.8 weld size is adequate

Calculations for internal pressure 12 kgf/cm2 @ 50 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(47.87, 23.94 + (8.74 - 1.6) + (22.22 - 1.6))= 51.69 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(22.22 - 1.6), 2.5*(8.74 - 1.6) + 19)= 36.84 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 12*23.02 / (1,203.2642*1 - 0.6*12)= 0.23 mm

Required thickness tr from UG-37(a)(c)

tr = P*K1*D / (2*S*E - 0.2*P)= 12*0.8994*4,653.2 / (2*1,407.2073*1 - 0.2*12)= 17.86 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

34/101

Page 37: Tanque Vertical 150m3 Rev.C

UW-16(c)(2) Weld Check

Inner fillet: tmin = lesser of 19 mm or tn or te = 7.14 mmtc(min) = lesser of 6 mm or 0.7*tmin = 5 mmtc(actual) = 0.7*Leg = 0.7*9.5 = 6.65 mm

Outer fillet: tmin = lesser of 19 mm or te or t = 19 mmtw(min) = 0.5*tmin = 9.5 mmtw(actual) = 0.7*Leg = 0.7*14 = 9.8 mm

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 12*23.02 / (1,203.2642*1 - 0.6*12) + 1.6= 1.83 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 1.83 , 0 ]= 1.83 mm

tb1 = 21.44 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 21.44 , 3.1 ]= 21.44 mm

tb = min[ tb3 , tb1 ]= min[ 5.02 , 21.44 ]= 5.02 mm

tUG-45 = max[ ta , tb ]= max[ 1.83 , 5.02 ]= 5.02 mm

Available nozzle wall thickness new, tn = 0.875*8.74 = 7.65 mm

The nozzle neck thickness is adequate.

35/101

Page 38: Tanque Vertical 150m3 Rev.C

Cylinder #1

ASME Section VIII Division 1, 2013 Edition Metric

Component Cylinder

Material SA-516 70 (II-D Metric p. 22, ln. 6)

ImpactTested Normalized Fine Grain

Practice PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (kgf/cm2)

DesignTemperature (°C)

DesignMDMT (°C)

Internal 12 50 -20

Static Liquid Head

Condition Ps (kgf/cm2) Hs (mm) SG

Test horizontal 0.48 4,825 1

Dimensions

Inner Diameter 4,650 mm

Length 2,500 mm

Nominal Thickness 22.22 mm

Corrosion Inner 1.6 mm

Outer 0 mm

Weight and Capacity

Weight (kg) Capacity (liters)

New 6,386.83 42,455.68

Corroded 5,928.91 42,514.14

Radiography

Longitudinal seam Full UW-11(a) Type 1

Top Circumferentialseam Full UW-11(a) Type 1

Bottom Circumferentialseam Full UW-11(a) Type 1

36/101

Page 39: Tanque Vertical 150m3 Rev.C

Results Summary

Governing condition Internal pressure

Minimum thickness per UG-16 1.5 mm + 1.6 mm = 3.1 mm

Design thickness due to internal pressure (t) 21.54 mm

Design thickness due to combined loadings + corrosion 11.45 mm

Maximum allowable working pressure (MAWP) 12.41 kg/cm2

Maximum allowable pressure (MAP) 13.37 kg/cm2

Rated MDMT -29 °C

UCS-66 Material Toughness Requirements

Governing thickness, tg = 22.22 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -20°C.

Design thickness, (at 50 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 12*2,326.6 / (1,407.21*1.00 - 0.60*12) + 1.6= 21.54 mm

Maximum allowable working pressure, (at 50 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 1,407.21*1.00*20.62 / (2,326.6 + 0.60*20.62) - 0= 12.41 kg/cm2

Maximum allowable pressure, (at 25 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 1,407.21*1.00*22.22 / (2,325 + 0.60*22.22)= 13.37 kg/cm2

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*22.22 / 2,336.11)*(1 - 2,336.11 / ∞)= 0.4756%

The extreme fiber elongation does not exceed 5%.

37/101

Page 40: Tanque Vertical 150m3 Rev.C

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kg/cm2)

Allowable StressBefore UG-23

Stress Increase (kg/cm2)

Temperature (°C)

Corrosion C(mm) Load Req'd Thk Due to

Tension (mm)

Req'd Thk Dueto

Compression(mm)

St Sc

Operating, Hot & Corroded 12 1,407.2 887.7 50 1.6 Weight 9.85 9.85

Operating, Hot & New 12 1,407.2 906.5 50 0 Weight 9.84 9.84

Empty, Corroded 0 1,407.2 887.7 25 1.6 Weight 0.08 0.08

Empty, New 0 1,407.2 906.5 25 0 Weight 0.09 0.09

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 1,407.2 887.7 50 1.6 Weight 0.08 0.08

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHC = min(B, S) = 887.7 kg/cm2

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCC = min(B, S) = 887.7 kg/cm2

38/101

Page 41: Tanque Vertical 150m3 Rev.C

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScVC = min(B, S) = 887.7 kg/cm2

Operating, Hot & Corroded, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,326.6 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 10.8 / (π*2,336.912*1,407.21*1.00*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 10,596.3 / (2*π*2,336.91*1,407.21*1.00*1.00) * 102

= 0.05 mm

tt = tp + tm - tw(total required,tensile)

= 9.9 + 0 - (0.05)= 9.85 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0.05) - (9.9)|= 9.85 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(20.62 - 0 + (0.05)) / (2,326.6 - 0.40*(20.62 - 0 + (0.05)))= 25.09 kg/cm2

Operating, Hot & New, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,325 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 11.3 / (π*2,336.112*1,407.21*1.00*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 11,374.2 / (2*π*2,336.11*1,407.21*1.00*1.00) * 102

= 0.06 mm

tt = tp + tm - tw(total required,tensile)

39/101

Page 42: Tanque Vertical 150m3 Rev.C

= 9.9 + 0 - (0.06)= 9.84 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0.06) - (9.9)|= 9.84 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(22.22 - 0 + (0.06)) / (2,325 - 0.40*(22.22 - 0 + (0.06)))= 27.07 kg/cm2

Empty, Corroded, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 10.8 / (π*2,336.912*887.72*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 10,596.3 / (2*π*2,336.91*887.72*1.00) * 102

= 0.08 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.08)|= 0.08 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.08) - (0)= 0.08 mm

Empty, New, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 11.3 / (π*2,336.112*906.53*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 11,374.2 / (2*π*2,336.11*906.53*1.00) * 102

= 0.09 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.09)|= 0.09 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.09) - (0)= 0.09 mm

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0 mm (Pressure)

40/101

Page 43: Tanque Vertical 150m3 Rev.C

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 10.8 / (π*2,336.912*887.72*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 10,596.3 / (2*π*2,336.91*887.72*1.00) * 102

= 0.08 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.08)|= 0.08 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.08) - (0)= 0.08 mm

41/101

Page 44: Tanque Vertical 150m3 Rev.C

Trunnion

Geometry Inputs

Attached To Cylinder #1

Material A36

Distance of Lift Point From Datum 7,300 mm

Angular Position 0° and 180°

Centerline Distance, L 300 mm

Thickness, t 77.93 mm

Hole Diameter, d 48 mm

Pin Diameter, Dp 42 mm

Diameter at Pin, D 152.4 mm

Load Eccentricity, E 100 mm

Load Angle from Vertical, φ 0°

Pipe Outer Diameter, Dpipe 406.4 mm

Minimum Pipe Thickness, tp 19 mm

Plate Outer Diameter, Dplate 550 mm

Welds

Size, tw 15 mm

Groove Weld, tgroove 15 mm

Reinforcement Pad

Width, Wpad 97 mm

Thickness, tpad 22.22 mm

Weld Size, twp 15 mm

42/101

Page 45: Tanque Vertical 150m3 Rev.C

Intermediate Values

Load Factor 1.5000

Vessel Weight (new, incl. Load Factor), W 50,896 kg

Lug Weight (new), Wlug 486.4 kg (Qty=2)

Allowable Stress, Tensile, σt 1,404.7 kg/cm2

Allowable Stress, Shear, σs 936.5 kg/cm2

Allowable Stress, Bearing, σp 2,107.1 kg/cm2

Allowable Stress, Bending, σb 1,560.9 kg/cm2

Allowable Stress, Weld Shear, τallowable 936.5 kg/cm2

Allowable Stress set to 1/3 Sy per ASME B30.20 No

Summary Values

Required Lift Pin Diameter, dreqd 41.59 mm

Required Lug Thickness, treqd 28.76 mm

Lug Stress Ratio, σratio 0.16

Weld Shear Stress Ratio, τratio 0.1

Trunnion Bending Stress Ratio 0.06

Trunnion Shear Stress Ratio 0.12

Lug Design Acceptable

Local Stresses WRC 107 Acceptable

Maximum Out of Plane Lift Angle - Weak Axis Bending 56.36°INSPECT recommends a spreader beam be used to prevent weak axis bending of the top lugs.

Lift Forces

Fr = force on vessel at lugFr = [W / cos(φ1)]*(1 - x1 / (x1 + x2))

= (50,896) / cos(0°)*(1 - 2,347.22/ (2,347.22 +2,347.22))

= 25,448 kgf

where 'x1' is the distance between this lug and the center of gravity'x2' is the distance between the second lift lug and the center of gravity

Lug Pin Diameter - Shear stress

dreqd = (2*Fv / (π*σs))0.5

= (2*25,448 / (π*936.5))0.5 = 41.59 mm

dreqd / Dp = 41.59 / 42 = 0.99 Acceptable

σ = Fv / A= Fv / (2*(0.25*π*Dp

2))= 25,448 / (2*(0.25*π*422)) = 918.4 kg/cm2

43/101

Page 46: Tanque Vertical 150m3 Rev.C

σ / σs = 918.4 / 936.5 = 0.98 Acceptable

Lug Thickness - Tensile stress

treqd = Fv / ((D - d)*σt)= 25,448 / ((152.4 - 48)*1,404.7) = 17.35 mm

treqd / t = 17.35 / 77.93 = 0.22 Acceptable

σ = Fv / A= Fv / ((D - d)*t)= 25,448 / ((152.4 - 48)*77.93) = 312.8 kg/cm2

σ / σt = 312.8 / 1,404.7 = 0.22 Acceptable

Lug Plate Ligament Tensile Stress

σten = Fv / A = Fv / ((Dplate - Dpipe)*t)= 25,448 / ((550 - 406.4)*77.93) = 227.4

σten / σt = 227.4 / 1,404.7 = 0.16 Acceptable

Required Plate Outer DiameterODplate rqd = Fv / (t*σt) + Dpipe

= 25,448 / (77.93*1,404.7) + 406.4 = 429.65 mmODplate rqd / ODplate = 429.65 / 550 = 0.78 Acceptable

Lug Thickness - Bearing stress

treqd = Fv / (Dp*σp)= 25,448 / (42*2,107.1) = 28.76 mm

treqd / t = 28.76 / 77.93 = 0.37 Acceptable

σ = Fv / Abearing

= Fv / (Dp*(t))= 25,448 / (42*(77.93)) = 777.5 kg/cm2

σ / σp = 777.5 / 2,107.1 = 0.37 Acceptable

Lug Thickness - Shear stress

treqd = [Fv / σs] / (2*Lshear)= (25,448 / 936.5) / (2*57.56) = 23.6 mm

treqd / t = 23.6 / 77.93 = 0.30 Acceptable

44/101

Page 47: Tanque Vertical 150m3 Rev.C

τ = Fv / Ashear

= Fv / (2*t*Lshear )= 25,448 / (2*77.93*57.56) = 283.7 kg/cm2

τ / σs = 283.7 / 936.5 = 0.3 Acceptable

Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe)

φ = 55*Dp / d= 55*42 / 48= 48.125°

Z = 0.5*(D - d) + 0.5*Dp*(1 - cos(φ))= 0.5*(152.4 - 48) + 0.5*42*(1 - cos(48.125))= 59.18 mm

Z1 = 0.5*D - sqr(0.25*D*D - (0.5*Dp*sin(φ))2)= 0.5*152.4 - sqr(0.25*152.4*152.4 - (0.5*42*sin(48.125))2)= 1.62 mm

Lshear = Z - Z1= 57.56 mm

Lug Plate Stress

Lug stress, tensile (no bending), during rotational lift - see Lug Thickness - Tensile stress section above

Weak Axis Bending Stress

Maximum lift cable angle from vertical θ = 56.36°

σb = M / Z = (F*sin(θ)* L1) / ZF*cos(θ) = 0.5*W => F = 0.5*W / cos(θ)θ = arctan( (2*σb*Z ) / (W* L1) )

θ =arctan((2*1,560.9*(234.36*77.932/6) ) /(50,896*96.8*100) )

= 56.36°

45/101

Page 48: Tanque Vertical 150m3 Rev.C

Weld Stress

Turning plate type trunnion. No torsional shear on weld between pipe / vessel.

IMPORTANT: Trunnion to be welded directly to the shell (Fig. UW-16.1(a-1)).

The same fillet and groove welds are required at both ends of the trunnion pipe.

Weld stress, direct and torsional shear + bending, during rotational lift at pipe weld:

Direct shear:

Maximum weld shear stress occurs at lift angle 90.00°; lift force = 25,448 kgf

Aweld = (0.707*tw + tgroove)*(π*Dpipe)= (0.707*15 + 15)*(π*406.4) = 32,691.01 mm2

τ 1 = Ftop(α) / Aweld

= 25,448 / 32,691.01 = 77.8 kg/cm2

torsional shear:second polar moment of area:J = (0.707*tw + tgroove)*( 0.25*π*Dpipe

3 )= (0.707*15 + 15)*(0.25*π*406.43) = 1349819691 mm4

τ 2 = M * r / J= [F(α)*cos(α)*L] * r / J= (25,448*cos(90.0)*300)*203.2 / 1349819691.2464 = 0 kg/cm2

τ = τ1 + τ2

= 77.8 + 0 = 77.8 kg/cm2

bending stress:section modulus:Zweld = (0.707*tw + tgroove)*( (π / 8)*Dpipe

3 / (0.5*Dpipe) )= (0.707*15 + 15)*( (π / 8)*406.43 / (0.5*406.4) ) = 3321407 mm3

σ weld = M / Zweld

= [F(α)*E] / Zweld

= (25,448*77.78) / 3321406.7206 = 59.6 kg/cm2

τtotal = sqr( τ2 + σweld2 )

= sqr(77.82 + 59.62) = 98 kg/cm2

τ ratio = τ / τallowable ≤ 1= 98 / 936.5 = 0.10 ≤ 1 Acceptable

Turning plate type trunnion. No torsional shear on weld between pipe / vessel.

Pad Weld Stress

Weld stress, direct and torsional shear + bending, during rotational lift at pad weld:

Direct shear:

46/101

Page 49: Tanque Vertical 150m3 Rev.C

Maximum weld shear stress occurs at lift angle 90.00°; lift force = 25,448 kgf

Aweld = 0.707*twp*(π*Dpad)= 0.707*15*(π*600.4) = 20,003.28 mm2

τ 1 = Ftop(α) / Aweld

= 25,448 / 20,003.28 = 127.2 kg/cm2

torsional shear:second polar moment of area:J = 0.707*twp*( 0.25*π*Dpad

3 )= 0.707*15*(0.25*π*600.43) = 1802696456 mm4

τ 2 = M * r / J= [F(α)*cos(α)*L] * r / J= (25,448*cos(90.0)*300)*300.2 / 1802696455.9887 = 0 kg/cm2

τ = τ1 + τ2

= 127.2 + 0 = 127.2 kg/cm2

bending stress:section modulus:Zweld = 0.707*twp*( (π / 8)*Dpad

3 / (0.5*Dpad) )= 0.707*15*( (π / 8)*600.43 / (0.5*600.4) ) = 3002492 mm3

σ weld = M / Zweld

= [F(α)*E] / Zweld

= (25,448*100) / 3002492.4317 = 84.8 kg/cm2

τtotal = sqr( τ2 + σweld2 )

= sqr(127.22 + 84.82) = 152.9 kg/cm2

τ ratio = τ / τallowable ≤ 1= 152.9 / 936.5 = 0.16 ≤ 1 Acceptable

Trunnion Bending Stress

σtrun = Fv * E / Zpipe

= Fv * E / ((π / 64)*(Dpipe4 - IDpipe

4) / (0.5*Dpipe))= 25,448*77.78 / (2139991.4162) = 92.5 kg/cm2

σtrun / σb = 92.5 / 1,560.9 = 0.06 Acceptable

Required Pipe ThicknessZrqd_b = Fv * E / σb

trqd_b = 0.5*(Dpipe - (Dpipe4 - (32 / π)*Fv*E*Dp / σb)0.25) = 0.98 mm

trqd_b / t = 0.98 / 19 = 0.05 Acceptable

47/101

Page 50: Tanque Vertical 150m3 Rev.C

Trunnion Shear Stress

τtrun = F / Apipe

= F / ((π / 4)*(Dpipe2 - IDpipe

2))

= 25,448 / ((π / 4)*(406.42 -368.42))

= 110.1 kg/cm2

τtrun / σs = 110.1 / 936.5 = 0.12 Acceptable

Required Pipe Thickness - Sheartrqd_s = 2.14 mmIDrqd= Dpipe - 2*trqd_s = 402.12 mmτtrun (at trqd_s) = 25,448 / (0.25*π*(406.42 - 402.122))

= 935.5 kg/cm2

WRC 107 Analysis

Geometry

Eccentricity 100 mm

Pipe Diameter 406.4 mm

Pipe Thickness 19 mm

Fillet Weld Size 15 mm

Location Angle 0.00° and 180.00°

Reinforcement Pad

Diameter 600.4 mm

Thickness 22.22 mm

Weld Size 15 mm

48/101

Page 51: Tanque Vertical 150m3 Rev.C

Applied Loads

Radial load, Pr 0 kgf

Circumferential moment, Mc 0 kgf-m

Circumferential shear, Vc 0 kgf

Longitudinal moment, ML 2,544.8 kgf-m

Longitudinal shear, VL 25,448.02 kgf

Torsion moment, Mt 0 kgf-m

Internal pressure, P 0 kgf/cm2

Mean shell radius, Rm 2,336.11 mm

Local shell thickness, T 22.22 mm

Design factor 3

Maximum stresses due to the applied loads at the pad edge (includes pressure)

γ = Rm / T = 2,336.11 / 22.22 = 105.1355

β = 0.875*ro / Rm = 0.875*300.2 / 2,336.11 = 0.1124

Pressure stress intensity factor, I = 0 (derived from Division 2 Part 4.5)

Local circumferential pressure stress = I*P*Ri / T =0 kgf/cm2

Local longitudinal pressure stress = I*P*Ri / (2*T) =0 kgf/cm2

Maximum combined stress (PL+P

b+Q) = -553.95 kgf/cm2

Allowable combined stress (PL+P

b+Q) = ±3*S = ±4,221.62 kgf/cm2

The maximum combined stress (PL+P

b+Q) is within allowable limits.

Maximum local primary membrane stress (PL) = -210.15 kgf/cm2

Allowable local primary membrane stress (PL) = ±1.5*S = ±2,110.81 kgf/cm2

The maximum local primary membrane stress (PL) is within allowable limits.

49/101

Page 52: Tanque Vertical 150m3 Rev.C

Stresses at the pad edge per WRC Bulletin 107

Figure value Au Al Bu Bl Cu Cl Du Dl

3C* Nφ / (P / Rm) 11.1151 0 0 0 0 0 0 0 0

4C* Nφ / (P / Rm) 15.364 0 0 0 0 0 0 0 0

1C Mφ / P 0.0788 0 0 0 0 0 0 0 0

2C-1 Mφ / P 0.0461 0 0 0 0 0 0 0 0

3A* Nφ / [Mc / (Rm2*β)] 4.1424 0 0 0 0 0 0 0 0

1A Mφ / [Mc / (Rm*β)] 0.0788 0 0 0 0 0 0 0 0

3B* Nφ / [ML / (Rm2*β)] 11.2592 -210.147 -210.147 210.147 210.147 0 0 0 0

1B-1 Mφ / [ML / (Rm*β)] 0.0292 -343.801 343.801 343.801 -343.801 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total circumferential stress -553.948 133.653 553.948 -133.653 0 0 0 0

Primary membrane circumferentialstress* -210.147 -210.147 210.147 210.147 0 0 0 0

3C* Nx / (P / Rm) 11.1151 0 0 0 0 0 0 0 0

4C* Nx / (P / Rm) 15.364 0 0 0 0 0 0 0 0

1C-1 Mx / P 0.0767 0 0 0 0 0 0 0 0

2C Mx / P 0.0481 0 0 0 0 0 0 0 0

4A* Nx / [Mc / (Rm2*β)] 7.4504 0 0 0 0 0 0 0 0

2A Mx / [Mc / (Rm*β)] 0.0399 0 0 0 0 0 0 0 0

4B* Nx / [ML / (Rm2*β)] 4.1086 -76.705 -76.705 76.705 76.705 0 0 0 0

2B-1 Mx / [ML / (Rm*β)] 0.0402 -473.306 473.306 473.306 -473.306 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total longitudinal stress -550.011 396.601 550.011 -396.601 0 0 0 0

Primary membrane longitudinal stress* -76.705 -76.705 76.705 76.705 0 0 0 0

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 0 0 0 0 0 0 0 0

Long shear from VL 0 0 0 0 -121.42 -121.42 121.42 121.42

Total Shear stress 0 0 0 0 -121.42 -121.42 121.42 121.42

Combined stress (PL+Pb+Q) -553.948 396.601 553.948 -396.601 242.84 242.84 242.84 242.84

* denotes primary stress.

Maximum stresses due to the applied loads at the pipe OD (includes pressure)

γ = Rm / T = 2,336.11 / 44.44 = 52.5677

β = 0.875*ro / Rm = 0.875*203.2 / 2,336.11 = 0.0761

Pressure stress intensity factor, I = 0 (derived from Division 2 Part 4.5)

Local circumferential pressure stress = I*P*Ri / T =0 kgf/cm2

Local longitudinal pressure stress = I*P*Ri / (2*T) =0 kgf/cm2

Maximum combined stress (PL+P

b+Q) = -365.46 kgf/cm2

Allowable combined stress (PL+P

b+Q) = ±3*S = ±4,221.62 kgf/cm2

The maximum combined stress (PL+P

b+Q) is within allowable limits.

Maximum local primary membrane stress (PL) = -69.6 kgf/cm2

50/101

Page 53: Tanque Vertical 150m3 Rev.C

Allowable local primary membrane stress (PL) = ±1.5*S = ±2,110.81 kgf/cm2

The maximum local primary membrane stress (PL) is within allowable limits.

51/101

Page 54: Tanque Vertical 150m3 Rev.C

Stresses at the pipe OD per WRC Bulletin 107

Figure value Au Al Bu Bl Cu Cl Du Dl

3C* Nφ / (P / Rm) 8.5796 0 0 0 0 0 0 0 0

4C* Nφ / (P / Rm) 9.392 0 0 0 0 0 0 0 0

1C Mφ / P 0.1375 0 0 0 0 0 0 0 0

2C-1 Mφ / P 0.102 0 0 0 0 0 0 0 0

3A* Nφ / [Mc / (Rm2*β)] 1.4066 0 0 0 0 0 0 0 0

1A Mφ / [Mc / (Rm*β)] 0.0993 0 0 0 0 0 0 0 0

3B* Nφ / [ML / (Rm2*β)] 5.0483 -69.604 -69.604 69.604 69.604 0 0 0 0

1B-1 Mφ / [ML / (Rm*β)] 0.0497 -216.123 216.123 216.123 -216.123 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total circumferential stress -285.727 146.52 285.727 -146.52 0 0 0 0

Primary membrane circumferentialstress* -69.604 -69.604 69.604 69.604 0 0 0 0

3C* Nx / (P / Rm) 8.5796 0 0 0 0 0 0 0 0

4C* Nx / (P / Rm) 9.392 0 0 0 0 0 0 0 0

1C-1 Mx / P 0.139 0 0 0 0 0 0 0 0

2C Mx / P 0.099 0 0 0 0 0 0 0 0

4A* Nx / [Mc / (Rm2*β)] 1.9326 0 0 0 0 0 0 0 0

2A Mx / [Mc / (Rm*β)] 0.0563 0 0 0 0 0 0 0 0

4B* Nx / [ML / (Rm2*β)] 1.3722 -18.913 -18.913 18.913 18.913 0 0 0 0

2B-1 Mx / [ML / (Rm*β)] 0.0797 -346.543 346.543 346.543 -346.543 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total longitudinal stress -365.455 327.63 365.455 -327.63 0 0 0 0

Primary membrane longitudinal stress* -18.913 -18.913 18.913 18.913 0 0 0 0

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 0 0 0 0 0 0 0 0

Long shear from VL 0 0 0 0 -89.712 -89.712 89.712 89.712

Total Shear stress 0 0 0 0 -89.712 -89.712 89.712 89.712

Combined stress (PL+Pb+Q) -365.455 327.63 365.455 -327.63 179.423 179.423 179.423 179.423

* denotes primary stress.

52/101

Page 55: Tanque Vertical 150m3 Rev.C

Cylinder #2

ASME Section VIII Division 1, 2013 Edition Metric

Component Cylinder

Material SA-516 70 (II-D Metric p. 22, ln. 6)

ImpactTested Normalized Fine Grain

Practice PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (kgf/cm2)

DesignTemperature (°C)

DesignMDMT (°C)

Internal 12 50 -20

Static Liquid Head

Condition Ps (kgf/cm2) Hs (mm) SG

Test horizontal 0.48 4,825 1

Dimensions

Inner Diameter 4,650 mm

Length 2,500 mm

Nominal Thickness 22.22 mm

Corrosion Inner 1.6 mm

Outer 0 mm

Weight and Capacity

Weight (kg) Capacity (liters)

New 6,386.83 42,455.68

Corroded 5,928.91 42,514.14

Radiography

Longitudinal seam Full UW-11(a) Type 1

Top Circumferentialseam Full UW-11(a) Type 1

Bottom Circumferentialseam Full UW-11(a) Type 1

53/101

Page 56: Tanque Vertical 150m3 Rev.C

Results Summary

Governing condition Internal pressure

Minimum thickness per UG-16 1.5 mm + 1.6 mm = 3.1 mm

Design thickness due to internal pressure (t) 21.54 mm

Design thickness due to combined loadings + corrosion 11.42 mm

Maximum allowable working pressure (MAWP) 12.41 kg/cm2

Maximum allowable pressure (MAP) 13.37 kg/cm2

Rated MDMT -29 °C

UCS-66 Material Toughness Requirements

Governing thickness, tg = 22.22 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -20°C.

Design thickness, (at 50 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 12*2,326.6 / (1,407.21*1.00 - 0.60*12) + 1.6= 21.54 mm

Maximum allowable working pressure, (at 50 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 1,407.21*1.00*20.62 / (2,326.6 + 0.60*20.62) - 0= 12.41 kg/cm2

Maximum allowable pressure, (at 25 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 1,407.21*1.00*22.22 / (2,325 + 0.60*22.22)= 13.37 kg/cm2

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*22.22 / 2,336.11)*(1 - 2,336.11 / ∞)= 0.4756%

The extreme fiber elongation does not exceed 5%.

54/101

Page 57: Tanque Vertical 150m3 Rev.C

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kg/cm2)

Allowable StressBefore UG-23

Stress Increase (kg/cm2)

Temperature (°C)

Corrosion C(mm) Load Req'd Thk Due to

Tension (mm)

Req'd Thk Dueto

Compression(mm)

St Sc

Operating, Hot & Corroded 12 1,407.2 887.7 50 1.6 Weight 9.82 9.82

Operating, Hot & New 12 1,407.2 906.5 50 0 Weight 9.81 9.81

Empty, Corroded 0 1,407.2 887.7 25 1.6 Weight 0.13 0.13

Empty, New 0 1,407.2 906.5 25 0 Weight 0.13 0.13

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 1,407.2 887.7 50 1.6 Weight 0.13 0.13

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHC = min(B, S) = 887.7 kg/cm2

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCC = min(B, S) = 887.7 kg/cm2

55/101

Page 58: Tanque Vertical 150m3 Rev.C

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScVC = min(B, S) = 887.7 kg/cm2

Operating, Hot & Corroded, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,326.6 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 10.8 / (π*2,336.912*1,407.21*1.00*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 16,525.2 / (2*π*2,336.91*1,407.21*1.00*1.00) * 102

= 0.08 mm

tt = tp + tm - tw(total required,tensile)

= 9.9 + 0 - (0.08)= 9.82 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0.08) - (9.9)|= 9.82 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(20.62 - 0 + (0.08)) / (2,326.6 - 0.40*(20.62 - 0 + (0.08)))= 25.13 kg/cm2

Operating, Hot & New, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,325 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 11.3 / (π*2,336.112*1,407.21*1.00*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 17,761 / (2*π*2,336.11*1,407.21*1.00*1.00) * 102

= 0.09 mm

tt = tp + tm - tw (total required, tensile)= 9.9 + 0 - (0.09)

56/101

Page 59: Tanque Vertical 150m3 Rev.C

= 9.81 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0.09) - (9.9)|= 9.81 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(22.22 - 0 + (0.09)) / (2,325 - 0.40*(22.22 - 0 + (0.09)))= 27.11 kg/cm2

Empty, Corroded, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 10.8 / (π*2,336.912*887.72*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 16,525.2 / (2*π*2,336.91*887.72*1.00) * 102

= 0.13 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.13)|= 0.13 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.13) - (0)= 0.13 mm

Empty, New, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 11.3 / (π*2,336.112*906.53*1.00) * 105

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 17,761 / (2*π*2,336.11*906.53*1.00) * 102

= 0.13 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.13)|= 0.13 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.13) - (0)= 0.13 mm

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 10.8 / (π*2,336.912*887.72*1.00) * 105

57/101

Page 60: Tanque Vertical 150m3 Rev.C

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 16,525.2 / (2*π*2,336.91*887.72*1.00) * 102

= 0.13 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.13)|= 0.13 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.13) - (0)= 0.13 mm

58/101

Page 61: Tanque Vertical 150m3 Rev.C

Cylinder #3

ASME Section VIII Division 1, 2013 Edition Metric

Component Cylinder

Material SA-516 70 (II-D Metric p. 22, ln. 6)

ImpactTested Normalized Fine Grain

Practice PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (kgf/cm2)

DesignTemperature (°C)

DesignMDMT (°C)

Internal 12 50 -20

Static Liquid Head

Condition Ps (kgf/cm2) Hs (mm) SG

Test horizontal 0.48 4,825 1

Dimensions

Inner Diameter 4,650 mm

Length 2,500 mm

Nominal Thickness 22.22 mm

Corrosion Inner 1.6 mm

Outer 0 mm

Weight and Capacity

Weight (kg) Capacity (liters)

New 6,317.42 42,455.68

Corroded 5,864.49 42,514.14

Radiography

Longitudinal seam Full UW-11(a) Type 1

Top Circumferentialseam Full UW-11(a) Type 1

Bottom Circumferentialseam Full UW-11(a) Type 1

59/101

Page 62: Tanque Vertical 150m3 Rev.C

Results Summary

Governing condition Internal pressure

Minimum thickness per UG-16 1.5 mm + 1.6 mm = 3.1 mm

Design thickness due to internal pressure (t) 21.54 mm

Design thickness due to combined loadings + corrosion 11.4 mm

Maximum allowable working pressure (MAWP) 12.41 kg/cm2

Maximum allowable pressure (MAP) 13.37 kg/cm2

Rated MDMT -29 °C

UCS-66 Material Toughness Requirements

Governing thickness, tg = 22.22 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -20°C.

Design thickness, (at 50 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 12*2,326.6 / (1,407.21*1.00 - 0.60*12) + 1.6= 21.54 mm

Maximum allowable working pressure, (at 50 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 1,407.21*1.00*20.62 / (2,326.6 + 0.60*20.62) - 0= 12.41 kg/cm2

Maximum allowable pressure, (at 25 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 1,407.21*1.00*22.22 / (2,325 + 0.60*22.22)= 13.37 kg/cm2

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*22.22 / 2,336.11)*(1 - 2,336.11 / ∞)= 0.4756%

The extreme fiber elongation does not exceed 5%.

60/101

Page 63: Tanque Vertical 150m3 Rev.C

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kg/cm2)

Allowable StressBefore UG-23

Stress Increase (kg/cm2)

Temperature (°C)

Corrosion C(mm) Load Req'd Thk Due to

Tension (mm)

Req'd Thk Dueto

Compression(mm)

St Sc

Operating, Hot & Corroded 12 1,407.2 887.7 50 1.6 Weight 9.8 9.78

Operating, Hot & New 12 1,407.2 906.5 50 0 Weight 9.78 9.77

Empty, Corroded 0 1,407.2 887.7 25 1.6 Weight 0.17 0.19

Empty, New 0 1,407.2 906.5 25 0 Weight 0.17 0.2

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 1,407.2 887.7 50 1.6 Weight 0.17 0.19

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHC = min(B, S) = 887.7 kg/cm2

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 22.22)= 0.001183

B = 906.5 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCN = min(B, S) = 906.5 kg/cm2

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCC = min(B, S) = 887.7 kg/cm2

61/101

Page 64: Tanque Vertical 150m3 Rev.C

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,347.22 / 20.62)= 0.001098

B = 887.7 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScVC = min(B, S) = 887.7 kg/cm2

Operating, Hot & Corroded, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,326.6 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 1,850.8 / (π*2,336.912*1,407.21*1.00*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 23,127.3 / (2*π*2,336.91*1,407.21*1.00*1.00) * 102

= 0.11 mm

tt = tp + tm - tw(total required,tensile)

= 9.9 + 0.01 - (0.11)= 9.8 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0.01 + (0.11) - (9.9)|= 9.78 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(20.62 - 0.01 + (0.11)) / (2,326.6 - 0.40*(20.62 - 0.01 + (0.11)))= 25.16 kg/cm2

Operating, Hot & New, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,325 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 1,857 / (π*2,336.112*1,407.21*1.00*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 24,818.6 / (2*π*2,336.11*1,407.21*1.00*1.00) * 102

= 0.12 mm

tt = tp + tm - tw(total required,tensile)

62/101

Page 65: Tanque Vertical 150m3 Rev.C

= 9.9 + 0.01 - (0.12)= 9.78 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0.01 + (0.12) - (9.9)|= 9.77 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(22.22 - 0.01 + (0.12)) / (2,325 - 0.40*(22.22 - 0.01 + (0.12)))= 27.14 kg/cm2

Empty, Corroded, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 1,850.8 / (π*2,336.912*887.72*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 23,127.3 / (2*π*2,336.91*887.72*1.00) * 102

= 0.18 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.01 - (0.18)|= 0.17 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.18) - (0)= 0.19 mm

Empty, New, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 1,857 / (π*2,336.112*906.53*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 24,818.6 / (2*π*2,336.11*906.53*1.00) * 102

= 0.19 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.01 - (0.19)|= 0.17 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.19) - (0)= 0.2 mm

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0 mm (Pressure)

63/101

Page 66: Tanque Vertical 150m3 Rev.C

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 1,850.8 / (π*2,336.912*887.72*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 23,127.3 / (2*π*2,336.91*887.72*1.00) * 102

= 0.18 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.01 - (0.18)|= 0.17 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.18) - (0)= 0.19 mm

64/101

Page 67: Tanque Vertical 150m3 Rev.C

B (N2)

ASME Section VIII Division 1, 2013 Edition Metric

Note: round inside edges per UG-76(c)

Location and Orientation

Located on Cylinder #3

Orientation 0°

Nozzle center line offset to datum line 1,250 mm

End of nozzle to shell center 2,500 mm

Passes through a Category A joint No

Nozzle

Description NPS 28 Sch 20 (XS) DN 700

Access opening No

Material specification SA-106 B Smls. Pipe (II-D Metric p. 14, ln. 19)

Inside diameter, new 685.8 mm

Nominal wall thickness 12.7 mm

Corrosion allowance 1.6 mm

Projection available outside vessel, Lpr 27.3 mm

Projection available outside vessel to flange face, Lf 152.78 mm

Local vessel minimum thickness 22.22 mm

Liquid static head included 0 kgf/cm2

Longitudinal joint efficiency 1

Reinforcing Pad

Material specification SA-516 70 (II-D Metric p. 22, ln. 6)

Diameter, Dp 1,311.2 mm

Thickness, te 22.22 mm

65/101

Page 68: Tanque Vertical 150m3 Rev.C

Is split No

Welds

Inner Fillet, Leg41 12.7 mm

Outer Fillet, Leg42 14 mm

Nozzle to vessel groove weld 22.22 mm

Pad groove weld 22.22 mm

ASME B16.47-2011 Flange

Description NPS 28 Class 150 WN A105 Series A

Bolt Material SA-193 B7 Bolt <= 64 (II-D Metric p. 352, ln. 31)

Blind included Yes

Rated MDMT -48°C

Liquid static head 0 kgf/cm2

MAWP rating 19.58 kgf/cm2 @ 50°C

MAP rating 19.99 kgf/cm2 @ 25°C

Hydrotest rating 30.59 kgf/cm2 @ 25°C

PWHT performed No

Impact Tested No

Circumferential joint radiography Full UW-11(a) Type 1

Notes

Flange rated MDMT per UCS-66(b)(1)(b) = -48°C (Coincident ratio = 0.6004)Bolts rated MDMT per Fig UCS-66 note (c) = -48°C

UCS-66 Material Toughness Requirements Nozzle

Governing thickness, tg = 11.11 mm

Exemption temperature from Fig UCS-66M Curve B = -24.98°C

tr = 12*344.5 / (1,203.26*1 - 0.6*12) = 3.46 mm

Stress ratio = tr*E* / (tn - c) = 3.46*1 / (11.11 - 1.6) = 0.3634

Reduction in MDMT, TR from Fig UCS-66.1M = 68.8°C

MDMT = max[ MDMT - TR, -48] = max[ -24.98 - 68.8 , -48] = -48°C

Material is exempt from impact testing at the Design MDMT of -20°C.

66/101

Page 69: Tanque Vertical 150m3 Rev.C

UCS-66 Material Toughness Requirements Pad

Governing thickness, tg = 22.22 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -20°C.

67/101

Page 70: Tanque Vertical 150m3 Rev.C

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)UG-45

Summary(mm)

For P = 12 kgf/cm2 @ 50 °C

The opening is adequately reinforcedThe nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

138.0422 144.8761 4.6477 3.569 -- 133.32 3.3393 9.93 11.11

UG-41 Weld Failure Path Analysis Summary (kgf)

All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

187,895 197,331 301,642 12,472 582,018 202,839 438,701

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 8.89 weld size is adequate

Pad to shell fillet (Leg42) 9.5 9.8 weld size is adequate

Calculations for internal pressure 12 kgf/cm2 @ 50 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(689, 344.5 + (12.7 - 1.6) + (22.22 - 1.6))= 689 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(22.22 - 1.6), 2.5*(12.7 - 1.6) + 22.22)= 49.97 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 12*344.5 / (1,203.2642*1 - 0.6*12)= 3.46 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 12*2,326.6 / (1,407.2073*1 - 0.6*12)= 19.94 mm

68/101

Page 71: Tanque Vertical 150m3 Rev.C

Area required per UG-37(c)

Allowable stresses: Sn = 1,203.264, Sv = 1,407.207, Sp = 1,407.207 kgf/cm2

fr1 = lesser of 1 or Sn / Sv = 0.8551

fr2 = lesser of 1 or Sn / Sv = 0.8551

fr3 = lesser of fr2 or Sp / Sv = 0.8551

fr4 = lesser of 1 or Sp / Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= (689*19.94*1 + 2*11.1*19.94*1*(1 - 0.8551)) / 100= 138.0422 cm2

Area available from FIG. UG-37.1

A1 = larger of the following= 4.6477 cm2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= (689*(1*20.62 - 1*19.94) - 2*11.1*(1*20.62 - 1*19.94)*(1 - 0.8551)) / 100= 4.6477 cm2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= (2*(20.62 + 11.1)*(1*20.62 - 1*19.94) - 2*11.1*(1*20.62 - 1*19.94)*(1 - 0.8551)) / 100= 0.4084 cm2

A2 = smaller of the following= 3.569 cm2

= 2*(tn - trn)*fr2*Lpr

= (2*(11.1 - 3.46)*0.8551*27.3) / 100= 3.569 cm2

= 2*(tn - trn)*fr2*Lpr

= (2*(11.1 - 3.46)*0.8551*27.3) / 100= 3.569 cm2

A41 = Leg2*fr3= (12.72*0.8551) / 100= 1.3794 cm2

A42 = Leg2*fr4= (142*1) / 100= 1.96 cm2

69/101

Page 72: Tanque Vertical 150m3 Rev.C

A5 = (Dp - d - 2*tn)*te*fr4= ((1,311.2 - 689 - 2*11.1)*22.22*1) / 100= 133.32 cm2

Area = A1 + A2 + A41 + A42 + A5

= 4.6477 + 3.569 + 1.3794 + 1.96 + 133.32= 144.8761 cm2

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet: tmin = lesser of 19 mm or tn or te = 11.1 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*12.7 = 8.89 mm

Outer fillet: tmin = lesser of 19 mm or te or t = 19 mmtw(min) = 0.5*tmin = 9.5 mmtw(actual) = 0.7*Leg = 0.7*14 = 9.8 mm

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 12*344.5 / (1,203.2642*1 - 0.6*12) + 1.6= 5.06 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 5.06 , 0 ]= 5.06 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 12*2,326.6 / (1,407.2073*1 - 0.6*12) + 1.6= 21.54 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 21.54 , 3.1 ]= 21.54 mm

tb = min[ tb3 , tb1 ]= min[ 9.93 , 21.54 ]= 9.93 mm

tUG-45 = max[ ta , tb ]= max[ 5.06 , 9.93 ]= 9.93 mm

Available nozzle wall thickness new, tn = 0.875*12.7 = 11.11 mm

70/101

Page 73: Tanque Vertical 150m3 Rev.C

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: 0.74*1,407.207 = 1,041.333 kgf/cm2

Nozzle wall in shear: 0.7*1,203.264 = 842.285 kgf/cm2

Inner fillet weld in shear: 0.49*1,203.264 = 589.599 kgf/cm2

Outer fillet weld in shear: 0.49*1,407.207 = 689.532 kgf/cm2

Upper groove weld in tension: 0.74*1,407.207 = 1,041.333 kgf/cm2

Strength of welded joints:

(1) Inner fillet weld in shear(π / 2)*Nozzle OD*Leg*Si = (π / 2)*711.2*12.7*589.599 = 83,651.32 kgf

(2) Outer fillet weld in shear(π / 2)*Pad OD*Leg*So = (π / 2)*1,311.2*14*689.532 = 198,825.18 kgf

(3) Nozzle wall in shear(π / 2)*Mean nozzle dia*tn*Sn = (π / 2)*700.1*11.1*842.285 = 102,816.39 kgf

(4) Groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*711.2*20.62*1,041.333 = 239,875.7 kgf

(6) Upper groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*711.2*22.22*1,041.333 = 258,491.26 kgf

Loading on welds per UG-41(b)(1)

W = (A - A1 + 2*tn*fr1*(E1*t - F*tr))*Sv

= (13,804.22 - 464.7733 + 2*11.1*0.8551*(1*20.62 - 1*19.94))*1,407.207= 187,894.89 kgf

W1-1 = (A2 + A5 + A41 + A42)*Sv

= (356.9025 + 13,332 + 137.9352 + 195.9996)*1,407.207= 197,330.56 kgf

W2-2 = (A2 + A3 + A41 + A43 + 2*tn*t*fr1)*Sv

= (356.9025 + 0 + 137.9352 + 0 + 2*11.1*20.62*0.8551)*1,407.207= 12,471.64 kgf

W3-3 = (A2 + A3 + A5 + A41 + A42 + A43 + 2*tn*t*fr1)*Sv

= (356.9025 + 0 + 13,332 + 137.9352 + 195.9996 + 0 + 2*11.1*20.62*0.8551)*1,407.207= 202,838.8 kgf

Load for path 1-1 lesser of W or W1-1 = 187,894.89 kgfPath 1-1 through (2) & (3) = 198,825.18 + 102,816.39 = 301,641.57 kgfPath 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

71/101

Page 74: Tanque Vertical 150m3 Rev.C

Load for path 2-2 lesser of W or W2-2 = 12,471.64 kgfPath 2-2 through (1), (4), (6) = 83,651.32 + 239,875.7 + 258,491.26 = 582,018.27 kgfPath 2-2 is stronger than W2-2 so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or W3-3 = 187,894.89 kgfPath 3-3 through (2), (4) = 198,825.18 + 239,875.7 = 438,700.88 kgfPath 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

72/101

Page 75: Tanque Vertical 150m3 Rev.C

F (N5)

ASME Section VIII Division 1, 2013 Edition Metric

Note: round inside edges per UG-76(c)

Location and Orientation

Located on Cylinder #3

Orientation 90°

Nozzle center line offset to datum line 200 mm

End of nozzle to shell center 2,419.22 mm

Passes through a Category A joint No

Nozzle

Description NPS 1 Class 3000 - threaded

Access opening No

Material specification SA-106 B Smls. Pipe (II-D Metric p. 14, ln. 19)

Inside diameter, new 33.4 mm

Nominal wall thickness 5.52 mm

Corrosion allowance 1.6 mm

Projection available outside vessel, Lpr 72 mm

Local vessel minimum thickness 22.22 mm

Liquid static head included 0 kgf/cm2

Longitudinal joint efficiency 1

Welds

Inner Fillet, Leg41 7 mm

Nozzle to vessel groove weld 22.22 mm

73/101

Page 76: Tanque Vertical 150m3 Rev.C

UCS-66 Material Toughness Requirements Nozzle

Impact test exempt per UCS-66(d) (NPS 4 or smaller pipe) = -105°C

Material is exempt from impact testing at the Design MDMT of -20°C.

74/101

Page 77: Tanque Vertical 150m3 Rev.C

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary(cm2)

UG-45Summary

(mm)

For P = 12 kgf/cm2 @ 50 °C The nozzlepasses UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.1 4.83

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 2.75 4.9 weld size is adequate

Calculations for internal pressure 12 kgf/cm2 @ 50 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(36.6, 18.3 + (5.52 - 1.6) + (22.22 - 1.6))= 42.84 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(22.22 - 1.6), 2.5*(5.52 - 1.6) + 0)= 9.81 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 12*18.3 / (1,203.2642*1 - 0.6*12)= 0.18 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 12*2,326.6 / (1,407.2073*1 - 0.6*12)= 19.94 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

75/101

Page 78: Tanque Vertical 150m3 Rev.C

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 19 mm or tn or t = 3.92 mmtc(min) = lesser of 6 mm or 0.7*tmin = 2.75 mmtc(actual) = 0.7*Leg = 0.7*7 = 4.9 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

ASME B16.11 Coupling Wall Thickness Check

Wall thickness req'd per ASME B16.11 2.1.1: tr1 = 1.82 mm (E =1)Wall thickness per UG-16(b): tr3 = 3.1 mm

Available nozzle wall thickness new, tn = 0.875*5.52 = 4.83 mm

The nozzle neck thickness is adequate.

76/101

Page 79: Tanque Vertical 150m3 Rev.C

Straight Flange on Ellipsoidal Head #1

ASME Section VIII Division 1, 2013 Edition Metric

Component Cylinder

Material SA-516 70 (II-D Metric p. 22, ln. 6)

ImpactTested Normalized Fine Grain

Practice PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (kgf/cm2)

DesignTemperature (°C)

DesignMDMT (°C)

Internal 12 50 -10

Static Liquid Head

Condition Ps (kgf/cm2) Hs (mm) SG

Test horizontal 0.48 4,825 1

Dimensions

Inner Diameter 4,650 mm

Length 38.1 mm

Nominal Thickness 25.4 mm

Corrosion Inner 1.6 mm

Outer 0 mm

Weight and Capacity

Weight (kg) Capacity (liters)

New 111.34 647.02

Corroded 104.36 647.92

Radiography

Longitudinal seam Full UW-11(a) Type 1

Top Circumferentialseam Full UW-11(a) Type 1

77/101

Page 80: Tanque Vertical 150m3 Rev.C

Results Summary

Governing condition Internal pressure

Minimum thickness per UG-16 1.5 mm + 1.6 mm = 3.1 mm

Design thickness due to internal pressure (t) 21.54 mm

Design thickness due to combined loadings + corrosion 11.4 mm

Maximum allowable working pressure (MAWP) 14.31 kg/cm2

Maximum allowable pressure (MAP) 15.27 kg/cm2

Rated MDMT -10.1 °C

UCS-66 Material Toughness Requirements

Governing thickness, tg = 25.4 mm

Exemption temperature from Fig UCS-66M Curve B = -1°C

tr = 12*2,326.6 / (1,407.21*1 - 0.6*12) = 19.94 mm

Stress ratio = tr*E* / (tn - c) = 19.94*1 / (25.4 - 1.6) = 0.8379

Reduction in MDMT, TR from Fig UCS-66.1M = 9.1°C

MDMT = max[ MDMT - TR, -48] = max[ -1 - 9.1 , -48] = -10.1°C

Material is exempt from impact testing at the Design MDMT of -10°C.

Design thickness, (at 50 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 12*2,326.6 / (1,407.21*1.00 - 0.60*12) + 1.6= 21.54 mm

Maximum allowable working pressure, (at 50 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 1,407.21*1.00*23.8 / (2,326.6 + 0.60*23.8) - 0= 14.31 kg/cm2

Maximum allowable pressure, (at 25 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 1,407.21*1.00*25.4 / (2,325 + 0.60*25.4)= 15.27 kg/cm2

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*25.4 / 2,337.7)*(1 - 2,337.7 / ∞)= 0.5433%

The extreme fiber elongation does not exceed 5%.

78/101

Page 81: Tanque Vertical 150m3 Rev.C

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kg/cm2)

Allowable StressBefore UG-23

Stress Increase (kg/cm2)

Temperature (°C)

Corrosion C(mm) Load Req'd Thk Due to

Tension (mm)

Req'd Thk Dueto

Compression(mm)

St Sc

Operating, Hot & Corroded 12 1,407.2 923.8 50 1.6 Weight 9.8 9.78

Operating, Hot & New 12 1,407.2 940.8 50 0 Weight 9.78 9.77

Empty, Corroded 0 1,407.2 923.8 25 1.6 Weight 0.16 0.18

Empty, New 0 1,407.2 940.8 25 0 Weight 0.17 0.19

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 1,407.2 923.8 50 1.6 Weight 0.16 0.18

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,350.4 / 23.8)= 0.001266

B = 923.8 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHC = min(B, S) = 923.8 kg/cm2

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,350.4 / 25.4)= 0.001351

B = 940.8 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScHN = min(B, S) = 940.8 kg/cm2

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,350.4 / 25.4)= 0.001351

B = 940.8 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCN = min(B, S) = 940.8 kg/cm2

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,350.4 / 23.8)= 0.001266

B = 923.8 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScCC = min(B, S) = 923.8 kg/cm2

79/101

Page 82: Tanque Vertical 150m3 Rev.C

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (2,350.4 / 23.8)= 0.001266

B = 923.8 kg/cm2

S = 1,407.2 / 1.00 = 1,407.2 kg/cm2

ScVC = min(B, S) = 923.8 kg/cm2

Operating, Hot & Corroded, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,326.6 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 1,850.8 / (π*2,338.52*1,407.21*1.00*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 23,231.6 / (2*π*2,338.5*1,407.21*1.00*1.00) * 102

= 0.11 mm

tt = tp + tm - tw(total required,tensile)

= 9.9 + 0.01 - (0.11)= 9.8 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0.01 + (0.11) - (9.9)|= 9.78 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(23.8 - 0.01 + (0.11)) / (2,326.6 - 0.40*(23.8 - 0.01 + (0.11)))= 29.04 kg/cm2

Operating, Hot & New, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 12*2,325 / (2*1,407.21*1.00*1.00 + 0.40*|12|)= 9.9 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 1,857 / (π*2,337.72*1,407.21*1.00*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 24,929.9 / (2*π*2,337.7*1,407.21*1.00*1.00) * 102

= 0.12 mm

tt = tp + tm - tw(total required,tensile)

80/101

Page 83: Tanque Vertical 150m3 Rev.C

= 9.9 + 0.01 - (0.12)= 9.78 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0.01 + (0.12) - (9.9)|= 9.77 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*1,407.21*1.00*1.00*(25.4 - 0.01 + (0.12)) / (2,325 - 0.40*(25.4 - 0.01 + (0.12)))= 31.02 kg/cm2

Empty, Corroded, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 1,850.8 / (π*2,338.52*923.81*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 23,231.6 / (2*π*2,338.5*923.81*1.00) * 102

= 0.17 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.01 - (0.17)|= 0.16 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.17) - (0)= 0.18 mm

Empty, New, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 1,857 / (π*2,337.72*940.83*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 24,929.9 / (2*π*2,337.7*940.83*1.00) * 102

= 0.18 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.01 - (0.18)|= 0.17 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.18) - (0)= 0.19 mm

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0 mm (Pressure)

81/101

Page 84: Tanque Vertical 150m3 Rev.C

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 1,850.8 / (π*2,338.52*923.81*1.00) * 105

= 0.01 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 23,231.6 / (2*π*2,338.5*923.81*1.00) * 102

= 0.17 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.01 - (0.17)|= 0.16 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.17) - (0)= 0.18 mm

82/101

Page 85: Tanque Vertical 150m3 Rev.C

Ellipsoidal Head #1

ASME Section VIII Division 1, 2013 Edition Metric

Component Ellipsoidal Head

Material SA-516 70 (II-D Metric p. 22, ln. 6)

Attached To Cylinder #3

ImpactTested Normalized Fine Grain

Practice PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (kgf/cm2)

DesignTemperature (°C)

DesignMDMT (°C)

Internal 12 50 -10

Static Liquid Head

Condition Ps (kgf/cm2) Hs (mm) SG

Test horizontal 0.48 4,825 1

Dimensions

Inner Diameter 4,650 mm

Head Ratio 2

Minimum Thickness 25.4 mm

Corrosion Inner 1.6 mm

Outer 0 mm

Length Lsf 38.1 mm

Nominal Thickness tsf 25.4 mm

Weight and Capacity

Weight (kg)1 Capacity (liters)1

New 5,076.76 13,808.29

Corroded 4,760.97 13,845.44

Radiography

Category A joints Full UW-11(a) Type 1

Head to shell seam Full UW-11(a) Type 11includes straight flange

83/101

Page 86: Tanque Vertical 150m3 Rev.C

Results Summary

Governing condition internal pressure

Minimum thickness per UG-16 1.5 mm + 1.6 mm = 3.1 mm

Design thickness due to internal pressure (t) 21.44 mm

Maximum allowable working pressure (MAWP) 14.39 kgf/cm2

Maximum allowable pressure (MAP) 15.36 kgf/cm2

Rated MDMT -10.3°C

UCS-66 Material Toughness Requirements

Governing thickness, tg = 25.4 mm

Exemption temperature from Fig UCS-66M Curve B = -1°C

tr = 12*4,653.2*0.999084 / (2*1,407.21*1 - 0.2*12) = 19.84 mm

Stress ratio = tr*E* / (tn - c) = 19.84*1 / (25.4 - 1.6) = 0.8336

Reduction in MDMT, TR from Fig UCS-66.1M = 9.3°C

MDMT = max[ MDMT - TR, -48] = max[ -1 - 9.3 , -48] = -10.3°C

Material is exempt from impact testing at the Design MDMT of -10°C.

Factor K

K = (1/6)*[2 + (D / (2*h))2]

Corroded K = (1/6)*[2 + (4,653.2 / (2*1,164.1))2] 0.9991

New K = (1/6)*[2 + (4,650 / (2*1,162.5))2] 1

Design thickness for internal pressure, (Corroded at 50 °C) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 12*4,653.2*0.999084 / (2*1,407.21*1 - 0.2*12) + 1.6= 21.44 mm

Maximum allowable working pressure, (Corroded at 50 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*1,407.21*1*23.8 / (0.999084*4,653.2 +0.2*23.8) - 0= 14.39 kgf/cm2

Maximum allowable pressure, (New at 25 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*1,407.21*1*25.4 / (1*4,650 +0.2*25.4) - 0= 15.36 kgf/cm2

% Extreme fiber elongation - UCS-79(d)

EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*25.4 / 803.2)*(1 - 803.2 / ∞)

84/101

Page 87: Tanque Vertical 150m3 Rev.C

= 2.3718%

The extreme fiber elongation does not exceed 5%.

85/101

Page 88: Tanque Vertical 150m3 Rev.C

A (N1)

ASME Section VIII Division 1, 2013 Edition Metric

Note: round inside edges per UG-76(c)

Location and Orientation

Located on Ellipsoidal Head #1

Orientation 0°

End of nozzle to datum line -1,500 mm

Calculated as hillside No

Distance to head center, R 0 mm

Passes through a Category A joint No

Nozzle

Description NPS 24 XS DN 600

Access opening No

Material specification SA-106 B Smls. Pipe (II-D Metric p. 14, ln. 19)

Inside diameter, new 584.2 mm

Nominal wall thickness 12.7 mm

Corrosion allowance 1.6 mm

Projection available outside vessel, Lpr 271.33 mm

Projection available outside vessel to flange face, Lf 284.03 mm

Local vessel minimum thickness 25.4 mm

Liquid static head included 0 kgf/cm2

Longitudinal joint efficiency 1

Reinforcing Pad

Material specification SA-516 70 (II-D Metric p. 22, ln. 6)

Diameter, Dp 909.6 mm

86/101

Page 89: Tanque Vertical 150m3 Rev.C

Thickness, te 22.22 mm

Is split No

Welds

Inner Fillet, Leg41 25.4 mm

Outer Fillet, Leg42 14 mm

Nozzle to vessel groove weld 25.4 mm

Pad groove weld 22.22 mm

ASME B16.5-2009 Flange

Description NPS 24 Class 150 SO A105

Bolt Material SA-193 B7 Bolt <= 64 (II-D Metric p. 352, ln. 31)

Blind included No

Rated MDMT -48°C

Liquid static head 0 kgf/cm2

MAWP rating 19.58 kgf/cm2 @ 50°C

MAP rating 19.99 kgf/cm2 @ 25°C

Hydrotest rating 30.59 kgf/cm2 @ 25°C

External fillet weld leg (UW-21) 15.54 mm (15.54 mm min)

Internal fillet weld leg (UW-21) 8.29 mm (8.29 mm min)

PWHT performed No

Impact Tested No

Notes

Flange rated MDMT per UCS-66(b)(1)(b) = -48°C (Coincident ratio = 0.6004)Bolts rated MDMT per Fig UCS-66 note (c) = -48°C

UCS-66 Material Toughness Requirements Nozzle

tr = 12*293.7 / (1,203.26*1 - 0.6*12) = 2.95 mm

Stress ratio = tr*E* / (tn - c) = 2.95*1 / (11.11 - 1.6) = 0.3098

Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) = -105°C

Material is exempt from impact testing at the Design MDMT of -10°C.

87/101

Page 90: Tanque Vertical 150m3 Rev.C

UCS-66 Material Toughness Requirements Pad

Governing thickness, tg = 22.22 mm

MDMT = -29°C

Material is exempt from impact testing per UG-20(f) at the Design MDMT of -10°C.

88/101

Page 91: Tanque Vertical 150m3 Rev.C

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)UG-45

Summary(mm)

For P = 12 kgf/cm2 @ 50 °C

The opening is adequately reinforcedThe nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

105.4812 115.807 34.7025 6.9677 -- 66.66 7.4768 9.93 11.11

UG-41 Weld Failure Path Analysis Summary (kgf)

All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

101,187 114,131 225,824 23,926 602,283 120,489 375,245

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 17.78 weld size is adequate

Pad to shell fillet (Leg42) 9.5 9.8 weld size is adequate

Calculations for internal pressure 12 kgf/cm2 @ 50 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(587.4, 293.7 + (12.7 - 1.6) + (25.4 - 1.6))= 587.4 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(25.4 - 1.6), 2.5*(12.7 - 1.6) + 22.22)= 49.97 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 12*293.7 / (1,203.2642*1 - 0.6*12)= 2.95 mm

Required thickness tr from UG-37(a)(c)

tr = P*K1*D / (2*S*E - 0.2*P)= 12*0.8994*4,653.2 / (2*1,407.2073*1 - 0.2*12)= 17.86 mm

89/101

Page 92: Tanque Vertical 150m3 Rev.C

Area required per UG-37(c)

Allowable stresses: Sn = 1,203.264, Sv = 1,407.207, Sp = 1,407.207 kgf/cm2

fr1 = lesser of 1 or Sn / Sv = 0.8551

fr2 = lesser of 1 or Sn / Sv = 0.8551

fr3 = lesser of fr2 or Sp / Sv = 0.8551

fr4 = lesser of 1 or Sp / Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= (587.4*17.86*1 + 2*11.1*17.86*1*(1 - 0.8551)) / 100= 105.4812 cm2

Area available from FIG. UG-37.1

A1 = larger of the following= 34.7025 cm2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= (587.4*(1*23.8 - 1*17.86) - 2*11.1*(1*23.8 - 1*17.86)*(1 - 0.8551)) / 100= 34.7025 cm2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= (2*(23.8 + 11.1)*(1*23.8 - 1*17.86) - 2*11.1*(1*23.8 - 1*17.86)*(1 - 0.8551)) / 100= 3.9555 cm2

A2 = smaller of the following= 6.9677 cm2

= 5*(tn - trn)*fr2*t= (5*(11.1 - 2.95)*0.8551*23.8) / 100= 8.2968 cm2

= 2*(tn - trn)*(2.5*tn + te)*fr2= (2*(11.1 - 2.95)*(2.5*11.1 + 22.22)*0.8551) / 100= 6.9677 cm2

A41 = Leg2*fr3= (25.42*0.8551) / 100= 5.5168 cm2

A42 = Leg2*fr4= (142*1) / 100= 1.96 cm2

90/101

Page 93: Tanque Vertical 150m3 Rev.C

A5 = (Dp - d - 2*tn)*te*fr4= ((909.6 - 587.4 - 2*11.1)*22.22*1) / 100= 66.66 cm2

Area = A1 + A2 + A41 + A42 + A5

= 34.7025 + 6.9677 + 5.5168 + 1.96 + 66.66= 115.807 cm2

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet: tmin = lesser of 19 mm or tn or te = 11.1 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*25.4 = 17.78 mm

Outer fillet: tmin = lesser of 19 mm or te or t = 19 mmtw(min) = 0.5*tmin = 9.5 mmtw(actual) = 0.7*Leg = 0.7*14 = 9.8 mm

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 12*293.7 / (1,203.2642*1 - 0.6*12) + 1.6= 4.55 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 4.55 , 0 ]= 4.55 mm

tb1 = 21.44 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 21.44 , 3.1 ]= 21.44 mm

tb = min[ tb3 , tb1 ]= min[ 9.93 , 21.44 ]= 9.93 mm

tUG-45 = max[ ta , tb ]= max[ 4.55 , 9.93 ]= 9.93 mm

91/101

Page 94: Tanque Vertical 150m3 Rev.C

Available nozzle wall thickness new, tn = 0.875*12.7 = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: 0.74*1,407.207 = 1,041.333 kgf/cm2

Nozzle wall in shear: 0.7*1,203.264 = 842.285 kgf/cm2

Inner fillet weld in shear: 0.49*1,203.264 = 589.599 kgf/cm2

Outer fillet weld in shear: 0.49*1,407.207 = 689.532 kgf/cm2

Upper groove weld in tension: 0.74*1,407.207 = 1,041.333 kgf/cm2

Strength of welded joints:

(1) Inner fillet weld in shear(π / 2)*Nozzle OD*Leg*Si = (π / 2)*609.6*25.4*589.599 = 143,402.26 kgf

(2) Outer fillet weld in shear(π / 2)*Pad OD*Leg*So = (π / 2)*909.6*14*689.532 = 137,928.15 kgf

(3) Nozzle wall in shear(π / 2)*Mean nozzle dia*tn*Sn = (π / 2)*598.5*11.1*842.285 = 87,895.46 kgf

(4) Groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*609.6*23.8*1,041.333 = 237,316.71 kgf

(6) Upper groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*609.6*22.22*1,041.333 = 221,563.93 kgf

Loading on welds per UG-41(b)(1)

W = (A - A1 + 2*tn*fr1*(E1*t - F*tr))*Sv

= (10,548.12 - 3,470.2511 + 2*11.1*0.8551*(1*23.8 - 1*17.86))*1,407.207= 101,187.25 kgf

W1-1 = (A2 + A5 + A41 + A42)*Sv

= (696.7728 + 6,666 + 551.6763 + 195.9996)*1,407.207= 114,130.93 kgf

W2-2 = (A2 + A3 + A41 + A43 + 2*tn*t*fr1)*Sv

= (696.7728 + 0 + 551.6763 + 0 + 2*11.1*23.8*0.8551)*1,407.207= 23,926.01 kgf

W3-3 = (A2 + A3 + A5 + A41 + A42 + A43 + 2*tn*t*fr1)*Sv

= (696.7728 + 0 + 6,666 + 551.6763 + 195.9996 + 0 + 2*11.1*23.8*0.8551)*1,407.207= 120,488.65 kgf

Load for path 1-1 lesser of W or W1-1 = 101,187.25 kgfPath 1-1 through (2) & (3) = 137,928.15 + 87,895.46 = 225,823.6 kgfPath 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

92/101

Page 95: Tanque Vertical 150m3 Rev.C

Load for path 2-2 lesser of W or W2-2 = 23,926.01 kgfPath 2-2 through (1), (4), (6) = 143,402.26 + 237,316.71 + 221,563.93 = 602,282.91 kgfPath 2-2 is stronger than W2-2 so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or W3-3 = 101,187.25 kgfPath 3-3 through (2), (4) = 137,928.15 + 237,316.71 = 375,244.86 kgfPath 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

93/101

Page 96: Tanque Vertical 150m3 Rev.C

Support Skirt #1

ASME Section VIII Division 1, 2013 Edition Metric

Component Support Skirt

Material SA-516 70 (II-D Metric p. 22, ln. 6)

Skirt is Attached To Ellipsoidal Head #1

Skirt Attachment Offset 212.52 mm down from the top seam

Design Temperature

Internal 80°C

Dimensions

Inner Diameter Top 4,650 mm

Botttom 4,650 mm

Length (includes base ring thickness) 470 mm

Nominal Thickness 22.22 mm

Corrosion Inner 1.6 mm

Outer 1.6 mm

Weight

New 1,103.64 kg

Corroded 944.7 kg

Joint Efficiency

Top 0.55

Bottom 0.8

Skirt design thickness, largest of the following + corrosion = 3.44 mm

The governing condition is due to weight, compressive stress at the base, operating & corroded.

The skirt thickness of 22.22 mm is adequate.

94/101

Page 97: Tanque Vertical 150m3 Rev.C

Results Summary

LoadingVessel

Condition(Stress)

GoverningSkirt

Location

Temperature(°C)

AllowableStress

(kgf/cm2)

CalculatedStress/E(kgf/cm2)

Requiredthickness

(mm)

Weight operating, corroded (+) bottom 80 868 -9.86 0.22

Weight operating, corroded (-) bottom 80 868 10.99 0.24

Weight operating, new (+) bottom 80 906.53 -9.11 0.22

Weight operating, new (-) bottom 80 906.53 10.08 0.25

Weight empty, corroded (+) bottom 25 868 -9.86 0.22

Weight empty, corroded (-) bottom 25 868 10.99 0.24

Weight empty, new (+) bottom 25 906.53 -9.11 0.22

Weight empty, new (-) bottom 25 906.53 10.08 0.25

Loading due to weight, operating & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

t = -W / (π*D*St*E) + 4*M / (π*D2*St*E)= -29,108.45 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.22 mm

Required thickness, tensile stress at the top:

t = -Wt / (π*Dt*St*E) + 4*Mt / (π*Dt2*St*E)

= -28,163.75 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.21 mm

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 4*M / (π*D2*Sc*Ec)= 29,108.45 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.24 mm

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 4*Mt / (π*Dt2*Sc*Ec)

= 28,163.75 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.23 mm

Loading due to weight, operating & new

Windward side (tensile)

95/101

Page 98: Tanque Vertical 150m3 Rev.C

Required thickness, tensile stress at base:

t = -W / (π*D*St*E) + 4*M / (π*D2*St*E)= -31,286.62 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.22 mm

Required thickness, tensile stress at the top:

t = -Wt / (π*Dt*St*E) + 4*Mt / (π*Dt2*St*E)

= -30,182.98 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.21 mm

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 4*M / (π*D2*Sc*Ec)= 31,286.62 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.25 mm

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 4*Mt / (π*Dt2*Sc*Ec)

= 30,182.98 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.24 mm

Loading due to weight, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

t = -W / (π*D*St*E) + 4*M / (π*D2*St*E)= -29,108.45 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.22 mm

Required thickness, tensile stress at the top:

t = -Wt / (π*Dt*St*E) + 4*Mt / (π*Dt2*St*E)

= -28,163.75 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.21 mm

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 4*M / (π*D2*Sc*Ec)= 29,108.45 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.24 mm

96/101

Page 99: Tanque Vertical 150m3 Rev.C

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 4*Mt / (π*Dt2*Sc*Ec)

= 28,163.75 / (π*4,672.22*867.999/100*1) + 4*1e3*1,850.8 / (π*4,672.222*867.999/100*1)= 0.23 mm

Loading due to weight, empty & new

Windward side (tensile)

Required thickness, tensile stress at base:

t = -W / (π*D*St*E) + 4*M / (π*D2*St*E)= -31,286.62 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.22 mm

Required thickness, tensile stress at the top:

t = -Wt / (π*Dt*St*E) + 4*Mt / (π*Dt2*St*E)

= -30,182.98 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.21 mm

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 4*M / (π*D2*Sc*Ec)= 31,286.62 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.25 mm

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 4*Mt / (π*Dt2*Sc*Ec)

= 30,182.98 / (π*4,672.22*906.526/100*1) + 4*1e3*1,857 / (π*4,672.222*906.526/100*1)= 0.24 mm

97/101

Page 100: Tanque Vertical 150m3 Rev.C

Skirt Base Ring #1

Inputs

Base configuration single base plate without gussets

Base plate material

Base plate allowable stress, Sp 1,406.138 kgf/cm2

Foundation compressive strength 1,406.138 kgf/cm2

Concrete ultimate 28-day strength 1,406.138 kgf/cm2

Bolt circle, BC 5,050 mm

Base plate inner diameter, Di 4,250 mm

Base plate outer diameter, Do 5,450 mm

Base plate thickness, tb 38 mm

Anchor Bolts

Material

Allowable stress, Sb 1,406.138 kgf/cm2

Bolt size and type 1.5 " series 8 threaded

Number of bolts, N 13

Corrosion allowance (applied to root radius) 0 mm

Anchor bolt clearance 9.53 mm

Bolt root area (corroded), Ab 9.06 cm2

Diameter of anchor bolt holes, db 47.63 mm

Initial bolt preload 0% (0 kgf/cm2)

Bolt at 0° No

98/101

Page 101: Tanque Vertical 150m3 Rev.C

Results Summary

Load Vesselcondition

Base V(kgf)

Base M(kgf-m)

W(kg)

Requiredbolt area

(cm2)

trBase(mm)

Foundationbearingstress

(kgf/cm2)

Weight operating, corroded 0 1,850.8 31,822.7 0 10.58 0.3675

Weight operating, new 0 1,857 34,000.9 0 10.92 0.3914

Weight empty, corroded 0 1,850.8 31,822.7 0 10.58 0.3675

Weight empty, new 0 1,857 34,000.9 0 10.92 0.3914

Anchor bolt load (operating, corroded + Weight)

P = -W / N + 4 * M / (N*BC)= -31,822.75 / 13 + 4 * 1,850.8 / (13*5.05)= -2,335.14 kgf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, corroded + Weight)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(5452 - 4252) / 4 - 13*π*4.76252 / 4= 91,188.77 cm2

Ic = π*(Do4 - Di

4) / 64= π*(5454 - 4254) / 64= 2.7292E+09 cm4

fc = N*Ab*Preload / Ac + W / Ac + M / 2*Do / Ic= 13*9.0645*0 / 91,188.77 + 31,822.75 / 91,188.77 + 10*1,850.8 / 2*5,450 / 2.7292E+09= 0.367 kgf/cm2

As fc <= 1,406.138 kgf/cm2 the base plate width is satisfactory.

Base plate required thickness (operating, corroded + Weight)

tr = (3*fc*L2 / Sp)0.5

= (3*0.367*377.782 / 1,406.138)0.5

= 10.58 mm

The base plate thickness is satisfactory.

Anchor bolt load (operating, new + Weight)

P = -W / N + 4 * M / (N*BC)= -34,000.92 / 13 + 4 * 1,857 / (13*5.05)= -2,502.31 kgf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, new + Weight)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(5452 - 4252) / 4 - 13*π*4.76252 / 4= 91,188.77 cm2

99/101

Page 102: Tanque Vertical 150m3 Rev.C

Ic = π*(Do4 - Di

4) / 64= π*(5454 - 4254) / 64= 2.7292E+09 cm4

fc = N*Ab*Preload / Ac + W / Ac + M / 2*Do / Ic= 13*9.0645*0 / 91,188.77 + 34,000.92 / 91,188.77 + 10*1,857 / 2*5,450 / 2.7292E+09= 0.391 kgf/cm2

As fc <= 1,406.138 kgf/cm2 the base plate width is satisfactory.

Base plate required thickness (operating, new + Weight)

tr = (3*fc*L2 / Sp)0.5

= (3*0.391*377.782 / 1,406.138)0.5

= 10.92 mm

The base plate thickness is satisfactory.

Anchor bolt load (empty, corroded + Weight)

P = -W / N + 4 * M / (N*BC)= -31,822.75 / 13 + 4 * 1,850.8 / (13*5.05)= -2,335.14 kgf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, corroded + Weight)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(5452 - 4252) / 4 - 13*π*4.76252 / 4= 91,188.77 cm2

Ic = π*(Do4 - Di

4) / 64= π*(5454 - 4254) / 64= 2.7292E+09 cm4

fc = N*Ab*Preload / Ac + W / Ac + M / 2*Do / Ic= 13*9.0645*0 / 91,188.77 + 31,822.75 / 91,188.77 + 10*1,850.8 / 2*5,450 / 2.7292E+09= 0.367 kgf/cm2

As fc <= 1,406.138 kgf/cm2 the base plate width is satisfactory.

Base plate required thickness (empty, corroded + Weight)

tr = (3*fc*L2 / Sp)0.5

= (3*0.367*377.782 / 1,406.138)0.5

= 10.58 mm

The base plate thickness is satisfactory.

Anchor bolt load (empty, new + Weight)

P = -W / N + 4 * M / (N*BC)= -34,000.92 / 13 + 4 * 1,857 / (13*5.05)= -2,502.31 kgf

100/101

Page 103: Tanque Vertical 150m3 Rev.C

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, new + Weight)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(5452 - 4252) / 4 - 13*π*4.76252 / 4= 91,188.77 cm2

Ic = π*(Do4 - Di

4) / 64= π*(5454 - 4254) / 64= 2.7292E+09 cm4

fc = N*Ab*Preload / Ac + W / Ac + M / 2*Do / Ic= 13*9.0645*0 / 91,188.77 + 34,000.92 / 91,188.77 + 10*1,857 / 2*5,450 / 2.7292E+09= 0.391 kgf/cm2

As fc <= 1,406.138 kgf/cm2 the base plate width is satisfactory.

Base plate required thickness (empty, new + Weight)

tr = (3*fc*L2 / Sp)0.5

= (3*0.391*377.782 / 1,406.138)0.5

= 10.92 mm

The base plate thickness is satisfactory.

101/101