t/ el82-4dc' 1988 s dtic e -t d - defense technical ... · 1988. species profiles: life...

31
Biological Reot8 11.80 t/ EL82-4dC' April 1988 I) Species Profiles: Life Histories and DTIC 'o Environmental Requirements of Coastal Fishes S E -T D and Invertebrates (North Atlantic) JUL 2 5 198 M 0)0 , SANDWORM AND BLOODWORM H IV '/ ( Coastal Ecology Group ,-'';Fish and Wildlife Service Waterways Experiment Station U.S. Department of the Interior U.S. Army Corps of Engineers Appro-,-w fk)r pl-. Mleam: P.. I 77 a: ------------

Upload: phungtruc

Post on 19-Nov-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Biological Reot8 11.80 t/ EL82-4dC'April 1988

I) Species Profiles: Life Histories and DTIC'o Environmental Requirements of Coastal Fishes S E -T D

and Invertebrates (North Atlantic) JUL 2 5 198M

0)0

, SANDWORM AND BLOODWORM H

IV

'/ (

Coastal Ecology Group,-'';Fish and Wildlife Service Waterways Experiment Station

U.S. Department of the Interior U.S. Army Corps of EngineersAppro-,-w fk)r pl-. Mleam:

P.. I 77 a:

------------

Biological Report 82(11.80)TR EL-82-4

April 1988

Species Profiles: Life Histories and Environmental Requirementsof Coastal Fishes and Invertebrates (North Atlantic)

SANDWORM AND BLOODWORM

by

W. Herbert Wilson, Jr., and R. Eugene RuffManomet Bird Observatory

P.O. Box 936Manomet, MA 02345

Project OfficerDavid Moran

U.S. Fish and Wildlife ServiceNational Wetlands Research Center

1010 Gause BoulevardSlidell, LA 70458

Performed forCoastal Ecology Group

U.S. Army Corps of EngineersWaterways Experiment Station

Vicksburg, MS 39180

and

U.S. Department of the InteriorFish and Wildlife ServiceResearch and Development

National Wetlands Research Center "oWashington, DC 20240 1

- %

-1 a

'V,

.Jk

DISCLAIMER

The mention of the names of commercial products in this report does notconstitute endorsement or recommendation for use by the Federal Government.

This series may be referenced as follows:

U.S. Fish and Wildlife Service. 1983-19 . Species profiles: life historiesand environmental requirements of coastal fishes and invertebrates. U.S. FishWildl. Serv. Biol. Rep. 82(11). U.S. Army Corps of Engineers, TR EL-82-4.

This profile nay be cited as follows:

Wilson, W.H. , Jr., and R.E. Ruff. 1988. Species profiles: life histories andenvi ronmental requi rements of coastal fishes and invertebrates (NorthAtlant ic)--sandworm and bloodworm. U.S. Fish. Wild]. Serv. Biol. Rep.82(il.80). U.S. Army torps of Engineers, TR EL-82-4. pp.

%~~~> %U' N.*V

x. .

w, ~ BB % BVt. V~ '.%

-1~! N N V " -Y rv ,r~~ ~ N NW

0"i.

PREFACE

Th is specieb profile is une of a series on coastal aquatic organisms,principally fish, of sport, commercial, or ecological importance. The profilesare designed to provide coastal managers, engineers, and biologists with a briefcomprehensive sketch of the biological characteristics and environmental -.

requirements of the species and to describe how populations of the species may beexpected to react to environmental changes caused by coastal development. Each 0profile has sections on taxonomy, life history, ecological role, environmentalrequirements, and economic importance, if applicable. A three-ring binder isused for this series so that new profiles can be added as they are prepared.This project is jointly planned and financed by the U.S. Army Corps of Engineersand the U.S. Fish and Wildlife Service.

Suggestions or questions regarding this report should be directed to one of .

the following addresses.

Information Transfer SpecialistNational Wetlands Research CenterU.S. Fish and Wildlife ServiceNASA-Slidell Computer Complex1010 Gause BoulevardSlidell, LA 70458

or -

U.S. Army Engineer Waterways Experiment Station %Attention: WESER-CPost Office Box 631Vicksburg, MS 39180

(.1 N P E CT C [I

Acoession ForNTIS ORA&I

DTIC TAB 5

U!R-o. ,. -..%

1; : tYl 1-t on/

i' Av51 Ial,!!I tv Codo .-..

Dis I aSa

".P V

CONVERSION TABLE

Metric to U.S. Customary

Multiply L To Obtain

millimeters (mm) 0.03937 inchescentimet-rs (cm) 0.3937 inchesmeters (m) 3.281 feetmeters (m) 0.5468 fathomskilometers (km) 0.6214 statute mileskilometers (km) 0.5396 nautical miles %

square meters (m2) 10.76 square feet r.

square kilometers (km2) 0.3861 square mileshectares (ha) 2.471 acres

liters (1) 0.2642 gallonscubic meters (m3

) 35.31 cubic feetcubic meters (m3

) 0.0008110 acre-feet

milligrams (mg) 0.00003527 ouncesgrams (g) 0.03527 ounceskilograms (kg) 2.205 poundsmetric tons (t.) 2205.0 poundsmetric tons (t) 1.102 short tons

kilocalories (kcal) 3.968 British thermal unitsCelsius degrees ('C) 1.8(°C) + 32 Fahrenheit degrees 5

U.S. Customary to Metric

inches 25.40 millimetersinches 2.54 centimetersfeet (ft) 0.3048 metersfathoms 1.829 metersstatute miles (mi) 1.609 kilometersnautical miles (nmi) 1.852 kilometers

square feet (ft2 ) 0.0929 square meterssquare miles (mi2 ) 2.590 square kilometersacres 0.4047 hectares S

gallons (gal) 3.785 liters % 0

cubic feet (ft3) 0.02831 cubic metersacre-feet 1233.0 cubic meters 1

ounces (oz) 28350.0 milligramsounces (oz) 28.35 grams 0pounds (lb) 0.4536 kilogramspounds (lb) 0. 00045 metric tonsshort tons (ton) 0.9072 metric tons

British thermal units (Btu) 0.2520 kilocaloriesFahrenheit degrees (°F) 0. 5556 (°F - 32) Celsius degrees

iv

.. . . . ,;--)

CONTENTS

Page

PREFACE...................................................................... iii

CONVERSION FACTORS......................... ................................ U,ACKNOWLEDGMENTS.............................................................. vii

NOMENCLAIURE/TAXONOMY/RANGE..................................................1IMORPHOLOGY/IDENTIFICATION AIDS................................................1

Description................................................................ 1Identification Aids........................................................ 3Taxonomic References...................................... ................ 3

REASON FOR INCLUSION IN SERIES................................................3LIFE HISTORY................................................................. 3Gametogenesis.............................................................. 3W%Spawning................................................................... 3Larval Development......................................................... 4Population Structure....................................................... 4

ECOLOGICAL ROLE.............................................................. 4Feeding.................................................................... 4Predator-Prey Relations.................................................... 5Biogeochemical Effects..................................................... 5

ENVIRONMENTAL REQUIREMENTS................................................... 6Sub s ra t m .. ... .... ... ... .... ... .... . .. ... .... ... .... ... ..

Subsntatu...................................................................6Dsolnity....................................................................6Dissolvte Oxyge.............................................................6

*Adaptability to Laboratory Conditions.......................................6*Toxicology................................................................. 7

BLOODWORM

NOMENCLATURE/TAXONOMY/RANGE.................................................. 8MORPHOLOGY/IDENTIFICATION AIDS................................................8Description................................................................ 8Identification Aids....................................................... 10Taxonomic References...................................................... 10

REASON FOR INCLUSION IN SERIES................................................10LIFE HISTORY................................................................ 10Gametogenesis............................................................. 10Spawning.................................................................. 10

U'Larval Development........................................................ 11*Population Structure.......................... ............. ............ 11

O

ECOLOGICAL RO LE .......................... ............... ........ . ... ... 11Feed ing ................................................................. 11Predator-Prey Relations ................................................. 12

ENVIRONMENTAL REQUIREMENTS ............................ .................... 12Substratum .......................................... .................... 12Sa l in ity ..... ..... ... .... ... .. .... ... .. .... .. ... ... .... .. .. .... ... .. .... 12Dissolved Oxygen ........................................................ 12 .Tox ico logy .............................................................. 13 :

LITERATURE CITED .......................................................... 15 -'

20

44

W4

Pag

vi __"""S

ECOLGICA ROL...............................................1

Feedng..................................................,Predtor-rey elatons......................................1

ENVRONENTL RQUREMNTS...................................1

Susrau...................................1" '7" ' ,.. Salinity..............................................................12 " " ,"" ' " d;"

nA.

%

ACKNOWLEDGMENTS

We are grateful to Betsy Brown, Battelle Laboratories, Duxbury, MA; SallyWoodin of the University of South Carolina; Will Ambrose of The Williams-MysticProgram based in Mystic, CT, and anonymous reviewers for comments on early draftsof the manuscript. Jack Paar provided photographic assistance for which we arethankful. Kristian Fauchald of the United States National Museum kindly providedspecimens for our examination.

P#

IN

0

P-..

po.'

S

"vii

%

:1XIId ,.,0

S K.. 1 ,+. :' .= + .. . . . . +,+".- -

JAWS A- EVERSIBLE PROBOSCIS

ANTENNAE

FLESHY PALPSDORSAL CIRRUS

TENTACULAR CIRRI

! VENTRAL CIRRUS

ANTERIOR VIEW(Left parapodium from

middle of body)

ANTERIOR VIEW(Proboscis extended)

Fia','P 1. Sanrlworm (Nereis virens).

SANDWORM I

NOMENCLATURE/TAXONOMY/RANGE distribution of the sandworm in theNorth Atlantic region of the United

Scientific name. Nereis (Neanthes) States. Also recorded in the northvirens Sars, 1835 (Figure 1) Pacific from Alaska to central Cal-

Preferred common name ......... Sandworm ifornia, in the Bering Sea, and off NOther common names ........... Clamworm, Japan. Ranges from the high water

ragworm mark to about 150 m.Phylum ........................ AnnelidaClass ....................... PolychaetaOrder ..................... Phyllodocida MORPHOLOGY/IDENTIFICATION AIDSFamily ...................... Nereididae

DescriptionGeographic range: Found on both sides

of the North Atlantic as far south Body elongate, thickened anteriorlyas France off Europe and south to and somewhat flattened posteriorly, IIVirginia off the east coast of the with more than 200 segments. LengthUnited States. Figure 2 shows thc up to 900 mm and W' greater than

1'AU

%

CANADA~o MAINE

(~ '01 %

C- h

7Z '0

cb CV

'01

kno

%-p

PORTLAND

MILES

Fiur 2. Dsrbto fUtdom i h ot tani e n eve

4%

aI

40 n. P rotcv i up (head) -,[,a 11 mu] t i-rn I I ion dtoI lar, industry in Mainepentanonal, wi th a distal pair o f (Iow and C rease r 1970; Dow 1978;si)al I I ntonnao, and twn nairs of eves Sc hroede r 1918). Over 1,200 peoplein a trapezoidal arranqortent ( Figure are Ilicensed to digy bai tworms i n Mai ne

). Heal Jit h a oa'i~ n- f stout, (Sch roeder 197- 8). Since the earlyfles hy pains, ea Ch wi th a scia I1, 1970's, the bloodworm populations in%rj)undp'l palpn-stvle, distal ly. 'versiblo Maine have been declining, leading to V Vprobosc is wit~h a pa ir of curved i ncreased harvest inrg of sandworms.h rdis n v r hl ack iaws , each with Nevertheless, there seems to be no

to 19 teeth. Ba rk, conical , major concern that sandworms are beincQch itinous, paritina ths (teeth) efihedded overharvested. Creaser et al. (1983)in the surface of the proboscis. Fou r Calculated the Maximum SustainablepAirs; o f slen rde-r t ota c iIa r c ir ri1 Y IelId and Optimal Sustainable Yrield

the lori,,est reaching a s f ar as for Maine Populations. Blake (1919)

I )p rsuc -di

t n litfl speJ 1o'n. The first ;eqi'oent sggested that bait-diger-s are notlackin s etae, twice the width of any altering the population structure of a

fenaoin I se disnt. Parapodia wqi h heavily d7g mudflat. 9 %

dorsal andJ ventral lobes (i iramous)

vi ta the sale sharlie nt (the or t the1 e n eqtih of the body. Dofr sal a and LIFE HISTORY ee.

v, et tral c i arri d wi i th a ta ] fsn. SetAe findo pthe dorsal rani (notopodia) consisting Maeaogenesis

onf long, Jo i n ted setae (hooognhrespi ni ge rs Setae firo the ventral Like most polychaetes, the sexes in o _ -

ra i of the poodiia (neuropodia) N. virens are separate (Bumpus 1898).

consisting orf long, jointed setae rom Maine populations, .'-,

(hoiiogoph and heterogorph spininers) oocytes begin rapid growth in October

ard jointe setae with short, toothed o r November with ocyte maturation

blades (hetercoenph falcirers). occurring in the following April or ,May, when the oocytes diameters reach

185-195 pm (Creaser and CliffordIdentification Aids 1982). The oogenic cycle requires

12-20 months, depending on when the

The surface of the skin is in- oocytes are released into the coelom.

descent, reflecting bright huies if) the Ihe oucytes synthesize their own yolk .-.Si gh t. The body of the male is a dark (Fischer, and Schmitz 1981). Snow and

blue, blending into green at the base Marsden (1974) reported a similar

of the parapodia. The females are a temporal pattern of oogenesis for a N.

dull, greenish color. In both sexes, virens population in the Bay of Fundy,

the parapodia appear orange to bright with maturation occurring in May.

red due to the numerous capillaries in Brafield and Chapman (1967) reported

these appendcages. that. oogenesis requires 12-14 monthsin a Britihh population and that ripe

Taxonomic References ckr:cytes appear in May. Spermato-genesis follows a similar chronology

Refer to Sars 1835; Veiri 1 187. , (Brafield and Chapman 1967; Snow and1881; Webster and Benedict 1884, 1887; Marsden 1974; Creaser and Clifford

Fauvel 1923; Treadwell 1939. 1941; 1982).Pettibone 1963; Imajima 1972.

Spawning

REASON FOR INCLUSION IN SERIES Nereis v tiepes is a semelparousspeci es es; reproduction resu l ts in death

rhe harve s tnirig o f sandworms and (Bass and Brafield 19/2). Mature -

bloodworms (Glycera dibraichiatg) is a males become structurally modified for

3

%

'VV V '%Y\4 '-' \~, %~~.

Refer~~~~~~~~~ t% %as13;Vril17, (rfedadCamn16;So n

swimming (epitokous) anid swarm in the llody Wo1r1ms (1o [lin t it'- H11il M' h i

water column dur lug times of the new years, Hf I(Joe. hey I-n lyit'i themoon (Brafield arid Chapman 1967; Biss datal Hf Bratt iei '111 Chit ;tiill.tli ( 111,/)anrid Bra f i e I d 1912; Snow and Marsden and clIaimed t hat Br it i sh worms mitur 10nt1974 ; Creaser anid CIi ff ord 1982). at ter 1, or- / yot'.. CI, e, I e r anidTemperatures inr excess of /-8 'C seem ClIi t I orut (ith?") rept It'd i inct1(to be a precondition f or spawni i rig IllOdes li a MaI il ne ptuI i on wlr ill( Creaser~ and CIi f ford 1982 ; Goerke probatl ly cli restnlili tn yeal-L .e1984a ; Yokouchi 1985). PrematLure Worm,, in Ii Nnlwt'q ill pntn Iato 111 t'tiliI-spawn inrg can be induIced by i ucrea sig dLuceV atten- 3 yea ., ( Ki I t toii '3811,a).temperature in the laboratory (Bass As witti atl tIlrtr pntjRid t ils, t'Pi'ivarid Bra t ie I d 19/2). Swarm i ng t1 matIes duL Ct. i on 1)eTSU I L', 1 1 d( t1ti.

s known to Lie under thormolnalI con troltas wet I (Marsden 1971, 1978; Marsdenianid Jost t1915; Bel I arid Marsden 1980) . 1 CO 106 I CAt L I-F-emales (10 riot become sw iminlgep itokes arid do niot swarm; I ert i I i - I eed jigjzat ionl is presumed to occur i n ttieburrows o f females ( C rea s er arid Sanrdwo rmis f eed by x telid ig a llor-

Clifford 1982). F ecund ity var ies be- tioli of thtit'jr bodies I rom an1 niellintg

tween 50,.000 anid 1,.300,.000 eggs , de- oft ttie iiV IllIUCW1- t i lied b1tin llWs Iliepertd inq on the size of the female burrow'. con~ls s no a s er ie(- of Ilter-(Creaser arid CIiff tord 1982). colilec ted tJ-stiapet'(t sect 11111, g enera t ly

ill ttite Ltpper~ 101 (Al 0it IMId t 1d at (Re j 1I arva I Deve I0 nren t 1981) . i sagreemerits oivetr, ttie I. lphi c

s ta tto. of SMItiW(Irllls'.pal a cerltlry .I-emalt s of N . v i rens ex trude Ne re is v ireris w&s rega rdedt I,5 .1 tpredl

fertilized eggs onito ttie surf ace of to r by Verrli ItI ( 18/3) arit Maxwplt %1%1%the mud (Sinow arid M a rsd(Ieri 1974). (189/). andd dS all 1)f1ll1 j VOlO by I (1rribO t tI[DevelIopmenit a )pparIenIItlIy occuirs onl or, (18/6)- Glosso (1H'21) (concl1 Iudted that Vnear the Sed imerit surf ace. Snow and Sarildwiirrr ar'T trt i Vornus' trid t.1a(t,~Ma rsden (19/4) be I i eyed that tthey t oca te tht- i r llt trd y ( tiai ce eni-%p lanktonic embryos or larvae are riot counter. IBr'" colic Ill ti(11o1 was cthi I -f unid i n New Bruriswijck poplations, 1 erged bly Cope ~i nit arid Wi ('1111 ( 19'34)at thoug(h weak spontaneous swimm inrg of who stirlwed that. saiilworvi' capt (IlId ardu%larvae was observed i n I aboratory ateo an irria ts ill thtit I at lttory ;sitCuI It hires. Bass arid Brit jeld (19/2) wu rfli a 'l.11 dt'rrnit rated t1 wt'I t -

reported that troctiophore I a rvade Int deve I ortielt ( tellro't( ep t' t',viv ( ,veenter the plankton , but river for MITl' atlso Ret.i, in 1895; ltriiiker 1898; Cae%thian 15 fil. sveshti ikuv (1960) arid 196?) thfe ttroro(ti woirk try GoolrkeYu kouch i ( 1985 repor ted larvae with (19 /111, b ) Shoiwedt ttiat.s ,Ildwor 1111 t t'd .*

f our spqgnit.) i ttie pI ikton. 01Oil h1lt andrl 1ii rrl flatrit'i l andtJUVerii te-s are berith ic 12 days atfter, ttiat they StiUldt Ire L0Ili(t'it'Pt ((li j-fert iIi zat inn arid c rawlI i itLo the Vorles. Rect'rt t it'd Ir txptr irierit'. ti~ventertidal1 zone a fter 16 weeks, (Bass strlowrr that. sarrdwirrr. t't'r nf illarrri 11d'

and Brati e d 1912). ant I potyctiae(t.r's ( Cnrriitn PM82 Amrtis'a19i84a, b; Crrrrrirto aunt leia~tr 198,)).

P1)- tlat.i iStru.cturelNere is v rirsv tw, t''h by ,ptIiin Iig.

T he demoigraphy lot the -ulrdwormri i f o111 I t(t'nn w i HIi it 'll' it h Ik rolw it'I

;iritnrrvt'r i I I . Itin t inv It ( Ill11 Ctitirrrt wti irclr i' .trt'llo w j t In tw Wo i,. It'e

rt19trr0 Cut I JI tt t riM thi I- flr Iu' P- oi idw 'i, l- It' 1 ytultr it it aIi /t inqfreq2enr, Lirta r, ha I l. ,anyerv. I511WO potr li lid', nIir '. tur op t it i t1Lit

arItH Ma rItt'rr 191) i ; Itl irr'd ttit Baiy nil t o tt I itw wt' irjtit BIrn inot i It

lei

1979, 1980). The jaws are powerful 700 times that of the incubationenough to crush small bivalves (Lewis medium (Bass et al. 1969).and Whitney 1968). Food items arepassed into the esophagus, where a Predator-Prey Relationstrypsin-like proteolytic enzyme isproduced (Michel and DeVillez 1979), Predation by sandworms can have sig-as well as other enzymes (Kay 1974). nificant effects in marine soft-Lewis and Whitney (1968) have iden- sediment communities. Nereis virenstified a cellulase which is induced by has been shown to reduce sign-TfT-the presence of algae in the gut. cantly the abundance of the amphipod %Michel and DeVillez (1980) described Corophium volutator, permitting asso-

striated spines in the esophagus which ciated infauna to increase in abun-3pparently triturate food items. dance (Commito 1982; Ambrose 1984a,

b). Commito and Schrader (1985)Several workers have estimated suggested that N. virens consumes the

assimilation efficiency and production predatory polychaete Nephtys incisa Sof sandworms. Kay and Brafield (1973) when C. volutator is not present.calculated an assimilation efficiencyof 85.2% and annual production of 8.4 Sandworms are potential prey ing ash-free dry weight/m2 . Kristensen marine food webs. A number of gull(1984a) calculated the annual pro- and tern species take spent sandwormsduction of a Norwegian population as (Spaans 1971; Shklyarevich 1979).23.7 g ash-free dry weight/m2 . Ambrose (1986) showed that gulls may SNeuhoff (1979) demonstrated that take large, nonreproductive indivi-Nereis virens has faster growth and duals. Cantin et al. (1974) showedhigher efficiency than two congeners, that 16%-40% of the diet of CommonN. diversicolor and N. succinea. Eiders, Somateria mollissima, in lateSandworm growth and efficiency is May and mid-July is composed of N.greater when worms are fed clam tissue virens. Significant numbers of sand-than when fed oyster biodeposits worms are preyed upon by the poly-(feces and pseudofeces) (Tenore and chaete Glycera dibranchiata (AmbroseGopalan 1974; Tenore et al. 1978). 1984a, b). . .>,

Sandworms are also capable of taking Biogeochemical Effectsup dissolved organic matter. Com-pounds shown to be absorbed include The exchange of solutes, such asglutamic acid and aspartic acids nitrate, between the sediment and the(Chapman and Taylor 1968; Taylor 1969; overlying water is strongly affected ,

Jorgensen and Kristpnsen 1980a, b), by burrow-dwelling infauna like

leucine (Bass et al. 1969), glycine Nereis virens (Kristensen 1984b,(Jorgensen 1980), valine (Jorgensen 1985; Kristensen et al. 1985). The

1979), and alanine and guanine (Jor- burrows of N. virens have been showngensen and Kristensen 1980a, b). All to increase the flux of ammonia intoof these studies demonstrate that net the water column and to be responsibleinflux occurs when worms are exposed for 35% of the nitrification and 38%to natural concentrations of free of the denitrification in an estuarineamino acids (varying from 40 to 2,011 habitat (Henriksen et al. 1980).nmol). Jorgensen and Christiansen Nitrification rates are higher in the &

(1980a) showed thdt sandworms can burrow walls than on the sedimentobtain their total respiratory energy surface (Kristensen 1984b, 1985;requirements by absorption of inter- Kristenseni et al. 1985). Irrigationstitial amino acids. The larvae c.air of burrows for respiration causes antake up to 200 times the amount ol increase in the uptake of glycine byI euc i ne that adulIt worms take up. the hactei i a Ii v i nq in the burrowsyielding final ti,sue concentrations (Jngensen et. al. 1980). Ventilation

e.%

e

'yj~~T'9~w~ ~i~v • ~ . .- . .- -~

%Y

of the burrow creates a halo of Wells 1975). Decreased oxygen tension r.

oxidized sediment along the length results in increased sentilatoryof the burrow. It is not surprising pumping of the burrow tc, increasethat small zoobenthos aggregate in oxygen transport to nonvascularizedthe oxidized regions outside of sand- tissues (Lindroth 1938; deFur andworm burrows; nematode and gnathosto- Mangum 1979). Hyman (1932) noted thatmulid abundances were increased by oxygen intake is independent of sur-94% and 200%, respectively, in the rounding tension within moderateproximity of N. virens burrows (Reise ranges of tension. The ventilation1981). amplitude increases wit increasing

temperature (Kristensen 1981, 1983a,b, c).

ENVIRONMENTAL REQUIREMENTSWhen sandworms are exposed at low

Substratum tide and oxygen tensions decline, ananaerobic pathway is utilized (Scott 0

Nereis virens has been reported from 1976; Scott et al. 1976). The wormsa range of sediment types, varying produce large amounts of d-lactate andfrom sandy muds to fine sands (Petti- later pay an oxygen debt. Under longbone 1963; Bass and Brafield 1972; periods of anaerobiosis, sandwormsSnow and Marsden 1974; Reise 1981). switch to glycogen degradation whichMuddier sediments seem to be pre- results in the production of succinateferred. Highest densities, up to and volatile fatty acids (Schottler700/M 2 , are found in the lower por- 1979).tions of the intertidal zone (Bassand Brafield 1972; Rasmussen 1973;Snow and Marsden 1974). The migra- Temperaturetion of nonreproductive adults in thewater column in the winter (Dean 1978) Kristensen (1983b) states that ]may be a mechanism to allow sandworms optimal temperatures are between 11 'Cto find more suitable benthic habi- and 20 'C, although sandworms cantats. tolerate temperatures as high as 37.5

0C in the laboratory. Richards (1969)Salinity claimed that sandworms are highly

Nereis virens is euryhaline (Sayles tolerant of changes in temperature.

1935; Jorgensen and Dales 1957;Richards 1969; Walmsby 1970; Appy et Adaptability to Laboratory Conditionsal. 1980), tolerating salinities aslow as 0.5 ppt (Larsen and Doggett Nereis virens is a potentially1978). Nereis virens is intermediate valuable research organism because itin its ability to tolerate low and can be maintained in healthy culturehigh salinity stress relative to three in the laboratory (Goerke 1979, 1984b;congeneric species: N. diversicolor, Kristensen 1983c). Its adaptabilityN. succinea, and N. pelagica (Theede to the laboratory led to its use inet al. 1973). Reduced salinities some of the first studies on con-cause an increase in ammonia excretion ditioned response and habituation in(Haberfield 1977) and tachycardia invertebrates (Copeland 1930, 1934;(deFur and Mangum 1979). Clark 1960; Evans 1963a, b, 1966). A

word of caution is in order for anyDissolved Oxygen who use sandworms as bioassay orga-

nisms: sandworms maintained in sea-Nereis virens has blood containing a water without sediment, where the

hemoglobin used for oxygen transport worms cannot form burrows, may showrather than storage (Economides and abnormal metabolism (Pamatmat 1982).

6

% "M

Toxicology silver on respiration and osmoticbalance.•

Sandworms have been the focus of

many studies on the bioavailability of Among organic contaminants, Eislerheavy metals and organic pollutants. et al. (1972) determined that nitrilo-A significant fraction (30%-40%) of acetic acid (NTA) at a concentrationthe total body burden of zinc is of 5,500 mg/l resulted in 50% mortal-always found in the jaws (Bryan and ity of sandworms. Sandworms areGibbs 1979, 1980), so concentrations intermediate in tolerance to NTA com-of zinc in sandworms do not closely pared to many other marine speciesfollow environmental concentrations, (Eisler et al. 1972). Sandworms haveand sandworms are poor indicators of been shown to accumulate and meta-zinc contamination. The jaws contri- bolize PCB's, with small worms accumu-bute less than 1% of the total body lating 10.8 times the environmental

burden of silver, cadmium, copper, concentration of 0.04-0.58 ppm andiron, and lead. Cadmium uptake in- adults 3.8 times (Ernst et al. 1977;creases with increasing concentration Goerke and Ernst 1977; Goerke 1979;in the environment; uptake, primarily McLeese et al. 1981). Excretion offrom interstitial water, is greater in PCB's can be described by an exponen-small worms (Ray et al. 1980). Rice tial function which varies with tem-and Chien (1977) suggested that there perature; the maximum rate of elimina-may be a cadmium detoxification tion occurs at 12 0 C (Goerke 1984c).mechanism in the coelomic fluid; body Biochemical stress indices have been ,concentrations may be 1,000 times the measured in response to pentachloro-seawater concentration. Biochemical phenol (Carr and Neff 111) and tostress indices have been determined refined oil products (Carr and Nefffor sublethal cadmium dosages (Carr 1984). McElroy (1985) showed that aand Neff 1982). Ray et al. (1981) polycyclic aromatic hydrocarbon (PAH)indicated that the body burden of was metabolized by Nereis virens. 9copper and zinc did not vary between Sandworms accumulate and metabolizeclean and contaminated environments the insecticide Lindane, reachingbut significantly greater body equilibrium in 10-14 days (Goerke and , ..

burdens of lead and cadmium were Ernst 1980). Sandworms are much morefound in worms from contaminated tolerant of organochlorine pesticidessites. Pereira and Kanungo (1981) than the shrimp Crangon septemspinosademonstrated significant effects of (McLeese et al. 1982; Haya et al.

1984).

S

.~~~F . . . . ..

)(JAWS%

j- EVERSIBLEPROBOSCIS

ANTENNAEI BRANCHIAE

VENTRAL CIRRUS •

POSTERIOR VIEW(Left parapodlum from

ANTERIOR VIEW middle of body)(Proboscis extended)

Figure 3. Bloodworm (Glycera dibranchiata).

B LOODWORM

NOMENCLATURE/TAXONOMY/RANGE MORPHOLOGY/IDENTIFICATION AIDS

Scientific name ................ Glycera Descriptiondibranchiata Ehlers, 1868 (Figure 3)

Preferred common name ........ Bloodworm Body elongate, robust, having up toOther common names ........... Beakworm, 300 segments. Largest individuals

beak-thrower exceed 370 mm in length and 11 mm inPhylum ........................ Annelida width. Prostomium (head) conical,Class ....................... Polychaeta with 14-15 annulations and two distalOrder ..................... Phyllodocida pairs of antennae (Figure 3). Indis-Family ...................... Glyceridae tinct eyes on the basal annulation of

the head, or eyes absent. EversibleGeographic range: Found from low wa- proboscis with four dark, curved,

ter out to about 400 m along the hollow terminal jawpieces. ProboscisAtlantic coast from the Gulf of St. covered with small, conical probosci-Lawrence to Florida. Also recorded dean organs. Parapodia with dorsalin the Gulf of Mexico, and in the and ventral lobes (biramous), hearingeastern Pacific from central Cali- short dorsal cirri and more elongatefornia to Mazatlan, Mexico. Figure 4 ventral cirri. Paired, nonretractilegives the distribution of this spe- gills or branchiae beginning oncies in the North Atlantic region. segments 15-20 and continuing to near ,

S

8 ',

ev

' " " ' " "W w *' "N " "w -1. * , - " ". *x . " " , - ",,,"w " "w ",. ,. ,, ",, ', r, w - .'- '

CANADA

'/ 00 MAINE

0 4

(P

4..-

:E0

PORTLANLJ3z0

MILES

K I ME

Figue 4. Disribuion of boodorm n th Noth Alanic rgio. Hevie

stiplig iOictesrgiANfDihe bndne

9Z

e

ATATC CA

the posterior of the body; gills e I ir[linrated hi loo(woIl (Ar wnymoul Li

elongate or inflated, oxceedinq the 1919). Genetic evidence ai,,mJ indi-length of the parapodia ( Figure 3). cate:, that some populiation,, iiroe heinDorsal lobe of parapodia (nntop dia) overharvested (VauIla, , 11l B i "towwith simple, elongated, finely 1985). Dow (19/8) be I eves the ,o ly serrated setae. Ventral lobe (neuro- lon -Lerm so I tioi to mai )ta in I rj Ipodia) with simple and jointed sulticient standiolg stock to support

elongated, finely serrated ,etae. present intensities if hairvest irig isto cuL tLIre wori uniter contro I 1 edenvironmental conditions. Creaser et

Identification Aids al. (1983) presented models for thedetermioation of Maximumi Sustainable

The animals are bright pink. the Yield and Optimal Sustainable Yield.species is characterized by the pair The imposition of size-limits has beenof enlarged gills above and below each suggested (Salt 1918). Con foo nd ingof the middle parapodia. Glycera attempts at, managiog stocks is alrdibranchiata can be distinguished from inverse correlation between bloodwormthe similar G. americana in that the producLion and mean annual tempe'a-latter has retractile, bosh-like gills tLre; this relationship may explainabove the parapodia. some of the temporal variance in

bloodworm densities (Dow 19/8).Taxonomic References

Refer to Ehlers 1868; Verrill 1881; LIFE HISTORY .Webster and Benedict 1884; Arwidsson1898; Hartman 1940; Pettibone 1963. Gametogenesis %

Separate sexes are found in blood-REASON FOR INCLUSION IN SERIES worms. Gametogenesis occurs in the S

undivided body cavity (coelom) and

Baitworms (bloodworms and sandworms) requires about 1 year (Simpson 1962a,are ail important fishery in the b). Oocytes are released into theNortheastern United States and Nova coelom when they are about 21 pm inScotia (MacPhail 1954; Klawe and diameter. Mature oocytes are 151-160Dickie 195/; Dow and Creaser 1970; pm in diameter.Schroeder 19/8). Baitworms form thefourth largest fishery iin Maine, Spawningtrailing only lobsters, clams, andtotal finf ish. Iii the past 30 years, Populations in Maine and south-professional bait-diggers have removed western Nova Scotia reproduce fromnearly one billion bloodworms (Dow mid-May until early June (Klawe and1978). Over 90% of the bloodworms in Dickie 1957; Creaser 1973). Popula-the United States come from Maine with tions from Maryland reproduce in thethe remainder from Nova Scotia (7%) fall and possibly in late springand Massachusetts (2%). Recent evi- (Simpson 1962b). Shortly before re-dence, based on sampling of the worm production, bloodworms undergo radicalsizes of commercial landings indi- morphological changes. Their ali-cates that 2-year old worms, ra ther mentary tract and musculature atrophy.than the larger 3-year old worms, are Their par'apodia an( setae elongate.presently being harvested, suggestinig these sexual forms (epitokes) swami illthat the populations are being over- shallow water over a period of I to 3harvested (Dow 1978; but see Schroeder days at high tide ini the afternoon[1918] for anr alternative interpreta- (Simpson 1962a, 19/3). Males emi ttion of the data). Overharvesting of sperm wIi le swimming. femalesmudfI laI ts in two Maine count i es has rlpture , releasirig up to 10 million

10

N N

eggs per individual (Creaser 1973). coursed by a canal with numerous pores

Both males and females die after to the exterior through which aspawning. secretion from associated glands can

flow (Michel 1966; Wolff 1976, 1977).Larval Development The secretion is a neurotoxin, espe-

cially effective on crustaceansThe early development of Glycera (Michel and Keil 1975). It is there- 10

dibranchiata apparently occurs on the fore not surprising that bloodwormssediment surface (Simpson 1962b). have been found to feed on amphipods

Development proceeds to swimming (Dubois-Laviolette 1985) and poly-stages in 14-20 h after fertilization, chaetes (Ambrose 1984a, b).giving rise to unspecialized, %planktotrophic larvae (Simpson 1962a). A congeneric species, G. alba, hasThe larvae are not found in plankton been shown to maintain a permanenttows, suggesting that their planktonic gallery of burrows (Ockelmann and Vahllife is short or that they are 1970). Prey are detected by mechano-demersal (living just above the reception and ambushed at the sedimentbottom). surface. rilycera dibranchiata

occupies burrows (Klawe and DickiePopulation Structure 1957), but their exact configuration

has not been observed. AnecdotalKlawe and Dickie (1957) and Creaser evidence for G. dibranchiata as an

(1973) found that Glycera dibranchiata ambush predator derives from thehas a maximum life span of 5 years. foraging behavior of Black-belliedThe most rapid growth occurs during Plovers (Pluvialis squatarola),the second and third years. Most specialized predators on G.bloodworms reproduce and die at 3 dibranchiata (Dubois-Laviolette 1985).years of age although some postpone To bring bloodworms near the sedimentreproduction until the fourth or fifth surface, these plovers engage in foot-year. trembling behavior, setting up

vibrations at the sediment surface.Bloodworms apparently mistake these

ECOLOGICAL ROLE vibrations for the vibrations of apotential prey item. Stolte (1932)

Feeding described the complex innervation ofthe mechanoreceptive sense organs of S

There has been much debate about bloodworms. Bloodworms refused to eatwhether bloodworms are deposit-feeders dead prey in the laboratory, indi- %

or predators. Sanders et al. (1962) cating the importance of mechano-suggested that Glycera dibranchiata is reception in prey location (Klawe anda deposit-feeder, based on gut con- Dickie 1957; Fauchald and Jumars,%tents. Frankenberg and Smith (1967) 1979).

and Adams and Angelovic (1970) demon-strated significant utilization of Several features make it likely thatdead organic matter by bloodworms in Glycera dibranchiata is primarily athe laboratory. Such findings are predator: the proboscis armed withpuzzling in light of the formidable neurotoxin-injecting jaws, mechano-feeding apparatus of G. dibranchiata. receptive abilities, lack of a com-These worms possess an eversible pro- plete gut (Ockelmann and Vahl 1970),boscis which contains four terminal and the presence of proteolyticjaws (Wells 1937). The jaws are enzymes in the gut (Vahl 1976). Evi-strengthened, particularly distally, dence does exist indicating thatby accumulation of copper; 13% of the bloodworms can successfully utilizedistal tip is composed of copper detritus (Frankenberg and Smith 1967; %

(Gibbs and Bryan 1980). Each jaw is Adams and Angelovic 1970). It seems

9' i-i

likely that deti itivory is manifested 1985). Bloodworms are conspicuous inonly in the absence of suitable animal the water column during the fall andprey. winter (Dean 1978b; Graham and Creaser V.

1979). Such swimming worms are not %

Bloodworms are capable of utilizing reproductive; they may be searchingdissolved organic matter. Stephens et for more suitable benthic habitat.al. (1965) showed that bloodworms takeup creatine opportunistically. SalinityStevens and Preston (1981a, b, c)showed that alanine can be concen- There are no published data on

trated against a concentration gradi- tolerance limits of bloodworms toent. Preston and Stephens (1969), salinity stress. Costa et al. (1980)Preston (1970) and Chien et al. (1972) demonstrated that bloodworms are osmo-indicate that a number of other amino conformers. Bloodworms use free aminoacids can be concentrated, acids to decrease intracellular solute

concentrations during hypo-osmotic

Predator-Prey Relations stress. Machin (1975) found that ,these animals equilibrated to 50% and

Bloodworms can significantly affect 150% seawater After 10-25 h, producing

populations of other infaunal orga- a urine that is iso-osmotic to thenisms. Wilson (1979) showed a cor- coelomic fluid. The volume of coelo-relation between bloodworm abundance mocytes changes rapidly in response toand the number of maldanid polychaetes different osmotic pressures (Machinregenerating their anterior ends and and O'Donnell 1977).argued that bloodworms were browsingon the maldanids. Ambrose (1984a, b)showed that bloodworms consume signi- Dissolved Oxygenficant numbers of the sandworm, .Nereis virens. Dubois-Laviolette Glycera dibranchiata is called a S(1985) reported that bloodworm guts bloodworm because its hemoglobincontained the amphipod Corophium imparts a reddish color to the body.volutator. The hemoglobin is found in cells in _S

the body cavity (coelom); a circu-Predators on G. dibranchiata seem to latory system is lacking. No data

be few. They were rarely found in exist on the minimum dissolved oxygenfish guts (Klawe and Dickie 1957). concentration needed for survival.Dubois-Laviolette (1985) reported that The hemoglobin of bloodworms consistsbloodworms are the major prey of of two different molecules, differingBlack-bellied Plovers (Pluvialis greatly in molecular weight and oxygensquatarola) in the upper Bay of Fundy. affinity (e.g., Weber et al. 1977;The striped bass, Morone saxatilis, Harrington et al. 1978; Parkhurst etand the sand shrimp, Crangon septem- al. 1981). The two hemoglobin typesspinosa, consume large numbers of allow for the storage of oxygen underspent, dead bloodworms. conditions of low oxygen tension and

for the transport of oxygen under con-ditions of high oxygen tension. Man-

ENVIRONMENTAL REQUIREMENTS gum (1970) and Hoffman and Mangum(1970) showed that much of the oxygen ..

Substratum transport in bloodworms continues Safter experimentally blocking the

Bloodworms live in a range of sub- hemoglobin, implying thit the st.or--'stratum types, but seem to be most capability of hemoglobin is the more

abundant in very fine muds with high important use. In addition to hemo-organic content (Klawe and Dickie globin, the muscles of the proboscis1957; Creaser 1973; Dubois-Laviolette contain a myoglobin which facilitates %

12 P

- = PSP%

transfer of oxygen (Terwilliger and environmental zinc. Rice and ChienTerwilliger 1981). (1979) showed that cadmium accumulates S

through both the body surface and theToxicology intestine. They argued that the

coelomic fluid may act like mammalianLimited information is available on metallothioneins to bind the metal

the effect of heavy metals and organic ions. Medeiros et al. (1981) showedpollutants on bloodworms. In contami- that mercury uptake is very rapid,nated sites, copper may increase in with 75% of the equilibrium value --

the body but not in the jaws; 67% of being attainpd after only 2 h ofthe body burden of copper is in the exposure. PCB's do not producejaws (Gibbs and Bryan 1980). Zinc increased mortality in bloodworms butconcentrations remain reasonably may affect the ability of coelomocytesconstant in both the jaws and body for to phagocytize pathogens (Anderson etworms exposed to different levels of al. 1984).

-

.I%

I.I.

,.....

% % %

.& -- AL A2A 5A-

LITERATURE CITED -t

Adams, S.A., and J.W• Angelovic. Arwidsson 1. 1898. Studien uber die1970. Assimilation of detritus and Familien Glyceridae und Goniadidae. "%its associated bacteria by three Bergens Mus• Aarborg 11:1-70. '"species of estuarine animals. Ches--apeake Sci. 11:249-254.

Bass, N•R. and AE. Brafield 1972.

The life cycle of the polychaeteAmbrose, W.G., Jr. 1984a. Influences Nereis virens. J. Mar. Biol. Assoc.

of predatory polychaetes and epi- U.K. 52: 701-726.benthic predators on the structureof a soft-bottom community in a Bass, N.R., G. Chapman, and J.M.Maine estuary. J. Exp. Mar. Biol. Chapman. 1969. Uptake of leucine byEcol. 81:115-145. larvae and adults of Nereis. Nature

(Lond.) 221:467-477.Ambrose, W.G., Jr. 1984b. Influence

of residents on the development of amarine soft-bottom community. J. Bell, K., and J.R. Marsden. 1980.Mar. Res. 42:633-654. Age-related Histological changes in

neurosecreto:y cells in the brain ofAmbrose, W.G., Jr. 1986. Estimate of Nereis virens (Annelida, Poly- ..%

removal rate of Nereis virens (Poly- chaeta). Can. J. Zool. 58:1735-1740. %chaeta: Nereidael from an intertidal .mudflat by gulls (Larus spp.). Mar. Blake, R.W. 1979. On the exploitationBiol. (Berl.) 90:24-2--47. of a natural population of Nereis

virens from the northeast coast ofEngland. Estuarine Coastal Mar. Sci.

Anderson, R.S., C.S. Giam, and L.E. 8:141-148.Ray. 1984. Effects of hexachloro-benzene and pentachlorophenol on Brafield, A.E., and G. Chapman. 1967.cellular and humoral immune para- Gametogenesis and breeding in ameters in Glycera dibranchiata. natural population of Nereis virens.Mar. Environ. Res. 14:317-326. J. Mar. Biol. Assoc. U.K.

47:619-627.Anonymous. 1979. Short-sighted Maineworm industry jeopardizing its Bryan, G.W. , and P.E. Gibbs. 1979.future. Natl. Fisherman 59(9):77. Zinc--a major inorganic component of

nereid polychaete jaws. J. Mar.Biol. Assoc. U.K. 59:969-973. S

Appy, T.D. , L.E. Linkletter, and M. J.Dadswell. 1980. A guide to the Bryan, G.W. , and P.E. Gibbs. 1980.marine flora and fauna of the Bay of Metals in nereid polychaetes: theFundy: Annelida: Polychaeta. Can. contribution of metals in the jaw toFish. Mar. Serv. Tech. Rep. the total body burden. J. Mar. Ri'920: 1-124. Assoc. U.K. 60:641-654,

15 II

IV-

Bumpus, H.C. 1898. The breeding of Commito, J.A. and P.B. Schrader.animals at Woods Hole during the 1985. Benthic community response tomonth of March, 1898. Science experimental additions of the poly-7:485-487. chaete Nereis virens. Mar. Biol.

(Berl.) 86:101-107.Cantin, M. , J. Bedard, and H. Mimne.

1974. The food and feeding of common Copeland, M. 1930. An apparent con-eiders in the St. Lawrence Estuary ditioned response in Nereis virens.in summer. Can. J. Zoo]. 52:319- J. Comp. Psychol. 10:339-354.324.

Copeland, M. 1934. Modification ofCarr, R.S., and J.M. Neff. 1981. behavior in vereis virens. Biol.

Biochemical indices of stress in the Bull. (Woods Hole) 67:356-364.sandworm Neanthes virens (Sars). i.Responses to pentachlorophenol. Copeland, M., and H.L. Wieman. 1924.Aquat. Toxicol. 1:313-327. The chemical sense and feeding 0

behavior of Nereis virens Sars.Carr, R.S., and J.M. Neff. 1982. Biol. Bull. (Woods Hole) 47:231-238.

Biochemical indices of stress in thesandworm Neanthes virens (Sars). II. Sublethal responses to cadmium. Costa, C.J., S.K. Pierce, and M.K.Aquat. Toxicol. 2:319-333. Warren. 1980. The intracellular S

mechanism of salinity tolerance inCarr, R.S., and J.M. Neff. 1984. polychaetes: volume regulation by

Field assessment of biochemical isolated Glycera dibranchiata redstress for the sandworm Neanthes coelomocytes. Biol. Bull. (Woodsvirens (Sars). Mar. Environ. Res. Hole) 159:626-638.14:267-279.

Case, J. 1962. Responses of Nereis Creaser, E.P. , Jr. 1973. Reproductionvirens to alcohols. Comp. Biochem. of the bloodworm (Glycera dibran-Physiol. 6:47-56. chiata) in the Sheepscot Estuary,

Maine. J. Fish. Res. Board Can.Chapman, G., and A.G. Taylor. 1968. 30:161-166.

Uptake of organic solutes by Nereisvirens. Nature 217:763-764. Creaser, E.P., Jr., and D.A. Clifford. 'T %

1982. Life history studies of theChien, P. K. , G. C. Stephens, and P. L. sandworm, Nereis virens Sars, in the

Healy. The role of ultrastructure Sheepscot Estuary, Maine. U.S.and physiological differentiation of Natl. Mar. Fish. Serv. Fish. Bull.epithelia in amino acid uptake by 80:735-743. .-

the bloodworm, Glycera. Biol. Bull. S(Woods Hole) 142:219-234. Creaser, E.P., Jr., D.A. Clifford,

M.J. Hogan, and D.B. Sampson. 1983.Clark, R.B. 1960. Habituation of the A commercial sampling program for

polychaete Nereis to sudden stimuli. sandworms Nereis virens Sars, and

I. General properties of the habit- bloodworms, Glycera dibranchiatauation process. Anim. Behav. 8:82- Ehlers, harvested along the Maine91. coast. NOAA Tech. Rep. NMFS

SSRF-767:1-56.Commito, J.A. 1982. Importance ofpredation by infaunal polychaetes in Dean, D. 1978a. Migration of the %controlling the structure of a soft- sandworm Nereis virens during winterbottom community in Maine, USA. Mar. nights. Mar. Biol. (Berl.)Biol. (Berl.) 68:77-81. 45:165-173.

16 . - ,'.

) " . *%

-. A

-, V~*."? N., %X4' z-

JW V .', , . W - ' - J- * -. . * F- W W ' 9 %I ,

Dean, D. 1978b. The swimming of marine annelid Nereis virens. 2.bloodworms (Glycera spp.) at night, Degradation and faecal eT1mnation.with comments on other species. Mar. Chemosphere 6:559-568.Biol. (Berl.) 48:99-104.

deFur, P.C., and C.P. Mangum. 1979. Evans, S. 1963a. The effect of brainThe effects of environmental extirpation on learning and reten-variables on the heart rates of tion in nereid responses. Anim.invertebrates. Comp. Biochem. Behav. 11:172-178.Physiol. (A) 62:283294.

Evans, S. 1963b. The behaviour ofDow, R.L. 1978. Few ways are open the polychaete Nereis in T mazes.

for increasing wild stocks of Anim. Behav. 11:379-392.Maine's bloodworms. Natl. Fisherman58 (10):33. Evans, S. 1966. Non-associative

avoidance learning in the nereidDow, R.L., and E.P. Creaser, Jr. polychaetes. Anim. Behav.

1970. Marine bait worms, a valuable 14:102-106.inshore resource. Atl. States Mar.Fish. Comm. Leafl. 12:1-4. Fauchald, K., and P.A. Jumars. 1979.

The diet of worms: a study of poly-Dubois-Laviolette, A.G.T.M. 1985. chaete feeding guilds. Oceanogr.

Foraging and energetics of the Mar. Biol. Annu. Rev. 17:193-284.Black-bellied Plover Pluvialissquatarola (Linnaeus) and related Fauvel, P. 1923. Polychetes er-aspects of its prey Glycera dibran- rantes. Faune Fr. 5:1-488.chiata Ehlers on the Starrs PointmudfFat, Minas Basin, N.S. M.S. Fischer, A., and K. Schmitz. 1981.Thesis, Acadia University, Preparation, properties and com- SWolfville, Nova Scotia. 150 pp. position of Nereis vitellin, the

yolk protein of the annelid, Nereis

Economides, A.P.M, and R.M.G. Wells. virens. Differentiation 19:103-108.1975. The respiratory function ofthe blood of Neanthes (=Nereis)virens (Sars) (Polychaeta: Nere- Frankenberg, D. , and K.L. Smith, Jr.idae). Comp. Biochem. Physiol. (A) 1967. Coprophagy in marine animals. -51:219-223. Limnol. Oceanogr. 12:443-450.

Ehlers, E. 1868. Die Borstenwurmer Gibbs, P.E. , and G.W. Bryan. 1980.(Annelida Chaetopoda) nach syste- Copper--the major metal component ofmatischen und anatomischen Unter- glycerid polychaete jaws. J. Mar.suchungen dargestellt. Volume 2. pp. Biol. Assoc. U.K. 60:205-219.269-748.

Eisler, R., G. R. Gardner, R. J. Goerke, H. 1971a. Die Ernahrungs-Hennekey, G. LaRoche, D.F. Walsh, weise der Nereis-Arten (Polychaeta,and P.P. Yevich. 1972. Acute toxi- Nereidae) der deutschen Kusten.cology of sodium nitriloacetic acid Veroeff. Inst. Meeresforsch.(NTA) and NTA-containing detergents Bremerhaven 13:1-50. 0to marine organisms. Water Res.6:1009-1027. Goerke, H. 1971b. Nahrungsaufnahme, .,

Nahrungsausnutzung und Wachstum von

Ernst, W. , H. Goerke, and K. Weber. Nereis virens (Polychaeta, Nere-1977. Fate of 14C-labelled di-, idae). Veroeff. Inst. Meeresforsch.tri- and pentachlorbiphenyl in the Bremerhaven 13:51-78.

17

Goerke, H. 1979. Nereis virens diluted sea water. Comp. Biochem.

(Polychaeta) in marine pollution re- Physiol. (A) 52:501-503.search. culture methods and oraladministration of a polychlorinated Hamaker, J.1. 1898. The nervous rbiphenyl. Veroeff. Inst. Meeres- system of Nereis virens Sars. Bull.forsch. Bremerhaven 17:151-161. Mus. Comp. Zoo]. 32:89-124.

Goerke, H. 1984a. Temperature- Harrington, J.P., G. Suarez, T.A.dependence of swarming in North Sea Borgese, and R.L. Nage. 1978.Nereidae. Fortschr. Zoo]. 29:39-43. Subunit interactions of Glycera

dibranchiata hemoglobin. J. Biol.

Goerke, H. 1984b. Testing the fate Chem. 253:6820-6825.of xenobiotics in Nereis diver-sicolor and Norpiq virens (Poly- Hartman, 0. 1940. Chrysopetalidae tochaeta). Pages 53-66 in G. Persoone, Gonaididae. Allan Hancock Found.E. Jaspers, and C. Claus, eds. Pacif. Exped. 7:173-287.Ecotoxicological testing for themarine environment, Vol. 2. Ghent, Haya, K., D.W. McLeese, B.A. Waiwood,Belgium. and L.E. Burridge. 1984. Organo-

chlorine pesticides and the meta-Goerke, H. 1984c. Temperature- bolic energy state of Nereis virens.

dependent elimination of 2, 4, 6, Mar. Environ. Res. 14:482.2', 4' - pentachloro[U-14]biphenylin Nereis virens (Polychaeta). Arch. Henriksen, K., J.I. Hansen, and T.H.Environ. Contam. Toxicol. 13:347- Blackburn. 198). The influence of355. benthic infauna on exchange rates of

inorganic nitrogen between sedimentGoerke, H., and W. Ernst. 1977. Fate and water. Ophelia (Suppl.)

of 1 C-labelled di-, tri- and penta- 1:249-256.chlorobiphenyl in the marine annelidNereis virens. 1. Accumulation and Hoffman, R.J., and C.P. Mangum. 1970.-T1hiTiation after oral administra- The function of coelomic cell hemo-tion. Chemosphere 6:551-558. globin in the polychaete Glycera

dibranchiata. Comp. Biochem. Phy-

Goerke, H., and W. Ernst. 1980. siol. 36:211-228.Accumulation and elimination of

14C-

8 HCH (lindane) in Nereis virens Hyman, L.H. 1932. Relation of oxygen(Polychaeta) with considerations of tension to oxygen consumption inmetabolites. Helgol. Meeresunters. Nereis irens. J. Exp. Zool.33:313-326. 61:209-221. ".

Graham, J.J., and E.P. Creaser, Jr. Imajima, M. 1972. Review of the S1979. Tychoplanktonic bloodworms, annelid worms of the family NereidaeGlycera dibranchiata, in Sullivan of Japan with descriptions of fiveHarbor, Maine. U.S. Natl. Mar. Fish. new species or subspecies. Bull.Serv. Fish. Bull. 76:480-483. Natl Sri. Muis. Tokyo 15:37-153.

Gross, A.0. 1921. The feeding habits Jorgensen, N.O.G. 1979. Uptake ofand chemical sense of Nereis virens L-valine and other amino acids by -Sars. J. Exp. Zool. 32:4274. the polychaete Nereis virens. Mar.

Biol. (Berl.) 52:45-52.'V

Haberfield, E.C. 1977. Early ammonia Jorgensen, N.O.G. 1980. Uptake ofrelease by a polychaete Nereis glycine and release of primaryvirens and a crab Carcinus maenas in amines by the polychaete NQ' - •

18 I4%I

-w %

virens (Sars) and the mud snail Kristensen, E. 1983a. Ventilation ,%Hydrobi nelecta Muus. J. Exp. Mar. and oxygen uptake by three species

Biol. Ecol. 47:281-297. of Nereis (Annelida: Polychaeta) •

I. Effects of hypoxia. Mar. Ecol. % ,Jorgensen, N.O.G., and R.P. Dales. Prog. Ser. 12:289-297.

1957. The regulation of volume andosmotic regulation in some nereid Kristensen, E. 1983b. Ventilation %polychaetes. Physiol. Comp. Oecol. and oxygen uptake by three species4:357-374. of Nereis (Annelida: Polychaeta). J

II. Effects of temperature and _,-Jorgensen, N.O.G., and E. Kristensen. salinity changes. Mar. Ecol• Prog. %m

1980a. Uptake of amino acids by Ser• 12:299-306.r 'three species of Nereis (Annelida: 'Polychaeta). 1. Transport kinetics Kristensen, E. 1983c. Comparison of',"and net uptake from natural concen- polychaete (Nereis spp. ) ventilation ''

trations Mar. Ecol. Prog. Ser. in plastic tubes and natural sedi-3:329-340. ment. Mar. Ecol. Prog. Ser.

12:307-309. 3%Jorgensen, N•O.G•, and E. Kristensen.

1980b. Uptake of amino acids by Kristensen, E. 1984a. Life cycle,three species of Nereis (Annelida" growth and production in estuarine .Polychaeta). 11. Effects of anaero- populations of the polychaetesbiosis• Mar. Ecol. Prog. Ser. Nereis virens and N. diversicolor. .3:341-346. Holarctic Ecol• 7:249-256...,

Jorgensen, N•..G. ,K. Mopper, and P. Kristensen, E . 1984b. Effect of "'Lindroth. 1980. Occurrence, natural concentrations on nutrient -origin, and assimilation of free exchanges between a polychaete bur- ,amino acids in an estuarine environ- row in estuarine sediment and thement. Ophel ia (Suppl .) 1: 179-192. overlying water. J. Exp. Mar. Bi ol . [

Ecol. 75:171-190, .Kay, DG. 1974. The distribution of "%

the digestive enzymes in the gut of Kristensen, E. 1985. Exchange of :.,;%the polychaete Neanthes virens oxygen and inorganic nitrogen in a '(Sars). Comp. Bioche1. Physiol. TA7 bioturbated estuarine sediment-water "-47:17-22. system. J. Coastal Res. 2:14-23.

Kay, D.G. , and A. E. Brafield. 1973. Kristensen, E. , M.H• Jensen, and T.K. ,'The energy relations of the poly- Andersen. 1985. The impact of -i,chaete Neanthes (:Nereis) virens polychaete (Nereis virens Sars) "

• .i

ir(Sars) JAnim. Ecol 42:673-692. burrows on nitrifica n Vntiation adi,-ryduction estuarbe sediments. J.Exp. Efet o Ecol. 85:75-91.

Klawe, W.L. G and LeM. DickieP 1957.Se.1'2Biology of the bloodworm Glyceradibranchiata Ehlers, and its rela- Larsen, P.F. and L.F. Doggett. 1978.

tion to the bloodworm fishery of the Benthos study of the Sheepscot River '"Maritime Provinces. Comp. Feo. Estuaryg Tech. Rep. 10-78, BigelowRes. Board Can. 115:1-37. Laboratories, West Boothbay Harbor,

Maine.Kristensen, E. 1981. Direct measure- anment of ventilation and oxygen Suptake in three species of tubi- Lewis, D.B., and P.J. Whitney. 1968.colous polychaetes (Nereis spp. Cellulase in Nereis virens. Nature

J. Comp3:l. 145:45-50. (Lond.) 220:603-604.

1:3739

Jorgnsen N.0G. andE. Kistesen

Lindroth, A. 1938. Studien uber die McLeese, D.W., C.D. Metcalfe, and D.S. 'respiratorischen Mechanismen von Pezzack. 1981. Uptake ot PCBs fromNereis virens Sars. Zool. Bidr. sediment by Nereis virens and Cran-Uppsala 17:367-497. gon septemspinosa. Arch. Environ.

Contam. Toxicol. 9:507-518.Machin, J. 1975. Osmotic responses

of the bloodworm Glycera dibran- McLeese, D.W. , L.E. Burridge, and J.chiata Ehlers: a graphical approach Van Dinter. 1982. Toxicities ofto the analysis of weight regu- five organochlorine compounds inlation. Comp. Biochem. Physiol. (A) water and sediment to Nereis virens.52:49-54. Bull. Environ. Contam. Toxicol. .%

28:216-220.Machin, J., and M.J. O'Donnell. 1977.

Volume regulation in the coelom- Medeiros, D.M., L.L. Caldwell, andocytes of the blood worm Glycera R.L. Preston. 1981. A possibledibranchiata. J. Comp. Physiol. physiological uptake mechanism of 0117: 303-311. methylmercury by the marine

bloodworm (Glycera dibranchiata).MacPhail, J.S. 1954. Marine bait Bull. Environ. Contam. Toxicol.

worms--a new maritime industry. 24:97-101.Prog. Rep. Atl. Coast. Stn., Fish.Res. Board Can. 58:11-17. Michel, C. 1966. Machoires et

glandes annexes de Glycera convolutaMangum, C.P. 1970. Respiratory phys- (Keferstein), Annelide, Polychete,

iology in annelids. Am. Sci. 58:641- Glyceridae. Cah. Biol. Mar.647. 7:367-373.

Marsden, J.R. 1971. Phospholipid Michel, C., and E.J. DeVillez. 1979. .. *-

activity in the supra-esophageal Secretion of trypsin in the esoph-ganglion of the polychaetous anne- agus of Nereis virens Sars (Poly-lid, Nereis virens. Comp. Biochem. chaeta, Errantia). A biochemical andPhysiol. ) 40:871-874. histological study. Biol. Bull.

(Wood dole) 156:224-233.Marsden, J.R. 1978. A 1

4C myoino-sitol radioautographic and morpho- Michel, C., and E.J. DeVillez. 1980.logic study of the posterior brain Cuticles and mucous glaras in theof Nereis virens (Sars) (Polychaeta: oesophagus of an annelid (NereisAnnelid-a . Comp. Biochem. Physiol. virens). Tissue Cell 12:673-683. .-r.

60: 353-363.%Michel, C., and B. Keil. 1975. Bio- 'ph

Marsden, J.R. , and J. Jost. 1975. logically active proteins in theThe ,adiotracer labelling of the venomous glands of the polychaetousphospholipids of the brain of Nereis annelid, Glycera convoluta Kefer-virens (Polychaeta) in very young stein. Comp. Biochem. Physiol. (B)and older animals. Can. J. Zool. 50:29-33.53: 278-284.

Neuhoff, H•G. 1979. Influence of VMaxwell, S.S. 1897. Beitrage zur temperature and salinity on foodGehirnphysiologie der Anneliden. conversion and growth of differentArch. gesamte Physiol. 67:263-297. Nereis species (Polychaeta: Anne-

lida). Mar. Ecol. Prog. Ser.McElroy, A.E. 1985. In vivo metab- 1:255-262.olism of benz[a]anthracene by thepolychaete Nereis virens. Bull. Ockelmann, K.W. , and 0. Vahl. 1970.Environ. Res. 17:133-136. On the biology of the polychaete

20%

%

1.4~~~ ~ ~ ~ -. r V*S r# ' r

Glycera alba, especially its burrow- Nereis virens. Arch. Environ.

ing and feeding. Ophelia 8:275-294. Contam. Toxicol. 9:1-8.

Pamatmat, M.M. 1982. Metabolism of a Reise, K. 1981. High abundance ofburrowing polychaete: precaution small zoobenthos around biogenicneeded when measuring toxic effects. structures in tidal sediment of theMar. Pollut. Bull. 13:364-367. Wadden Sea. Helgol. Meeresunters.

34:413-425.Parkhurst, L.J., P. Sima, and D.J.

Gross. 1981. Kinetics of oxygen Retzius, G. 1895. Zur Kenntnis derand carbon monoxide binding to the Gehirnganglions und des sensiblenhemoglobin of Glycera dibranchiata. Nervensystems der Polychaten. Biol.Biochem. 19:2688-2692. Unters. 7:6-11.

Pereira, J.J., and K. Kanungo. 1981. Rice, M.A., and P.K. Chien. 1977. ' -Effects of silver on respiration and The effects of divalent cadmium onon ion and water balance in Neanthes the uptake kinetics of glycine byvirens. Pages 107-125 in F.J. the polychaete, Neanthes virens.Vernberg, A. Calabrese, F.P Thurberg Wasmann J. Biol. 35:137-143.and W.B. Vernberg, eds. Biologicalmonitoring of marine pollutants. Rice, M.A., and P.K. Chien. 1979.Academic Press, New York. Uptake, binding and clearance of 0

divalent cadmium in GI ceraPettibone, M.H. 1963. Marine poly- dibranchiata (Annelida: Polychaeta ,chaete worms of the New England Mar. Biol. (Berl.) 53:33-39.region. I. Aphroditidae throughTrochochaetidae. Bull. U.S. Natl.Mus. 227:1-356. Richards, T.L. 1969. Physiological

ecology of selected polychaetousannelids exposed to different tem-

Preston, R.L. 1970. The accumulation perature, salinity and dissolvedof amino acids by the coelomocytes oxygen combinations. Ph.D. Disser-of the bloodworm, Glycera dibranch- tation. University of Maine, Orono.iata. Ph.D. Dissertation. Univ- 171 pp.ersity of California-Irvine, 101 pp.

Saft, S. 1978. Maine worm industryPreston, R.L., and G.C. Stephens. moves to abolish conservation com-

1969. The accumulation of amino mittee. National Fisherman 59acids by coelomocytes of Glycera (7):53. ',,dibranchiata. Am. Zool. 9:1116. ',,

Sanders, H.L., E.M. Goudsmit, E.L.Rasmussen, E. 1973. Systematics and Mills, and G.E. Hampson. 1962. A 0ecology of the Isefjord marine fauna study of the intertidal fauna of(Denmark). Ophelia 11:1-507. Barnstable Harbor, Massachusetts. %.

timnol. Oceanogr. 7:63-79.

Ray, S., D. W. McLeese, and M. R. Lg

Peterson. 1981. Accumulation of Sars, M. 1835. Beskrivelser og lagt-copper, zinc, cadmium and lead from tagelser over nogle moekelige ellertwo contaminated sediments by three nye i Havet bed den Bergenske Kystmarine invertebrates--a laboratory levende Dyr af Polypernes, Acale- .5study. Bull. Environ. Contam. phernes, Radiaternes, AnnelidernesToxicol. 26:315-322. og Molluskernes classer, med en kort

Oversigt over de hidtil af Forfat-.,-Ray, S. , D. McLeese, and D. Pezzack. teren sammesteds fundne Arter og

1980. Accumulation of cadmium by deres Forekommen. Bergen. 81 pp.

21

-L L!'S

55q ~ 1~ %i . -%~. *,%'V . ~ s

Sayles, L.P. 1935. The effect of Stephens, G.C. , J.F. Von Pilsum, andsalinity changes on body weight and D. Taylor. 1965. Phylogeny and the

survival of Nereis virens. Biol. distribution of creatine in invert-Bull. (Woods Hole) 69:233-244. ebrates. Biol. Bull. (Woods Hole)

129: 573-581.Schottler, U. 1979. On the anaerobicmetabolism of three species of Stevens, B.R., and R.L. Preston.Nereis (Annelida). Mar. Ecol. Prog. 1981a. The transport of L-alanineSer. 1:249-254. by the integument of the marine

polychaete, Glycera dibranchiata.

Schroeder, P. 1978. Marine worm J. Exp. Zool. 212:119-127.industry unhappy with researchprogram. Natl. Fisherman 59:28- Stevens, B.R., and R.L. Preston.29,32. 1981b. The effect of sodium on the

kinetics of L-alanine flux by theScott, D.M. 1976. Circadian rhythm integument of the marine polychaete,

of anaerobiosis in a polychaete Glycera dibranchiata. J. Exp. Zool.annelid. Nature (Lond.) 262:811- 212:129-138.813.

Stevens, B.R., and R.L. Preston.Scott, D.M., M. Mazurkiewicz, and P. 1981c. Sodium-dependent steady

Leeman. 1976. The long term moni- state L-alanine accumulation in thetoring of the ventilation rhythms of body wall of Glycera dibranchiata.the polychaetous annelid Nereis J. Exp. Zool. 212:139-146.virens Sars. Comp. Biochem. Physiol. %

(A) 53:65-68.Stolte, H.A. 1932. Untersuchungen

Shklyarevich, G.A. 1979. Role of uber Bau und Funktion derNereis virens Sars in the feeding of Sinnesorgane der Polychatengattungmarine birds of Kankalaksha Bay of Glycera. Sav. Z. Wiss. Zool.the White Sea. Sov. J. Ecol. 140:421-538.10:158-160.

Sveshnikov, V.A. 1960. PelagicSimpson, M. 1962a. Reproduction of larvae of some Polychaeta in the

the polychaete Glycera dibranchiata White Sea. Zool. Zh. 39:343-355.at Solomons, Maryland. Biol. Bull.(Woods Hole) 123:396-411. Taylor, A.G. 1969. The direct uptake

of amino acids and other small mole-Simpson, M. 1962b. Gametogenesis and cules from sea water by Nereisearly development of the polychaete virens Sars. Comp. Biochem. Physiol.

Glycera dibranchiata. Biol. Bull. 29:243-250. N(Woods Hole) 123:412-423.

Tenore, K.R., M.G. Brown, and E.J.Snow, D.R., and J.R. Marsden. 1974. Chesney, Jr. 1978. Polyspecies

Life cycle, weight and possible age aquaculture systems: the detritaldistribution in a population of trophic level. J. Mar. Res.Nereis virens (Sars) from New 32:425-432.Brunswick. J. Nat. Hist. 8:513-527. -

Tenore, K.R., and U.K. Gopalan. 1974. (

Spaans, A.L. 1971. On the feeding Feeding efficiencies of th poly-ecology of the Herring Gull Larus chaete Nereis virens cultured onargentatus Pont. in the northern hard-clam tissue and oyster detri-part of the Netherlands. Ardea tus. J. Fish. Res. Board Can.59:73-188. 31:1675-1678.

22

Ln''

Terwilliger, R.C., and N.B. Terwil- Walmsby, J.R. 1970. The effects of

Ii ger. 1981. Proboscis myoglobin osmotic stress and other factors onof Glycera dibranchiata. Comp. the respiration of the polychaeteBiochem. Physiol. (B) 70:169-171. Nereis virens. Ph.D. Dissertation.

University of London.Theede, H., J. Schaudinn, and F.

Saffe. 1973. Ecophysiological Weber, R.E, B. Sullivan, J. Bona-studies of four Nereis species of ventura, and C. Bonaventura. 1977.the Kiel Bay. Oikos (Suppl.) The haemoglobin systems of the15:246-252. bloodworms Glycera dibranchiata and

G. americana. Oxygen binding prop-Treadwell, A.L. 1939. New poly- erties of haemolysates and component

chaetous annelids from New England, haemoglobins. Comp. Biochem.Texas and Puerto Rico. Am. Mus. Physiol. (B) 58:183-187.Novit. 1023:1-7. e.

Webster, H.E., and J.E. Benedict.Treadwell, A.L. 1941. Polychaetous 1884. The Annelida Chaetopoda fromannelids from the New England Provincetown and Wellfleet,region, Puerto Rico and Brazil. Am. Massachusetts. Rep. U.S. Fish.Mus. Novit. 1089:1-4. Comm. 1881:699-747.

Turnbull, F. 1876. On the anatomy Webster, H.E., and J.E. Benedict.and habits of Nereis virens. Trans. 1887. The Annelida Chaetopoda ofConn. Acad. Arts Sci. 3:265-281. Eastport, Maine. Rep. U.S. Fish

Comm. 1885: 707-755.Vadas, R.L. , and G. Bristow. 1985.Genetic changes associated with a Wells, G.P. 1937. The movements ofbottleneck in an overharvested the proboscis in Glycera dibran-population of Glycera dibranchiata chiata Ehlers. J. Exp. Biol. •(Polychaeta). Pages 617-629 in J.S. 14:290-301. .Gray and M.E. Christiansen, eds.Marine biology of polar regions and Wilson, W.H. , Jr. 1979. CommunityEffects of stress on marine orga- structure and species diversity ofnisms. John Wiley and Sons, New the sedimentary reefs constructed byYork. the Petaloproctus socialis (Poly-

chaeta: Maldanidae). J. Mar. Res.Vahl, 0. 1976. On the digestion of 37:623-641.

Glycera alba (Polychaeta). Ophelia15:49-56. Wolff, G. 1976. Bau und Funktion der

Kieferorgane von Polychaeten. Eigen-Verrill, A.E. 1873. Report upon the druck 1:1-70.

invertebrate animals of VineyardSound and adjacent waters, with an Wolff, G. '1977. Kieferorgane vonaccount of the physical features of Glyceriden (Polychaeta)--ihre -",.

the region. Rep. U.S. Fish. Comm. Funktion und ihr taxonomischer Wert.1871-1872:295-852. Senckenb. Marit. 9:261-283.

Verrill, A.E. 1881. New England Yokouchi, K. 1985. Reproduction andAnnelida. Part 1. Historical larval ecology of the sandwormsketch, with annotated lists of the Neanthes virens (Sars) from thespecies hitherto recorded. Trans. southern Hokkaido. Bull. Plankt.Conn. Acad. Arts Sci. 4:285-324. Soc. Japan 32:1-13.

IV

23

0,

...... INS *.w ~-' -

aW,L

50272-10 P '

REPORT WOCUMENTATION I. REPORT NO. . . RcP.nt' Acces,, o. 149.PAGE Biological Report 82(11.80)*

4. 11tle and Subtitle . Report DateSpecies Profiles: Life Histories and Environmental Requirements of April 1988Coastal Fishes and Invertebrates (North Atlantic) - Sandworm andBl oodworm7. AIIII~s) S. Performnlg Organization Rept No.Herbert Wilson, Jr., and R. Eugene Ruff

9. Performing Organization Name and Address 10. Pfect/raSk/Work Unit No.Manomet Bird ObservatoryP.O. Box 936 11. ContractC) or Grant(G) No. '4,Manomet, MA 02345 (c.

I. Sponsoring OrganizatIon Name and Address (G)

National Wetlands Research Center U.S. Army Corps of Engineers 13. Type of Report &Period Covered i.'

Fish and Wildlife Service Waterways Experiment StationU.S. Department of the Interior P.O. Box 631Washington, DC 20240 Vicksburg, MS 39180 14.

15. Supplementary Notes*U.S. Army Corps of Engineers Report No. EL-82-4

16. Abstract (Umit: 20 words)

Species profiles are literature summaries of the taxonomy, morphology, range, lifehistory, and environmental requirements of coastal aquatic species. They are prepared toassist in environmental impact assessment. The sandworm (Nereis virens) is a commerciallyvaluable baitworm, reaching lengths of 30 cm. Most worms live 4 or 5 years. Males swarmin the water column before spawning in the females' burrows. Both males and females dieafter spawning. A planktonic larval phase is either brief or lacking. Sandworms are 0omnivorous. They can significantly reduce the abundance of smaller infaunal organisms.Predators on sandworms include bloodworms and gulls. Physiological tolerances are broadalthough most worms are found in fine sand with water of high salinity. Sandworms havebeen the subject of much toxicological research and readily adapt to laboratoryconditions. The bloodworm (Glycera dibranchiata), attaining lengths of 40 cm, is also animportant baitworm. Its maximum life span is 5 years. Spawning occurs in the watercolumn with both males and females dying after spawning. Bloodworms are primarilypredators, preying on certain species of polychaetes and crustaceans, although they arecapable of digesting detritus. Bloodworms appear to have few predators. Bloodwormspossess at least two types of hemoglobin, permitting them to tolerate a wide range ofoxygen tensions.,

17. Document Analysis a. Descriptors

Fisheries AnnelidsSalinity Life cycles .Temperature OxygenFeeding habits Contaminants

>"b. Ident1fier/Open-Ended Terms

Nereis virens Salinity requirements Life historyGlycera dibranchiata Temperature requirements SpawningSandworm Oxygen requirementsBloodworr Toxicology

c. COSATI Field/Group

I. Availablilty Statement I9. Security ClIs (This Report) 21. No. of PaesUnclassified 23

Unlimited distribution 2o. Security Class (This Paes) -. PriceUnclassified

OPTIONAL FORM 272 (4-77)%(SaAtI S Formerly NTIS-35) f. S**

Oepartment of Com =ece

;. .........- - . ., . ... .- .. -.

-,0 44 &V.

.