systems autonomy - nasa · tcs tcs/power hierarchical multiple sys distributed multiple sys 87...

36
r-_, SYSTEMS AUTONOMY Henry Lum, Jr. Chief, Information Sciences Division NASA Ames Research Center t,o d_ TECHNOLOGY FOR FUTURE NASA MISSIONS t AN AIAA/OAST CONFERENCE ON CSTI AND PATHFINDER 12-13 SEPTEMBER, 1988 WASHINGTON D.C. ( \ ,2 Oo _D I .Q .Q https://ntrs.nasa.gov/search.jsp?R=19890002402 2020-04-19T05:11:25+00:00Z

Upload: others

Post on 17-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

r-_,

SYSTEMS AUTONOMY

Henry Lum, Jr.Chief, Information Sciences Division

NASA Ames Research Center

t,od_ TECHNOLOGY FOR FUTURE NASA MISSIONS

t

AN AIAA/OAST CONFERENCE

ON CSTI AND PATHFINDER

12-13 SEPTEMBER, 1988

WASHINGTON D.C.

(

\

,2Oo_D

I

.Q

.Q

https://ntrs.nasa.gov/search.jsp?R=19890002402 2020-04-19T05:11:25+00:00Z

Page 2: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

SYSTEMS AUTONOMY PROGRAM

MARS EXPLORATION

ENABLING TECHNOLOGIES FOR THENATIONAL SPACE CHALLENGES

PERMANENT PRESENCE IN SPACE

CO

LUNAR OUTPOST• LOWERS MISSION OPERATIONS COSTS

• INCREASES PRODUCTIVITY

• RENDERS HIGHER QUALITY DECISIONS

• MAINTAINS TECHNOLOGICAL LEADERSHIP

TRANSPORTATION

"11

_0 I_

Page 3: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

bJ

LD

OO-_:;0

END-TO-END SYSTEMS INTEGRATION OF HUMANS, INTELLIGENT SYSTEMS, AND FACILITIES

Page 4: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

25O OF POOR QUALiTf

Page 5: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

t",O

Crl

N/3SAAmes Research Center Information Sciences Division

SYSTEMS AUTONOMY PROGRAMWHY INTELLIGENT AUTONOMOUS SYSTEMS

REDUCE MISSION OPERATIONS COSTS

• AUTOMATE LABOR INTENSIVE OPERATIONS

INCREASE MISSION PRODUCTIVITY

• AUTOMATE ROUTINE ONBOARD HOUSEKEEPING FUNCTIONS

INCREASE MISSION SUCCESS PROBABILITY

• AUTOMATE REAL-TIME CONTINGENCY REPLANNING

HL/AIAA 9-88 (LAH)

Page 6: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

['-3Cm

N/ AAmes Research Center Information Sciences Division

DESCRIPTION OF INTELLIGENT AUTONOMOUS SYSTEMS

CHARACTERISTICS

KNOWLEDGE-BASED SYSTEMS

• DYNAMIC WORLD KNOWLEDGE ACQUISITION, UNDERSTANDING,

AND EXECUTION OF COMMAND FUNCTIONS

• RELIABLE DECISIONS IN UNCERTAIN ENVIRONMENTS

• LEARNING ABILITY

• ALLOWS "GRACEFUL" RETURN TO HUMAN CONTROL

CAPABILITIES

GOAL-DRIVEN BEHAVIOR

• COMMUNICATE AT HIGH LEVELS WITH HUMANS AND OTHER MACHINES

"COLLABORATIVE" HUMAN-MACHINE INTERACTIONS

• RECOGNIZE AND RESOLVE COMMAND ERRORS

SELF-MAINTENANCE

• OPERATE AUTONOMOUSLY FOR EXTENDED PERIODS OF TIME

!

HL/AIAA 9-88 (LAH)

Page 7: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

SYSTEMS AUTONOMY PROGRAM

HOW DO WE GET THERE - PROGRAM ELEMENTS

[,_O7Co

ONGOING CORE TECHNOLOGY

• PLANNING AND REASONING

• OPERATOR INTERFACE

• SYSTEMS ARCHITECTURE

[ i[ fp,_s_,c, 1 ! z_c.,o,o_

,,ooucTs_I i pcus!

PERIODIC DEMONSTRATIONS

• LONG TERM EVOLVING

TESTBED .........

• SHORT TERM SPECIFIC

DOMAIN DEMOS

;-Ii

_k ¸

SPACE STATION

SHUTTLE

MISSION CONTROL

SHUTTLE

LAUNCH DIAGNOSTICS

Page 8: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

DO

(J14_

NASAAmes Research Center

SYSTEMS AUTONOMY PROGRAM

TECHNICAL CHALLENGES

Information Sciences Division

REAL-TIME KNOWLEDGE-BASED SYSTEMS

DYNAMI(_ KNOWLEDGE ACQUISITION AND UNDERSTANDING

ROBUST PLANNING AND REASONING

COOPERATING KNOWLEDGE-BASED SYSTEMS

VALIDATION METHODOLOGIES

HL/AIAA 9-88 (LAH)

Page 9: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

N/ AAmes Research Center

SYSTEMS AUTONOMY PROGRAM

Information Sciences Divison

- TECHNOLOGICAL CHALLENGES

WHERE WE ARE TODAY

Crl

O1

REAL-TIME KNOWLEDGE-BASED SYSTEMS• NO PARALLEL SYMBOLIC-NUMERIC PROCESSORS

• SLOW SPECIAL-PURPOSE HARDWARE (1 GBYTE MEM, 5 MIPS)

• PROTOTYPING S/W SHELLS (ART, KEE, KNOWLEDGECRAFr)• DIAGNOSIS AND PLANNING DECISIONS IN 1-10 MINUTES

DYNAMIC KNOWLEDGE-ACQUISITION & UNDERSTANDING• NO AUTOMATED EXPANSION OF K-B

• SMALL STATIC PRE-PROGRAMMED K-B

• DEC "XCON" LARGEST (5000 RULES, 2000 COMPONENTS)

ROBUST PLANNING AND REASONING

• HEURISTIC RULES ONLY, NO CAUSAL MODELS

• PRE-MISSION PLANNING (NO REAL-TIME REPLANNING)• DIAGNOSIS OF ONLY ANTICIPATED SINGLE FAULTS

• "FRAGILE" NARROW DOMAINS (RAPID BREAKDOWN AT K-B LIMITS)

COOPERATING KNOWLEDGE.BASED SYSTEMS

• SINGLE STANDALONE DOMAIN SPECIFIC SYSTEMS

• HUMAN INTERACTION ONLY, NO INTELLIGENT SYSTEMS INTERACTION

VALIDATION METHODOLOGIES

• CONVENTIONAL TECHNIQUES FOR ALGORITHMIC SYSTEMS

HL/AIAA 9-88 (LAH)

Page 10: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

C_

OPERATOR

OBSERVABLES AND EXECUTION STATUS

1DISPLAYS

INTERFACE

I CONTROLS I

SIMULATOR 1

KNOWLEDGE

MONITOR

ADVISE BASE

OPERATOR TASK PLANNING

EXECUTOR

& REASONING

I DIAGNOSER]

INTERROGATIONS

PLANNER I

SENSING &

PERCEPTION

tINTERNAL

OBSE RVABLES

iCONTROL

EXECUTION

EXTERNAL

OBSERVABLES

STATECHANGES

EXECUTION COMMANDS

SYSTEM ARCHITECTURE & INTEGRATION

Page 11: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

KNOWLEDGE

SYSTEMS

b_

Cn

EXTENSIONS, TESTS,

VERIFICATION VALIDATIONS

EXPERTISE

DYNAMICWORLD

"u'8'LEM PEIRCf.V I

J

INTER-

ACTION

KNOWLEDGEACQUISITIONSUBSYSTEM

KNOWLEDGEBASE

EXPLANATIONSUBSYSTEM

REASONINGENGINE

-I)

v

USERINTERFACE

WORKINGq

MEt,'K)RY

Page 12: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

AUTOMATED SYSTEMS FOR IN-FLIGHT MISSION OPERATIONS

EVOLUTION OF AUTOMATION TECHNOLOGY

CO

.i-

OO

0_,

_C)'O

r'm

NASA AMES RESEARCH CENTER

OAST-SPONSORED FIEBIEAIRCH

Page 13: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

t_C/1¢.O

E/S

TECHNOLOGY

OO

•--I ...

BEFORE NOW

Page 14: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

SYSTEMS AUTONOMY PROGRAM DEMONSTRATION

SYSTEMS AUTONOMY DEMONSTRATION PROJECT (SADP)

Oh

0

O_

r" v, _

!::7̧

2227

,"_, y'

PARTICIPANTS AND FACILITIES

PARTICIPANTS

• AMES RESEARCH CENTER• JOHNSON SPACE CENTER• LEWIS RESEARCH CENTER• MARSHALLSPACEFLIGHT CENTER•INDUSTRY

FACILITIES

• ARC INTELLIGENT SYSTEMS LABORATORY• JSC INTELLIGENT SYSTEMS LABORATORY• JSC THERMAL TEST BED• LeRC POWER TEST BED

OBJECTIVES

DEMONSTRATE TECHNOLOGY FEASIBILITY OF INTELLIGENTAUTONOMOUS SYSTEMS FOR SPACE STATION THROUGH TESTBEDDEMONSTRATIONS

• 1988: SINGLE SUBSYSTEM (THERMAL)

• 1990: TWO COOPERATING SUBSYSTEMS (THERMAL/POWER)

• 1993: HIERARCHICAL CONTROL OF SEVERAL SUBSYSTEMS

• 1996: DISTRIBUTED CONTROL OF MULTIPLE SUBSYSTEMS

TCS

TCS/Power

Hierarchical

Multiple Sys

Distributed

Multiple Sys

87

SCHEDULE

88 I, 89 90 I 91 92 93

94 95. 96

HL/AIAA 9-88 (LAH)

Page 15: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

1988 DEMONSTRATIONSYSTEMS AUTONOMY DEMONSTRATION PROJECT

SPACE STATION THERMAL CONTROL SYSTEM (TEXSYS)

Oh

¢

.-,,-_,__

qa

- . _[a6,:'.:_.___ _' -1

OBJECTIVES

IMPLEMENTATION OF AI TECHNOLOGY INTO THE REAL-TIMEDYNAMIC ENVIRONMENT OF A COMPLEX ELECTRICAL-MECHANICALSPACE STATION SYSTEM- THE THERMAL CONTROL SYSTEM.

• REAL-TIME CONTROL

• FAULT DIAGNOSIS AND CORRECTION

• TREND ANALYSIS FOR INCIPIENT FAILURE PREVENTION

• INTELLIGENT HUMAN INTERFACE

• CAUSAL MODELLING

• VALIDATION TECHNIQUES

PARTICIPANTS AND FACILITIES

PAR TICIPA N TS

• AMES RESEARCH CENTER

• JOHNSON SPACE CENTER

• INDUSTRY: LEMSCO, ROCKWELL INTERNATIONAL,GEE)CONTROL SYSTEMS, STERLING SOFTWARE

FA CIL I TIES

• ARC INTELLIGENT SYSTEMS LABORATORY

• JSC INTELLIGENT SYSTEMS LABORATORY

• JSC THERMAL TEST BED

Development

Requirements Definition

Design Definition

Integration V & V

TCS Demonstration

Power System Interfaces

TCS/Power Demonstration

Analysis, Reporting

87 88

r_

'--1

=m

SCHEDULE

89 90 91 92

I

!

--=

-'--1

HI.JAIAA 9 88 (LAH)

Page 16: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

O_t'O

O0

m

OzO__t-"

_O"u

t-'l-t]

/

Page 17: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

t_

C_

NASAAmes Research Center Information Sciences Division

SYSTEM AUTONOMY DEMONSTRATION PROJECTTCS FUNCTIONAL CAPABILITIES

PROTOTYPE OBJECTIVES

CAUSAL MODELS/SIMULATION

LIMITED FAULT DIAGNOSIS

DEMONSTRATION OBJECTIVES

NOMINAL REAL-TIME CONTROL

FAULT DIAGNOSIS AND CORRECTION

TREND ANALYSIS

DEMO

1/87

KNOWLEDGE BASE EXPANSION

1

6/87

©

©INTELLIGENT INTERFACE

DESIGN ASSISTANCE O

TRAINING ASSISTANCE O

2

9/87

3

12/87

©

©

©

®

©

©

4

2/88

®

5

5/88

HL/AIAA 9-88 (LAH)

Page 18: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

N/ AAmes Research Center Information Sciences Division

03

SYSTEMS AUTONOMY PROGRAM - TECHNOLOGICAL CHALLENGES

B. WHERE WE NEED TO GO

REAL-TIME KNOWLEDGE-BASED SYSTEMS

• PARALLEL SYMBOLIC-NUMERIC PROCESSORS (100 GBYTES, 500 MIPS)

• NEURAL NETWORKS (BRAIN CELL EMULATION)• LAYERED TRANSPARENT SW

• DIAGNOSIS AND PLANNING IN MILLISECONDS

DYNAMIC KNOWLEDGE ACQUISITION & UNDERSTANDING

• AUTOMATED K-B EXPANSION IN REAL-TIME (LEARNING)

• LARGE DYNAMIC DISTRIBUTED K-B

ROBUST PLANNING AND REASONING• COMBINED HEURISTIC RULES AND CAUSAL MODELS

• REAL-TIME CONTINGENCY REPLANNING

• DIAGNOSIS OF UNANTICIPATED FAULTS

• SPECIFIC DOMAINS ON BROAD GENERIC K-B (GRACEFUL DEGRADATION)

COOPERATING KNOWLEDGE-BASED SYSTEMS

• HIERARCHICAL AND DISTRIBUTED SYSTEMS

• HUMAN AND INTELLIGENT SYSTEMS INTERACTION

VALIDATION METHODOLOGIES• METHODOLOGY FOR EVALUATING DECISION QUALITY

• FORMAL THEORETICAL FOUNDATION

HL/AIAA 9-88 (LAH)

Page 19: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

rchitecture of an Autonomous Intelligent System 1

C_

Operator

Displays

Conr.rols

iiiiiiii:i!iiii!iiiiliiiii_iiiiiiiiiiiiiiiiii!i!iiiiii_ii!i!i_ii!i_iii!iiiiiii:iiiii

ii:!!ii

Nominal i

i!Plan!!!il

. • .•.

.... Exr

Simulator : -

Nominal World :::;: Direct World

l¢ : - : :: . :

KNOWLEDGE BASE

• Dynamic World Model

• CAD/C/S_t Data Base

• System Configuration

• Heuristic Rules

:::;; :::::::::

Perceptor

Vernier :i:i:::::: :::::::l;i!ii!ii_i?i!::i!!!_l:::::::::: :::::::

_ntrol i:i:i:i: .!:!:i:i..-=iiiii:.;_;!;:::Internal ::::::lii!i!iiiii!::ii!i!::ili:i::::::1: ::: :!:i:ii!i::_::i:-:i::ii::i31ii::iObservables :::::!il [_:i_i_;i_iiiil;! • . • . - . : • : •

_i!:il il;i!i!i!_!_! ;:[:::;::[:

Effector

. i!Description " _i_i:i:iiiiiiiii . ... :: .... -:::-:.iii I i.:. Nominal Plan!; ...... :

.......... . , . , • . . . . .. .... -..

::: ::!i System Architecture d Integration ; :i::::::.:ii

Task Planning

Sensing &

Percep _l on

External

Observables

State

Changes

Manipulators

Control

hlecha_ iza t/on

Page 20: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

N/ SAAmes Research Center Information Sciences Division

SYSTEMS AUTONOMYDEMONSTRATION PROJECT

Technoloqy Demonstration - Evolutionary Sequence

1988

Automated Control Of Single Subsystem

("Intelligent Aide")

Thermal Control System

* Monitor/real-time control of a single subsystem

* Goal and causal explanation displays

* Rule-based simulation

* Fault recognition/warning/limited diagnosis

* Resource management* Reasoning assuming standard procedures

1993

Hierarchical Control of

Multiple Subsystems

("Intelligent Assistant")

1990

Automated Control of Multiple

Subsystems ("Intelligent Apprentice")

Thermal Control System and Power

System

* Coordinated control of multiple subsystems

* Operator aids for unanticipated failures* Model-based simulation

* Fault diagnosis for anticipated failures

* Real-time planning/replanning

* Reasoning about nonstandard procedures

1996

Distributed Control Of

Multiple Subsystems

("Intelligent Associate")

* Multiple subsystem control: ground and space

* Task-oriented dialogue & human errortolerance

* Fault recovery from unanticipated failures

* Planning under uncertainty

* Reasoning about emergency procedures

* Autonomous cooperative controllers

* Goal-driven natural language interface

* Fault prediction and trend analysis

* Automated real-time planning/replanning

* Reasoning/learning, supervision of on-board

systems

HIJAIAA 9-88 (LAH)

Page 21: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

AUTONOMOUS SYSTEMS FOR ADVANCED LAUNCH SYSTEMS (ALS)UNMANNED LAUNCH VEHICLES

_3

J

NASA AMES RESEARCH CENTER

OAST/AF-SPONSORED RESEARCH

Page 22: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

OhCO

fU/ AAmes Research Center Information Sciences Division

AI Research Issues

• MACHINE LEARNING

• COOPERATING KNOWLEDGE-BASED SYSTEMS

REAL-TIME ADVANCED PLANNING

METHODOLOGIES

AND SCHEDULING

• MANAGEMENT OF UNCERTAINTY

• AUTOMATED DESIGN KNOWLEDGE CAPTURE

• VALIDATION OF KNOWLEDE-BASED SYSTEMS

HL/AIAA 9-88 (LAH)

Page 23: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

FOcr__JD

BAD

BETTER

GOOD

BEFORE

MACHINE LEARNING

PREDICTIONS: REMEMBER SEARCH MISTAKES

© O

L I

I O =

I

MODEL REFINEMENT

AFTER

(

,.c7

// \i \

\

( (

Technician

SCHEDULING HEURISTICS

Technicians are in great demand

Histogram Pane

OO"n:_

O_

On_C__0r-r_lR

-'1..

Page 24: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

COOPERATIVE INTELLIGENT SYSTEMS

"-3O

0 (3,

F _

C: ',:'='

i,=,, ;,_,

Page 25: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

,,,j

DESIGN KNOWLEDGE LOST WHEN DESIGNER LEAVES:

BUT WHY

IS THIS AP

2.7 mm?

CONSERVATION OF DESIGN KNOWLEDGE

WHY DID THEY CHOOSE

SILVER INSTEAD OF STEEL?

ELECTRONIC NOTEBOOK

"(DRIVEN-BY

$OBJECT

MOTOR -3977)"

Page 26: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

i KnowledgeIntensive I

• Strong prior theory

• One (or few) examples

• Verification by proof

• Learned concept must

be useful

/

Markov Models

Machine Learning

Knowledge Weak I

• Weak prior model

• Many examples required

• Cannot prove theory

• Learned concept reflects

intrinsic structure

Di_K,_el Discovery_ ?

I Classification Models I

f.- -,,,I Supervised ! i Unsupervised

Series Prediction I

Page 27: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

rl'OCl./ Sc

,,ii,__i++

tol

6. 7+ O, _. tO. I1. 12+ 13. 14 15. l&. 17. IO. 1_. _O. 21 • n n _.

WAVELENGTH. _lt

lEE&4.

| ,,.-Zqll 4e

1_3Z

zI_X Iq57q +

i 9716

t,

. ,

& ? I IJ 11 ||. 12 I) 14 I_ 16 17 I| Iq _51 Zl 22. n

WAVELENGTH. _m

_IO,l

_r 45+i

, ° •

41.0+

u

:_ 11 "

+_7 5[ fill

+: 0

• • o • ! _.. " . o• • "oO. •b• • • .o •

, • • .& .... ; _ ;,,b • o,.• _; .. • 0 •................. _ ........ "....,.L l•db-..q_ _.,.-_. _ ,+...++++_.+.+r+..¶.-- _. _ •

• • • * i me ++ ; 00. +e • e•

._+. o .o

_l+ll,

# .!

451

0 2Z

_- • • • • . • ° -" • •

• • • -- +. • • _ • . -- .

r-

-2Z + •

0

• -IV

4hi

-500++5, 45. 51 1]5. llO - IN -1_15 -110 -_5 Ill _$ _IO I_ Ill

GALACTIC LONGITUDI_. _q GALACTIC LONGITUDE, dell

The spectra show two closely related IRAS classes with peaks at g.7 and 10.0 microns.

This discrimination was achieved by considering all channels of each spectrum• AutoClass

currently has no model of spectral continuity. The same results would be found if the

channels were randomly reordered.

The galactic location data, not used in the classification, tends to confirm that the clas-

sification represents real differences in the sources•

Page 28: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

NASAAmes Research Center Information Sciences Division

Function

Technology I

Status I

ITechnology I

[ F°recast I

Examples I

Evolution of Advanced Architecturesfor

Real-time, On-board Teraflop Systems

PhotonicProcessors

Coarse-Grained

Parallel Systems

Fine-GrainedArchitectures

RT Image Processing

Applied R&D

Knowledge Under-standing & Control

Development

Deep Reasoning

Basic Research

Late 1990s Current Early 2000s

KBS-controlledPhotonlc Processor

SVMS(6-Processor System)

Neural NetworksFuzzy Logic Computes

and Controllers

|HL/AIAA 9-88 (LAH)

Page 29: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

Ames Research Center Information Sciences Division

O1

Computer Architecture Research Issues(Numeric/Symbolic Multiprocessor Systems)

• OPERATING SYSTEMS FOR REAL-TIME MULTIPROCESSING SYSTEMS

IN A HETEROGENEOUS ENVIRONMENT

• VALIDATED COMPILERS AND TRANSLATORS FOR AN ADA-BASED

MULTIPROCESSING ENVIRONMENT

• DATABASE MANAGEMENT FOR LARGE DISTRIBUTED DATABASESGREATER THAN 10GB

• AUTOMATED LOAD SCHEDULING FOR MULTIPROCESSORS

• REAL-TIME FAULT TOLERANCE AND RECONFIGURATION

• RADIATION HARDNESS WITH MINIMUM PERFORMANCE COMPROMISES• PROCESS TECHNOLOGY

• VLSI/VHSIC TRADEOFFS

• EFFICIENT COMPILERS AND INSTRUCTION SET ARCHITECTURES

HL/AIAA 9-88 (LAH)

Page 30: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

SPACEBORNE VHSIC MULIIPI4OCESSL)I4 SYSI i-M

NASA/AF/DARPA COLLABORATION

f

PROCESS

VHSIC TECHNOLOGY

0.5H TARGET

1.25_ BACKUP

RAD-HARD CMOS

105 RADS RADIATION RESISTANCE

NO SINGLE EVENT UPSETS

"-4ob

SYSTEM CHARACTERISTICS

• PARALLEL ARCHITECTURE

- 40-BIT SYMBOLIC PROCESSORS

- 32-BIT NUMERIC PROCESSORS

• FAULT-TOLERANCE/AUTOMATED

RECONFIGURATION

• OPTICAL INTERCONNECTS

• 25 MIPS SUSTAINED UNIPROCESSOR

PERFORMANCE (40 MIPS TARGET)

-MINIMUM OF 100 MIPS OVERALL

SYSTEM PERFORMANCE

• DBMS FOR 10G BYTE MEMORY

MANAGEMENT

f

/

/

MEMORY 32 b=t DATA + 8 bit TAG

PROCESSING UNIT

BUS CONTROLLER

MICRO MICROCODE ADDRESSSEQUENCER

GENERATION

MEMORY INTERFACE

S

/

° I'" ° h", J

i#!#" !#'!#" !# i_ i_5-" ,

,.,,.,-,,i,.,,,:.: ,,.,,,. .. ,." ." !.,

._ o . ,........_,i:,_i_i,ii_,i:i:_:i,,,.......

°,, . . _11!

(SVIVI_)

POTENTIAL SPACE&

AERONAUTICS APPLICATIONS

r _ _ .

Page 31: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

PHOTONIC PROCESSOR FOR REAL-TIME IMAGE UNDERSTANDING

-,.,j

OBJECTIVES

• REAL-TIME PHOTONIC PROCESSORS& TECHNIQUES

for Terrain Analysis Tasks

• SYSTEM CONTROL & INTEGRATION OFEMBEDDED PHOTONIC PROCESSORS

with Integrated Numeric/SymbolicMultiprocessor Systems

• TECHNOLOGY FEASIBILITY DEMONSTRATIONS

Focusedon PlanetaryRovers & Space Vehicles

BENEFITS

• Real-time, High Performance Parallel Processingfor Image Processing& Understanding

• Fault Tolerance

• Low Power, Weight, and Size

i;',,=_ .

l

!

POTENTIAL APPLICATIONS !

Autonomous Landing

m

Sample Acquisition and Analysis

Sample Return

NASA AMES RESEARCH CENTER

OAST-SPONSORED RESEARCH

0 ::;

Page 32: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

OC"Irl _

'_Z ,"

C_ i:-_

L_

Knowledge-Based Systems

The tasks involved with an image-understanding-systemcan be divided into three layers as shown. The problem is

to find a synergistic balance between all layers so that asknowledge of the image accrues, the reliability of the

interpretation, recognition, and enhancement increases,while the amount of required computation decreases.

Methodologies of organizing a knowledge-base of objectand using a rule-based system to effectively search the

knowledge-base and directing the computations of pho-tonic processors are being developed. The majority o1[the

domain specific knowledge for a task will reside in theinterpretative level making the photonic processor ageneral purpose computing tool

Page 33: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

ORIGI_AL F::',:I/,.I ,5OF POOR QUALITY

279

Page 34: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

b,J

E:)

0

NBSAAmes Research Center

COLLABORATIVE

[ ACADEMIA I

CARNEGIE-MELLON i_

l::_!!_i!i UN VERSITY ::_-il

M ne ,.g ..the,,y I_ Mason

Cooperating Knowledge-

B_edsystems,O=a _:::::-_¥_6i_6_i_:"i::::::::::i_Accelerators,A,/ lii:;iii:i!_i! Flynn i!ii!_ii!ilil

Robotics Intogr_tion, I'::iiiiii Cannon ::::ii_iil"_

and R/T C,o_rol ol !ii_!_iiii: Feigenbaum _;i_i_

TeleautonornYMachineLearningand _::i::i::i::i::i:: Laird i;i!iiiiiii_

Processors ::::::i:::::: Zade_ ::!::!i?:::i::::ii

Man-Machine Inter- _,ii!i!iiiii!iiiiil M I T i ! _,ace, Intelligent On- Eii!iii!iiiiiil;iiii! Young

Space Sciences _!iii_!_!_!_i; SheridanSyste m s =:=====================================::==========

L_, i_?_:_ ,s, _i!i!Partial I_ii!ii::! Rc_enb,oom i::i_ill _Architectures ;:_:;:;:: Mizel ::i::::::

F SPACE TELESCOPE _ F- J L

C DARP^ ) _sMou ,NS_TUTMouE J L Atkins°nGunter

Intelligent Systems KB Systems Ground Data

Research and For Space Syslems Auto-

Advanced Computer Science malion and FlightArchitectures Processors

AI AND COMPUTER

IN VES TIGA TOR

AMES

SHAFTO

CHEESEMAN, BERENJI

FRIEDLAND, RICHARDSON,LESH

ROSENTHAL, DRUMMOND,ZWEBEN, FRIEDLAND

ERICKSON, RUDOKAS

SIMS, FRIEDLAND,

LANGLEY, MINTON,

CHEESEMAN

LUM

SIVARD, ZWEBEN

AI Tech for Shuttle Design Data

and Space Station Caplure withAutomation ST Focus

I GOVERNMENT

ARCHITECTURES

AREA OFINVES TIGA TION

RESEARCH TEAM

[ INDUSTRY I

_il;iiiiiiiiiiiiiiii"Rl_siii_i!i!i_i_i!i_ii::i::_

Operator Interfaces

Reasoning underUncertainty

Validation Methodologies

Planning and Scheduling

Causal Modeling andReasoning

Automated Learning

Symbolic Architectures/

Programming Environment

Automated Design

Knowledge Acquisition

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

ii!i!i!iii!i!i!iiiii.:= :,:!i!i!iiiiiiiiiili

!_i_i_i!i!i_i_i_i_i_i_i_i_i_i_DECi!!iiiiiiiiiiiiiiii

)

Architectures

SAN for Work

Stations

Space Station

Automation

Technologies

Autonomous

Systems

Technologies

Procedural

Reasoning

Beta Test-

Site for Symbolic/

Numeric Processors

and Collaborative

Research

HL/AIAA 9-88 (LAH)

• _ Space Station Automation

_,_ _ (Power)

POCC and K-B Launch Operations Collaboniion between

Systems Distributed Talembotics and

Data Bases Systems Autonomy

Expert Systems

Developmen(

Tools

Page 35: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES

281

Page 36: SYSTEMS AUTONOMY - NASA · TCS TCS/Power Hierarchical Multiple Sys Distributed Multiple Sys 87 SCHEDULE 88 I, 89 90 I 91 92 93 ... SYSTEMS AUTONOMY PROGRAM -TECHNOLOGICAL CHALLENGES