synthesis, characterizations, crystal structure, density functional theory and td dft studies of one...

Upload: imperial-journal-of-interdisciplinary-research

Post on 25-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    1/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 28

    Synthesis, Characterizations, CrystalStructure, Density Functional theory and TD

    DFT Studies of one new dichloro-bis(pyridine-N)-CuII, C20H20Cl4Cu2N4 complex.

    Dhrubajyoti MajumdarAssistant Professor

    Department of Chemistry, Tamralipta mahavidyalaya, Tamluk,Purbamedinipur, W.B., India, 721636.

    Abstract : A new novel tetracoordinatedmononuclear copper (II) complex [CuII(py)2Cl2] (1)with pyridine as coligand has been synthesized andcharacterized by elemental analysis (carbon,hydrogen and nitrogen),1H NMR, FT-IR and UV-Vis spectroscopic techniques. The copper (II)complex structure was unambiguously confirmedby single crystal XRD. The complex crystallizes inmonoclinic system, space group P 21 /n, with thevalues a = 3.8742(7), b = 8.6325(17), and c =17.096(3) ; = 90.00, = 91.974, and =90.00 ; V = 571.42(18) 3 and Z = 1. The titledCopper(II) complex is purely mononuclear in

    nature where Cu(II) ion is coordinated with two Natoms of two pyridine ligands and two chlorideions(Cl-) and displays completely square planargeometry. The crystal packing is stabilized byintermolecular hydrogen bonding. The geometry ofCu(II) complex was optimized in the singlet groundstates by DFT calculation ( using B3LYPfunctional). Electronic spectra of respectivecomplex(1) was explained in a lucid manner usingTDDFT calculation.

    Key words:Cu(II) complex, DFT and TDDFT.

    1. INTRODUCTION

    Aromatic nitrogen heterocycles are important classof ligands in the field of synthetic coordinationchemistry. Pyridine, Pyrazine, Bipyridine or itsanalogous ligands like phenantroline, methyl orethyl substituted phenantroline are widely used insynthetic coordination chemistry to prepare vastnumber of metal complexes for their potentialapplications in photochromic compounds [1],catalytic role like hydrogenation of olefins [2],analytical chemistry, biological application[3-8]]and also in the mimic chemistry after substitutionof suitable side chain in the nitrogen heterocycles.

    All heterocyle ligands have extended cloud thattakes part interaction with suitable metal ions like

    Cu(II) which mimic various biological system andhence their study have gained emergingimportance. These ligands due to their chelatingnature in coordinated complexes effectively controlthe aggregation behavior by chelating aroundcentral metal ion. In this regard pyridine or itssubstituted analogous nitrogen donor ligands havebeen extensively used in the field of coordinationchemistry. The coordination chemistry ofcopper(II) has been connected to diverse fields likeindustry and medicinal biochemistry. Aromaticnitrogen heterocycles form very well known lewisacid base adducts with copper(II) ion via molecular

    chelating association [9-10]] and thus copper(II)complexes increase their coordination number andthis sometimes puzzling variation in complexesstructural formats [11]. Coordination geometry ofCu(II) depends on ligand used, coligands and alsothe counterions nature [12]. Hence we made anattempt to study the structural variation ofreference Cu(II) complex. In the present researchwork, we report complex(1) synthetic details,spectroscopic analysis, crystal structuredetermination by using single crystal XRD. Theexperimental structure of complex (1) wascompared with the theoretical calculation results at

    different levels of DFT and basis sets.2. EXPERIMENTAL2.1 Materials

    All the reagents are analytical grade and wereprocured from commercial sources and wereused without further purification. CuCl2.2H2Owas purchased from S.D. fine chemicals,Mumbai (India), and pyridine from (E. Marck,India). Methanol solvent purified and driedaccording to standard procedures.

    2.2 Physical measurement

    Elemental analysis (carbon, hydrogen andnitrogen) of Cu(II) complex was determined

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/
  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    2/9

  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    3/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 30

    Copper(II) complex was characterized by FT-IRand UV-VIS spectroscopy and elementalanalysis(CHN). In addition 1H NMR spectroscopywas used to further characterization of complex(1)(Supporting information 1). The 1H NMRspectrum finely confirmed the complexstructure(1).The FT-IR spectra of the Cu(II)complex shows C=N stretching frequency ofpyridine appears near to 1652 cm-1. The Cu-Nlinkage of Cu(II) complex confirmed by weakbands at 548cm-1 (Supporting information 2).

    6. DFT and TD DFT analysis

    DFT and TDDFT computations of optimizedstructure of complex (1)was performed in order toestablish its electronics structure and spectraltransitions. The geometric structures of the isolatedcomplexes were fully optimized at the Beckesthree- parameter hybrid exchange functional andthe Lee-Yang-Parr non-local correlation functional(B3LYP) level in the ground state. The optimizedstructures are depicted in fig. 2a. The energy andcomposition of selected MOS (Fig.2band 2c )ofcomplex(1) are summarized in Table 6. TheHOMO of and spin as well as LUMO of spinare concentrated on coordinated ligand forcomplex(1). For comparison ,the geometricalparameters of complex(1) was investigated bymeans of density functional theory (DFT)

    calculations at the B3LYP level using 6-31G(d-p),LanL2DZ basis sets and results were comparedwith the experimental data Table 4. According tothis Table, the agreement between the mostgeometrical parameters calculated at the differentDFT levels and the experimental data are goodagreement, suggesting that the DFT/B3LYPmethod and the basis sets used in the calculationare reasonable. The calculated Mullikan charges onthe copper atom in complex(1) (Cu1=0.254) isconsiderably lower than the formal charges of +2,confirming a significant charge donation from theligands. The calculated Mullikan charges for N1

    and N2 of Pyridine effective donor center -0.254are less than -1. All these results indicate electrontransfer occurs from the donor atoms to the centralcopper atom. TDDFT calculations have beenperformed to get deep insight into the electronictransitions of complex(1).The calculated verticalelectronic transitions are summarized in Table 5.For complex(1) transitions at 257.5 nm and 287 nmcorresponds to L1LCT and LMCT. Transitions at259.54 nm, 264.35 nm due to both L1LCT and288.74 nm corresponds to LMCT.

    7.

    Conclusion

    We have successfully synthesized the titledcomplex(1) and characterized by IR, UV-Vis ,1HNMR spectroscopic study .The molecular andcrystal structure were determined by single crystalX-ray diffraction and calculated at the DFT levels.The best agreement between theoretical andexperimental results were obtained by usingB3LYP level with 6-31G(d-p) and LanL2DZ basissets.

    8. Acknowledgement

    DJM thanks Department of chemistry, TamraliptaMahavidyalaya, Tamluk, Purba Medinipur, forgiving the laboratory facilities.

    9. Supplementary data

    CCDC 1429679 contain the supplementarycrystallographic data for title complex(1). The datacan be obtained free of charge viahttp://www.ccdc.cam.ac.uk/ conts/retrieving.html,or from the Cambridge Crystallographic DataCentre, 12 Union Road, Cambridge CB2 1EZ, UK;fax: (+44) 1223-336-033; or e-mail:[email protected].

    10. References[1] Liu W. L., Zou Y., Li. Y., Yao G.Y., and MengQ.J., 2004. Polyhedron 23: 849-855.

    [2] Zhao J., Zhao B., LIU J., Xu W., and Wang Z.,2001. Spectrochem. Acta Part A 57: 149-154.[3] Rajasekar M., Sreedaran S., Prabu R.,Narayanan V., Jegadeesh R., Raman N., andRahiman A. K., 2010. J. Coord. Chem. 63:136-146.[4] Abdallah S. M., Mohamed G.G., Zayed M.A.,Abou M.S., and EI-Ela., 2009. Spectrochem . ActaPart A 73: 833-840.[5] Dhanaraj C.J., and Nair M.S., 2009.J.Coord.Chem. 62: 4018-4028.[6] Karthikeyan M.S., Parsad D.J., Poojary B., BhatK.S., Holla B.S., and Kumari N.S.,2006.Bioorg.Med.Chem. 14: 7482-7489.

    [7] Panneerselvam P., Nair R.R., Vijayalakshmi G.,Subhramanian E.H., and Sridhar S.K., 2005.Eur.J.Med.Chem. 40: 225-229.[8] Wang C., Wu X., Tu S., and Jiang B., 2009.Synth. React.Iorg.Met-Org. Chem 39:78-82.[9] Mestrovic E., Bucar D.-K., Halasz I., andStilinovic., 2004. Acta Crystallographica SectionE 60: 1920-1922.[10] Ainscough E.W., Brodie A.M., Denny W.A.,and Finlay G.J., 1998. Journal of InorganicBiochemistry 70: 175-185.[11] Cotton F.A., and Wilkinson G., 1988.Angew.Chem. Int. Ed. Engl.27:436.

    [12] Karlin K.D., and Zubieta J., CopperCoordination chemistry Biochemical and Inorganic

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.ccdc.cam.ac.uk/http://www.ccdc.cam.ac.uk/mailto:[email protected]:[email protected]:[email protected]://www.ccdc.cam.ac.uk/http://www.onlinejournal.in/http://www.onlinejournal.in/
  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    4/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 31

    Perspectives,Adenine Press, New YORK, 1983and refs. Therein.[13] Sheldrick,G.M., 1990. Acta Crystallogr.,Sect., A 46: 467-473.

    [14] Gaussian 09, Revision C.01, Frisch,M.J.,Trucks,G.W., Schlegel,H.B., Scuseria,G.E.,Robb,M.A., Cheeseman,J.R., Scalmani, G.,Barone,V., Mennucci, B., Petersson,G.A.,Nakatsuji,H., Caricato,M., Li,X., Hratchian,H.P.,Izmaylov,A.F., Bloino,J., Zheng,G., Sonnenberg,J.L., Hada, M., Ehara,M., Toyota,K., Fukuda,R.,Hasegawa, J., Ishida, M., Nakajima,T., Honda, Y.,Kitao, O., Nakai, H., Vreven,T., Montgomery,J.A.,Peralta. Jr., J. E. Ogliaro,f., Bearpark,M., Heyd,J.J., Brothers, E., Kudin,K.N.,Staroverov,V.N.,Keith, T., Kobayashi, R.,

    Normand, J., Raghavachari, K., Rendell,A.,Burant, J.C., Iyengar, S.S., Tomasi,J., Cossi,M.,Rega,N., Millam, J.M., Klene,M., Knox,J.E.,Cross,J.B., Bakken,V., Adamo,C.,Jaramillo,J., Gomperts, R. Stratmann, R.E.,Yazyev, O., Austin, A.J., Cammi, R., Pomelli,C.,Ochterski, J.W., Martin, R.L. Morokuma,K.,Zakrzewski, V.J., Voth, G.A., Salvador,P.,Dannenberg, J.J., Dapprich,S., Daniels,A.D.,Farkas,O., . Foresman,J.B., Ortiz,J.V.,Cioslowski,J., and Fox,D.J., Gaussian, Inc.,Wallingford CT, 2010.

    [15] . Lee, C., Yang, W., and Parr,R.G., 1988.Phys. Rev., B 37:785-789.

    Table 1

    Crystal data and Refinement details for Complex(1)Empirical formula C20H20Cl4Cu2N4

    Formula weight 609.59

    Temperature ( K ) 293(2)

    Wavelength ( ) 0.71073

    Crystal system Monoclinic

    Space group P21 / n

    Unit cell dimensions

    a ( ) 3.8742(7)

    b ( ) 8.6325(17)

    c ( ) 17.096(3) ( ) 90.00

    ( ) 91.974(10)

    ( ) 90.00

    Volume ( A3) 571.42(18)

    Z 1

    Density cal( Mg m-3) 1.771

    Absorption coefficient ( mm-1) 2.373

    F ( 000 ) 306

    Range ( ) for data collection 25.50

    Index ranges -4h4

    -10k9

    -19l20

    Goodness-of-fit on F2 1.230

    Completeness to theta 0.994

    Independent reflections ( Rint ) 0.0544(835)

    Refinement method Full-matrix least squares on F2

    Reflections collected 1067

    Final R indices [I 2( I )] R1=0.0840, R2=0.2175

    Largest difference peak and hole ( eA-3) 1.771

    Table 2Selected some bond distances ( ) and angles ( ) for complex (1)

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/
  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    5/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 32

    Selected some Bond distances Bond distances value ( )

    Cu1-N1 2.037

    Cu1-Cl1 2.318

    N1-C1 1.35(1)

    N1-C5 1.34(1)Cu1-Cl1 2.318

    Selected angles Bond angles value ( )

    N1-Cu1-Cl1 90.1

    N1-Cu1-N1 180.00

    N1-Cu1-Cl1 89.9

    Cl1-Cu1-N1 89.9

    Cl1-Cu1-Cl1 180.00

    Cu1-N1-C1 120.1

    Cu1-N1-C5 121.5

    Table 3Selected some Copper square planar complexes (Cu-N) Bond distances ( ) andBond angle() values.

    Complexes Cu-N() 0-Cu-N() N-Cu-N ( ) Ref

    C28H28CuN6O4 2.014 91.4 16

    2( C30H26CuN2O2 ),

    C2H3N

    1.956

    1.942

    93.42

    171.48

    171.23

    93.11

    86.40 17

    C14H18ClCuN3O5 1.903

    1.935

    2.020

    97.6

    176.8

    97.5

    83.8

    164.8

    81.1

    18

    C9H9CuN5O5 1.920

    1.956

    1.925

    173.43 176.92 19

    C36H32CdCu2N6O4S2 1.953

    1.952

    1.962

    1.978

    92.01

    164.80

    163.20

    92.4992.03

    170.96

    91.67

    96.71

    97.24

    20

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/
  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    6/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 33

    C34H32Cu2N6O10Sr 1.9739

    1.98871.9740

    1.9760

    92.11

    167.31169.26

    92.61

    91.83165.

    96.62

    96.63

    21

    Table 4Experimental and calculated bond distances () for complex

    Experimental Calculated

    Cu1 -Cl1 2.318(2) 2.39298

    Cu1 -N1 2.037(7) 1.99960

    Cu1-Cl1_d 2.318(2) 2.39303Cu1-N1_d 2.037(7) 1.99960

    Experimental and calculated bond angles () for complex

    Experimental Calculated

    Cl1-Cu1-N1 90.1(2) 90.00447

    Cl1-Cu1-Cl1_d 180.00 179.93717

    Cl1-Cu1-N1_d 89.9(2) 90.00595

    Cl1_d-Cu1-N1 89.9(2) 89.99571

    N1-Cu1-N1_d 180.00 179.97255Cl1_d-Cu1-N1_d 90.1(2) 89.99390

    Table 5Selected list of excitation energies of complex(1)in Methanol using CPCM model.

    Excitation Wavelength

    (nm)

    Oscillatory

    strength (f)

    Major Contribution Assignment

    4 534.54 0.0087 HOMO-1()LUMO() (99%) L1MCT

    6 487.66 0.0008 HOMO-3() LUMO() (97%) L1MCT

    8 395.51 0.0007 HOMO-13() LUMO() (68%) IMCT

    9 393.89 0.173 HOMO-4() LUMO() (94%) L1MCT

    12 325.68 0.0015 HOMO-5() LUMO +3() (10%),HOMO-5() LUMO +4() (10%)

    ILCTILCT

    14 302.07 0.0189 HOMO() LUMO() (84%) L1LCT

    16 290.50 0.0134 HOMO-9() LUMO() (94%) LMCT

    18 290.12 0.0028 HOMO-5() LUMO() (19%),

    HOMO-2() LUMO +1() (10%),

    HOMO-6() LUMO +2() (13%),

    HOMO-5() LUMO +1() (18%)

    ILCT

    L1LCT

    ILCT

    ILCT

    19 288.74 0.2786 HOMO-10() LUMO() (95%) LMCT

    22 272.65 0.0002 HOMO() LUMO +1() (52%) L1LCT

    24 267.53 0.0002 HOMO-1() LUMO() (64%), HOMO()

    LUMO +1() (30%)

    L1LCTL1LCT

    26 264.35 0.0054 HOMO-2() LUMO +1() (94%) L1LCT

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/
  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    7/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 34

    28 261.91 0.0075 HOMO-3() LUMO() (11%),

    HOMO-2() LUMO +1() (15%),HOMO-1() LUMO +2() (69%)

    L1LCTL1LCT

    L1LCT

    30 259.54 0.0041 HOMO-3() LUMO() (84%) L1LCT

    LMCT= Pyridine ring to copper charge transfer, L1MCT= Chlorine to copper charge transfer,ILCT= Intra pyridine charge transfer, L1LCT= Chlorine to pyridine charge trans

    Table 6Selected MOs along with their energies and compositions of complex(1)

    MOs Energy (eV) % of CompositionRing Cu Cl

    -MOsLUMO+15 4.17 100 0 0

    LUMO+14 3.99 98 2 0

    LUMO+13 3.98 92 7 1

    LUMO+12 3.70 98 2 0LUMO+11 3.47 96 4 0

    LUMO+10 2.73 97 3 0

    LUMO+9 2.73 100 0 0

    LUMO+8 2.11 13 86 1

    LUMO+7 0.92 0 100 0

    LUMO+6 0.74 0 100 0

    LUMO+5 0.49 0 100 0

    LUMO+4 0.48 0 97 3

    LUMO+3 -1.07 99 1 0

    LUMO+2 -1.13 98 2 0

    LUMO+1 -1.76 99 1 0

    -1.82 98 1 1

    -6.85 27 16 57

    HOMO -1 -7.18 6 1 92

    HOMO -2 -7.26 16 2 82

    HOMO -3 -7.30 3 4 93

    HOMO -4 -7.52 1 4 94

    HOMO -5 -7.96 98 0 2

    HOMO -6 -8.04 88 0 11

    HOMO -7 -8.09 20 7 73

    HOMO -8 -8.62 90 7 3HOMO -9 -8.88 79 3 18

    HOMO -10 -9.28 97 2 2

    HOMO -11 -9.33 35 49 16

    HOMO -12 -10.37 13 87 0

    HOMO -13 -10.44 4 93 3

    HOMO -14 -10.61 31 61 7

    HOMO -15 -10.63 61 38 1

    -MOsLUMO+15 4.01 98 2 0

    LUMO+14 3.99 92 8 0

    LUMO+13 3.70 98 2 0LUMO+12 3.50 96 3 1

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/
  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    8/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 35

    LUMO+11 2.75 100 0 0

    LUMO+10 2.75 97 2 0

    LUMO+9 2.09 13 87 1

    LUMO+8 0.92 -5 105 1

    LUMO+7 0.75 0 100 0LUMO+6 0.59 -1 100 0

    LUMO+5 0.48 0 97 3

    LUMO+4 -1.08 99 0 0

    LUMO+3 -1.13 98 1 1

    LUMO+2 -1.73 99 1 0

    LUMO+1 -1.79 98 1 1

    3.68 18 53 30

    7.09 6 2 92

    HOMO -1 -7.17 15 2 83

    HOMO -2 -7.19 2 5 93

    HOMO -3 -7.43 2 4 93

    HOMO -4 -7.68 9 10 81

    HOMO -5 -7.96 98 0 1

    HOMO -6 -8.03 91 0 9

    HOMO -7 -8.56 87 10 3

    HOMO -8 -8.69 5 53 41

    HOMO -9 -8.80 89 2 8

    HOMO -10 -9.05 95 2 3

    HOMO -11 -9.55 26 61 14

    HOMO -12 -9.95 9 91 0

    HOMO -13 -9.97 1 93 5HOMO -14 -10.31 55 39 5

    HOMO -15 -10.49 27 71 1

    ALL FIGURESFig.2a. DFT complex(1) optimized structure (Selected and MOS( Fig. 2b & 2c).)

    Alpha MOsFig.2b

    HOMO-5, 54HOMO-4, 55 HOMO-3, 56

    HOMO-2,57 HOMO-1,58 HOMO,59

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/
  • 7/25/2019 Synthesis, Characterizations, Crystal Structure, Density Functional theory and TD DFT Studies of one new dichloro

    9/9

    Imperial Journal of Interdisciplinary Research (IJIR)

    Vol-2, Issue-3 , 2016

    ISSN : 2454-1362 , http://www.onlinejournal.in

    Imperial Journal of Interdisciplinary Research (IJIR) Page 36

    LUMO, 60 LUMO+1, 61LUMO+2, 62

    LUMO+3, 63LUMO+4, 64

    LUMO+5, 65

    Beta MOs Fig.2c

    HOMO-5, 53HOMO-4, 54

    HOMO-3, 55

    HOMO-2, 56 HOMO-1, 57 HOMO, 58

    LUMO, 59

    LUMO+1, 60 LUMO+2, 61

    LUMO+3, 62LUMO+4, 63 LUMO+5, 64

    Additional Supporting Files can be downloaded from main issue of journalhttp://www.onlinejournal.in/v2i32016/

    http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/http://www.onlinejournal.in/