synthesis and bioactivity studies of flavonoid...

43
SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID AND ITS DERIVATIVES NUR ATHIRAH BINTI HASHIM UNIVERSITI TEKNOLOGI MALAYSIA

Upload: duonganh

Post on 23-Mar-2019

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID AND ITS

DERIVATIVES

NUR ATHIRAH BINTI HASHIM

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID AND ITS

DERIVATIVES

NUR ATHIRAH BINTI HASHIM

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Science (Chemistry)

Faculty of Science

Universiti Teknologi Malaysia

SEPTEMBER 2012

Page 3: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

iii

With lots of love,

Ayahanda & Bonda

Hj. Hashim Sarnap & Hjh. Juriah Jamin

The siblings,

Muhammad Raqib

Muhammad Diauddin

Muhammad Amilin

Muhammad Akmal

Haziqah

Wonderful companions,

Nor Hasbullah Ibrahim & family

For always standing by my side through ups and downs without even a slightest sigh

Page 4: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

iv

ACKNOWLEDGEMENTS

With the name of Allah the Most Gracious and Merciful. All praise and

gratitude be given to Him for giving me great strength, patience and courage to live

life to the fullest every single day. Ever since this thesis arose, I have worked with a

great number of people whose contribution in various ways of the research which I

feel they deserved a special mention.

In the first place I would like to record my sincere appreciation to Assoc.

Prof. Dr. Farediah Ahmad for her supervision, advice, and guidance from the very

early stage of this research as well as giving me extraordinary experiences

throughout the work. Here also, I am thankful to my co-supervisor, Dr. Norazah

Basar for the helping hand to complete this thesis. I am grateful in every possible

way to both of you and hope to keep up our collaboration in the future.

To my fellow postgraduate colleagues, Nuzul, Raihan, Ain, Nadya, Della,

Saidah, Syafiqah, Amira, Awanis, Wani, Mr. Salam, Mr. Aminu, Mr. Shamsul,

Mdm. Shariha and others for the valuable advice in science discussion, commentary

and friendship.

It is a pleasure to pay tribute also to the sample collaborators. To Mr. Azmi,

Mdm. Mek Zum and Mdm. Nasrena, I would like to thank for their assistance in

obtaining the NMR spectra of all the compounds, Faculty of Science, UTM. To Dr.

Lisa Harris of University College London for the Mass Spectrum Analysis. To Dr.

Fadzureena Jamil of Forestry Research Institute of Malaysia for the assistance in

anti-inflammatory assays. Last but not least, I would also acknowledge Prof.

Khalijah Awang of University Malaysa for the Single Crystals Analysis and Ministry

of Science and Innovation (MOSTI), for giving me the scholarship to pursue my

Master degree at Universiti Teknologi Malaysia. All of you have been an auxiliary

through the making of the thesis. Thank you.

Page 5: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

v

PREFACE

This thesis is the result of my work carried out at the Department of Chemistry,

Universiti Teknologi Malaysia between December 2009 and December 2011 under

the supervision of Assoc Prof. Dr. Farediah Ahmad and Dr. Norazah Basar. Parts of

my works described in this thesis have been reported in the following publications:

1. Farediah Ahmad, Nur Athirah Hashim, Norazah Basar, Khalijah Awang and Seik

Weng Ng. (E)-3-(2H-1,3-Benzodioxol-5-yl)-1-(7-hydroxy-5-methoxy-2,2-

dimethylchroman-8-yl)prop-2-en-1-one. (2011). Acta Crystallographica Section

E (Structure Reports Online).E67: o2301. ISSN 1600-5368

2. Nur Athirah Hashim, Farediah Ahmad, Norazah Basar, Khalijah Awang and Seik

Weng Ng. (E)-3-[3,4-Bis(methoxymethoxy)phenyl]-1-(7-hydroxy-5-methoxy-

2,2-dimethylchroman-8-yl)prop-2-en-1-one. (2011). Acta Crystallographica

Section E (Structure Reports Online). E67: o2300. ISSN 1600-5368.

3. Nur Athirah Hashim, Farediah Ahmad, Norazah Basar, Fadzureena Jamaludin.

Synthetic Chalcones: Synthesis and Evaluation of Antioxidant, Antibacterial and

Anti-Inflammatory Activites. Oral Presentation at International Conference on

Natural Products (ICNP) 2011, Palm Garden Hotel, IOI Resort, Putrajaya. 13 –

16 November 2011.

4. Nur Athirah Hashim, Farediah Ahmad, Norazah Basar. Synthesis of 2ʹ-hydroxy-

4,4ʹ,6-trimethoxy-5-C-prenyl-3-O-prenylchalcone via Claisen-Schmidt

Condensation. Paper presented at 3rd Junior Chemist Colloquium (JCC) 2011, at

Ibnu Sina Institutue, UTM Johor Bahru, Johor. 18 – 19 January 2011.

5. Nur Athirah Hashim, Farediah Ahmad, Norazah Basar. Synthesis of

Tetrasubstituted Chalcones. Paper presented at International Conference on

Natural Product (ICNP) 2010, at The Bayview Hotel, Pulau Pinang. 10-12

December 2010.

Page 6: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

vi

ABSTRACT

Flavonoids are the most widespread class of plants constituents. Most

flavonoids are produced in biosynthetic pathways of secondary metabolites in plants

and chalcones constituent as the important intermediate in flavonoid biosynthesis. In

this study, eleven flavonoid derivatives were synthesized namely 2ʹ,3,4-trihydroxy-

4ʹ,6ʹ-dimethoxychalcone (110), 2ʹ,4ʹ,6ʹ-trihydroxy-4,6-dimethoxychalcone (120),

along with new compounds of 4ʹ,5,7-trimethoxy-3ʹ-O-prenylflavanone (123), 4ʹ,5,7-

trimethoxy-3ʹ-O-6-C-diprenylflavanone (126), 2ʹ-hydroxy- 4ʹ,6ʹ- dimethoxy-3,4-

methylenedioxy -3ʹ-C-prenylchalcone (127), 5,6- chroman- 7-methoxy- 3ʹ,4ʹ-

methylenedioxyflavone (130), 5,6,7,8- dichroman- 3ʹ,4ʹ- methylenedioxyflavone

(132), 5ʹ,6ʹ- chroman-2ʹ,3,4- trihydroxy- 4ʹ-methoxychalcone (134), 3ʹ,4ʹ,5ʹ,6ʹ-

dichroman- 2ʹ,3,4-trihydroxychalcone (137), 3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-dimethoxy-2ʹ-

hydroxychalcone (138) and 5ʹ,6ʹ- chroman-2ʹ- hydroxy-4ʹ- methoxy-3,4-O-

diprenylchalcone (139). The initial step in the synthesis was to prepare various

derivatives of 2,4,6-trihydroxyacetophenone and 3,4-dihydroxybenzaldehyde by

methylation, methylenation, protection and prenylation of the phenolic hydroxyl

groups. The derivatives of both ketone and aldehyde were coupled and reacted using

Claisen-Schmidt condensation to obtain the desired 2ʹ-hydroxychalcone. 2ʹ-Hydroxy-

4,4ʹ,6ʹ-trimethoxy-3-O-prenylchalcone (122) and 4,4ʹ,6ʹ-trimethoxy-3-O-5ʹ-C-

diprenylchalcone (125) underwent an acid hydrolysis to yield flavanones (123) and

(126), respectively. In addition, 2ʹ-hydroxy- 4-methoxy- 5,6-chroman- 3,4-

methylenedioxychalcone (129) and 2ʹ- hydroxy- 3ʹ,4ʹ,5ʹ,6ʹ- dichroman- 3,4-

methylenedioxychalcone (131) were converted to flavones (130) and (132) using

iodine in dimethylsulfoxide as an oxidative agent The structures of all compounds

were confirmed spectroscopically by UV, IR, NMR and MS analysis. The biological

studies of all the synthetic compounds were tested towards antioxidant, anti-

inflammatory and antibacterial properties. The hydroxylated flavonoids with 3,4-

dihydroxyl substituents were tested positive in 2,2-diphenyl-1-dipicrylhydrazyl

(DPPH) assay and the highest antioxidant activity was exhibited by chalcone (110)

with IC50 19.3 μg/mL. Two assays were used to evaluate the potential of the

compounds as anti-inflammation agents. The results showed that chalcones (110)

(IC50 2.4 μg/mL), (134) (IC50 1.94 μg/mL) and (137) (IC50 20.8 μg/mL) which

possessed 3,4-dihydroxyl substituents exhibited good activity in the 13-

lipooxygenase (LOX) assay. For xanthine oxidase assay, chalcone (120) with 4ʹ,6ʹ-

dihydroxyl showed a significant activity with IC50 6.83 μg/mL. All the synthesized

flavonoids were found inactive towards the tested bacteria in the antibacterial assay.

Page 7: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

vii

ABSTRAK

Flavonoid adalah kelas sebatian paling banyak dijumpai dalam tumbuhan.

Kebanyakan flavonoid adalah terhasil melalui laluan biosintesis bagi metabolisma

sekunder tumbuhan dengan kalkon adalah perantara utama dalam biosintesis

flavonoid tersebut. Dalam kajian ini, sebelas terbitan flavonoid telah disintesis iaitu

2ʹ,3,4- trihidroksi-4ʹ,6ʹ- dimetoksikalkon (110), 2ʹ,4ʹ,6ʹ- trihidroksi- 4,6-

dimetoksikalkon (120), termasuk sebatian baru iaitu 4ʹ,5,7- trimetoksi-3ʹ-O-

prenilflavanon (123), 4ʹ,5,7-trimetoksi-3ʹ-O-6-C-diprenilflavanon (126), 2ʹ-hidroksi-

4ʹ,6ʹ-dimetoksi-3,4-metilenadioksi-3ʹ-C-prenilkalkon (127), 5,6-kroman-7-metoksi-

3ʹ,4ʹ-metilenadioksiflavon (130), 5,6,7,8-dikroman-3ʹ,4ʹ-metilenadioksiflavon (132),

5ʹ,6ʹ-kroman-2ʹ,3,4-trihidroksi-4ʹ-metoksikalkon (134), 3ʹ,4ʹ,5ʹ,6ʹ-dikroman-2ʹ,3,4-

trihidroksikalkon (137), 3ʹ,4ʹ,5ʹ,6ʹ-dikroman-3,4-dimetoksi-2ʹ-hidroksikalkon (138)

dan 5ʹ,6ʹ-kroman-2ʹ-hidroksi-4ʹ-metoksi-3,4-O-diprenilkalkon (139). Langkah

pertama dalam sintesis ini adalah untuk menyediakan pelbagai sebatian terbitan dari

2,4,6-trihidroksiasetofenon dan 3,4-dihidroksibenzaldehid melalui tindak balas

pemetilan, pemetilenan, perlindungan dan pemprenilan kumpulan hidroksil. Sebatian

terbitan keton dan aldehida ditindakbalas melalui kondensasi Claisen-Schmidt untuk

menghasilkan 2ʹ-hidroksikalkon. 2ʹ-Hidroksi-4,4ʹ,6ʹ-trimetoksi-3-O-prenilkalkon

(122) dan 4,4ʹ,6ʹ-trimetoksi-3-O-5ʹ-C-diprenilkalkon (125) melalui proses hidrolisis

berasid untuk menghasilkan masing-masing flavanon (123) dan (126). Iodin dalam

dimetilsulfoksida telah digunakan sebagai agen pengoksidaan untuk menukar 2ʹ-

hidroksi-4-metoksi-5,6-kroman-3,4-metilenadioksikalkon (129) dan 2ʹ-hidroksi-

3ʹ,4ʹ,5ʹ,6ʹ-dikroman-3,4-metilenadioksikalkon (131) kepada flavon (130) dan (132).

Struktur kesemua sebatian dikenal pasti secara spektroskopi menggunakan analisa

UL, IM, RMN dan SJ. Kajian biologi semua sebatian sintetik dijalankan melibatkan

aktiviti antioksida, anti-radang dan antibakteria diuji bagi semua sebatian sintetik.

Hidroksi flavonoid dengan 3,4-dihidroksil sebagai penukarganti telah menunjukkan

aktiviti positif dalam cerakinan 2,2-difenil -1-pikrilhidrazil (DPPH) dan aktiviti

antioksidan paling tinggi ditunjukkan oleh kalkon (110) dengan IC50 19.3 μg/mL.

Dua cerakinan telah digunakan untuk menilai potensi sebatian sebagai ejen anti-

radang. Keputusan cerakinan kalkon (110) (IC50 2.4 μg/mL), (134) (IC50 1.94

μg/mL) dan (137) (IC50 20.8 μg/mL) yang mempunyai kumpulan penukarganti 3,4-

dihidroksi menunjukkan aktiviti yang baik dalam cerakinan 13-lipooksigenase

(LOX). Untuk cerakinan xantina oksidase, kalkon (120) dengan 4ʹ,6ʹ-dihidroksi

menunjukkan aktiviti yang baik dengan IC50 6.83 μg/mL. Manakala, semua sebatian

flavonoid sintetik didapati tidak aktif terhadap kesemua bakteria dalam cerakinan

antibakteria.

Page 8: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGMENTS iv

PREFACE v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiii

LIST OF SCHEMES xiv

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xx

LIST OF SYMBOLS xxiii

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Flavones in Nutrition and Health 2

1.3 Problems Statements 3

1.4 Objectives of Study 3

1.5 Scope of Study 4

2 LITERATURE REVIEW 5

2.1 Flavonoids 5

2.2 Naturally Occuring and Biological Activities of

Flavonoids

6

2.3 Classical Synthetic Pathway to Flavonoids 13

Page 9: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

ix

2.3.1 Claisen-Schmidt Condensation 13

2.3.2 Baker Venkataraman Rearrangement 14

2.3.3 Algar-Flynn-Oyamada Reaction 15

2.4 Recent Developement in Synthetic Route to Flavonoids 15

2.4.1 Boron-Trifluoride Etherate (BF3-Et2O) as the

Catalyst

15

2.4.2 Suzuki Coupling Reaction 17

2.4.3 Sonogashira Coupling 18

2.4.4 Synthesis of Flavonoids via Microwave (MW)

Irradiation

19

2.5 Synthesis Route to Prenylated Flavonoids 20

2.5.1 Potassium Hydroxide (KOH) as the Catalyst 20

2.5.2 Potassium Carbonate (K2CO3) as the Catalyst 21

2.5.3 Boron-Trifluoride Etherate (BF3-Et2O) as the

Catalyst

23

2.5.4 1,8-diazobicyclo [5.4.0] undec-7-ene (DBU) as

the Catalyst

23

2.5.5 Mitsunobu Reaction 24

2.5.6 Tetrabutylammonium Hydroxide (TBAOH) as

the Catalyst

25

2.5.7 Dimethyl Sulfide Complex-Copper Bromide

(CuBr.DMS) as the Catalyst

25

3 RESULTS AND DISCUSSION 27

3.1 Synthesis of Precursors 27

3.1.1 Protecting the Hydroxyl Groups of Starting

Materials

27

3.1.2 Methylation of Starting Materials 30

3.1.3 Methylenedioxy Substitution of 3,4-

dihydroxybenzaldehyde (93)

33

3.1.4 Prenylation of Starting Materials 33

3.2 Retrosynthetic Analysis of 2ʹ,3,4-trihydroxy-4ʹ,6ʹ-

dimethoxychalcone (110)

51

Page 10: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

x

3.3 Synthesis of 2ʹ,4ʹ,6ʹ-trihydroxy-4,6-dimethoxychalcone

(120)

63

3.4 Synthesis of 4ʹ,5,7-trimethoxy-3ʹ-O-prenylflavanone

(123)

65

3.5 Synthesis of 4ʹ,5,7-trimethoxy-3ʹ-O-6-C-

diprenylflavanone (126)

75

3.6 Synthesis of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

methylenedioxy-3ʹ-C-prenylchalcone (127)

79

3.7 Synthesis of 5,6-dichroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

84

3.8 Synthesis of 5,6,7,8-dichroman-3ʹ,4ʹ-

methylenedioxyflavone (132)

86

3.9 Synthesis of 5ʹ,6ʹ-chroman-2ʹ,3,4-trihydroxy-4ʹ-

methoxychalcone (134)

96

3.10 Retrosynthetic Analysis for the Synthesis of 3ʹ,4ʹ,5ʹ,6ʹ-

dichroman-2ʹ,3,4-trihydroxychalcone (137)

104

3.11 Synthesis of 3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-dimethoxy-2ʹ-

hydroxychalcone (138)

107

3.12 Synthesis of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-methoxy-3,4-

O-diprenylchalcone (139)

109

4 BIOACTIVITIES OF THE SYNTHETIC FLAVONOIDS 116

4.1 Antioxidant Studies of the Selected Synthesized

Compounds

116

4.1.1 DPPH Free radical Scavenging Assay 117

4.2 Anti-Inflammatory Studies 120

4.2.1 13-Lipoxygenase Assay 121

4.2.2 Xanthine Oxidase 122

4.3 Antibacterial Assay 124

5 EXPERIMENTAL 126

5.1 General Procedures 126

5.2 Synthesis of Precursors 127

Page 11: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xi

5.2.1 Protection of the Hydroxyl Groups 127

5.2.2 Methylation of 2,4,6-trihydroxyacetophenone 128

5.2.3 3,4-Methylenedioxybenzaldehyde (98) 129

5.2.4 Synthesis of Prenylated Precursors Using

Potassium Carbonate (K2CO3) as the Catalyst

130

5.2.5 Synthesis of Prenylated Precursors Using 1,8-

diazobicyclo [5.4.0] undec-7-ene (DBU) as the

Catalyst

132

5.3 Synthesis of 2ʹ,3,4-trihydroxy-4ʹ,6ʹ-dimethoxychalcone

(110) [107]

133

5.4 Synthesis of 2ʹ,4ʹ,6ʹ-trihydroxy-4,6-dimethoxychalcone

(120)

134

5.5 Synthesis of 4ʹ,5,7-trimethoxy-3ʹ-O-prenylflavanone

(123)

136

5.6 Synthesis of 4ʹ,5,7-trimethoxy-3ʹ-O-6-C-

diprenylflavanone (126)

138

5.7 Synthesis of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

methylenedioxy-3ʹ-C-prenylchalcone (127)

140

5.8 Synthesis of 5,6-dichroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

141

5.9 Synthesis of 5,6,7,8-dichroman-3ʹ,4ʹ-

methylenedioxyflavone (132)

143

5.10 Synthesis of 5ʹ,6ʹ-chroman-2ʹ,3,4-trihydroxy-4ʹ-

methoxychalcone (134)

144

5.11 Synthesis of 3ʹ,4ʹ,5ʹ,6ʹ-dichroman-2ʹ,3,4-

trihydroxychalcone (137)

146

5.12 Sythesis of 3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-dimethoxy-2ʹ-

hydroxychalcone (138)

147

5.13 Synthesis of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-methoxy-3,4-

O-diprenylchalcone (139)

148

5.14 Bioactivity Procedures 149

5.14.1 Antioxidant Assay 149

5.14.1.1 Chemicals and Instrumentation 149

Page 12: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xii

5.14.1.2 DPPH Free Radical Scavenging

Assay

149

5.14.2 Anti-Inflammatory Assay 150

5.14.2.1 Chemicals and Instrumentation 150

5.14.2.2 13-Lipooxygenase Assay (13-LOX) 151

5.14.2.3 Xanthine Oxidase Assay (XO) 152

5.14.3 Antibacterial Activtiy 153

5.14.3.1 Chemicals and Microorganisms 153

5.14.3.2 Disc Diffusion Method Assay 153

5.14.3.3 Minimum Inhibition Concentration

(MIC)

154

5.14.3.4 Minimum Bactericidal Concentration

(MBC)

155

6 CONCLUSION AND RECOMMENDATIONS 156

6.1 Conclusion 156

6.2 Recommendations for Future Works 158

REFERENCES

APPENDICES

PUBLICATIONS

159

173

216

Page 13: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

1H NMR,

13C NMR and DEPT Data of Compound (104)

1H,

13C and DEPT of Acetophenone (105)

1H,

13C and DEPT for Chalcone (119)

1H,

13C NMR and DEPT for Chalcone (122)

1H,

13C and DEPT Data for Flavanone (123)

1H,

13C NMR and DEPT for Flavanone (126)

1H,

13C NMR and DEPT Data of Flavone (132)

1H NMR and

13C NMR Data of Compound (133)

1H,

13C NMR and DEPT Data of Chalcone (136)

1H NMR data for Chalcone (137)

1H,

13C NMR and DEPT Data of Chalcone (138)

1H,

13C NMR and DEPT Data of Chalcone (139)

Antioxidant Activity of the Chalcones

13-Lipooxygnase Assay of the Chalcones

XO Activity of the Chalcones

MIC and MBC of the Tested Compounds

43

44

64

67

68

77

88

97

105

106

108

110

117

121

123

124

Page 14: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xiv

LIST OF SCHEMES

SCHEMES TITLE PAGE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Synthesis of Chalcones (31) via Claisen-Schmidt

Condensation

Synthesis of 3-acyl-γ-pyrones (32)

Synthesis of Morusin (33) via Baker-Venkataraman

Condensation

Algar-Flynn-Oyamada Reaction

Synthetic Pathway of Oroxylin A (41), Baicelin (42) and

Wogonin (44) by Using BF3-Et2O Method.

Synthetic Route of (55) by Suzuki Coupling Reaction

Synthesis of Alkynyl Ketones (58) by Using Sonogashira

Coupling

Synthesis of Compounds (62) and (63) via Sonogashira

Coupling

Microwave Irradiation to Synthesis 2-aryl-4-quinolone (65)

Synthetic Approach to Prenylated Precursor Using

Aqueous KOH

Synthesis of C-prenylated Precursors by Using Aqueous

KOH

Synthesis of Geranylated Acetophenone Using Anhydrous

K2CO3

Synthetic Pathway of C-prenylated Acetophenone

Synthesis of Prenylated Acetophenone by Using BF3Et2O

13

14

14

15

16

17-18

18

19

20

21

21

22

22

23

Page 15: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xv

2.15

2.16

2.17

2.18

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

Synthesis of C-prenylated Acetophenone (84) by Using

DBU

Synthesis of 5-O-prenylflavanone (86) by Mitsunobu

Reaction

Synthesis of C-prenylated Flavone (88) by Using TBAOH

Synthesis of C-prenylated Precursor (90) by Using

CuBr•DMS

Mechanism for the Formation of 2-hydroxy-4,6-

bis(methoxymethyloxy)acetophenone (92)

Mechanism for the Formation of Compound (95)

Mechanism for the Formation of 2-hydroxy-4,6-

dimethoxyacetophenone (97)

Methylenedioxy Substitution of 3,4-

dihydroxybenzaldehyde (93)

Prenylation on 2,4,6-trihydroxyacetophenone (72)

Prenylation on 3,4-dihydroxybenzaldehyde (93) Using

Freshly Ignited K2CO3 in Dry Acetone.

Possible Mechanism for prenylation of 3,4-

dihydroxybenzaldehyde (93)

Prenylation of (72) by Using DBU as the Catalyst in Dry

THF

Proposed Mechanism of Compound (104) and (105)

Retrosynthetic route to 2ʹ,3,4-trihydroxy-4ʹ,6ʹ-

dimethoxychalcone (110)

Mechanism for the Formation of Compound (109)

Complexes of Compound (110) in the Presence of AlCl3

and AlCl3/HCl

Attempted Oxidative Cyclization of Chalcone (109) to

Flavone (117)

Synthesis of 2ʹ,4ʹ, 6ʹ-trihydroxy-4, 6-dimethoxychalcone

(120)

24

24

25

26

28

29

32

33

34

37

38

41

42

52

53

55

56

63

Page 16: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xvi

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

4.1

4.2

4.3

4.4

Synthetic Route of 4ʹ,5,7-trimethoxyflavanone-3ʹ-O-

prenylflavanone (123)

Synthetic Route of 4ʹ,5,7-trimethoxy-3ʹ-O-6-C-

diprenylflavanone (126)

Fragmentation Pattern of Compound (126)

Formation of Compound (127)

Synthetic Route to 5,6-chroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

Synthetic Route to 5,6,7,8-dichroman-3ʹ,4ʹ-

methylenedioxyflavone (132)

Synthesis of 5ʹ,6ʹ-chroman-2ʹ,3,4-trihydroxy-4ʹ-

methoxychalcone (134)

Retrosynthetic Analysis of Chalcone (137)

Formation of 3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-dimethoxy-2ʹ-

hydroxy-chalcone (138)

Formation of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-methoxy-3,4-O-

diprenylchalcone (139)

Reaction of DPPH free radical mechanism with radical

(RH)

Mechanism of oxidation involving compounds attached as

ortho-, meta- and para- dihydroxyl substitution

The Mechanism of DPPH free radical onto chalcone (110)

Reactions of Xanthine with Xanthine Oxidase

65

75

78

79

84

87

96

104

107

109

117

119

120

123

Page 17: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xvii

LIST OF FIGURES

FIGURES TITLE PAGE

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Prenylation Patterns Encountered in Flavonoids

1H NMR Spectra of Three Different Prenyl-substituted of

Acetophenones (99), (100) and (101)

1H NMR Spectra in Comparison Between Prenyl-

substituted Benzaldehyde of (102) and (103)

13

C NMR and DEPT Spectra of 3-O-prenylbenzaldehyde

(102)

IR Spectrum of 2,4-dihydroxy-5,6-chromanacetophenone

(104)

1H NMR Spectrum of 2,4-dihydroxy-5,6-

chromanacetophenone (104)

13

C NMR and DEPT Spectra of 2,4-dihydroxy-5,6-

chromanacetophenone (104)

IR Spectrum of 2-hydroxy-3,4,5,6-dichromanacetophenone

(105)

1H NMR Spectra of 2-hydroxy-3,4,5,6-

dichromanacetophenone (105)

DEPT Spectrum of 2-hydroxy-3,4,5,6-

dichromanacetophenone (105)

IR Spectrum of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

bis(methoxymethyloxy)chalcone (109)

1H NMR Spectrum of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

bis(methoxymethyloxy)chalcone (109)

13C NMR Spectrum of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

bis(methoxymethyloxy)chalcone (109)

8

36

39

40

45

46

47

48

49

50

57

58

59

Page 18: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xviii

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

DEPT Spectra of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

bis(methoxymethyloxy)chalcone (109)

1H NMR Spectrum of 2ʹ,3,4-trihydroxy-4ʹ,6ʹ-

dimethoxychalcone (110)

UV-Vis Spectrum of 2ʹ,3,4-trihydroxy-4ʹ,6ʹ-

dimethoxychalcone (110)

1H NMR Spectrum of 3ʹ,5,7-trimethoxy-3ʹ-O-

prenylflavanone (123)

COSY NMR Spectrum of 3ʹ,5,7-trimethoxy-3ʹ-O-

prenylflavanone (123)

13C NMR Spectrum of 3ʹ,5,7-trimethoxy-3ʹ-O-

prenylflavanone (123)

HMQC NMR of 3ʹ,5,7-trimethoxy-3ʹ-O-prenylflavanone

(123)

DEPT Spectra of 3ʹ,5,7-trimethoxy-3ʹ-O-prenylflavanone

(123)

1H NMR Spectrum of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

methylenedioxy-3ʹ-prenylchalcone (127)

13C NMR Spectrum of 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

methylenedioxy-3ʹ-prenylchalcone (127)

DEPT Spectra for 2ʹ-hydroxy-4ʹ,6ʹ-dimethoxy-3,4-

methylenedioxy-3ʹ-prenylchalcone (127)

1H NMR Spectrum of Dichromanchalcone (131)

13C and DEPT NMR spectra of dichromanochalcone (131)

1H NMR Spectrum of 5,6,7,8-dichroman-3ʹ,4ʹ-

methylenedioxyflavone (132)

13

C NMR Spectrum of 5,6,7,8-dichroman-3ʹ,4ʹ-

methylenedioxyflavone (132)

HMQC Spectrum of 5,6,7,8-dichroman-3ʹ,4ʹ-

methylenedioxyflavone (132)

MS Spectrum of 5,6,7,8-dichroman-3ʹ,4ʹ-

methylenedioxyflavone (132)

60

61

62

70

71

72

73

74

81

82

83

90

91

92

93

94

95

Page 19: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xix

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

5.1

IR Spectrum of 2ʹ-hydroxy-5,6-chromane-4ʹ-methoxy-3,4-

bis(methoxymethyloxy)chalcone (133)

1H NMR Spectrum of 2ʹ-hydroxy-5,6-chromane-4ʹ-

methoxy-3,4-bis(methoxymethyloxy)chalcone (133)

DEPT Spectra of 2ʹ-hydroxy-5,6-chromane-4ʹ-methoxy-

3,4-bis(methoxymethyloxy)chalcone (133)

1H NMR Spectrum of 2ʹ,3,4-trihydroxy-5,6-chroman-4ʹ-

methoxychalcone (134)

UV Spectrum of 2ʹ,3,4-trihydroxy-5,6-chroman-4ʹ-

methoxychalcone (134)

1H NMR of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-methoxy-3,4-O-

diprenylchalcone (139)

13C NMR of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-methoxy-3,4-O-

diprenylchalcone (139)

DEPT Spectra of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-methoxy-

3,4-O-diprenylchalcone (139)

COSY Spectrum of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-methoxy-

3,4-O-diprenylchalcone (139)

HMQC Spectrum of 5ʹ,6ʹ-chroman-2ʹ-hydroxy-4ʹ-

methoxy-3,4-O-diprenylchalcone (139)

The Arrangement of the Samples and Control Discs in

Petri Dish

99

100

101

102

103

111

112

113

114

115

154

Page 20: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xx

LIST OF ABBREVIATIONS

BF3-Et2O boron trifluoride etherate

BHT butylated hydroxytoluene

br broad

13C carbon-13

CD3COCD3 deuterated acetone

CDCl3 deuterated chloroform

COSY correlation spectroscopy

CuBr.DMS dimethyl sulphide complex-copper bromide

d doublet

DBU 1,8-diazobicyclo [5.4.0] undec-7-ene

DCM dichloromethane

dd doublet of doublets

DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

DEAD diethyl azidocarboxylate

DEPT Distortionless Enhancement by Polarization Transfer

DIAD diisopropyl azidocarboxylate

DMAP 4-dimethylaminopyridine

DMSO dimethylsulfoxide

DPPH 2,2-diphenyl-1-picrylhydrazyl

EIMS Electron Impact Mass Spectrometry

Et2O diethyl ether

EtOAc ethyl acetate

EtOH ethanol

hr hour

1H proton

HMBC heteronuclear multiple bond correlation

HMQC heteronuclear multiple quantum coherence

Page 21: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xxi

Hz hertz

IC50 inhibition concentration at 50%

IR infrared

J coupling constant

lit. Literature

LOX Lipooxygenase

m/z mass to charge ratio

m multiplet

M molar

MBC minimum bactericidal concentration

Me2SO4 dimethyl sulphate

MeI iodomethane

MeOH methanol

MgSO4 magnesium sulphate

MHz megahertz

MIC minimum inhibition concentration

MOM methoxymethyloxy

MOMCl methoxymethyl chloride

m.p melting point

MS mass spectrometry

NaOAc sodium acetate

NaOMe sodium methoxide

NDGA nordihydroguaiaretic acid

NMR nuclear magnetic resonance

nm nanometer

Ph phenyl

Pet petroleum ether

ppm parts per million

Rf retention factor

SD standard deviation

s singlet

t triplet

TBAOH tetrabutylammonium hydroxide

TBATB tetrabutylammonium tribromide

Page 22: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xxii

TLC thin layer chromatography

UV ultraviolet

XO xanthine oxidase

δ chemical shift

λ lambda

Page 23: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xxiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1H NMR spectrum of 2ʹ-hydroxy-3,4-dimethoxy-4ʹ,6ʹ-

bis(methoxymethyloxy)chalcone (119)

13

C NMR spectrum of 2ʹ-hydroxy-3,4-dimethoxy-4ʹ,6ʹ-

bis(methoxymethyloxy)chalcone (119)

DEPT spectra of 2ʹ-hydroxy-3,4-dimethoxy-4ʹ,6ʹ-

bis(methoxymethyloxy)chalcone (119)

IR spectrum of 2ʹ,4ʹ,6ʹ-trihydroxy-3,4-dimethoxychalcone (120)

1H NMR spectrum of 2ʹ,4ʹ,6ʹ-trihydroxy-3,4-dimethoxychalcone

(120)

UV spectrum of 2ʹ,4ʹ,6ʹ-trihydroxy-3,4-dimethoxychalcone (120)

IR spectrum of 4-methoxy-3-O-prenylbenzaldehyde (121)

1H NMR spectrum of 4-methoxy-3-O-prenylbenzaldehyde (121)

IR spectrum of 3,4ʹ,6ʹ-trimethoxy-3-O-prenylchalcone (122)

1H NMR spectrumof 3,4ʹ,6ʹ-trimethoxy-3-O-prenylchalcone

(122)

13C NMR spectrumof 3,4ʹ,6ʹ-trimethoxy-3-O-prenylchalcone

(122)

1H NMR spectrumof 3,4ʹ,6ʹ-trimethoxy-3-O-prenylchalcone

(122)

1H NMR spectrum of 2-hydroxy-4,6-dimethoxy-5-

prenylacetophenone (124)

1H NMR spectrum of 2-hydroxy-4,6-dimethoxy-5-

prenylacetophenone (124)

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Page 24: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xxiv

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

IR spectrum of 3,4ʹ,6ʹ-trimethoxy-3-O-5-C-diprenylchalcone

(125)

1H NMR spectrum of 3,4ʹ,6ʹ-trimethoxy-3-O-5-C-

diprenylchalcone (125)

13C NMR spectrum of 3,4ʹ,6ʹ-trimethoxy-3-O-5-C-

diprenylchalcone (125)

DEPT spectra of 3,4ʹ,6ʹ-trimethoxy-3-O-5-C-diprenylchalcone

(125)

1H NMR spectrum of 4’,5,7-trimethoxy-3’-O-6-C-

diprenylflavanone (126)

13C NMR spectrum of 4',5,7-trimethoxy-3'-O-6-C-

diprenylflavanone (126)

DEPT spectra of 4ʹ,5,7-trimethoxy-3ʹ-O-6-C-diprenylflavanone

(126)

MS spectrum of 4ʹ,5,7-trimethoxy-3ʹ-O-6-C-diprenylflavanone

(126)

1H NMR spectrum of 2-hydroxy-4-methoxy-5,6-

chromanacetophenone (128)

IR spectrum of 2ʹ-hydroxy-5ʹ,6ʹ-chroman-4ʹ-methoxy-3,4-

methylenedioxychalcone (129)

1H NMR spectrum of 2ʹ-hydroxy-5ʹ,6ʹ-chroman-4ʹ-methoxy-3,4-

methylenedioxychalcone (129)

13C NMR spectrum of 2ʹ-hydroxy-5ʹ,6ʹ-chromane-4ʹ-methoxy-

3,4-methylenedioxychalcone (129)

DEPT spectra of 2ʹ-hydroxy-5ʹ,6ʹ-chroman-4ʹ-methoxy-3,4-

methylenedioxychalcone (129)

MS spectrum of 2ʹ-hydroxy-5ʹ,6ʹ-chroman-4ʹ-methoxy-3,4-

methylenedioxychalcone (129)

1H NMR spectrum of 5,6-chroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

13C NMR spectrum of 5,6-chroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

DEPT NMR spectra of 5,6-chroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

Page 25: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

xxv

32

33

34

35

36

37

38

39

40

41

42

HMQC spectrum of 5,6-chroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

MS spectrum of 5,6-chroman-7-methoxy-3ʹ,4ʹ-

methylenedioxyflavone (130)

IR spectrum of 2ʹ-hydroxy-3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-

bis(methoxymethyloxy)chalcone (136)

1H NMR spectrum of 2ʹ-hydroxy-3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-

bis(methoxymethyloxy)chalcone (136)

13C NMR spectrum of 2ʹ-hydroxy-3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-

bis(methoxymethyloxy)chalcone (136)

DEPT spectra of 2ʹ-hydroxy-3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-

bis(methoxymethyloxy)chalcone (136)

IR spectrum analysis of 2ʹ,3,4-trihydroxy-3ʹ,4ʹ,5ʹ,6ʹ-

dichromanchalcone (137)

1H NMR spectrum of 2ʹ,3,4-trihydroxy-3ʹ,4ʹ,5ʹ,6ʹ-

dichromanchalcone (137)

UV spectrum of 2ʹ,3,4-trihydroxy-3ʹ,4ʹ,5ʹ,6ʹ-dichromanchalcone

(137)

1H NMR spectrum of 3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-dimethoxy-2ʹ-

hydroxychalcone (138)

13

C and DEPT NMR spectrum of 3ʹ,4ʹ,5ʹ,6ʹ-dichroman-3,4-

dimethoxy-2ʹ-hydroxychalcone (138)

205

206

207

208

209

210

211

212

213

214

215

Page 26: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Nature is always an innovative laboratory. This concept applied to the

development of organic synthesis field to enhance the pharmacological activities of

naturally isolated compounds. Moreover, potential bioactivities and medicinal used

has long been the justification for research in natural products field. Hence,

realization of this objective has indeed led to a better understanding of the structural

requirements for a diversity of physiological activities, and subsequentially leading

to the synthesis and modification of several target compounds and analogues.

In natural products, flavonoids are the most abundant plants compounds [1].

They were distributed numerously with more than 5000 different flavonoids having

been described to date [2]. The flavonoids may be classified into seven groups

according to the basic ring system namely flavones, flavonones, flavonols,

anthocyanins, chalcones, isoflavones and also biflavones [3].

In general, naturally occurring flavonoids usually have free phenolic (-OH)

group or methoxyl (-OCH3) group [4]. The flavones, a subclass of flavonoids can be

classified into several subgroups which are mainly indicated either by hydroxylation,

Page 27: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

2

O-methylation, C-methylation, isoprenylation or methylenedioxy substitution [5]. In

the previous researches, flavonoids have been shown to possess remarkable

physiological activities in mammalian systems [6].

1.2 Flavones in Nutrition and Health

Along with their important functions in the biochemistry, physiology and

ecology of plants, flavones are conjointly important compounds for human nutrition

and health [5]. Moreover, it has been reported that even a high intake of plant-based

dietary flavonoids is at a halt safe and not associated with any adverse health effect

[7]. For instance, flavonoids were well known antioxidants which act as scavengers

of various oxidizing species [8]. Besides, flavones also played an important role in

cancer prevention in plummeting cancer rates since these compounds were found

abundantly in plants. Flavonoids and its subclass isoflavonoids have been prominent

in assessing cancer anticipation in models of breast and colon cancer [9].

A subclass of flavonoids, chalcones and analogues, apart from having a good

antioxidant activity, they also showed analgesic and anti-inflammatory activities [10,

11]. In fact, a research has done on the structure activity relationship of chalcones on

their antibacterial activity against human pathogenic microorganisms which have the

promising effect on certain substitutions patterns [12]. In addition, C-methylated

chalcones which were isolated from the fruits of Syzygium samarangense displayed

cytotoxic activity against the human colon cancer line [13].

Equally important, a common flavonol, kaempferol has been reported as

tyrosinase inhibitor that catalyzes reactions of melanin synthesis [14]. Another

group, flavone and its derivatives have demonstrated as a potent anti-HIV activity

with therapeutic effects which will lead to a further anti-HIV drug development [15].

Naturally occurring prenylated flavones from Artocarpus elasticus showed to be a

potent inhibitor of both T- and B-lymphocyte mitogen induced proliferation in

human lymphocytes [16]. Besides, prenyl substituent at C-3 position of flavone

Page 28: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

3

isolated from the wood of Artocarpus heterophyllus plays an important role for

revealing tyrosinase inhibition on B16 melanoma cells [17]. Likewise, chalcone

substitution also by prenylation has been reported in increasing their binding affinity

to P-glycoprotein responsible for cancer cells chemoresistance [18]. On the other

hand, the derivatives of flavone, flavanone bearing a C-8 hydrated prenyl showed

extremely high inhibition activity for neuraminidase inhibition which most

commonly known as a target for the prevention of influenza infection [19].

1.3 Problems Statements

In recent years, there has been a resurgence of scientific interest in

flavonoids, which is due to the association of these compounds with a wide range of

health promoting effects. Numerous natural flavonoids had been reported and

screened for antibacterial and antioxidant activities. However, small amounts and

hard to isolate, limit further studies of their pharmacological activities. Therefore, the

symthesis of flavones and derivatives involving mainly the hydroxylated, O-

methylated, O- and C- prenylated and chromane have to be synthesized. The

synthetic routes and mechanism of reactions of the target compounds need to be

developed.

1.4 Objectives of Study

The objectives of this study are:

1. To synthesize flavones and derivatives with hydroxylated, methoxylated, O-

and C- prenylated and chromane substituents by multi-step reactions using

established and newly develop methodologies.

2. To investigate the bioactivity of the derivatives on antioxidant, antibacterial

and anti-inflammatory activites.

Page 29: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

4

1.5 Scope of Study

The scope of this study covered the multi-step reactions which were

protection, methylation and prenylation or vice-versa of 2,4,6-

trihydroxyacetophenone and 3,4-dihydroxybenzaldehyde which then be subjected to

condensation using Claisen-Schmidt reaction to form chalcones. The chalcones were

cyclized to flavone derivatives and deprotection of the protecting groups were

required to form hydroxylated flavones. Structure elucidation of the pure

compounds were carried out using several spectroscopic methods, including UV, IR,

1D NMR (1H,

13C, DEPT), 2D NMR (COSY and HMQC), and MS. The selected

synthetic flavones and derivatives were screened and tested for antioxidant activity

by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, antibacterial

activity by disc diffusion method (DDM), minimum inhibitory concentration (MIC)

and minimum bactericidal concentration (MBC), anti-inflammatory activity by

lipooxygenase (13-LOX) and xanthine oxidase (XO) assays.

Page 30: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

159

REFERENCES

1. Li, Z., Ngojeh, G., DeWitt, P., Zheng, Z., Chen, M., Lainhart, B., Li, V. and

Felpo, P. (2008). Synthesis of a library of glycosylated flavonols. Tet. Lett.

49: 7243-7245.

2. Kao, E., Wang, C., Lin, W., Yin., Y., Wang, C. and Tseng, T. (2005). Anti-

inflammatory potential of flavonoid contents from dried fruit of Crataegus

pinnatifida in vitro and in vivo. J. Agric. Food Chem. 53: 430-436.

3. Evans, W.C., Trease, G.E. and Evans, D. Pharmacognosy. (15th

ed.). New

York; WB Saunders; 2002.

4. Lokhande, P.D., Sakate, S.S., Taksande, K.N. and Navghare, B. (2005).

Dimethylsulfoxide-Iodine catalysed deprotection of 2’-allyloxychalcones:

synthesis of flavones. Tet. Lett. 46: 1573-1574.

5. Martens, S. and Mithöfer, A. (2005). Flavones and flavone synthases.

Phytochem. 66: 2399-2407.

6. Bohm, A.B. (1998), Introductions to Flavonoids. (1st ed.). London; Harwood

Academic Publisher.

7. Cabrera, M., Simoens, M., Falchi, G., Lavaggi, M.L., Piro, O.E., Castellano,

E.E., Vidal, A., Azqueta, A., Monge, A., de Cerain, A.L., Sagrera, G.,

Seoane, G., Cerecetto, H. and Gonzalez, M. (2007). Synthetic chalcones,

flavanones and flavones as antitutmoral agents: biological evaluation and

structure activity relationships. Bioorg. Med. Chem. 15: 3356-3367.

8. Harborne, J.B. and Williams, C.A. (2000). Advances in flavonoids research

since 1992. Phytochem. 55: 481-504.

9. Birt, D.F., Hendrich, S. and Wang, W. (2001). Dietary agents in cancer

prevention: flavonoids and isoflavonoids. Pharm. Therapeu. 90: 157-177.

Page 31: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

160

10. Viana, G.S.B., Bandeira, M.A.M. and Matos, F.J.A. (2003). Analgesic and

anti-inflammatory effects of chalcones isolated from Myracrodruon

urundeuva Allemáo. Phytomed. 10: 189-195.

11. Tanaka, H., Nakamura, S., Onda, K., Tazaki, T. and Hirano, T. (2009).

Sofalcone, an anti-ulcer chalcone derivative, surpresses inflammaoty

crosstalk between macrophages and adipocytes and adipocyte differentiation:

Implication of heme-oxygenase-1 induction. Biochem. Biophy. Res. Comm.

381: 566-571.

12. Άvila, H.P., Smánia, E.F.A., Monache, F.D. and Júnior, A.S. (2008).

Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem.

16. 9790-9794.

13. Simirgiotis, M.J., Adachi, S., To, S., Yang, H., Reynertson, K.A., Basile,

M.J., Gil, R.R., Weinstein, B. and Kennelly, E.J. (2008). Cytotoxic chalcones

and antioxidants from the fruits of Syzgium samarangense (Wax Jambu).

Food Chem. 107: 813-819.

14. Kubo, I. and Kist-Hori, I. (1999). Flavonols from Saffron flower: tyrosinase

inhibitory activity and inhibition mechanism. J. Agric. Food Chem. 47: 4121-

4125.

15. Wu, J., Wang, X., Yi, Y. and Lee, K. (2003). Anti-AIDS agents 54. A potent

anti-HIV chalcone and flavonoids from Genus Desmos. Bioor. Med. Chem.

Lett. 13: 1813-1815.

16. Cerqueir, F. Cordeiro-Da-Silva, A. Araujo, N., Cidade, H., Kijjoa, A. and

Nascimento, M.S.J. (2003). Inhibition of lymphocyte proliferation by

prenylated flavones: Artelastin as a potent inhibitor. Life Sci. 73: 2321-2334.

17. Arung, A.T., Shimizu, K., Tanaka, H. and Kondo, R. (2010). 3-prenyl

luteolin, a new prenylated flavone with melann biosynthesis inhibitory

activity from wood of Artocarpus heterophyllus. Fitero. 81: 640-643.

18. Daskiewicz, J.B., Comte, G., Barron, D., Pietro, A.D. and Thomasson, F.

(1999). Organolithium mediated synthesis of prenylchalcones as potential

inhibitors of chemoresistance. Tet. Lett. 40: 7095-7098.

19. Ryu, Y.B., Curtis-Long, M.J., Lee, J.W., Ryu, H.W., Kim, J.Y., Lee, W.S.

and Park, K.H. (2009). Structural characteristics of flavanones and flavones

from Cudrania tricuspidata for neuraminidase inhibition. Bioor. Med. Chem.

Lett. 19: 4912-4915.

Page 32: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

161

20. Lopez-Lazaro, M. (2009). Distribution and Biological Activities of the

Flavonoid Luteolin. Med. Chem. 9: 31-59.

21. Poerwono, H., Sasaki, S., Hattori, Y. and Higashiyama, K. (2010). Efficient

Microwave Assisted Prenylation of Pinostrobin and Biological Evaluation of

its Derivatives as Antitumor Agents. Bioor. Med. Chem. Lett. 63(8): 2711-

2714.

22. Navale, A.V., Zangade, S.B., Shinde, R.S. and Patil, S.G. (2010). Synthesis

of Some New Chalcones, Flavones and Screening for their Antimicrobial

Activity. Der Pharm. Lett. 2(5): 245-250.

23. Reddy, N.P., Aparoy, P., Reddy, C.M.R., Achari, C., Sridhar, P.R. and

Reddanna, P. (2010). Design, Synthesis and Biological Evaluation of

Prenylated Chalcones as 5-LOX Inhibitors. Bioorg. Med. Chem. 18(16): 309-

412.

24. Narender, T. and Reddy, K.P. (2007). BF3-Et2O mediated biogenetic type

synthesis of chromanochalcones from prenylated chalcones via a

regioselective cyclization reaction. Tet. Lett. 48: 7628-7632.

25. Mandge, S., Singh, H.P., Gupta, S.D., Moorthy, N.S.H.N. (2007). Synthesis

and Characterization of Some Chalcone Derivatives. Tr. App. Sci. Res.

2(1):52-56.

26. Kim, H.P., Son, K.H., Chang, H.W. and Kang, S.S. (2004). Anti-

inflammatory plant flavonoids and cellular action mechanism. J. Pharmacol.

Sci. 96: 229-245.

27. Jeong, J., Kang, S., Lee, I., Lee, J., Jung, H. And Choi, C. (2007).

Antioxidant and chemosynthesizing effects of flavonoids with hydroxyl and/

or methoxy groups and structure activity relationship. J. Pharm. Sci. 10: 537-

546.

28. Sawle, P., Moulton, B.E., Jarzykowska, M., Green, C.J., Foresti, R., FAirlab,

I.J.S. and Motterlini, R. (2008). Structure-activity relationship of

methoxychalcones as inducers of heme oxygenase-1. Chem. Res. Toxicol. 21:

1484-1494.

29. Yenjai, C., Wanich, S., Pitchuanchom, S. and Sripanidkulchai, B. (2009).

Structural modification of 5,7-dimethoxyflavone from Kaempferia parviflora

and biological activities. Arch. Pharm. Res. 32 (9): 1179-1184.

Page 33: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

162

30. Tomas-barberan, F.A., Msonthi, J.D. and Hostettmann, K. (1988). Antifungal

Epicuticular Methylated Flavonoidsfrom Helichrysum nitens. Phytochem. 27

(3): 753-755.

31. Tsuji, P.A., Winn, R.N. and Walle, T. (2006). Accumulation and metabolism

of the anticancer flavonoid 5,7-dimethoxyflavone compared to its

unmethylated analog chrysin in the Atlantic killifish. Chemico-biological

Interact. 164: 85-92.

32. Kim, D.W., Chi, Y.S., Son, K.H., Chang, H.W., Kim, J.S. and Kim, H.P.

(2002). Effects of sophoraflavaone G, a prenylated flavonoid from Sophora

Flavescens on Cyclooxygenase-2 and in-vivo inflammatory response. Arch.

Pharm. Res. 25 (3): 329-335.

33. Barron, D. and Ibrahim, R.K. (1996). Isoprenylated Flavonoids- A Survey.

Phytochem. 43(5): 921-982.

34. Havsteen, B.H. (2002). The biochemistry and medical significance of the

flavonoids. Pharm. Therapeu. 96: 67-202.

35. Achmad, S.A., Hakim, E.H., Juliawaty, L.D., Makmur, L. and M.Syah, Y.

(2005). Indonesian Rainforest Plants-Chemodiversity and Bioactivity. Malay.

J. Sci. 24: 7-16.

36. Mustapha, I., Juliawaty, L.D., M.Syah, Y., Hakim, E.H., Latip, J. and

Ghisalberti, E.L. (2009). An Oxenopinoflavone from Artocarpus elasticus

with cytotoxic activity against P-388 cell. Arc. Pharm. Res. 32: 191-194.

37. Jantan, I., Yasin, Y.H.M., Jamil, S., Sirat, H. and Basar, N. (2010). Effect of

prenylated flavonoids and chalcones isolated from Artocarpus species on

platelet aggregation in human whole blood. J. Nat. Med. 64: 365-369.

38. Venkataraman, K. (1972). Review article: Wood Phenolics in the

Chemotaxonomy of the Moraceae. Phytochem. 11: 1571-1586.

39. Jagtap, U.B. and Bapat, V.A. (2010). Artocarpus: A review of its traditional

uses, phytochemistry and pharmacology. J. Ethno. 129: 142-166.

40. Radakrishnan, P.V., Rao, A.V.R. and Venkataraman, K. (1964). Two New

Flavanones from Artocarpus Heterophyllus. Tet. Lett. 11: 663-667.

41. Pitaksuteepong, T., Somsiri, A. and Waranuch, N. (2007). Targeted

Transfollicular Delivery of Artocarpin Extract from Artocarpus incises by

Means Microparticles. Euro. J. Pharm. Biopharm. 67: 639-645.

Page 34: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

163

42. Dave, K.G., Telang, S.A. and Venkataraman, K. (1962). Flavonoids Pigments

of the Heartwood of Artocarpus integrifolia. Tet. Lett. 1: 9-14.

43. Pratap, J.V., Jeyaprakash, A.A., Rani, P.G., Sekar, K., Suroli, A. and Vijayan,

M. (2002). Crystal Structures of Artocarpin, a Moraceae Lectin with

Mannose Specificity, and its Complex with Methyl-α-D-mannose:

Implications to the Generation of Carbohydrate Specificity. J. Mol. Biol. 317:

237-247.

44. Chowdury, S. and Chatterjee, B.P. (1993). Artocarpin-galactomannan

Interaction: Characterization of Combining site of Artocarpin. Phytochem. 32

(2): 243-249.

45. Deshpande, V.H., Parthasarathy, P.C. and Venkataraman, K. (1968). Four

Analogues of Artocarpin and Cycloartocarpin from Moris alba. Tet. Lett. 14:

1715-1719.

46. Sato, M., Fujiwara, S., Tsuchiya, H., Fuhii, T., Iinuma, M., Tosa, H. and

Ohkawa, Y. (1996). Flavones with Antibacterial Activity against Cariogenic

Bacteria. J. Ethnopharm. 54: 171-176.

47. Barre, A., Peumans, W.J., Rossignol, M., Borderies, G., Culerrier, R., Van

Damme, E.J.M. and Rouge, P. (2004). Artocarpin is a Polyspecific Jacalin-

related Lectin with a Monosaccharide Preference for Mannose. Biochimie. 86:

685-691.

48. Ngadjui, B.T., Watcheung, J., keumedjio, F., Ngameni, B., Simo, I.K. and

Abegaz, B.M. (2005). Prenylated chalcones, flavones and other constituent of

the twigs of Dorstenia angusticornis and Dorstenia barteri var.

Subtriangularis. Phytochem. 66: 687-692.

49. Stevens, J.F. and Page, J.E. 2004. Xanthuhumol and related prenylflavonoids

from hops and beer: to your good health!. Phytochem. 65: 1317-1330.

50. Vogel, S. and Heilmann, J. 2008. Synthesis, cytotoxixity and antioxidative of

minor prenylated chalcones from Humulus lupus. J. Nat. Prod. 71: 1237-

1241.

51. Chen, Q., Fu, M., Chen, M., Liu, J., He, G. and Pu, S. (2012). Preparative

Isolation and Purification of Xanthohumol from hops (Humulus lupulus L.)

by High-speed Counter-current Chromatography. Food Chem. 132: 619-623.

52. Drenzek, J.G., Seiler, N.L., Jaskula-Sztul, R., Rausch, M.M. and Rose, S.L.

(2011). Xanthuhumol Decreases Notch1 Expression and Cell Growth by Cell

Page 35: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

164

Cycle Arrest and Induction of Apoptosis in Ephithelial Ovarian Cancer Cell

Lines. Gynecologic Oncol. 122: 316-401.

53. Colgate, E.C., Miranda, C.L., Stevens, J.F., Bray, T.M. and Ho, E. (2007).

Xanthuhumol, a Prenylflavonoid Derived from hops Induces Apoptosis and

Inhibits NF-kappaB Activation in Prostate Ephitelial Cells. Cancer Lett. 246:

201-209.

54. Wang, Q., Ding, Z., Liu, J., Zheng, Y. (2004). Xanthuhumol, a Novel Anti-

HIV-1 Agent Purified from Hops Humuls lupulus. Antivir. Res. 64: 89-194.

55. Fr lich, S., Schubert, C., Ulrich, B. And Jenett-Siems, K. (2005). In vitro

antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus

lupulus) and their interaction with haemin. J. Antimicrob. Chemo. 55: 883-

887.

56. Stevens, J.F., Taylor, A.W., Nickerson, G.B., Ivancic, M., Henning, J.,

Haunold, A. and Deinzer, M.L. (2000). Prenylflavonoid variation in Humulus

lupulus: distribution and taxonomic significance of xanthogalenol and 4’-O-

methyxanthohumol. Phytochem. 53: 759-775.

57. Jin, J.H., Kim, J.S., Kang, S.S., Son, K.H., Chang, H.w. and Kim, H.P.

(2010). Anti-inflammatory and anti-rthritic activity of total flavonoids of the

roots of Sophora flavescens. J. Ethnopharm. 127: 589-595.

58. Ryu, Y.B., Westwood, I.M., kang, N.S., Kim, H.Y., Kim, J.H., Moon, Y.H.

and Park, K.H. (2008). Kurarinol, tyrosinase isolated from the root of

Saphora flavescens. Phytomed. 15: 612-618.

59. Ko, W.G., Kang, T.H., Kim, N.Y., Lee, S.J., Kim, Y.C., Ko, G.I., Ryu, S.Y.

and Lee, B.H. (2000). Lavandulylflavonoids: A New Class of in vitro

Apoptogenic Agents from Sophoro flavescens. Toxic. in Vit. 14: 429-433.

60. Ma, X., Sun, C., Huang, S., Wang, J., Zhang, B., Li, F., Wang, D., Deng, S.

and Cui, J. (2010). Preparative Isolation and Purification of Four

Prenylflavanones from Microbial Biotransformation of Kurarinone by High-

speed Counter-current Chromatography. Sep. Purifi. Techn. 76: 140-145.

61. Tan, R.X., Wolfender, J., Zhang, L.X., Ma, W.G., Fuzzati, N. and Marston,

A. (1996). Acyl Secoiridoids and Antifungal Constituents from Gentiana

macrophylla. Phytochem. 42 (5): 1305-1313.

Page 36: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

165

62. Lee, S.W., lee, H.S., Nam, J.Y., Kwon, O.E., Baek, J.A., Chang, J.S., Rho,

M. and Kim, Y.K. (2005). Kurarinone Isolated from Sophora flavescens Ait

Inhibited MCP-1 Induced Chemotaxis. J. Ethnopharm. 97: 515-519.

63. Iinuma, M., Tanaka, T., Mizuno, M., Shirataki, Y., Yokoe, I., Komatsu, M.

and Lang, F.A. (1990). Two Flavanones in Sophora leachiano and Some

Related Structures. Phytochem. 29 (8): 2667-2669.

64. Tsuchiya, H. and Iinuma, M. (2000). Reduction of Membrane Fluidity by

Antibacterial Sophoraflavanone G isolated from Sophora exigua. Phytomed.

7(2): 161-165.

65. Iinuma, M., Ohyama, M. and Tanaka, T. (1995). Six Flavonostilbenes and

Flavanone in Roots of Sophora alopecuroides. Phytochem. 38 (2): 519-525.

66. Chi, Y.S., Jong, H.G., Son, K.H., Chang, H.W., Kang, S.S. and Kim, H.P.

(2001). Effects of Naturally Occuring Prenylated Flavanods on Enzymes

Metabolizing Arachidonic Acid: Cyclooxygenase and Lipoxygenases.

Biochem. Pharm. 62: 1185-1191.

67. Sultana, N., Hartley, T.G., Waterman, P.G. (1999). Two novel prenylated

flavones from the aerial part of Melicope micrococca. Phytochem. 50: 1249-

1253.

68. Narender, T., Reddy, K.P., Shweta., Srivastava, K., Mishra, D.K. and Puri,

S.K. (2007). Total synthesis of munchiwarin, a triprenylated chalcone from

Crotalaria medicagenia. Organic Lett. 9 (26): 5369-5372.

69. Narender, T., Shweta., Tanvir, K., Rao, M.S. and Puri, S.K. (2005).

Prenylated Chalcones Isolated from Crotalaria genus Inhibits in vitro Growth

of the Human Malaria Parasite Plasmodium falciparum. Bioorg. Med. Chem.

15: 2453-2455.

70. Rao, M.S., Kumar, J.K., Rao, P.S., Tóth, G., Simon, A., Balázs, B. and

Duddeck, H. (1999). Constituents of Crotalaria trifoliastrum Roots. Fito. 70:

200-202.

71. Nowakowska, Z. (2007). A Review of Anti-infective and Anti-inflammatory

Chalcones. Euro. J. Med. Chem. 47: 125-137.

72. Moriarty, R. M., Grubjesic, S., Surve, B. C., Chandersekera, S. N., Prakash,

O. and Naithani, R. (2006). Synthesis if Abyssinone II and related

compounds as potential chemopreventive agents. Euro. J. Med. Chem. 41:

263-267.

Page 37: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

166

73. Laliberte, R., Manson, J., Warwick, H. & Medawar, G. (1968). Synthesis of

New Chalcone Analogues and Derivatives. Canadian J. Chem. 46: 1952-

1956.

74. Detsi, A., Majdalani, M., Kontogiorgis, C.A., Hadjipavlou-Litina, D. and

Kefalas, P. (2009). Natural and synthetic 2’-hydroxy-chalcones and aurones:

synthesis, characterization and evaluation of the antioxidant and soybean

lipoxygenase inhibitory activity. Bioorg. Med. Chem. 17: 8073-8085.

75. Tu,H., Huang, A., Hour, T., Yang, S., Pu, Y. and Lin, C. (2010). Synthesis

and biological evaluation of 2’,5’-dimethoxychalcone derivatives as

microtubule-targeted anticancer agents. Bioorg. Med. Chem. 18: 2089-2098.

76. Song, G. and Ahn, B. (1994). Synthesis of dibenzoylmethanes as

intermediates for flavones synthesis by a modified Baker-Venkataraman

Rearrangement. Arch. Pharm. Res. 17: 434-437.

77. Ganguly, A.K., Kaur, S., Mahata, P.K., Biswas, D., Pramanik, B.N. and

Chan, T.M. (2005). Synthesis and properties of 3-acyl-γ-pyrones, a novel

class of flavones and chromones. Tet. Lett. 46: 4119-4121.

78. Tseng, T., Chuang, S., Hu, C., Chang, C., Huang, Y., Lin, C. and Lee, Y.

(2010). The synthesis of morusin as potent antitumor agent. Tet. 66: 1335-

1340.

79. Furusawa, M., Tanaka, T., Ito, T., Nishikawa, A., Yamazaki, N., Nakaya, K.,

Matsuura, N., Tsuchiya, H., Nagayama, M. and Linuma, M. (2005).

Antioxidant activity of hydroxyflavonoids. J. Health Sci. 51: 376-378.

80. Huang, W., Chien, P., Yang, C. and Lee, A. (2003). Novel synthesis of

flavonoids of Scutellaria baicelensis GEORGI. Chem. Pharm. Bull. 51: 339-

340.

81. Narender, T. and Reddy, K.P. (2007). A simple and highly efficient method

for the synthesis of chalcones by using borontrifluoride-etherate. Tet. Lett. 48:

3177-3180.

82. Zheng, X., Meng, W. and Qing, F. (2004). Synthesis of gem-

difluoromethylenated biflavonoid via the Suzuki coupling reaction. Tet. Lett.

45: 8083-8085.

83. Liang, B., Huang, M., You, Z., Xiong, Z., Lu, K., Fathi, R., Chen, J. and

Yang, Z. (2005). Pd-Catalyzed copper-free carbonylative Sonogashira

Page 38: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

167

reaction of aryl iodides with alkynes and flavones by using water as solvent.

J. Org. Chem. 70: 6097-6100.

84. Genelot, M., Bendjeriou, A., Dufaud, V. and Djakovitch, L. (2009).

Optimized procedures for the one-pot syntheses of indoxyls and 4-quinolons

by a carbonylative Sonogashira / cyclisation sequene. App. Catalysis A: Gen.

369: 125-132.

85. Kabalka, G.W. and Mereddy A.R. (2005). Microwave-assisted synthesis of

functionalized flavones and chromones. Tet. Lett. 46: 63155-6317.

86. Ghani, S.B.A., Weaver, L., Zidan, Z.H., Ali, H.M., Keevil, C.W. and Brown,

R.C.D. (2008). Microwave-assisted synthesis and antimicrobial activities of

flavonoid derivatives. Bioorg. Med. Chem. Lett. 18: 518-522.

87. Ding, D., Li, X., Wang, X., Du, Y. and Shen, J. (2006). Microwave-assisted

rapid and straightforward synthesis of 2-aryl-4-quinolones from acylated 2’-

aminoacetophenones. Tet. Lett. 47: 6997-6999.

88. Menezes, M.J., Manjrekar, S., Pai, V., Patre, R.E. and Tilve, S.G. (2009). A

facile microwave assisted synthesis of flavones. Ind. J. Chem. 48B: 1311-

1314.

89. Yang, J.H., Zhao, Y.M. and Ji, C.B. (2008). First total synthesis of (±)-

abyssinoflavanone V. Chi. Chem. Lett. 19: 658-660.

90. Yang, J.H., Jiang, S.Z., Zhao, Y.M.., li, Y.F., Zhao, Y.M., Ji, C.B. and Liu,

W.Y. (2009). First total synthesis of nematicidal prenylated flavanones. Chi.

Chem. Lett. 20: 1062-1064.

91. Huang, C., Zhang, Z. and Li, Y. (1998). Total synthesis of (R,S)-

sopharoflavanone C. J. Nat. Prod. 61: 1283-1285.

92. Xia, L., Narasimhulu, M., Li, X., Shim, J. and Lee, Y.R. (2010). New

synthetic routes to biologically interesting geranylated acetophenones from

Melicope Semecarpifolia and their unnatural prenylated and farnesylated

derivatives. Bull. Korean Chem. Soc. 31(3): 664-669.

93. Vogel, S., Ohmayer, S., Brunner, G. and Heilmann, J. (2008). Natural and

non-natural prenylated chalcones: synthesis, cytotoxicity, and antioxidative

activity. Bioorg. Med. Chem. 16: 4286-4293.

94. Lee, S., Kim, J., Lee, J.G., Lee, J., Leem, M., Chung, Y., Song, Y. and Suh,

H. (2001). The first total synthaeses of Prenyllicoflavone A and Licoflavone

Page 39: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

168

A and biological evaluation as inhibitors of bone resorption pits formation.

Bull. Korean Chem. Soc. 22: 1295-1296.

95. Lee, Y.R., Li, X., Lee, S.W., Yong, C.S., Hwang, M. and Lyoo, W.S. (2008).

Concise total synthesis of biologically interesting prenylated chalcone natural

products: 4’-O-Methylxanthohumol, Xanthohumol E and Sericone. Bull.

Korean Chem. Soc. 29(6): 1205-1210.

96. Daskiewicz, J., Bayet, C. and Barron, D. (2001). Rearrangement of 5-O-

prenyl flavones: a regioselective access to 6-C-(1,1-dimethylallyl)- and 8-C-

(3,3-dimethylallyl)-flavones. Tet. Lett. 42: 7241-7244.

97. Odejinmi, S. I. and Wiemer, D. F. (2005). Application of Benzyl protecting

groups in the synthesis of prenylated aromatic compounds. Tet. Lett. 46:

3871-3874.

98. Kim, B., O, K.J., hun, J.C. and Hwang, K.J. (2008). Synthesis of

Dihydroxylated Chalcones Derivatives with Diverse Substitution Patterns and

Their Radical Scavenging Ability toward DPPH Free Radicals. Bull. Korean

Chem. Soc. 29 (6): 1125-1127.

99. Hu, M., Krausz, K., Chen, J., Ge, X., Li, J., Gelboin, H.L. and Gonzalez, F.J.

(2003). Identification of CYP1A2 as the Main Isoform for the Phase 1

Hydroxylated Metabolism of Genistein and a Prodrug Converting Enzyme of

Methylated Isoflavones. Drug Met. Disp. 31 (7): 924-931.

100. Bruice, P.Y. (1998). Organic Chemistry. 2nd

Ed. Prentice-hall Int. Pg: 364-

365.

101. Jun, N., Hong, G. & Jun, K. (2007). Synthesis and Evaluation of 2ʹ,4ʹ,6ʹ-

trihydroxychalcones as a New Class of Tyrosinase Inhibitors. Bioorg. Med.

Chem. 15: 2396-2402

102. Samant, B. And Sukhthankar, M.G. (2009). Snthesis and Comparison of

Antimalarial Activity of Febrifugine Derivatives Including Halofuginone.

Med. Chem. 5: 293-300.

103. Basabe, P., de Roman, M., Marcos, I.S., Diez, D., Blanco, A., Bodero, O.,

Mollinedo, F., Sierra, B.G. and Urones, J.G. (2010). Prenylflavonoids and

prenyl/alkyl-phloroacetophenones: synthesis and anti-tumor biological

evaluation. Euro. J. Med. Chem. 45: 4258-4269.

Page 40: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

169

104. Nishida, J. And Kawabata, J. (2006). DPPH Radical Scavenging reaction of

Hydroxy- and Methoxychalcones. Biosci. Biotechnol. Biochem. 70 (1): 193-

202.

105. Ramakrishnan, V.T. & Kagan, J. (1970). The Photochemical Synthesis of 2ʹ-

hydroxychalcones from Phenyl Cinnamates. J. Org. Chem. 35 (9): 2901-

2904.

106. Singh, A.K. & Raghumaran, T.S. 1985. Photorearrangement of Phenyl

Cinnamates under Micellar Environment. Tet. Lett. 26 (34): 4125-4128.

107. Markham, K.R. & Mabry, T.J. The Flavonoids (Chapter 2). Pg:45-61.

108. Maloney, D.J. and Hecht, S.M. (2005). Synthesis of Potent and Selective

Inhibitor of p90 Rsk. Org. Lett. 7 (6): 1097-1099.

109. Barron, D., Jolivet, S., Crouzet, J.M. and Mariotte, A.M. (1992). Synthesis of

6-C-(3,3-Dimethyl-2-preopen-1-yl) Norwogonin. Tet. Lett. 33 (47): 7137-

7140.

110. Barron, D., Pietro, A.D., Dumontet, C. and McIntosh, D.B. (2002).

Isoprenoid Flavonoids are New Leads in the Modulation of Chemoresistance.

Phytochem. 1: 325-332.

111. Chen, C.N., Hsiao, C.J., Lee, S.S., Guh, J.H., Huang, C.C. and Huang, W.J.

(2012). Modulation of Cancer Cell Multidrug Resistance by an Extract of

Ficus citrifolia. Nat. Prod. Res. 26 (2): 116-124.

112. Nijveldt, R.T., van Nood, E., van Hoorn, D.E.C., Boelens, P.G., van Norren,

K.. and van Leeuwen, P.A.M. (2001). Flavonoids: a review of probable

mechanisms of action and potential application. Am. J. Clin. Nutr. 74: 418-

425.

113. Harborne, J.B., Williams, C.A. (2000). Advances in flavonoid research since

1992. Phytochem. 55: 481-504.

114. Ghidouche, S., Es-Safi, N.E. and Ducrot, P.H. (2008). Mechanistic study on

the enzymatic oxidation of flavonols. Tet. Lett. 49: 619-623.

115. Li, N., Liu, J., Zhang, J. and Yu, B. (2008). Comparative Evaluation of

Cytotoxicity and Antioxidative Activity of 20 Flavonoids. J. Agric. Food

Chem. 56: 3876-3883.

116. Jung, H.A., Jeong, D., Chung, H.Y., Lim, H.A., Kim, J.Y., Yoon, N.Y. and

Choi, J.S. (2008). Re-evaluation of the Antioxidant Prenylated Flavonoids

from the Roots of Sophora flavescens. Biol. Pharm. Bull. 31(5): 908-915.

Page 41: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

170

117. Patil, C.B., Mahajan, S.K. & Katti, S.V. (2009). Chalcone: A Versatile

Molecule. J. Pharm. Sci. Res. 1(3): 11-22.

118. Belsare, D.P., Pal, S.C., Kankate, R.S. & Vanjari, S.S. (2010). Evaluation of

Antioxidant Activity of Chalcones and Flavonoids. Int. J. ChemTech. Res.

2(2): 1080-1089.

119. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne,

D.H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for

estimating antioxidant activity from guava fruit extracts. J. Food Comp.

Analys. 19: 669-675.

120. Miller, H.E., Rigelhof, F., Marquart, L., Prakash, A., & Kanter, M. (2000).

Antioxidant Content of Whole Grain Breakfast Cereals, Fruits and

Vegetables. J. Am. Coll. Nutr. 19(3): 312S-319S

121. Li, N., Liu, J., Zhang, J. and Yu, B. (2008). Comparative Evaluation of

Cytotoxicity and Antioxidative Activity of 20 Flavonoids. J. Agric. Food

Chem. 56: 3876-3883.

122. Jung, H.A., Jeong, D., Chung, H.Y., Lim, H.A., Kim, J.Y., Yoon, N.Y. and

Choi, J.S. (2008). Re-evaluation of the Antioxidant Prenylated Flavonoids

from the Roots of Sophora flavescens. Biol. Pharm. Bull. 31(5): 908-915).

123. H.P. Kim, K.H. Son, H.W. Chang, S.S. Kang. (2004). Anti-inflammatory

Plant Flavonoids and Cellular Action Mechanisms. J. Pharmacol. Sci. 96:

229-245.

124. A. Detsi, D. Boulambasi, K.C. Prousis, M. Koufaki, G. Athanasellis, G.

Melagarki, A. Afantitis, O. Igglessi-Markopulou, C. Kontogiorgis, D.J.

Hadjipavlou-Litina. (2009). Natural and Synthetic 2’-hydroxy-chalcones and

Aurones: Synthesis, Characterization and Evaluation of the Antioxidant and

Soybean Lipoxygenase Inhibitory Activity. Bioor. Med. Chem. 17: 8073-

8085.

125. Catchart, M.K. & Folcik, V.A. (2000). Lipoxygenases and Atherosclerosis:

Protection versus Pathogenisis. Free Rad. Biol. & Med. 28(12): 1726-1734.

126. Somers, P.K., Medford, R.M. & Saxena, U. (2000). Dithiocarbamates:

Effects on Lipid Hyfroperoxides and Vascular Inflammatory Gene

Expression. Free Rad. Biol. Med. 28(10): 1532-1537.

Page 42: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

171

127. Ul-Haq, A., Abdul, M., Itrat, A., Bahadar, K.S., Ejaz, A., Zaheer, A., Ahmad,

N.S., Choudhary., Iqbal, M. (2004). Enzymes Inhibiting Lignans from Vitex

negundo. Chem. Pharm. Bull. 52 (11): 1269-1272.

128. Andreou, A. & Feussner, I. 2009. Lipoxygenases- Structure and Reaction

Mechanism. Phytochem. 70: 1504-1510.

129. E.E. Kelley, N.K.H. Khoo, N.J. Hundley, U.Z. Malik, B.A. Freeman, M.M.

Tarpey, (2010). Hydrogen Peroxide is the Major Oxidant Product of Xanthine

Oxidase. Free Rad. Biol. Med. 48: 493-498.

130. H. Lin, S. Tsai, C. Chen, Y. Chang, C. Lee, Z. Lai, C. Lin. (2008). Structure-

Activity Relationship of Coumarin Derivatives on Xanthine Oxidase-

Inhibiting and Free Radical-Scavenging Activities. Biochem. Pharm. 75:

1416-1425.

131. Y. Niu, H. Zhu, J. Liu, H. Faw, L. Sun, W. Lu, X. Liu, L. Li. (2011).

3,5,2ʹ,4ʹ-Tetrahydroxychalcone, a New Non-purine Xanthine Oxidase

Inhibitor. Chemico-Biol. Interac. 189: 161-166.

132. T. Unno, A. Sugimoto, T. Kakuda. (2004). Xanthine Oxidase Inhibitors from

the Leaves of Lagerstroemia speciosa (L.). Pers. J. Ethno. 93: 391-395.

133. D.E.C.V. Hoorn, R.J. Nijveldt, P.A.M. van Leeuwen, Z. Hofman, L.

M’Rabet, D.B.A. de Bont, K. van Norren. (2002). Accurate Prediction of

Xanthine Oxidase Inhibition Based on the Structure of Flavonoids. Euro. J.

Pharm. 451: 111-118.

134. Fiebelkorn, K.R., Crawford, S.A., McElmel, M.L., Jorgensen, J.H. (2003).

Practical Disk Diffusion Method for Detection of Inducible Clindamycin

Resistance in Staphylococcus aureus and Coagulase-Negative Staphylococci.

J. Clin. Mirob. 41 (10): 4740-4744.

135. Pessini, G. L., Filho, B. P. D., Nakamura, C. V., and Cortez, D. A. G.

(2003).Antibacterial Activity of Extracts and Neolignans from Piper regnellii

(Miq.) C.DC. var. pallescens (C.DC.) Yunck. Mem. Inst. Oswaldo Cruz. 98:

1115-1120.

136. Abubakar, E.M. (2009). Antibacterial Efficacy of Stem Bark Extracts of

Magifera indica Against Some Bacteria Associated with Respiratory Tract

Infections. Sci. R. Essay. 4 (10):1031-1037.

Page 43: SYNTHESIS AND BIOACTIVITY STUDIES OF FLAVONOID …eprints.utm.my/id/eprint/31956/1/NurAthirahHashimMFS2012.pdf · The derivatives of both ketone and aldehyde were coupled and reacted

172

137. Vogel, A.I. and Furniss, B.S. (1978). Vogel's Textbook of practical organic

chemistry, including qualitative organic analysis. (4th

Ed). English Language

Book Society.

138. Loo, A.Y., Jain, K. And Darah, I. (2007). Antioxidant and Radical

Scavenging Activites of the pyroligneus Acid from a Mangrove Plant,

Rhozophora apiculata. Food Chem. 104: 300-307.

139. Stelt, M., Noordermeer, M.A., Kiss, T., Zadelhoff, G., Marghart, B., Veldink,

G.A. and Vligenthart, F.G.J. (200). Formation of New Class of Oxylipins

from N-acyl(ethanol)amines by the Lipoxygenase Pathway. Eur. J. Biochem.

267: 2000-2007.

140. Kim, J.H. and Kim, M.Y. (2011). Effect of Citrus Waste Substrate on the

Production of Bioactive Component, and Antioxidant and Antitumor Activity

of Grifola frondosa. Life. Sci. J. 8 (3): 564-571.

141. Mbaveng, A.T., Ngameni, B., Kuete, V., Simo, I.K., Ambassa, P., Roy, R.,

Bezabih, M., Etoa, F., Ngadjui, B.T., Abegaz, B.M., Meyer, J.J.M., Lall, N.

and Beng, P. (2008). Antimicrobial Activity of the Crude Extracts and Five

Flavonids from the Twigs of Dorstenia barteri (Moraceae). J. Etho. 116: 483-

489.