svl short course module 2 -- sv planar gratingsemlab.utep.edu/scsvl/svl short course module 2 --...

12
1/22/2018 1 Pioneering 21 st Century Electromagnetics and Photonics Module 2 – Spatially-Variant Planar Gratings Course Website: http://emlab.utep.edu/scSVL.htm EM Lab Website: http://emlab.utep.edu/ Short Course Lecture Outline The grating vector Grating phase Generating spatially-variant planar gratings Slide 2 SVL Short Course -- Module 2

Upload: others

Post on 17-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

1

Pioneering 21st Century Electromagnetics and Photonics

Module 2 –Spatially-Variant Planar Gratings

Course Website:http://emlab.utep.edu/scSVL.htm

EM Lab Website:http://emlab.utep.edu/

Short CourseLecture Outline

• The grating vector

• Grating phase

• Generating spatially-variant planar gratings

Slide 2SVL Short Course -- Module 2

Page 2: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

2

The Grating Vector .K

Short Course

The Grating Vector in Two Dimensions

Slide 4SVL Short Course -- Module 2

• The grating vector is very similar to a wave vector .

• The direction of is perpendicular to the grating planes.

• The magnitude of is 2 divided by the period of the grating .

• Given the slant angle , it is calculated as

• It allows a convenient calculation of the analog grating.

K

k

K

K

cos rK

2K

x

2ˆ ˆcos sinx yaK a

x

y

Page 3: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

3

Short Course

The Grating Vector in Three Dimensions

Slide 5SVL Short Course -- Module 2

K

2K

ˆ ˆ ˆx y zK x K y K zK

cos K r

ˆ ˆ ˆr xx yy zz

position vector

Short Course

The Analog Grating

Slide 6SVL Short Course -- Module 2

x

x

y

For simplicity, calculation of the analog grating will be written as

cos

or

Re exp

a

a

r r

r j r

K

K

If instead you wish to generate an actual analog grating, it will need to be scaled to convey physical permittivity values.

avg cos Kr r

Page 4: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

4

Short Course

The Binary Grating

7

cosa r K r

Generation of the grating using a cosine function gives us a smooth analog profile.

This requires functionally grading the material properties to realize this. That is hard.

cos 0b r K r

We can use a threshold to convert the analog profile to a binary grating.

This us much easier to physically realize.

cos 0.8b r K r

We can adjust the threshold value to control the duty cycle, or fill fraction, of the grating.

Analog Grating Binary Grating Controlling the Fill Fraction

SVL Short Course -- Module 2

Grating Phase r

Page 5: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

5

Short Course

Concept of Grating Phase

9

Here we make an analogy with a standard wave. A wave propagates in the direction of the wave vector .

0 cosE r E k r t

As the wave propagates, it accumulates phase which is a function that increases in the direction of . The phase results from the wave propagating with wave vector and we could alternatively reconstruct the wave just from the phase.

0 cosE r E r

For gratings, the grating vector serves a similar purpose as the wave vector does for waves.

a

k r K r

r r

E r r

or r r or k r K r

or aE r r

SVL Short Course -- Module 2

k

k

k

r k r t

K

k

Short Course

Definition of Grating Phase

SVL Short Course -- Module 2 10

+ =

xK X yK Y x yr K x K y

We can think of a grating as a wave because it has the same mathematical form. As a wave propagates it accumulates phase. The wave can be calculated from just the phase. Think of the grating phase this way…

cos cosa r K r r x yr K r K x K y

cos

Note: Unfortunately, this intuitive definition of grating phase only holds when is a constant and not a function of position.

K

Page 6: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

6

Short Course

Problem of a Chirped Grating

11

Suppose we wish to generate the following chirped grating with period (z).

0 1 2z z z

This 1D grating is described by the following grating vector function.

0

2 2K z

z z

What happens when we try to calculate the grating using                     .

0 0

2 2cos cos cosr z K z z z

z

The argument in the cosine is a constant so we do not even generate a grating here.

0 02

SVL Short Course -- Module 2

cos K r

Short Course

Conclusion From the Chirped Grating

12

When the grating vector is a function of position, we can no longer calculate the grating directly from it.

cosa r K r r

SVL Short Course -- Module 2

Instead, we must generate the grating through the intermediate parameter of the grating phase.

cosa r r

However, we must adopt a more rigorous definition of grating phase.

r K r

Key equation

r K r r

Page 7: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

7

Short Course

Revised Solution for Chirped Gratings

13

Now let’s construct the chirped grating using the grating phase.

0

1

0 0

2

2 2z

K r

d

dz z

z dz dzz z

01

10 0

2

2 2ln ln ln1

z

z

dzz

z z z

The analog grating is then

0

2cos cos lna z z z

This term is just a constant. Since it is phase, we are free to choose whatever is convenient. Here we choose zero.

SVL Short Course -- Module 2

Generating Spatially-Variant Planar Gratings

Page 8: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

8

Short Course

Procedure for Generating Spatially-Variant Planar Gratings

SVL Short Course -- Module 2 15

1. Define the grating vector function           , or K‐function. K r

2ˆ ˆcos sinx yK r a r a r

r

2. Calculate the grating phase            from           . K r

r

r K r

3. Calculate the analog grating from the grating phase.

cosa r r

4. Calculate the binary grating from the analog grating.

1

2

a

ba

r rr

r r

Short Course

Spatially-Variant Planar Gratings

SVL Short Course -- Module 2 16

r r r

No spatial variance

r r r

Spatially Variant 

Orientation

Spatially Variant Period

Spatially Variant 

Threshold

Spatially Variant 

Everything

Page 9: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

9

Short Course

Build Input Functions

SVL Short Course -- Module 2 17

We need two things to build the K‐function:

1. Orientation of the grating as a function of position,         .

2. Period of the grating as a function of position,          .

r

r

1.0r 1tanr y x

04

2

% GRATING PARAMETERSa = 1;er1 = 2.5;er2 = 1.0;gth = 0;

% GRID PARAMETERSSx = 5*a;Sy = Sx;Nx = 100;Ny = round(Nx*Sy/Sx);

% CALCULATE GRIDdx = Sx/Nx;dy = Sy/Ny;xa = [1:Nx]*dx;ya = [1:Ny]*dy;[Y,X] = meshgrid(ya,xa);

% SPATIALLY-VARIANT PARAMETERSPER = a*ones(Nx,Ny);THETA = atan2(Y,X);

Short Course

Calculate the K-Function

SVL Short Course -- Module 2 18

The K-function is calculated directly from the input functions.

yK r

0 2

a

a

xK r

0 2

a

a

% CALCULATE K-FUNCTIONKx = 2*pi./PER.*cos(THETA);Ky = 2*pi./PER.*sin(THETA);

2cos

2sin

x

y

K r rr

K r rr

Page 10: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

10

Short Course

Calculate Grating Phase

19

We calculate the grating phase from the K-function as a best fit.

% COMPUTE GRATING PHASEPHI = svlsolve(Kx,Ky,dx,dy);

SVL Short Course -- Module 2

r

x x

y y

r K

D kΦ

D k

Short Course

A More Efficient Grid Strategy

20

Observe how smooth the grating phase function is compared to the final grating.

We can get away with a much coarser grid up to the point where the planar grating is calculated.

SVL Short Course -- Module 2

r b r

Coarse GridPER, THETA, K, PHI

Fine GridFF, PHI2, ERA, ERB

Page 11: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

11

Short Course

Calculate Analog Grating

21

The analog grating is calculated directly from the grating phase.

% COMPUTE ANALOG GRATINGERA = cos(PHI);

SVL Short Course -- Module 2

a r

cosa r r

Short Course

Calculate Binary Grating

22

The binary grating is calculated directly from the analog grating using the threshold technique.

% COMPUTE BINARY GRATINGERB = er1*(ERA <= gth) + er2*(ERA > gth);

SVL Short Course -- Module 2

b r

1

2

a

ba

r rr

r r

Page 12: SVL Short Course Module 2 -- SV planar gratingsemlab.utep.edu/scSVL/SVL Short Course Module 2 -- SV... · 2018. 1. 22. · SVL Short Course -- Module 2 r x x yy rK Dk Φ Dk Short

1/22/2018

12

Short Course

Controlling Fill Fraction Through the Threshold Function

SVL Short Course -- Module 2 23

f = 0 f = 0.2 f = 0.4 f = 0.8f = 0.6 f = 1.0

= 1.0 = 0.8 = 0.3 = -0.8 = -0.3 = -1.0

Analog Grating a r

We can estimate the threshold value in order to realize a given fill fraction f of 1.

1

2

a

ba

r rr

r r

cosr f r

12