supplementary information for inductive effect between … · 2020-05-25 · supplementary...

12
Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal Hydroxide Nanosheets Enables Highly Efficient Oxygen Evolution Reaction Yulin Xing a , Jiangang Ku b , Weng Fu c , Lianzhou Wang c* , Huihuang Chen a* a Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China. b School of Zijin Mining, Fuzhou University, Fuzhou 350108, China. c School of Chemical Engineering, The University of Queensland, Brisbane Qld 4072, Australia. * Correspondent authors: Tel: + 86 183 5514 9603, Fax: +86-551-63606266, Email: [email protected] (Huihuang Chen) Email: [email protected] (Lianzhou Wang)

Upload: others

Post on 22-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Supplementary information for

Inductive Effect between Atomically Dispersed Iridium and

Transition-Metal Hydroxide Nanosheets Enables Highly Efficient

Oxygen Evolution Reaction

Yulin Xinga, Jiangang Kub, Weng Fuc, Lianzhou Wangc*, Huihuang Chena*

aHefei National Laboratory for Physical Sciences at the Microscale, University of Science and

Technology of China, Hefei 230026, China.

bSchool of Zijin Mining, Fuzhou University, Fuzhou 350108, China.

cSchool of Chemical Engineering, The University of Queensland, Brisbane Qld 4072, Australia.

* Correspondent authors:

Tel: + 86 183 5514 9603, Fax: +86-551-63606266, Email: [email protected] (Huihuang Chen)

Email: [email protected] (Lianzhou Wang)

Page 2: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Figure S1. HADDF-STEM image of 6% Ir-Ni(OH)2. Further doping over 4% resulted in large-sized

Ir particles.

Figure S2. Overpotentials required for each sample at the current density of 10 mA cm-2. 4% Ir-

Ni(OH)2 required the lowest overpotential to reach 10 mA cm-2.

2 nm

Page 3: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Figure S3. (a) TEM image, (b) HADDF-STEM image, and XRD pattern of spent 4% Ir-Ni(OH)2

after the stability test. Spent 4% Ir-Ni(OH)2 retained the nanosheet morphology/structure and

maintained the uniform distribution of atomic Ir species.

Figure S4. The experimentally measured and theoretically calculated amount of molecular oxygen

versus time for 4% Ir-Ni(OH)2 at the current density of 10 mA cm-2. The experimentally quantified

rate of O2 evolution matches well with the theoretically calculated value.

2 nm100 nm

a b c

Page 4: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Figure S5. Overall water splitting tests of 4% Ir-Ni(OH)2. (a) Schematic diagram of the overall water

splitting device. (b) The polarization curves of 4% Ir-Ni(OH)2||Pt@C for overall water splitting in the

two-electrode cell in 1.0 M KOH electrolyte. The commercial IrO2||Pt@C coupled electrolyzer was

used as a reference. (c) Chronopotentiometric curve of 4% Ir-Ni(OH)2||Pt@C for overall water

splitting at 10 mA cm−2 for 20 h.

Figure S6. Brunauer-Emmett-Teller (BET) surface area/electrochemical surface area (ECSA)

normalized current densities at η=300 mv. 4% Ir-Ni(OH)2 demonstrated higher intrinsic catalytic

activity toward OER compared to Ni(OH)2.

b ca

Page 5: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Figure S7. Double layer capacitance (Cdl) measurements in 1.0 M KOH electrolyte. CVs measured

in the non-Faradaic region of -0.10 to 0.0 V vs AgCl for Ni(OH)2 (a) and 4% Ir-Ni(OH)2 (c). Cdl

calculated by using varying scan rates from 20 to 100 mV s-1 for Ni(OH)2 (b) and 4% Ir-Ni(OH)2 (d).

Figure S8. The illustration of inductive effect between Ir sites and Ni sites.

a b

c d

Ni(OH)2 Ni(OH)2

4% Ir-Ni(OH)2 4% Ir-Ni(OH)2

Page 6: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Figure S9. The polarization curves of 4% Ir-Fe(OH)3 and Fe(OH)3 for OER in 1.0 M KOH. The

current density of 4% Ir-Fe(OH)3 and Fe(OH)3 did not reach 10 mA cm-2 in the applied potential

range.

Figure S10. FTIR spectra of Ni(OH)2 and 4% Ir-Ni(OH)2. Ir doping into Ni(OH)2 enhanced the

adsorption of oxygen containing species on the catalyst surface.

Page 7: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Figure S11. Nyquist plots (inset: enlarged semicircle diameter) of 4% Ir-Ni(OH)2 and Ni(OH)2.

Figure S12. XRD patterns of 4% Ir-α-Co(OH)2, 4% Ir-β-Co(OH)2, 4% Ir-CoMn LDH, and the

corresponding undoped counterparts.

Page 8: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Figure S13. TEM images of α-Co(OH)2 (a), 4% Ir-α-Co(OH)2 (b), β-Co(OH)2 (c), 4% Ir-β-Co(OH)2

(d), Ir-CoMn LDH (e), and 4% Ir-CoMn LDH (f).

200 nm 200 nm

200 nm 200 nm

200 nm 200 nm

a b

c

e

d

f

Page 9: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Table S1. Comparison of OER performance of IrO2 reported in the literature.

Catalyst Electrolyte Overpotential (mV)

@ 10 mA cm-2 Reference

IrO2 1.0 M KOH 394 [1]

IrO2 1.0 M KOH 320 [2]

IrO2 1.0 M KOH 406 [3]

IrO2 1.0 M KOH 352 [4]

IrO2 1.0 M KOH 322 [5]

IrO2 1.0 M KOH 335 [6]

IrO2 1.0 M KOH 330 [7]

IrO2 1.0 M KOH 440 [8]

IrO2 1.0 M KOH 427 [9]

IrO2 1.0 M KOH 332 This work

Page 10: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Table S2. Comparison of OER performance of recent publications in 1.0 M KOH aqueous solution.

Catalysts Overpotential (mV)

@ 10 mA cm-2 Tafel slope (mV dec-1) Ref.

4% Ir-Ni(OH)2 235 58.4 This work

CoFePx 323 58 [10]

Co-PDY 270 99 [11]

CoFe2O4 NSs 275 42.1 [12]

NiO/CN 261 58.9 [13]

MoOx@N-doped MoS2−x 270 61 [14]

Tannin-NiFe/CP 290 28 [15]

Co1−xVxOOH 190 39.6 [16]

NiFe@g-C3N4/CNTs 326 67 [17]

Ni(OH)2/NiOOH 256 41 [18]

Ni0.67Fe0.33/C 210 35.1 [19]

Ni0.8Fe0.2 NSs 206 64 [20]

HHTP@ZIF-67 238 104 [21]

NiFe-LDH 280 49.4 [22]

NixB 380 89 [23]

SnCo0.9Fe0.1(OH)6-Ar 300 42.3 [24]

CoFe LDHs-Ar 266 37.9 [25]

CoO 330 44 [26]

Page 11: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

References:

[1] T. Wang, H. Chen, Z. Yang, J. Liang, S. Dai, J. Am. Chem. Soc. 2020, 142, 4550.

[2] L. Dai, Z.N. Chen, L. Li, P. Yin, Z. Liu, H. Zhang, Adv. Mater. 2020, 32, 1906915.

[3] Z. Zhuang, Y. Wang, C.Q. Xu, S. Liu, C. Chen, Q, Peng, Z. Zhuang, H, Xiao, Y. Pan, S. Lu,

R. Yu, W.C. Cheong, X. Cao, K. Wu, K. Sun, Y. Wang, D. Wang, J. Li, Y. Li, Nat. Commun.

2019, 10, 4875.

[4] J. Xiong, H. Zhong, J. Lia, X. Zhang, J. Shi, W. Cai, K. Qu, C. Zhu, Z. Yang, S. P. Beckmanc,

H. Cheng, Appl. Catal. B 2019, 256, 117817.

[5] X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G. I. N. Waterhouse,T. Zhang, Adv. Energy Mater. 2019,

9, 1900881.

[6] X. Zheng, Y. Chen, X. Zheng, G. Zhao, K. Rui, P. Li, X. Xu, Z. Cheng, S.X. Dou, W. Sun,

Adv. Energy Mater. 2019, 9, 1803482.

[7] X. Luo, Q. Shao, Y. Pi, X. Huang, ACS Catal. 2019, 9, 1013-1018.

[8] Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen, M. Liu, Adv.

Funct. Mater. 2019, 29, 1901783.

[9] K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B.W. Mao, X. Zhang, J. Fransaer, Adv.

Funct. Mater. 2019, 29, 1900315.

[10] C. Yang, M. Cui, N. Li, Z. Liu, S. Hwang, H. Xie, X. Wang, Y. Kuang, M. Jiao, D. Su, Nano

Energy 2019, 103855.

[11] H. Huang, F. Li, Y. Zhang, Y. Chen, J. Mater. Chem. A 2019, 7, 5575.

[12] H. Fang, T. Huang, D. Liang, M. Qiu, Y. Sun, S. Yao, J. Yu, M. M. Dinesh, Z. Guo, Y. Xia, J.

Mater. Chem. A 2019, 7, 7328.

[13] C. Liao, B. Yang, N. Zhang, M. Liu, G. Chen, X. Jiang, G. Chen, J. Yang, X. Liu, T. S. Chan,

Page 12: Supplementary information for Inductive Effect between … · 2020-05-25 · Supplementary information for Inductive Effect between Atomically Dispersed Iridium and Transition-Metal

Adv. Funct. Mater. 2019.

[14] Y. Wang, S. LIu, X. Hao, S. Luan, H. You, J. Zhou, D. Song, D. Wang, H. Li, F. Gao, J. Mater.

Chem. A 2019, 7, 10572.

[15] Y. Shi, Y. Yu, Y. Liang, Y. Du, B. Zhang, Angew. Chem., Int. Ed. 2019, 58, 3769.

[16] Y. Cui, Y. Xue, R. Zhang, J. Zhang, X. a. Li, X. Zhu, J. Mater. Chem. A 2019, 7, 21911.

[17] D. Liu, S. Ding, C. Wu, W. Gan, C. Wang, D. Cao, Z. ur Rehman, Y. Sang, S. Chen, X. Zheng,

J. Mater. Chem. A 2018, 6, 6840.

[18] M. Lee, H.-S. Oh, M. K. Cho, J.-P. Ahn, Y. J. Hwang, B. K. Min, Appl. Catal. B 2018, 233,

130.

[19] S. Yin, W. Tu, Y. Sheng, Y. Du, M. Kraft, A. Borgna, R. Xu, Adv. Mater. 2018, 30, 1705106.

[20] M. Yao, N. Wang, W. Hu, S. Komarneni, Appl. Catal. B 2018, 233, 226.

[21] R. Zhu, J. Ding, Y. Xu, J. Yang, Q. Xu, H. Pang, Small 2018, 14, 1803576.

[22] L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, X. W. Lou, Angew. Chem., Int. Ed. 2018, 57, 172.

[23] J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de la Mata, J. Arbiol, M. Muhler, B. Roldan

Cuenya, W. Schuhmann, Adv. Energy Mater. 2017, 7, 1700381.

[24] D. Chen, M. Qiao, Y. R. Lu, L. Hao, D. Liu, C. L. Dong, Y. Li, S. Wang, Angew. Chem., Int.

Ed. 2018, 57, 8691.

[25] Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao, S. Wang, Angew. Chem., Int. Ed.

2017, 56, 5867.

[26] T. Ling, D.-Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X.-W. Du, Z. Hu, M.

Jaroniec, Nat. Commun. 2016, 7, 12876.