supp78 biodiversity pilbaramuseum.wa.gov.au/sites/default/files/suppwamuseum_2009... · 2015. 7....

87
Records of the Western Australian Museum, Supplement 78: 3–89 (2009). Introduction to the Pilbara Biodiversity Survey, 2002–2007 N.L. McKenzie, S. van Leeuwen and A.M. Pinder Department of Environment and Conservation, PO Box 51, Wanneroo, Western Australia 6946, Australia. Email: [email protected] Abstract – We describe the origins, relevance, aims, specifications and sampling strategy of a six-year biodiversity survey of Western Australia’s Pilbara biogeographic region (179,000 km 2 ). During the project, 422 terrestrial sites were sampled for perennial and annual vascular plants, of which 304 were also sampled for small ground-dwelling mammals, birds, reptiles, frogs, ground-dwelling spiders, ants, beetles and scorpions. Ninety-eight sites on waterbodies were sampled for aquatic invertebrates, macro- and microphytes and the fringing riparian vegetation; 508 boreholes were sampled for stygofauna; 69 sites were sampled for microbats; and mammal bone material from 15 late Holocene deposits was identified. An introduction to literature on the region’s physical environments and recent land-use history is provided, along with descriptions of the Pilbara’s four sub-regions in terms of their different landforms and vegetations. BACKGROUND The Pilbara Region of Western Australia (WA) is important to the economic development of Australia, particularly because of its internationally significant reserves of iron ore and the rapidly expanding resources sector they support. The region comprises ancient and striking landscapes in an arid setting, and its biodiversity has elements of tropical, desert and semi-arid southern rangeland floras and faunas, as well as many local endemic species. It is the location of two major national parks and several other conservation reserves, but their effectiveness in conserving the region’s biodiversity has not been properly assessed. The biota of the Pilbara is still poorly documented, despite a considerable amount of localised survey by government institutions, tertiary institutions, and mining companies or their environmental consultants. Examples include Burbidge (1959), Integrated Environmental Services (1980), Fox and Dunlop (1983), Muir (1983), Dunlop and Porter (1985), Anon. (1991), ecologia Environmental Consultants (1997), Eberhard and Humphreys (1999), Trudgen and Casson (1998), van Etten (2000) and Biota Environmental Sciences (2002). Although approximately 800 biological survey reports had been compiled for parts of the region prior to 2005 (Higgs 2005; How and Cowan 2006), only two broad-scale biological studies are available: a vegetation map at 1:1,000,000 scale with explanatory notes (Beard 1975), and a land classification, mapping and pastoral resource evaluation of the region (van Vreeswyk et al. 2004). Both focus on patterns in vegetation and dominant flora, rather than floristic composition or fauna. This hampers assessments of the likely environmental impacts of many economically important development projects and pastoral diversification proposals, as well as the development of a comprehensive, adequate and representative reserve system. New species of terrestrial plants and vertebrates, as well as large numbers of terrestrial and aquatic invertebrates, are still being discovered in the Pilbara. For instance, 12 new taxa of wattle (Acacia) have recently been described from the Pilbara (Maslin and van Leeuwen 2008), six of which are endemic. Similarly, recent studies have revealed that the region has a rich fauna of subterranean invertebrates (Eberhard et al. 2005; Biota Environmental Sciences 2007; Harvey et al. 2008), characterised by localised endemism. Broad-scale exploitation of Australia’s natural habitats to meet the economic growth demanded by expanding human populations has resulted in widespread declines in biodiversity, including its composition, biomass and productivity (Woinarski et al. 2000). Pilbara landscapes have been modified by pastoral use, mining activities and altered fire regimes for more than a century. During this period, over-grazing and too-frequent wildfires have changed vegetation cover and in many instances stripped the upper layers from soil profiles (Payne and Tille 1992), while a range of exotic animals and plants has been introduced, with detrimental effects on the region’s biodiversity. Desktop assessments of the region’s rangeland condition (Woinarski et al. 2000), environmental health (Morgan 2001) and conservation reserve system (McKenzie et al . 2003) have revealed DOI: 10.18195/issn.0313-122x.78(1).2009.003-089

Upload: others

Post on 01-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Records of the Western Australian Museum, Supplement 78: 3–89 (2009).

Introduction to the Pilbara Biodiversity Survey, 2002–2007

N.L. McKenzie, S. van Leeuwen and A.M. Pinder

Department of Environment and Conservation, PO Box 51, Wanneroo,

Western Australia 6946, Australia. Email: [email protected]

Abstract – We describe the origins, relevance, aims, specifications and sampling strategy of a six-year biodiversity survey of Western Australia’s Pilbara biogeographic region (179,000 km2). During the project, 422 terrestrial sites were sampled for perennial and annual vascular plants, of which 304 were also sampled for small ground-dwelling mammals, birds, reptiles, frogs, ground-dwelling spiders, ants, beetles and scorpions. Ninety-eight sites on waterbodies were sampled for aquatic invertebrates, macro- and microphytes and the fringing riparian vegetation; 508 boreholes were sampled for stygofauna; 69 sites were sampled for microbats; and mammal bone material from 15 late Holocene deposits was identifi ed. An introduction to literature on the region’s physical environments and recent land-use history is provided, along with descriptions of the Pilbara’s four sub-regions in terms of their different landforms and vegetations.

BACKGROUND

The Pilbara Region of Western Australia (WA) is important to the economic development of Australia, particularly because of its internationally signifi cant reserves of iron ore and the rapidly expanding resources sector they support. The region comprises ancient and striking landscapes in an arid setting, and its biodiversity has elements of tropical, desert and semi-arid southern rangeland fl oras and faunas, as well as many local endemic species. It is the location of two major national parks and several other conservation reserves, but their effectiveness in conserving the region’s biodiversity has not been properly assessed.

The biota of the Pilbara is still poorly documented, despite a considerable amount of localised survey by government institutions, tertiary institutions, and mining companies or their environmental consultants. Examples include Burbidge (1959), Integrated Environmental Services (1980), Fox and Dunlop (1983), Muir (1983), Dunlop and Porter (1985), Anon. (1991), ecologia Environmental Consultants (1997), Eberhard and Humphreys (1999), Trudgen and Casson (1998), van Etten (2000) and Biota Environmental Sciences (2002). Although approximately 800 biological survey reports had been compiled for parts of the region prior to 2005 (Higgs 2005; How and Cowan 2006), only two broad-scale biological studies are available: a vegetation map at 1:1,000,000 scale with explanatory notes (Beard 1975), and a land classification, mapping and pastoral resource evaluation of the region (van Vreeswyk et al. 2004). Both focus on patterns in vegetation and dominant fl ora, rather

than fl oristic composition or fauna. This hampers assessments of the likely environmental impacts of many economically important development projects and pastoral diversification proposals, as well as the development of a comprehensive, adequate and representative reserve system. New species of terrestrial plants and vertebrates, as well as large numbers of terrestrial and aquatic invertebrates, are still being discovered in the Pilbara. For instance, 12 new taxa of wattle (Acacia) have recently been described from the Pilbara (Maslin and van Leeuwen 2008), six of which are endemic. Similarly, recent studies have revealed that the region has a rich fauna of subterranean invertebrates (Eberhard et al. 2005; Biota Environmental Sciences 2007; Harvey et al. 2008), characterised by localised endemism.

Broad-scale exploitation of Australia’s natural habitats to meet the economic growth demanded by expanding human populations has resulted in widespread declines in biodiversity, including its composition, biomass and productivity (Woinarski et al. 2000). Pilbara landscapes have been modifi ed by pastoral use, mining activities and altered fi re regimes for more than a century. During this period, over-grazing and too-frequent wildfi res have changed vegetation cover and in many instances stripped the upper layers from soil profi les (Payne and Tille 1992), while a range of exotic animals and plants has been introduced, with detrimental effects on the region’s biodiversity. Desktop assessments of the region’s rangeland condition (Woinarski et al. 2000), environmental health (Morgan 2001) and conservation reserve system (McKenzie et al. 2003) have revealed

DOI: 10.18195/issn.0313-122x.78(1).2009.003-089

Page 2: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

4 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

ongoing degrading processes at levels equivalent to the other arid pastoral regions of Australia. Of the original mammal fauna, 15% is now extinct in the region, and 42 of the region’s 88 vegetation-types (mapped at 1:250 000 scale) do not occur in conservation estate. Indeed, only 0.8% of the region’s Fortescue sub-region is reserved for nature conservation.

Spatially explicit, regional-scale biodiversity models are essential to achieve sustainable development, in which the needs of biodiversity, economic development and human populations are met. Regional biodiversity survey data provide a framework for assessing the environmental impacts of development proposals by providing a quantitative basis for predicting species’ occurrences throughout a region. They provide a context for extrapolating the results of localised surveys and explicit inputs for land-use planning, including cost-effi cient gap-analysis of a region’s conservation reserve system. Without a regional context, intensive localised surveys may exaggerate the conservation importance of a site or of species found there. For example, borefi elds are being planned in many parts of the Pilbara to extract groundwater for economically important mining and downstream processing projects and to supplement town water supplies. Playford (2001) recommended that regional and site-specific surveys of Pilbara stygofauna were essential to resolve difficulties in assessing, under State and Commonwealth environment legislation, the impact of mine de-watering and/or groundwater extraction on stygofauna. Reliable lists of threatened species and ecological communities compiled at a regional scale underpin cost-effective recovery programs.

The importance of a comprehensive regional biodiversity framework for impact assessment and sustainable natural resource development has been articulated in the advice provided to gover n me nt s by t he Env i ron me nt a l Protection Authority for a number of Pilbara development proposals. For example, in the assessment of the West Angelas Iron Ore Project, the Environmental Protection Authority noted: ‘The assessment of developments in the Pilbara is hampered the absence of consolidated information on the regional distribution of terrestrial fauna, subterranean fauna and an adequate database of signifi cant vegetation associations in the region.’ The Authority subsequently recommended: ‘a project to consolidate vegetation and fauna data for the Pilbara to facilitate assessment of future proposals should be initiated …’ (Environmental Protection Authority 1999).

Research has demonstrated that a range of plant and animal groups must be surveyed in order

to reveal actual biodiversity patterns across the landscape (e.g. Ferrier and Watson 1997; Fleishman et al. 2002; McKenzie et al. 2004) and thus make conservation programs cost-effective. Regional biodiversity surveys document the distribution and conservation status of biotic components selected to represent diverse mobility, longevity, daily energy and moisture requirements, nutritional roles, biomasses and reproductive strategies.

The Western Austral ian Department of Environment and Conservation, with the assistance of the Western Australian Museum, has a long-standing commitment to undertaking regional biogeographic surveys of Western Australia. Since the 1970s, there have been major regional surveys of the Eastern Goldfi elds, Nullarbor, Kimberley rainforests, southern Carnarvon Basin and the Wheatbelt (e.g. McKenzie et al. 1991a; Burbidge et al. 2000a; Keighery et al. 2004). Other major surveys cover parts of the Great Sandy Desert, Gibson Desert, Little Sandy Desert, Dampier Peninsula, southern forests and numerous existing and proposed conservation reserves (e.g. Miles and Burbidge 1975; Burbidge and McKenzie 1983; Keighery et al. 2007), though most of these had limited taxonomic scope compared to more recent surveys.

RATIONALE

By 2000, the Pi lbara’s substant ia l and economically important mineral industries were expanding rapidly and the Western Australian Government was becoming concerned about environmental issues. The Pilbara Development Commission’s draft Regional Policy Statement reported: ‘Research and development is a key to a healthy and sustainable future. To maximise the resources available, partnerships will be sought with the private sector, universities and the Commonwealth Government to research regional … environmental issues and opportunities.’ The Premier’s Science Council recommended that Government ‘Increase the funding available to agencies for strategic biodiversity and taxonomic research ...’ and observed that ‘Although CALM … [Western Australian Department of Conservation and Land Management, now WA Department of Environment and Conservation, DEC] … is undertaking regional surveys, this effort is not keeping up with the requirements of the Environmental Protection Authority to assess development proposals or the needs of researchers and communities involved in environmental remediation … the high level of biodiversity in the State and the need for comprehensive surveys of biota will place increasing importance on the role of museum staff … [and] … funding is required…to enable these researchers … to participate in surveys and conduct taxonomic research.’

Similar policies were being drafted in a more

Page 3: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 5

general context during that period. To ‘… Ensure the protection of biodiversity and ecological integrity on a regional scale…’ (Department of Local Government and Regional Development’s draft Regional Policy Statement for WA, November 2002); to ‘Complete the program of comprehensive bioregional surveys designed to establish an inventory of the State’s terrestrial and aquatic biodiversity and to identify areas of signifi cance for nature conservation, and incorporate a CAR [Comprehensive, Adequate and Representative] reserve system in … high priority bioregions …’ (Western Australian Government Environment Policy Paper, ‘New Directions’); ‘Government continues to expand the conservation estate to achieve a [CAR] reserve system …’ and will ‘Establish and maintain a whole-of-government environmental database that incorporates the results of the ongoing biological survey and monitoring program …’. (Western Australian Government 2002).

An explicit basis for minimising the impact of resource development and land use on Pilbara biodiversity would require a quantitative, region-wide understanding of biodiversity patterns. To build this context, a program of fi eld sampling was designed for this survey, to:

• Provide systematic baseline data on the current distribution of biota across the region as a regional perspective on nature conservation prior it ies and a f ramework for future monitoring of regional-scale trends. To achieve this, the project had to include taxonomic studies of relevant plant and animal groups with poorly resolved phylogenies at the species-level such as lizards and aquatic invertebrates, especially those describing species that defi ne groundwater communities.

• Provide a more detailed understanding of plant and animal distributions: an explicit context for assessing the conservation status and distribution of species and communities and the signifi cance of localised occurrences of species, on which to base management actions and determine the conservation implications of development proposals.

• Include a quantitative assessment of the existing reserve system to identify gaps in its coverage of species and communities and identify areas that effi ciently improve its comprehensiveness, adequacy and representativeness. This reserve system is the primary nature conservation strategy, and a basis for promoting and attracting ecotourism to the spectacular and world-class scenery and wilderness values found throughout the Pilbara.

• Make the results of the survey available in a usable form to government, industry and the wider community.

The regional survey to provide these data was first proposed in September 1992 by the Environmental Protection Authority who, in their recommendations to government in the assessment of the Marandoo Mine and Central Pilbara Railway, stated: ‘… an integrated biological survey should be carried out to determine the distribution of signifi cant species of fl ora and fauna and geographically restricted vegetation communities … in the Central Pilbara Region’ and ‘Data collection should begin without delay’ (Environmental Protection Authority 1992).

The project’s eventual specifications involved surveying the vertebrates and an array of invertebrate groups at 304 terrestrial zoology sites, plants at 422 sites (304 of which were also terrestrial zoological sites), microbats at 69 sites, and invertebrates and flora at 98 surface aquatic sites scattered across the region. It also included a survey of mammal bones from late Holocene deposits located within the region. A stygofauna component was not included in the plan until 2000, when an application to dewater the calcrete aquifer associated with BHP Billiton’s ‘Ore Body 23’, near Newman, was presented to the Environmental Protection Authority. By early 2001, after including a stygofauna survey of 350 ground-water access points in the specifi cation, CALM’s policy directorate had decided to proceed with the project, and collaborations with Western Australian Museum and the Commonwealth Government’s Natural Heritage Trust were being negotiated. Fieldwork on the stygofaunal component of the survey commenced in July 2002, while other components commenced in March 2003.

AIM

The overall aim was to carry out the first comprehensive biodiversity survey of the Pilbara region. Specifi c aims were to:

• Provide systematic region-wide site-based survey data on the current distribution of the biota across the region, and a framework for future monitoring of regional-scale trends.

• Sample a range of organisms that, in combination, is wide enough to provide a spatially explicit biodiversity model of the region.

• Analyse these data in relation to the region’s physical environments, and interpret them in terms of earlier species records.

• Identify gradients in community composition, and the environmental factors related to these gradients, to provide a better understanding of plant and animal distributions.

• Undertake taxonomic studies where necessary

Page 4: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

6 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

to defi ne and describe key species that defi ne

communities.

• Assess the adequacy of the existing reserve

system and identify gaps in its coverage of

species and communities.

• Publish the survey results in refereed scientifi c

journals, make the data-bases freely available

in convenient formats, and communicate the

project’s progress, results and implications

through relevant media to encourage imple-

mentation of the project’s recommendations.

THE STUDY AREA

The Pilbara biogeographic region corresponds

closely to the Pilbara Craton, and encompasses an

area of approximately 179,000 km2. The mainland

component is 178,500 km2 with the residual area

being represented by offshore islands, principally

within the Dampier Archipelago. The region

extends from 20º to 23º30´S latitude, and 115º to

121º30´E longitude (Figure 1), and is bounded by

the Indian Ocean to the north-west, sand deserts

to north-east and east, and the Gascoyne and

Carnarvon regions to the south and south-west,

respectively. For the aquatic survey, the study was extended southwards from the southern boundary of the Hamersley subregion to the main channel of the Ashburton River, and eastwards to the Rudall River.

The Pilbara region as defi ned by Thackway and Cresswell (1994), and used in the study, is founded on the Fortescue Botanical District as described by Beard (1990). It therefore encompasses the eight physiographic units identified by Beard (1975): Abydos Plain, George Range, Oakover Valley, Chichester Plateau, Fortescue Valley, Hamersley Plateau, Stuart Hills and Onslow Coastal Plain. Within a national physiographic framework, the study area includes the De Grey Lowlands, Nullagine Hills, Chichester Range, Fortescue Valley, Hamersley Plateau and portions of the Onslow Plain and Carnarvon Dunefi eld sections of the Pilbara and Western Coastlands Provinces as defi ned by Jennings and Mabbutt (1977). In terms of the contemporary soil-landscape classifi cation for the rangelands and arid interior of Western Australia (Tille 2006), the study area includes all 10 zones of the Fortescue Province and extends into two zones of the Exmouth Province (Cane River and Onslow Plain) and two zones of the Ashburton

Figure 1 The Pilbara Biogeographic Region (Environment Australia 2000) showing towns, main rivers (blue lines), land tenure, sub-regions (green lines), and surrounding regions (black lines).

Page 5: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 7

Province (Stuart Plains and Hills, and Ashburton Valley). It also intrudes into the periphery of the Eighty Mile Coast, Nita Sandplain and Great Sandy Desert zones of the Canning Province, and the Waroo zone of the Patterson-Yeneena Province.

The region’s islands were not sampled during the survey because they are comparatively small and their fl oras and faunas are relatively well-known in the context of the region as a whole (e.g. WEL 2007).

CLIMATE

An overview of the region’s climate was provided by Leighton (2004). Briefl y, most rainfall occurs in summer, along with thunderstorms and occasional cyclonic activity. Average annual rainfall is 290 mm, ranging from a monthly average of c. 2 mm in September to 66 mm in February. January, February and March are the wettest months while September and October are the driest (Figure 2). In some years there is rain in early winter. Leighton (2004) commented ‘… the slightly bimodal pattern of rain ensures, in good years, that the vegetation growing season is prolonged.’ There is substantial year-to-year variation in rainfall, both locally and regionally. At least one cyclone traverses the region in a normal summer and others pass close by along the coast. They supply half of the annual rainfall. Cyclonic rainfall has occasionally exceeded 700 mm in 24 hours, and more than 1200 mm annually, at particular localities.

The thunderstorm and cyclonic nature of most rainfall events interacts with the rocky slopes of the upper- and mid-catchment topography to generate high run-off volumes and velocities. These events cause widespread sheet erosion in areas denuded by recent bushfires or over-grazing, and the over-bank riverine fl oods strip riparian zones. The transported material is deposited as bed loads of sand in the river systems, and as clays and silts onto fl oodplains on the Fortescue and Roebourne Plains and on the seafloor at the mouths of the major rivers. Although there are few extended periods when the entire Pilbara is affected by drought, areas are regularly affected by defi ciencies, either serious (lowest 10% of rainfall values recorded for a three-month period) or severe (lowest 5%). On a drought-risk scale of zero to one, the Pilbara has an area-weighted average greater than 0.7 (Colls and Whitaker 1995).

Monthly maximum temperatures range from an average of 25ºC in July to 37ºC in January, and minimum temperatures from an average of 12ºC in July to 25ºC in January (Figure 2). The Pilbara straddles two bioclimatic regions (Beard, 1990). The higher rainfall areas inland (Hamersley Plateau) and the cooler areas near the coast have a semi-

desert tropical climate with nine to 11 months of dry weather. The rest has a desert climate characterised by up to 12 months of dry weather and generally higher temperatures. Beard defi ned dry weather as periods when precipitation is insuffi cient to sustain growth given the ambient temperatures. The region’s broad near-coastal band (Figure 3) has a hot, humid summer with a warm winter, while inland areas experience a hot dry summer and a mild winter. Evaporation is probably the most important factor in water loss in the region, infl uencing both plants and animals. Throughout the Pilbara, potential evaporation exceeds average annual rainfall by a factor of at least eight, and by up to 20 in its south-east.

Climate change will have a wide range of impacts on biodiversity within the Pilbara.  It may impact upon species distributions and abundance, ecosystem processes, the interaction between species and the various threats that currently impinge on biodiversity. Key amongst the emerging climate change threats to Pilbara biodiversity will be the arrival of species (native and exotic) new to the region, further alterations to fi re regimes, land use changes and alterations to hydrological regimes (Dunlop and Brown 2008). How Pilbara biodiversity responds to the climate change challenge will to some extent be moderated by a CAR reserves system, the generally good condition of many Pilbara ecosystems and the inherent refugial nature of some habitats (e.g. hill tops, mesic gorges, permanent spring fed pools) (Morton et al. 1995).

Current predictions of future climatic conditions across the Pilbara (CSIRO and Bureau of Meteorology 2007; Dunlop and Brown 2008) suggest that:

• the region will become warmer with more hot days and fewer cold nights;

• a small decline in annual rainfall is possible;

• the water deficit will increase as higher evaporation rates reduce runoff;

• droughts will be more frequent and severe;

• extreme storm events will become more common, particularly tropical cyclones;

• there will be greater inundation in coastal areas, associated with storm surge and sea level rises.

Using the agro-climatic zones of Hobbs and McIntyre (2005), Dunlop and Brown (2008) suggested that the key issues for biodiversity resulting from climate change are likely to be:

• changes in fi re regime but somewhat moderated by limited growth and grazing;

• arrival of further species from the tropics and additional pasture species as a result of wet season rain.

Page 6: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

8 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Figure 2 Bioclimatic regions and monthly average rainfall (mm), maximum and minimum temperature (ºC) and 9 am and 3 pm relative humidity values based on a selection of six Bureau of Meterology weather stations scattered throughout the Pilbara.

Page 7: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 9

• overgrazing from a reduction in productivity commensurate with an increase in moisture defi ciency.

SOILS

Soil development throughout the ranges is generally poor, especially toward the highest areas where slope and gravitational forces colluded to redistribute such material down slope. Typically, soils are skeletal, shallow and stony, having been derived in situ or deposited as colluvium and alluvium pediments on valley floors. Colours reflect the underlying parent material as does the preponderance of ferruginous pediments. Texturally the soils are stony loams, although clays and silts become prevalent towards the bottom of the catena (Bettenay et al. 1967). As a consequence of parent rock geology most soils are of low fertility and slightly acidic, although the clays associated with basalts and those of alluvial and colluvial valley fl oors tend towards alkaline and are more fertile (CALM 1999; van Etten 2000).

Hennig (2004) identifi ed 21 broad Soil Groups, and interpreted their occurrence according to the region’s geomorphology. This interpretation is summarised in the following paragraphs. Shallow stony soils on hills and ranges and sands

on sandplains are the most extensive. The red/brown soils of hills and ranges have stony profi les and very stony surfaces with rock outcrops. Red shallow loams/sands are most common on basalt hills, with shallow non-cracking clays in isolated pockets and valleys within these hill systems. Red loamy earths with deeper profi les and stony surfaces occur downslope, along with areas of deep non-cracking clays. Self-mulching cracking clays occur at the lowest landscape levels, with areas of deep non-cracking clays and deep loamy duplex soils.

Granitic landforms comprise red sands, shallow where granite hills outcrop but expressed as gently undulating plains with red sandy earths, deep sands and loamy earths elsewhere. Calcrete areas have shallow calcareous loams. Stony soils dominate hills and mesas on the region’s eastern periphery, with stony red loamy earths on plains below the hills and deep red/brown non-cracking clays at the lowest levels in this landscape. Further east is the Great Sandy Desert, characterised by deep red sand surfaces expressed as dunefi elds with areas of red sandy earth on sandplains and scattered hills with stony soils. The western periphery of the study area has extensive plains of deep red sand and red sandy earths, with stony soils adjacent to hills.

Figure 3 Digital elevation model (from Geoscience Australia GEODATA 3 second DEM version 2), with IBRA ver-sion 6 regional and subregional boundaries superimposed as black lines and as white lines, respectively. The boundary between coastal and desert climatic zones is marked as a dashed line.

Page 8: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

10 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Alluvial plains of deep red sandy duplex soils and fl oodplains of red/brown non-cracking clays are associated with major rivers. Alluvial plains of the major rivers further east comprise self-mulching cracking clays, red/brown non-cracking clays and some deep red sandy duplex. These same three soil groups, but in reverse order of extensiveness, form the plains near the Pilbara’s north-west coast and the deltas of its rivers. Mostly dry, the river beds and levees have juvenile or poorly developed sandy soils that show sediment layers of coarse loose sand, clayey sand, silty sand and silty clay. The region’s coast comprises tidal soils (saline clays and sandy clay loams) with beaches of calcareous deep sands in some areas. Adjacent are plains of deep

red or grey sandy or loamy duplex soils, saline red/

brown non-cracking clays and deep red sand.

LAND SYSTEMS

The Western Austral ian Department of

Agriculture and Food, in collaboration with the

Department of Land Information (now Landgate),

have undertaken three rangeland surveys that,

together, encompass the Pilbara bioregion. These

describe and map the biophysical resources

present, and evaluate the condition of the soils

and vegetation. Commencing in 1976, the first

focused on the Ashburton River catchment (Payne

et al. 1988). It was followed by the Roebourne

Figure 4 Simplifi ed geological map of the Pilbara.

Page 9: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 11

Plains survey of 1987 (Payne and Tille 1992), and culminated in the Pilbara Ranges survey (van Vreeswyk et al. 2004) which commenced in 1995.

Within the bioregion there are 104 land systems (Payne 2004). The area occupied by these land systems varies from approximately 29,000 km2 for the Rocklea land system to 18 km2 for the Augustus land system. The fi ve most abundant land systems account for approximately 45% of the bioregion (Rocklea, Newman, Macroy, Uaroo and Capricorn). Forty-fi ve of the land systems are unique to the Pilbara. The largest Pilbara-unique land system is Macroy (13,360 km2), while the smallest is Tanpool (68 km2).

Land systems are grouped into land-types according to landforms, soils, drainage patterns and vegetation. Within the Pilbara there are 20 land types with the dominant type, occupying 40% (71,680 km2) of the bioregion, being described as ‘… hills and ranges with spinifex grasslands’ (Payne 2004). The smallest land-type in the region is ‘… alluvial plains with halophytic shrublands’ at less than 0.1% of the bioregion. This land type is represented by only one land system (Talawana).

SUBREGIONAL DESCRIPTIONS

The Pilbara Craton is one of Australia’s major geological blocks (Trendall 1990). The Craton is characterised by hard rock landscapes that were laid down in Archaean times 2.5 to 3.5 billion years ago, making them some of the oldest rocks on the planet. A simplifi ed geology map is shown in Figure 4. The basement is exposed as granite (domes, nubbins, tors, inselbergs) and greenstone (basic and ultrabasic volcanic rocks) terraine (Thorne and Trendall 2001) in the north, but overlain by rugged sedimentary strata, volcanic fl ows and lateritised caps in the south. A product of their geoclimatic history, Pilbara landscapes comprise rough ranges, broad plateaux and stony ridges separated by rolling stony plains of alluvial clays, silts, sands and gravels. The uplands are defi ned by abrupt escarpments and steep scree slopes which are incompletely mantled by shallow skeletal soils. Gorges, picturesque rockholes and grassy fl oodplains occur along seasonally active, exoreic river systems that drain the uplands. Extensive quaternary alluvial and aeolian coastal fl ats and fl oodplains form the region’s mangrove-fringed western margin. Because of this history, and its impact on the plants and animals that inhabit these landscapes, the Pilbara is considered to be a natural region both geologically and biologically (Beard 1975, 1990; Thackway and Cresswell 1995).

The region is divided into four geomorphically

distinctive subregions (Environment Australia 2008) (Figures 1 and 3).

Roebourne

Abutting the Indian Ocean along the Pilbara’s northern and north-western fringe is the Roebourne subregion (PIL4) which covers an area of 18,910 km2 or approximately 10% of the study area. The subregion is divided into two sections by a coastal extension of the Chichester subregion near Cape Lambert, west of Roebourne. The southern portion of the subregion aligns with the Onslow Coastal Plain physiographic unit as demarcated by Beard (1975), whereas the northern portion of the subregion captures the coastal portion of the Abydos Plain physiographic unit described as ‘The grass plains’ and ‘The coastal complex’ by Beard (1975). This subregion comprises mostly Quaternary (< 10 Mya) alluvial and aeolian coastal and sub-coastal plains. These plains, which are traversed by active floodplains adjacent to the larger rivers systems (De Grey, Fortescue, Yule) support sandy to heavy clay substrates and gilgais. They are mostly covered by grassland of mixed bunch grass (Aristida spp., Enneapogon spp.), tussock grass (Cenchrus spp., Eriachne spp., Eragrostis spp., Sorghum spp.) and hummock grass (Triodia spp.) and dwarf to open shrubland of snakewood (Acacia xiphophylla) and A. stellaticeps over soft spinifex, mostly Triodia pungens and T. epactia. Infrequent emergent Archaean granitic tors and domes, metamorphosed hills of sedimentary rock (banded iron formation) and low ranges of basalt metamorphosed siltstone and granophyre are all covered in dwarf to open shrubland dominated by Acacia arida and A. bivenosa over hard Triodia wiseana hummock grasslands. Ephemeral short drainage features (e.g. Nickol River, Du Boulay Creek), scattered claypans and other drainage foci support open woodlands of western coolibah (Eucalyptus victrix) with Pilbara jam (A. citrinoviridis) and, in localities with permanent water (e.g. Miaree Pool), forests and closed tall woodlands of silver cadjeput (Melaleuca argentea), river red gum (E. camaldulensis) and white dragon tree (Sesbania formosa). On the larger river deltas, open woodlands of western coolibah and Bauhinia cunninghamii are present over dense shrublands of Sesbania cannabina and budda pea (Aeschynomene indica), although mesquite (Prosopis spp.), a weed of national signifi cance, forms impenetrable thickets on the Fortescue River delta. Samphire (Tecticornia spp.) dwarf scrublands, Sporobolus grasslands, low coastal dunes covered with Spinifex longifolius, and low mangrove forests comprising Avicennia marina, Bruguiera exaristata, Rhizophora stylosa and Ceriops tagal occur on marine alluvial fl ats and the smaller river deltas.

Page 10: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

12 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Chichester

The Chichester is the largest subregion (PIL1), covering over 47% of the Pilbara (83,700 km2). Its characteristic feature is the Chichester Range which extends for over 400 km, from west of the Millstream-Chichester National Park to Balfour Downs Station in the east. Other noteworthy ranges include the Gorge Range, Gregory Range, Panorama Ridge, Nimingarra Ridge, Black Range and the Ripon Hills. Northwards and eastwards, its topography becomes more subdued and its landscapes less rugged. The subregion is characterised by undulating Archaean (2500+ Mya) granite and greenstone terrain comprising granitic tors, domes, nubbins, stony granitic plains, some minor sandy plains and signifi cant areas of rugged basaltic and to a less extent sandstone ranges, ridges and dissected plateaux. Signifi cant areas of Archaean greywacke exist (e.g. Mosquito Creek Formation) along with Carboniferous-Permian sandstones in the subregion’s east and north-east. Its northern part is relatively fl at and undulating, being dominated by large alluvial floodplains associated with the De Grey River system and its tributaries (Oakover, Nullagine, Shaw, Yilgalong). This subregion encompasses all of the gorge ranges, almost all of the Chichester Plateau and Oakover Valley and the largest portion of the Abydos Plain physiographic units as delimited by Beard (1975).

Throughout this subregion, rolling plains and gently undulating hills support a shrubland characterised by wattles, in particular Acacia inaequilatera, A. ancistrocarpa, A. tumida var. pilbarensis and A. orthocarpa/arida, over hard spinifex (T. wiseana, T. lanigera, T. secunda) hummock grassland. Scattered snappy gums (Eucalyptus leucophloia) over open Acacia shrublands occur ubiquitously on uplands and ranges. Tablelands of decomposing basalt are a distinguishing feature of the Chichester Plateau along the southern margin of the subregion. These tablelands, described as the Wona Land System (Van Vreeswyk et al. 2004), comprise gilgai plains or self-mulching cracking clays supporting tussock grasslands dominated by Mitchell grass (Astrebla spp.), sorghum (Sorghum spp.) and Roebourne Plain grass (Eragrostis xerophila) and/or herbfields of ephemeral Papilionaceae (Desmodium spp., Glycine spp., Rhynchosia spp.), Amaranthaceae (Ptilotus spp.) and Convolvulaceae (Ipomoea spp., Operculina spp.). In the subdued east of the subregion, open Mulga (Acacia aneura s.l.) woodlands and shrublands (with A. subcontorta) over tussock grasses and soft hummock grasslands (T. melvillei, T. pungens) are prevalent, especially on hardpans and rocky footslopes. Shrubland dominated by Acacia (A. ancistrocarpa, A. fecunda, A. synchronicia/robeorum) with Grevillea wickhamii and Hakea lorea over hard

hummock grasslands (T. wiseana, T. lanigera) persists on some of the stony pediments. On scree slopes, amongst breakaways, on granitic domes and along many rocky riparian habitats throughout the subregion, fi gs (Ficus brachypoda), the Pilbara kurrajong (Brachychiton acuminatus) and wing-nut tree (Terminalia canescens) are conspicuous elements of the fl ora.

The region is drained to the north by numerous river systems including the Maitland, Harding, Sherlock, Yule, Turner, and tributaries of the De Grey. These rivers have a dendritic drainage pattern and most cross extensive fl at plains (especially as they traverse the Roebourne subregion). Like the Roebourne subregion, the Chichester’s riparian systems typically support a woodland or forest with silver cadjeput, river red gum, western coolibah and white dragon tree. Their understorey is dominated by introduced tussock grasses (e.g. Cenchrus spp., Echinochloa colona) in most localities. The alluvial plains fronting the De Grey River and its tributaries support soft hummock grasslands (Triodia pungens, T. epactia) or tussock grasslands (Eragrostis xerophila, Cenchrus ciliaris, Chrysopogon fallax), while gilgai plains support Mitchell grass (Astrebla spp.) and swamp grass (E. benthamii). Along the escarpment of the Chichester Range in the south of the subregion, drainage is short, parallel and empties onto the alluvial plains of the Fortescue Valley. Open mulga woodlands, snakewood shrublands and hard hummock grasslands with emergent Hamersley bloodwoods (Corymbia hamersleyana, C. semiclara) or snappy gums occupy these slopes.

The iconic Millstream wetland is located on the southern margin of the subregion, where the Fortescue River has bisected the Chichester Plateau and incised calcareous valley-fi ll deposits of the Fortescue subregion. A spring-fed riparian system on permanent river pools, Millstream supports a forest or tall closed woodlands of silver cadjeput, river red gum, western coolibah and white dragon tree over thickets of tea tree (Melaleuca glomerata, M. bracteata) and Hibiscus austrinus. It also has a large population of the Millstream fan-palm (Livistona alfredii), locally endemic invertebrates such as the damselfly Nososticta pilbara, and some unusual introduced plants such as Indian water fern (Ceratopteris thalictroides) and water lilies (Nymphaea spp.).

Fortescue

The Fortescue subregion (PIL2) corresponds closely to the Fortescue Valley physiographic units as delimited by Beard (1975) and occupies an area of 19 560 km2 or 11% of the bioregion. The Valley comprises mostly Quaternary alluviums, colluviums, aeolian sand plains and lacustrine

Page 11: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 13

deposits overlying Tertiary valley-fi ll units of the Late Eocene (>41 Mya). These valley-fi ll deposits are expressed as pisolitic limonites (Robe Pisolite), calcretes and minor silcretes (Thorne and Tyler 1997). The subregion is centred on the Fortescue River.

The northern margin of the Fortescue subregion follows the southern periphery of the Chichester and mostly comprises bajadas (alluvial fan) and outwash plains. The dominant vegetation on these bajadas is open mulga woodland and snakewood shrubland over tussock grasses (Themeda triandra, Chrysopogon fallax, Eragrostis spp.) or open hummock grasses (Triodia pungens, T. wiseana) although, towards the west, there are woodlands of snappy gum (E. leucophloia) and Pilbara bloodwood over Acacia and Senna shrublands and hummock grasslands (Triodia spp.). In some places, the Chichester Range protrudes southwards into the Fortescue valley (e.g. Goodiadarrie Hills, Mt Murray). These isolated hills and ridges comprising Marra Mamba Iron Formation, sandstone or conglomerate landforms and support Acacia low shrubland (A. trachycarpa, A. arrecta) over hummock grasses. The northern slopes of the subregion are drained by mostly short, parallel features, often supporting slightly denser fringing mulga woodland with the occasional western coolibah and whitewood (Atalaya hemiglauca).

The eastern portion of the subregion is very subdued and comprises mostly bajadas, hardpan plains and flood-out zones. The bajadas and hardpan plains are typically covered by low woodlands of mulga and mulga allies (e.g. Acacia paraneura, A. catenulata subsp. occidentalis, A. ayersiana) over open shrubs (Eremophila forrestii, E. cuneifolia, E. lanceolata) and scattered hummock grasses, although herbs (e.g. Ptilotus exaltatus, P. auriculifolius, P. helipteroides) are abundant in season. Extensive grove-intergrove mulga communities exist on very gentle bajadas. The fl ood-out zones, which are mostly restricted to the sluggish dendritic drainage lines and foci of the upper branches of the Fortescue River and its tributaries (e.g. Jigalong and Jimblebar Creeks), support woodlands of western coolibah, western ghost gum (Corymbia candida), whitewood, mulga, weeping wire wood (Acacia coriacea subsp. pendens) and A. distans over tussock grasses (Cenchrus ciliaris, Eragrostis benthamii, Eulalia aurea) and herbs (Calotis multicaulis, Ptilotus helipteroides, P. gomphrenoides). Some of these communities are signifi cantly degraded because of unsustainable pastoral activities, with the woody increaser bardi bush (Acacia synchronicia) dominating to form impenetrable spinescent thickets over large areas of many fl ood-out zones, especially at sites where intensive grazing and livestock activity (e.g. around

water sources) have excluded all palatable species. Similarly, bardi bush also becomes dominant when the functionality of grove-intergrove and hardpan mulga woodlands on fl ood-out zones is compromised. Overgrazing and livestock activity promote this dysfunctionality by creating leaky systems (Tongway et al. 2001), which are the consequence of alterations to the fl ow and status of water, nutrients and organic matter in fertile mulga patches. Also, as a result of intensive land revegetation efforts, buffel grass dominates the understorey of some fl ood-out zones and hardpans, particularly on Ethel Creek station.

Sig ni f icant areas of aeol ian sandplain, occasionally with small (<2 m) dunes, also exist in the east of this subregion as stranded enclaves of the nearby Little Sandy Desert. These sandplains support open mulga, Pilbara box (Eucalyptus xerothermica), northwest box (E. tephrodes) or desert bloodwood (Corymbia deserticola) woodlands with some blue-leafed mallee (E. gamophylla) over soft hummock grasses (Triodia pungens, T. melvillei). Low scrub and heath comprising conspicuous sandy desert fl oral elements (Grevillea juncifolia, G. eriostachya, Kennedia prorepens, Leptosema chambersii, Diplopeltis stuartii) persist in the dune areas.

The southern part of the Fortescue Subregion comprises short, parallel drainage features with bajadas abutting the Hamersley escarpment and floodout plains derived from drainage features with steep gradients that arise within the Hamersley Plateau (e.g. Weelumurra Creek, Weeli Wolli Creek, Dales Gorge and Munjina Gorge). Like those bajadas to the north, open mulga woodlands (Acacia aneura s.l., A. pruinocarpa) and snakewood shrublands over tussock grasses (Eragrostis spp.) or open hummock grasslands (Triodia wiseana, T. melvillei) predominate, particularly to the east of Wittenoom. West of Wittenoom the woodlands tend to be replaced by Acacia shrublands (A. ancistrocarpa, A. tumida var. pilbarensis, A. cowleana, A. atkinsiana) or open Hamersley bloodwood and Pilbara box woodlands, with some blue-leaved mallee shrublands over hummock grasses (T. wiseana, T. pungens, T. melvillei). The vegetation of drainage features tends to be similar to that on the north side of the valley, although river red gum and white dragon tree persist along the features with greater episodic fl ows.

The western end of the subregion is represented by the ancient Fortescue River bed and the drainage divide abutting the Robe River valley. This area is relatively fl at and mostly supports mixed Acacia shrublands (Acacia ancistrocarpa, A. tumida var. pilbarensis, A. cowleana, A. maitlandii, A. atkinsiana) over soft hummock grasses (Triodia pungens, T. melvillei). At the base of the catenary sequence the calcareous alluvial and gilgai plains support an

Page 12: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

14 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

herbaceous tussock grassland of barley Mitchell grass (Astrebla pectinata), kangaroo grass (Themeda triandra) and ribbon grass (Chrysopogon fallax) with scattered western coolibahs and Pilbara ghost gums.

A significant and dominant feature of this subregion is the Fortescue Marsh. This drainage feature, 100 km long, is effectively the terminus of the upper Fortescue River; the lower Fortescue River arises from streams draining the Chichester and Hamersley Ranges below the Marsh and west of the Goodiadarrie Hills. The Quaternary alluvial and lacustrine deposits of the marsh are dominated by low mulga woodlands over bunch grass (Aristida spp., Enneapogon spp.) on the non-saline alluvial plains, fringing wattle (Acacia ampliceps, A. sclerosperma var. sclerosperma) shrublands on saline clay banks and calcareous rises, scattered samphire (Tecticornia spp.), saltbush (Atriplex spp.) and Eremophila spongiocarpa shrubs on saline cracking and non-cracking clay fl ats, and a shrubby grassland of salt water couch (Sporobolus virginicus) with false lignum (Muellerolimon salicorniaceum) and lignum (Muehlenbeckia fl orulenta) on fl ood plains. The lakebed and saline fl oodplains, which may extend for up to 10 km, are dominated by a dense low shrubland or heath of samphires and both lignum and false lignum.

West of the Goodiadarrie Hills, the Fortescue River traverses an extensive active alluvial fl ood plain where the drainage is meandering and anastomosing until a series of central channels becomes defined near Kanjenjie as the river becomes constrained by the Chichester Plateau and cuts deeply into the calcareous Millstream aquifer.

The vegetation fringing the ephemeral drainage channels along this part of the Fortescue River comprises mixed river red gum, western coolibah and Acacia woodlands (A. distans, A. catenulata subsp. occidentalis, A. aneura s.l., A. xiphophylla) and tall shrublands over tussock grasslands comprising Roebourne Plains grass, ribbon grass and swamp grass. Heavy cracking clay and gilgai plains are also common and support tussock grasslands dominated by Mitchell grasses, neverfail (Eragrostis setifolia), ribbon grass and swamp grass, often with an emergent ephemeral shrub layer of Sesbania cannabina and budda pea. Sporadic drainage foci and pools, usually in deep clays or alluvium, support woodlands of western coolibah, Acacia distans and A. aneura s.l. over lignum and tussock grasses (Astrebla spp., Eriachne spp., Themeda spp.).

Hamersley

The Hamersley subregion (PIL3) occupies the southern part of the Pilbara Craton and encompasses the Hamersley Range s.l., the most prominent mountainous area in Western Australia.

The subregion occupies an area of 56,490 km2 or 32% of the bioregion. The Hamersley Plateau and Stuart Hills (Beard 1975) are encompassed within this subregion. It is a mountainous area of Archaean-Palaeoproterozoic (545–2500 Mya) metamorphosed sedimentary and volcanic ranges and plateaux. The surface geology is dominated by banded ironstone formation sedimentary rocks interlaced to varying degrees with intrusions of chert, dolomite, siltstone and shales. The ancient Archaean granitic and greenstone basement outcrops sporadically throughout the range, predominantly in the south with some isolated exposures along well-eroded drainage lines towards the centre of the subregion (Figure 4). Cainozoic deposits of Robe Pisolite, alluvium and colluvial valley fi lls derived from sources further up the catena profi le form most valley fl oors (Beard 1975; Tyler et al. 1990).

The Hamersley subregion is geomorphologically a series of topographical features (ranges, ridges, hills and plateaux) encompassing isolated and continuous chains of uplands that rise above a plateau surface from a basement of about 250 m above sea level in the west to over 1200 m on the highest peaks which occupy the central Hamersley Plateau. The highest peak, Mt Meharry, is 1245 m above sea level. In the north the subregion is demarcated by an abrupt, precipitous escarpment that is broken in many places by entrenched, incised gorges such as Dales, Hancock, Bee and Yampire Gorge. To the east and south the escarpment is subdued as the topography of the Hamersley Plateau gives way to the broad Ashburton River valley and the low rocky hills of the Bangemall Basin and the Sylvania Inlier (Tyler et al. 1990). On the western fl ank the relief is also somewhat subdued after traversing the western escarpment and entering the raised plains of the Stuart Hills (Beard 1975), although the pisolitic mesas and breakaways of the Robe Valley and sandstones of the Parry Range do confer some relief. The Hamersley Range, which occurs entirely within the subregion, encompasses a number of constituent ranges and ridge massifs, such as the Eastern, Goondoowandoo, Gurinbiddy, Hancock, Jirrpalpur, Lawloit, Ophthalmia, Packsaddle, Werribee and Western Ranges.

Surface water drains into the Fortescue River on the northern and eastern fl anks of the subregion, into the Robe and Cane Rivers in the west and into the Ashburton River to the south. Typically, drainage along the northern escarpment is short and abrupt via deeply incised gorges, although some large channels such a Weeli Wolli, Marillana, Western and Weelumurra Creek exist. The small drainages are dominated by emergent Pilbara bloodwoods, Pilbara box, western coolibahs with

Page 13: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 15

Acacia (A. maitlandii, A. monticola, A. tumida var. pilbarensis, A. ancistrocarpa) shrubland over hard and soft hummock grasses (Triodia wiseana, T. pungens) and occasional tussock grasses (Themeda spp.) depending on landscape position. The large channels contain extensive alluvium and fine depositional deposits and support a fringing riparian open tall woodland of river red gums and western coolibahs over woodlands or tall shrublands of Pilbara jam, slender petalostylis (Petalostylis labicheoides) and weeping wire wood over soft hummock grasses (T. pungens, T. epactia) and tussock grasses such as buffel grass, kangaroo grass and silky browntop (Eulalia aurea). In sites where the drainage is interrupted and the water table rises, extensive silver cadjeput forests with red river gums and western coolibah woodlands over native cotton (Gossypium spp.) and sedgelands of stiffleaf sedge (Cyperus vaginatus) may exist. Drainage into the Ashburton River is via a series of more elaborate dendritic channels such as Turee and Duck Creeks and the Beasley, Hardey and Angelo Rivers. The vegetation of these drainage lines is akin to that of drainage features elsewhere in the subregion, being dominated by eucalypt woodlands over wattle shrubs, although in the Cave Creek (and to a less extent Duck Creek) systems extensive fringing riparian woodlands support Millstream fan palms when calcareous valley-fi ll deposits are encountered.

Internal drainage basins are extensive on the Hamersley Plateau. Examples include Lake Robinson, Munjina Claypan and the Mt Bruce, Coondewanna and Wanna Munna Flats. These basins tend to fi ll following the passage of intense tropical cyclones. The basins are mostly on hardpan or alluvial plains and support extensive tall to low mulga woodland with scattered emergent Pilbara box over bunch grasses (Aristida spp., Eriachne spp.) on fi ne textured soils. On very fl at pediments, well-developed grove-intergrove mulga woodlands may exist with emergent western gidgee (Acacia pruinocarpa) and a suite of mulga allies (A. paraneura, A. ayersiana, A. aneura var. intermedia, A. aneura var. macrocarpa, A. aneura var. pilbarana). These are also termed banded mulga formations. In areas where the hardpan is close to the surface and soil depth is insuffi cient to support trees, an open scrub of Eremophila (E. caespitosa, E. lanceolata, E. lachnocalyx) and Senna (S. artemisioides subsp. helmsii, S. artemisioides subsp. × sturtii, S. sericea) species may persist with scattered stunted shrubs (A. subcontorta, Psydrax spp.). The basement sump of such internal drainage basins is usually dominated by a woodland of western coolibah over tussock grasses (Themeda triandra, Eulalia aurea, Eragrostis spp., Eriachne spp., Chrysopogon fallax) or lignum and swamp grass.

The permanent pools of the northern gorges support a typically riparian vegetation community dominated by silver cadjeput, river red gum, western coolibah and white dragon tree over sedgelands of stiffleaf sedge along with some relictual tropical elements such as Clerodendrum fl oribundum, Flueggea virosa subsp. melanthesoides, Plectranthus intraterraneus, Dolichandrone heterophylla and Pteris vittata. The gorges, which are incised through the banded ironstones, are inherently sheer, steep-sided and harbour signifi cant scree and boulder strewn slopes that also provide important fi re-avoiding habitats for many relictual fl oristic elements including fi gs (Ficus brachypoda, F. virens), kurrajongs (Brachychiton acuminata, B. gregorii), native cypress (Callitris columellaris) and the wonga wonga vine (Pandorea pandorana).

The rolling hills and stony plains of the Plateau support an open woodland of snappy gum over low shrubs (Acacia bivenosa, A. ancistrocarpa, A. maitlandii, Keraudrenia spp.) and hard spinifex (Triodia wiseana, T. basedowii, T. lanigera), with drainage features supporting slightly denser vegetation mostly comprising wattle shrubs with some Pilbara bloodwood. Shrub mallee (Eucalyptus gamophylla, E. trivalva, E. socialis subsp. eucentrica, E. striaticalyx) over tea tree (Melaleuca eleuterostachya) and hard hummock grasses (T. basedowii, T. longiceps, T. angusta) are also a common community on stony plains and rolling hills, particularly on calcareous pediments. Run-on, water-gaining slopes and bajadas above detrital banded ironstone deposits and valley-fi lls support a cover of Acacia woodland and shrubland dominated by mulga (A. aneura s.l., A. ayersiana, A. minyura) over an understorey of open shrubs (Ptilotus obovatus, Rhagodia eremaea, Senna glutinosa) and tussock grasses (Chrysopogon fallax, Eragrostis spp., Eriachne spp.). The composition of the shrub layer in such communities changes with progression south and away from the Hamersley escarpment as there tends to be a reduction in hummock grasses and a concordant increase in Eremophila species and other fire-sensitive shrubs. In some situations, particularly on very gentle slopes with a surface mantle of stones which are common in the central and eastern parts of the subregion, a juxtaposition exists where fi re-sensitive mulga woodlands and shrublands overlay hummock grasslands.

The ironstone and basalt ridges, ranges and hills of the subregion are dominated by snappy gum woodlands over shrubs (Acacia hilliana, A. adoxa, Gompholobium karijini, Mirbelia viminalis), tussock grasses (Amphipogon carinatus, Cymbopogon spp.) and hard spinifex (Triodia wiseana, T. basedowii). Blue-leaved mallee, Pilbara bloodwood, Victoria Spring mallee (Eucalyptus trivalva) and Pilbara mallee (E. pilbarensis) are also common on these

Page 14: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

16 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

slopes. On mountain summits the vegetation is characteristically shrub mallee (E. kingsmillii, E. ewartiana, E. lucasii) with emergent snappy gum or iron bloodwood (Corymbia ferriticola) over shrubs (Acacia arida, Gastrolobium grandifl orum, Hibbertia glaberrima, Daviesia eremaea) and hard spinifex (T. brizoides), although on basaltic hilltops, compared to those on ironstone, Pilbara and desert kurrajongs, Pilbara box and blue-leaved mallee are dominant.

DRAINAGE AND HYDROLOGY

Rivers in the Pilbara consist of broad sandy to gravelly channels that are dry for most of their length soon after floods. They have numerous permanent pools maintained by subsurface infl ows and/or springs; there are often downstream bedrock structures. Lower-order creeks are ‘fl ash-fl ooding’, retaining water mostly in rock pools or against cliffs in small gorges. Springs are common, but rivers generally have narrow, well-drained fl oodplains for most of their length with few off-channel wetlands. Exceptions are the coastal plains, areas above and below Fortescue Marsh, the fringes of the marsh itself and several plains with internal or sluggish drainage on the Hamersley Range, where numerous claypans and clay fl ats exist.

Five Pilbara wetlands are recognised as being of national signifi cance (ANCA 1996; Environment Australia 2001). All meet several or all of the six criteria for determining important wetlands: (1) examples of wetland types in Australia, (2) having an important ecological or hydrological role in the functioning of a major wetland system/complex, (3) important as a habitat/refuge for animal taxa at a vulnerable stage in their life cycles, (4) supports >1% of the national population of a native plant or animal, (5) supports native species or communities listed as vulnerable or endangered and (6) an outstanding historical or cultural significance. The De Grey River (criteria 1, 2, 3 and 6) is a rep-resentative example of a major river system in the region and includes the longest permanent river pools and largest shallow estuary in north-western Australia. The Fortescue Marshes (1, 2, 3 and 6) are a unique wetland landform, an example of an extensive inland fl oodplain system and have the second largest recorded populations of waterbirds (after Lake Gregory) in Western Australia. The Karijini (Hamersley) Gorges (1 and 6) include magnifi cent examples of gorge pools and streams. The Leslie (Port Hedland) Saltfi eld system (all 6 criteria) is a good example of the coastal fl ats and associated tidal coast in north-western Australia. Millstream Pools (1, 2, 3 and 6) are an outstanding example of a system of permanent river pools and springs in the semi-arid tropics.

Hydrogeology is summarised by Johnson (2004). Briefl y, groundwater occurs throughout the region

as a water table ‘forming a subdued refl ection of surface topography’ below which all pore spaces are saturated. The Western Australian Department of Water’s water information database (WIN) includes information on water levels, depths, yields and salinity for about 6000 bores and wells across the region. They are concentrated near the coast, along main drainage lines, along major roads, around mining operations and near towns. Groundwater is important for both the mining and pastoral industries, although most extraction is for dewatering iron-ore mines and for town water supplies. Generally ‘fresh’, it occurs in a range of hydrogeological environments. Four main types are recognised:

1. Surficial aquifers in coastal and valley-fill alluvium, including alluvial deposits of the coastal plains, coastal dunefi elds, and alluvial and colluvial deposits fringing main trunk drainages such as the Fortescue River and in the Hamersley Ranges. The valley-fi ll deposits often overlay calcrete and limonite.

2. Aquifers in calcrete and pisolitic limonite chemically deposited in Tertiary drainages incised into basement rocks. Both are usually associated with discharge zones such as river pools and springs and/or occur below contemporary drainage channels. Storage is in secondary porosity and karst features. Pisolites can be highly porous.

3. Sedimentary rock aquifers in the western and north-eastern parts of the Pilbara, with the primary porosity providing storage. They can occur in dolomites, banded iron and sandstone formations.

4. Fractured sedimentary and igneous rock aqui-fers where secondary porosity has developed along bedding joints, and in fractured or weathered zones. These zones are present in mafic volcanic rocks and in granite and greenstone strata. Storage is generally small but may be large locally in solution voids.

Differences in the chemical composition of water samples from six Pilbara aquifers indicate that they represent distinct environments for organisms (see Table 2 in Johnson 2004).

LAND TENURE AND DEMOGRAPHICS

The Pilbara’s land area is approximately 60% pastoral lease, 10% conservation reserve, 5% Aboriginal Reserve and 25% unallocated Crown land (Figure 1). It has a resident population of about 40,000 people, mostly living in towns associated with ports along the coast (Dampier, Karratha, Roebourne, Port Hedland and South Hedland). There are six towns inland, all associated

Page 15: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 17

with mines (Marble Bar, Nullagine, Newman, Paraburdoo, Tom Price and Pannawonica), the largest being Newman in the region’s south-eastern corner, with a resident population of about 5,200. Traditional owners comprise about 10% of the Pilbara population. The Region’s population is expected to reach 44,200 by 2010, 48,000 by 2020, and 50,200 by 2031 (Anon. 2006). The Pilbara bioregion includes the Local Governments of the Town of Port Hedland, Shire of Roebourne and large parts of the Shire of Ashburton and Shire of East Pilbara.

The Pilbara is the leading resources sector region in Western Australia, accounting for 63% of the value of the State’s mineral and energy production in 2007 (Ruddock 2008). The value of mineral and petroleum sales exceeded $33 billion in 2007. In 2004/05 this fi gure was b$20.6 with b$8.6 coming from mining alone (Anon. 2006). Tourism contributed b$0.2 to the Pilbara economy (Anon. 2006).

PROCESSES OF LANDSCAPE CHANGE

Aboriginal peoples used and managed land in the Pilbara for thousands of years. While they

must have infl uenced the biota, their affect has not been measured. The most widespread landscape processes modifying Pilbara biodiversity since European settlement are wildfi re and alteration of fi re regimes. In the 14 years between 1993 and 2006, over 72% (129,000 km2) of the region was burnt (Figure 5), with upwards of 28% being burnt two or more times in this period. Consequently it took considerable time during 2003 and 2005 to fi nd areas where sets of terrestrial sampling sites could be positioned in habitats that had not been burnt during the previous decade. Between 2002 and 2006, the period of our fi eld sampling program, 39% of the region was burnt. The impacts of these processes on biodiversity have not been quantifi ed across the region, but evidence from the few studies undertaken here (Suijdendorp 1981; Start 1986; Casson and Fox 1987; Casson 1994; van Etten 1998, 2000), and elsewhere in the Australian arid zone (Griffi n and Friedel 1984, 1985; Rice and Westoby 1999; Williams 2002; Hodgkinson 2002; Nano and Clarke 2008), suggests that it can be profound. For example, research undertaken by van Leeuwen et al. (1995) indicates that the extent of mulga woodland in the Central Hamersley Range is decreasing as a consequence of too-frequent fi res.

Figure 5 The pattern of fi res over the last decade. From ‘Landgate (2007). Fire Scars: Department of Land Information, Floreat: Western Australia.’ http://www.rss.dola.wa.gov.au/newsite/apps/fi rescarmap.html (accessed 5 September 2007).

Page 16: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

18 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

These woodlands support assemblages of species that do not persist in the spinifex scrublands that are replacing the mulga.

Other important processes modifying bio-diversity relate to the region’s land-use history. In 1863, the fi rst pastoral leases were established on the Roebourne Plains, near the mouths of the Harding and De Grey Rivers. Within a few years, several other properties were established on these plains and, by 1868, 24,000 km2 of land supported 38,000 sheep, and 300 bales of wool had been produced (Hennig 2004). Pastoral land-use rapidly spread eastwards and, by the end of the century, more than 50% of the region was under pastoral lease. Only the rugged range country was spared. The large properties carried up to 70,000 sheep. A series of droughts at the beginning of the 20th century reduced overall sheep and cattle numbers from 800,000 (in 1890) to 500,000 (offi cial fi gures, Australian Bureau of Statistics and the Pastoral Lease Information System) but, by 1935, numbers had increased to 1,300,000 (>98% sheep).

Livestock grazing had depleted the native grass cover along the main river channels by the 1920s, resulting in increasingly occluded drainage systems with substantial bed loads. During the same period, an introduced perennial grass (buffel, Cenchrus ciliaris) was rapidly colonising alluvial surfaces throughout the region via these river systems. Allelopathic, it has displaced indigenous shrub and grass cover from the variety of Pilbara environments that it now pervades, including some scree slopes, but offers some protection from soil erosion. Sheep numbers have declined since 1930, sharply during long droughts in the 1930s and 1970s. The development of oil-based synthetic fi bres during the 1960s reduced the market for wool, so the pastoral industry increased cattle numbers. Unfortunately, sheep numbers were maintained until the mid-1970s, effectively imposing a net grazing pressure equivalent to the 1930s peak (see fi gure 4 in Hennig 2004). After the mid-1970s, sheep grazing was effectively abandoned so that, by 2002, the region supported about 250,000 cattle but fewer than 20,000 sheep. Cattle have a severe impact on many river pools, especially late in the dry season; they trample and graze riparian zones and defecate in and around the pools with consequent eutrophication (the water essentially becomes a pool of cattle feces).

Degradation caused by increased fi re frequencies, buffel grass and/or overgrazing is overt throughout the region. Rangeland surveys of the Roebourne Plains and Pilbara Ranges identify 357 km2 as severely degraded and eroded land (Payne and Tille 1992; van Vreeswyk et al. 2004). The land systems that exhibit most of this degradation and erosion are ‘run-on alluvial’ or ‘river plains’

low in the landscape with soil surfaces protected by stony mantles and supporting preferentially grazed vegetation, typically tussock grasslands and chenopod shrublands.

Rich copper and lead deposits were found near Roebourne in the early 1870s and, by 1890, gold was being mined from the eastern Pilbara, near Marble Bar and Nullagine, and areas rich in iron ore were being reported. During the 1960s, massive tonnages of iron ore were being mined near Newman and Goldsworthy, and subsequently from other centres including Tom Price, Pannawonica and Paraburdoo. Extensive evaporative salt plants were also developed on the coastal fl ats near Port Hedland and Dampier, and gas-processing facilities have now been built on the Burrup Peninsula.

Introduced feral species are among the threats to biodiversity enumerated for the region in the National Land and Water Resources’ biodiversity audit (McKenzie et al. 2003). A great range of plants and animals has been introduced, including unmanaged livestock and invertebrates such as the feral bee. Particularly signifi cant among the introduced plants are three weeds of ‘National Signifi cance’: mesquite (Prosopis spp.), parkinsonia (Parkinsonia aculeata) and athel pine (Tamarix aphylla), as well as several ‘Environmental Weeds’ including calotropis (Calotropis procera), kapok (Ceiba pentandra), coffee bush (Leucaena leucocephala), ruby dock (Acetosa vesicaria), date palm (Phoenix dactylifera), Chinese apple (Ziziphus mauritiana), buffel grass (Cenchrus ciliaris), birdwood grass (C. setiger) and numerous other grasses. The effect of buffel was described in an earlier paragraph; most of the other species are similarly invasive, but form dense impenetrable thickets that shade out other plants.

Twelve introduced mammals occur in the Pilbara (McKenzie and Burbidge 2002). Besides cattle (Bos taurus) and sheep (Ovis aries) discussed earlier, house mice (Mus domesticus) are ubiquitous on fi ne-textured soils across the region, black rats (Rattus rattus) are confined to mangrove communities and coastal towns, feral domestic dogs and dingo hybrids (Canis familiaris) are widespread but most common around towns, red fox (Vulpes vulpes) have been found on many pastoral leases, cats (Felis catus) are common throughout the region, European rabbits (Oryctolagus cuniculus) favour clayey soils low in the landscape and riparian zones, brumbies (Equus caballus) and feral donkeys (Equus asinus) are found on most pastoral leases, feral pigs (Sus scrofa) occur along the De Grey River from Warrawagine Station to the coast, and camels (Camelus dromedarius) are widespread but most common in eastern parts of the study area. All compete with and/or prey on indigenous species.

Hives of feral bees are common in tree hollows

Page 17: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 19

along watercourses throughout the Pilbara, presumably displacing a range of hollow-dwelling vertebrates, and competing with indigenous pollination vectors (Paton 1996; Paini 2004).

In summary, European activities, including pastoralism, the introduction of exotic plants, and mining, have modified Pilbara vegetation and landscapes, although their effects have been mitigated by the large areas of rugged upland with low pastoral value. More than 100 years of over-grazing and too-frequent bushfi res have reduced vegetation cover and stripped soils of their organic and mineral-A layers, thereby reducing their water-holding capacities. The heavy bed loads of sand now carried by most of the region’s major river systems are a direct consequence of excessive run-off volumes and velocities in substantial areas of catchments.

THREATENED COMMUNITIES

One threatened ecological community (TEC) and 16 priority ecological communities (PEC) are currently listed for the Pilbara (http://www.dec.wa.gov.au/management-and-protect ion/threatened-species/wa-s-threatened-ecological-communities.html). The TEC comprises grasslands on cracking clay plains of the Hamersley pastoral lease, dominated by the perennial kangaroo grass (Themeda) and many annual herbs and grasses. The PECs comprise the West Angelas cracking clay community, Weeli Wolli Spring community, Burrup Peninsula rock pool communities, Burrup Peninsula rock pile communities, Roebourne Plains coastal grasslands, stony chenopod associations of the Roebourne Plains, subterranean invertebrate communities of pisolitic hills in the Robe Valley, Peedamulla Marsh vegetation complex, Astrebla lappacea grasslands, Robe Valley sandsheet vegetation, Mingah Springs calcrete groundwater invertebrate assemblage, Wona land system plant assemblages, Eucalyptus victrix over Muehlenbeckia florulenta community of clay fl ats, Erawallana Spring type invertebrate assemblages on Coolawanya Station, Nyeetbury Pool type invertebrate assemblages, and stygofauna communities of the Millstream freshwater aquifer.

SURVEY SAMPLING STRATEGY

Scale, complexity and patchiness must be taken into account in sampling the biota of a study area to describe the diversity of its patterns (Braithwaite 1984; Bowers 1997). Various factors can distort the results, including:

• The sampling regime – land-class sampling regimes presume that species all respond to the same environmental factors in the same way, whereas site-based strategies allow the

relationships to be investigated (Austin et al. 1984; McKenzie et al. 1991b, 2000a; Margules and Austin 1994; Oliver et al. 2004).

• Geographical and seasonal sampling bias (Braithwaite 1984; Weins 1985; Rosenzweig and Abramski 1986).

• Historic extinctions and introductions (McKenzie et al. 2006), and storage effects that allow some organisms to persist through periods when conditions prevent recruitment (Warner and Chesson 1985).

• Limitations in scale (Dale 1983; Whitmore 1984; Bowers 1997; MacNally and Quinn 1997; Huston 2002).

• Inefficient sampling methods (Hobbs et al. 1984; Rolfe and McKenzie 2000), including the analytical implications of unreliable ‘absence’ data in the presence-absence matrix (Margules and Austin 1994).

• The assumption that guilds follow taxonomic boundaries (Adams 1985; McKenzie and Rolfe 1986; Bowers 1997). In this context, we defi ne a guild as a community of species that partitions the same resource axis.

• Uneven taxonomic resolution (McKenzie et al. 2000b; Bortolus 2008).

• Strongly localised patterns of endemism (Solem and McKenzie 1991).

• Patterns of land use. For example, almost 60% of the Pilbara study area is pastoral lease, with a strong bias towards productive soils.

Aspects of the survey’s design offset some of these problems, as follows:

• The study area was large enough to encompass signifi cant sections of both the geographical and environmental ranges of the species sampled (Austin and Heyligers 1989).

• Site-based sampling was applied, in which data were collected as biophysical attributes measured at the same place in the same time frame, so that co-occurrences between species and environmental parameters could be exposed through analysis. The climatic variables were based on long-term averages.

• The site-size (ca. 1 ha for most zoological groups, enclosing a 0.25 ha plant quadrat) was large enough to encompass the assemblages of the organisms being sampled (considering their mobility, longevity and bodysize in the context of their density, productivity and standing biomass in the study area). At the same time, the quadrats were small enough to allow the assumption that there was a reasonable level

Page 18: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

20 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

of internal homogeneity, and that there was syntopy between all biophysical attributes recorded within each quadrat (McKenzie et al. 1991b).

• The environmental attributes measured for each site were biologically relevant to the organisms being sampled and refl ected processes operating at both regional and local scales.

• To better represent ecosystem complexity, we sampled a range of organisms with very different life history strategies and ecological roles to achieve organism-based view of biodiversity patterns. Terrestrial sites were sampled for perennial and annual vascular plants, small ground-dwelling mammals, birds, reptiles, frogs, ground-dwelling spiders, ants, beetles and scorpions. Additional sites were sampled for microbats and others for mammal bones from late Holocene deposits. Sites on water bodies were sampled for aquatic invertebrates, macro- and microphytes and the fringing riparian vegetation. Boreholes were sampled for stygofauna.

• Tested sampling methods were applied by

experienced fi eld survey ecologists, and species were included in the analysis only if they were reliably captured by the sampling methods (see Burbidge et al. 2000b; Rolfe and McKenzie 2000) and confi dently identifi ed, so that the problems of unreliable ‘absence’ data in the presence-absence matrix were minimised.

• Undescr ibed spec ies were st udied by taxonomists familiar with the relevant group in Western Australia (see also Oliver and Beattie 1996).

• Sampling was carried out during an integrated program; all terrestrial and aquatic sites were sampled in two seasons, while subterranean water bores were sampled at least twice during the survey. In each case, sites were positioned across the geographical extent of the region, and selected to represent the diversity of the major physical environments in the Pilbara, as detailed below.

IMPLEMENTATION

The survey was divided into sub-projects that reflected the different sampling methods

Figure 6 The 304 sites sampled for terrestrial biodiversity in the Pilbara. The stratifi cation framework comprised 10 grid cells and 24 survey areas. For instance, the western-most of the three survey areas in the Dampier-Roebourne (DR) cell was coded DRW. There was also a (C)entral and an (E)astern survey area in this cell. Sites in cells shaded grey were sampled in 2004–05, while those in the ‘white’ cells were sampled in 2005–06.

Page 19: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 21

and team expertise required: terrestrial fauna, terrestrial fl ora, surface aquatic fauna and fl ora, and stygofauna.

Terrestrial biota

The terrestrial sample sites were sited across the region in a stratified array to include the major geological formations, landform types, soils, climate and vegetation types. To achieve geographic coverage, the study area was divided into 10 grid cells based on 1:250,000 map sheet coverage of the Pilbara, for a total of 24 survey areas, arrayed in a roughly checker-board pattern. Two or three survey areas were selected in each cell, according to cell size, so that sampling was evenly dispersed across the study area’s spatial extent (Figure 6). Finally, 11, 12 or 13 sample sites were selected in each survey area to represent its geomorphic profi le (i.e. combination of geology and topographic position). Initial planning was based

on maps of vegetation (Beard 1975), land surface (van Vreeswyk et al. 2004), geology (Hickman 1983; Trendall 1990; Thorne and Trendall 2001) and surface lithology (e.g. Hickman 1978, 1983; Hickman et al. 1983). Actual sites on the ground were selected by N.L. McKenzie and S. van Leeuwen during fi eld traverses by vehicle, with assistance from A.H. Burbidge, L.A. Gibson or P.G. Kendrick in some areas.

As far as possible, sites were pseudo-replicated between survey areas and some sites were pseudo-replicated in the more extensive geomorphic units of each survey area. The pseudo-replication was to allow for the internal heterogeneity of the stratifi cation units (hypothesised scalars) and to minimise any analytical circularity introduced by the stratifi cation (Taylor and Friend 1984; McKenzie et al. 1989, 1991b; Gaston and Blackburn 1999). The sites chosen were the least disturbed examples that could be found, to minimise the effect that

Table 1 Terrestrial site environmental attribute codes.

Code Attribute Code Attribute

Tann Annual mean temperature (oC) EC Electrical conductivity (mS/m)

Tdir Temperature diurnal range (oC) pH pH

isoT Isothermality Sand Sand (%)

Tsea Temperature seasonality Silt Silt (%)

mxTwP Warmest period maximum temperature (oC) Clay Clay (%)

mnTcP Coldest period minimum temperature (oC) orgC Organic carbon (%)

Tar Temperature annual range (oC) totN Total nitrogen (%)

TweQ Wettest quarter mean temperature (oC) totP Total phosphorus (mg/kg)

TdrQ Wettest quarter mean temperature (oC) totK Total potassium (%)

TwmQ Warmest quarter mean temperature (oC) P Available (HCO3) phosphorus (mg/kg)

TcoQ Coldest quarter mean temperature (oC) exCa Exchangeable calcium (me%)

Pann Annual mean precipitation (mm) exMg Exchangeable magnesium (me%)

PweP Wettest period precipitation (mm) exNa Exchangeable sodium (me%)

Psea Precipitation seasonality exK Exchangeable potassium (me%)

PweQ Wettest quarter precipitation (mm) Subs Sandy, clayey or rocky substrate

PwmQ Warmest quarter precipitation (mm) soilD Soil depth (cm)

PcoQ Coldest quarter precipitation (mm) gm7 Geomorphic unit (in 7 categories)

Long Longitude (oE) gm10 Geomorphic unit (in 10 categories)

Lat Latitude (oS) gm13 Geomorphic unit (in 13 categories)

Elev Elevation (m) Fabu Surface fragment abundance

Sun Sun index Fmax Maximum surface rock size

Slp Slope Outcrp Outcrop extent

Asp Aspect Riv Distance to major drainage line (km)

Cst Distance to the coast (km) Gcov Total ground vegetation cover

Rug500Topographic ruggedness; standard deviation in elevation in a 500 m radius

Page 20: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

22 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

the uneven probability of disturbance among

landform units would have on the survey design,

an unavoidable source of variance. However, all

possible sites on some landform and geological

units were signifi cantly infested by buffel grass.

In total, 304 sites were selected for soils, animals

and plants. An additional 118 sites were added

subsequently to provide additional resolution on

fl oristic patterns.

The 304 terrestrial biodiversity sites were

established and sampled in two phases. This

reduced biases from year-to-year variations in

climate, and loss of sites to wildfires. Sites in

the first five grid cells (the grey rectangles in

the conceptual ‘checker board’, Figure 6) were

established in mid-2003, while those in the other

fi ve cells (the clear rectangles) were established in

mid-2005. Installation of two fenced pit trap lines

(each with five pits), five invertebrate pits and

the 50 m x 50 m fl ora quadrat at each sample site

was undertaken by fi eld teams led by J.K. Rolfe

that included R. Bromilow, P. Cullen, T. Farmer,

D. Kamien, B. Muir, C. Parker and R. Whitelaw

in 2003, and J. Dunlop, T. Farmer, A. Lang, W.

Manson, J. Nolthenius and T. Smith in 2005. General

logistical support to these teams was provided by

S. van Leeuwen in 2003 and by R. Bromilow, M. Hughes, T. Smith and S. van Leeuwen in 2005.

Soil samples from the top 10 cm of the soil profi le taken at ten sampling points across the diagonal of each fl ora quadrat were obtained and bulked for later analysis by the Chemistry Centre of Western Australia. The soil samples were all obtained by R. Bromilow in April 2004 and May 2006. The analyses included electrical conductivity, pH, organic carbon, total nitrogen, total phosphorous, available phosphorus, total potassium and the concentrations of exchangeable cations, namely calcium (Ca), magnesium (Mg), potassium (K) and sodium (Na). The textural attributes assessed were the fractions of sand, silt and clay present.

Site latitude, longitude, geological unit and thumbnail descriptions of the 304 terrestrial biodiversity sites are provided in Appendix A. Latitude and longitude coordinates were determined using a hand-held GPS accurate to +/- 10 m and with the datum set to WGS84. Forty-seven climate, soil, geomorphic and vegetation attributes were determined for each terrestrial site (Table 1). The 17 climatic attributes comprised annual and seasonal average and range values for temperature and precipitation (Appendix B), and were derived

Figure 7 Surface water localities sampled. Drainage basins are bounded by heavy black lines and labelled as follows, ASH: Ashburton; DGO: De Grey Oakover; FOR: Fortescue; GSD: Great Sandy Desert; OC: Onslow Coast; PHC: Port Hedland Coast. IBRA subregions are shaded and labelled on the map.

Page 21: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 23

using the BIOCLIM module of ANUCLIM (Houlder

et al. 2000). The 14 soil chemical and texture values

obtained for each site are listed in Appendix C.

Sixteen geomorphological attributes of the 304

sites are provided in Appendix D. They comprise

soil depth, main substrate type (sand, clay or rock),

geomorphic categorisation (into 7, 10 and 13 classes),

distance to the coast (Cst) and to a river (Riv), extent

of rock outcrop, surface stoniness (coarse fragment

abundance and maximum size), topography (slope,

elevation, sun index and landscape ruggedness)

and vegetation cover (Gcov). The topographical

variables (Slp, Asp, Elev and Rug500) were derived

from a 90-m resolution digital elevation model.

Aspect (Asp) was further transformed to give

north-west and south-east as the extremes. Sun

index was calculated as cos(aspect) × tan(slope)

× 100. Distances to the coast (Cst) and to major

drainage lines (Riv) were generated from digitised

hydrology information available from DEC

Corporate GIS dataset. Vegetation cover (Gcov) is

an index of total ground cover (i.e. shrubs < 2 m,

grasses and sedges) that was estimated visually.

The variables maximum fragment size (Fmax),

fragment abundance (Fabu) and extent of rock

outcrop (Outcrp) were estimated visually and

categorised following McDonald et al. (1984). Because surface geology (from 1:250,000 maps, see Appendix A) was used to position the quadrats in each survey area, it could not also be used as an attribute in modelling species assemblages. Equivalent and additional data for the 118 fl ora-only sites are provided as an appendix to the relevant paper.

Surface aquatic biota

Ninety-eight wetlands were chosen by M.N. Lyons and A.M. Pinder (Figure 7). To assist with an even geographic spread of sites:

• the coastal rivers near Port Hedland were divided into Roebourne Plain and Chichester sections,

• the Ashburton and Fortescue Rivers were divided into upper, middle and lower sections, and

• the De Grey River was divided into the Oakover/Nullagine and Coongan/Shaw subcatchments.

Within each catchment section, an attempt was made to select representatives of all the broad wetland types present (especially claypans, river

Figure 8 Water bores sampled for stygofauna. Drainage basins are bounded by heavy black lines and labelled as fol-lows, ASH: Ashburton; DGO: De Grey Oakover; FOR: Fortescue; GSD: Great Sandy Desert; OC: Onslow Coast; PHC: Port Hedland Coast. IBRA subregions are shaded and labelled on the map.

Page 22: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

24 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

pools within a variety of stream orders and

springs). Generally one ‘site’ within each wetland

was sampled, with the exception of Fortescue

Marsh where the western and eastern ends were

sampled separately. Wetlands were selected

following consultation with local experts (including

landholders and regional DEC staff), use of

topographic maps, a reconnaissance trip and aerial

surveys along the De Grey/Oakover, Fortescue and

Ashburton Rivers. Eleven ephemeral sites were

sampled only once (in spring, summer or autumn)

but other wetlands were sampled in both spring

and autumn (85 wetlands) or in spring and summer

(3 wetlands). All riparian quadrats were sampled

twice.

The locations of sampling sites were determined

by GPS using the GDA94 datum. Aquatic

invertebrates, aquatic vascular plants, benthic

diatoms, charophytes, fi lamentous algae, planktonic

algae and riparian plants were sampled at each site,

and waterbirds were surveyed within a portion

or all of the wetland. During the fi rst sampling

trip (spring 2003), only 13 of the 29 wetlands were

sampled for diatoms, and planktonic algae were

not sampled at all. These 29 sites were sampled

for all aquatic plant groups (and re-sampled for

water chemistry) in spring 2006. On each sampling

occasion:

• water chemistry variables were measured

and water samples were taken for laboratory

analysis,

• submerged macrophyte biomass and cover were estimated,

• emergent macrophyte cover was estimated,

• sediment particle size distribution was estimated for fractions greater than gravel and measured for fi ne sediments (as silt+clay, sand and gravel), and

• soil samples within riparian vegetation quadrats were taken for laboratory chemical and physical analyses during the fi rst wetland visit.

The following aquatic physico-chemistry variables were measured: maximum flow rate, water temperature, total dissolved solids, pH, turbidity, colour, total filterable nitrogen and phosphorus, iron, silica, alkalinity, hardness and composition of the major ions. Strahler stream order was calculated using 1:250,000 topographic maps, and distance to coast was measured as a straight line using ArcGIS and the Western Australian coastline in the DEC Corporate dataset 2007. Because they are single-paper specifi c, these data will be provided as appendices to the relevant paper.

Stygofauna

Stygofauna were sampled in bores and wells, principally drilled for groundwater extraction or groundwater monitoring. The study area was divided into 12 sub-regions based on the major river catchments and distance from the coast

Table 2 Personnel involved in sampling for terrestrial vertebrates.

Session Personnel

October 2004

Reptiles and Mammals: C. Baker-Sadlerd, P. Doughtyb, B.J. Durranta, L.A. Gibsona, N.A. Guthriea, P.G. Kendricka, N.L. McKenziea, K.D. Morrisa, D.J. Pearsona, M. Pepperd, D. Raboskyd, J.K. Rolfea, T.A. Smithd and N. Thomasa.

Birds: A.H. Burbidgea, N. Hamiltona, R.E. Johnstoneb, L.A. Smithb and P. Stoneb.

May 2005

Reptiles and Mammals: P. Doughty, K. Edwardsd, K. Georged, L.A. Gibson, K. Himbeck, M. Hughes, B. Johnson, P.G. Kendrick, N.L. McKenzie, P. Oliverd, M. Pepper and J.K. Rolfe.

Birds: A.H. Burbidge, R. Davis, N. Hamilton, D.J. Pearson, W. Rutherfordc and L.A. Smith

October 2005

Reptiles and Mammals: L. Beasleyd, P. Cullend, P. Doughty, L.A. Gibson, B. Johnson, P.G. Kendrick, K.D. Morris, J.K. Rolfe and N. Thomas.

Birds: A.H. Burbidge, N. Hamilton, R.E. Johnstone, B. Rutherford, C. Stevensonb and P. Stone.

May 2006

Reptiles and Mammals: P. Doughty, S. Fleischerd, K. George, L.A. Gibson, P.G. Kendrick, N.L. McKenzie, J.K. Rolfe and C. Sorokined.

Birds: A.H. Burbidge, R.E. Johnstone, D.J. Pearson, C. Stevenson and P. Stone

October 2006eReptiles and Mammals: J.K. Rolfe and T. Limantachaid.

Birds: A.H. Burbidge

a Department of Environment and Conservationb Western Australian Museumc Ornithological Technical Servicesd Volunteere Selected sites at PHYC, PHYE and NE

Page 23: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 25

Table 3 Personnel involved in sampling for terrestrial fl ora.

PersonnelAgency Affi liation

Sampling Year

2004 2005 2006

Apr MayAug-Sep Jul Aug Feb

Apr-May May

May -Jun Jun Jun Jun Aug Sep

Survey Team

Stephen van Leeuwen DEC √ √ √ √ √ √ √ √ √ √ √ √ √

Neil Gibson DEC √ √ √ √ √ √

Greg Keighery DEC √ √ √ √ √

Sue Patrick DEC √ √ √

Bob Bromilow DEC √ √ √ √ √ √ √ √

Margaret Langley DEC √ √ √ √ √

Bill Muir DEC √ √ √

Collaborators

Kate Brown Volunteer √

Margaret Byrne DEC √

David Coates DEC √

Doug Cook DEC √

Rowan Dawson DEC √

Daphne Edinger Volunteer √

Jodie Fraser Rio Tinto √

Regina Flugge Volunteer √ √ √ √

Gilbert Marsh Volunteer √

Julie Morthy DEC √

Yvonne Muller DEC √

Emil Thoma Rio Tinto √

Visiting Botanists

David Albrecht NT √

Bill Barker AD √

Tony Bean BRI √

Bob Chinnock AD √ √

Lyn Craven CANB √

Rob Davis PERTH √ √

Richard Fairman PERTH √

David Halford BRI √

Wayne Harris BRI √ √

Brendan Lepschi CANB √

David Mallinson CANB √

Bruce Maslin PERTH √

Frank Obbens PERTH √

Jo Palmer CANB √

Leigh Sage PERTH √ √

Neville Walsh MEL √

Carol Wilkins UWA √

Karen Wilson NSW √

Peter Wilson NSW √

Page 24: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

26 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

and, insofar as possible, all were sampled with similar effort. An attempt was made to sample all geologies of the Pilbara, although the reliance on existing bores meant that there was bias towards transmissive aquifers (e.g. alluvium, calcrete). A total of 508 bores was sampled (Figure 8), mostly twice, though with a few only sampled once and a small subset sampled up to seven times to investigate the importance of sampling effort for determining aquifer species richness. In all, 1084 samples were collected.

Each time a bore was sampled, a range of water chemistry variables was recorded, water samples were collected for laboratory analyses and stygofaunal invertebrates were sampled using weighted conical nets. The following aquatic physico-chemistry variables were measured: water temperature, oxygen, redox, total dissolved solids, pH, total soluble nitrogen and phosphorus, iron, strontium, silica, alkalinity, hardness and concentrations of the major ions. Details of bore construction, dimensions and depth were collected in the fi eld and from various databases. In many cases little information was available. These data are provided as an appendix to the stygofauna paper.

Milestones

Terrestrial fauna

The fi rst 151 sampling sites were selected during

July 2003, and trap systems for invertebrates and vertebrates installed between July and late-September 2003. Invertebrate sampling commenced at these sites in November 2003 and was completed by June 2005, while vertebrates were sampled in October 2004 and re-sampled in May 2005 (Table 2). The second set of sites (153) was selected by September 2005, and trap systems installed by late September 2005. They were sampled for invertebrates from September 2005 until June 2006, and for vertebrates during October 2005 with re-sampling in May 2006. The invertebrate sampling was carried out by B.J. Durrant and N.A. Guthrie, with assistance from other team members.

Two or three sites in each of the 24 survey areas (Figure 6) were sampled for microbats (echolocation recordings) during the vertebrate trapping program. During separate fi eld trips in August 2004, February 2006, May 2007 and November 2007, the echolocation calls, fl ight capabilities and foraging niches of all microbat species represented in the Pilbara fauna were documented by N.L. McKenzie with assistance from T.A. Smith, R.D. Bullen, M.H. McKenzie and A.N. Start, respectively.

In August 2004, T.A. Smith, M.C. McDowell and A. Baynes searched rock shelters and overhangs across the Pilbara for mammal bones. These were cleaned, sorted and identified, along with all previously collected material from the region held by the Western Australian Museum, including material from a sinkhole in the Ripon Hills

Table 4 Personnel involved in sampling for aquatic fl ora and fauna.

Session Personnel Sampling

August–September 2003A.M. Pindera, J.M. McRaea, M.N. Lyonsa, S.D. Lyonsa

29 wetlands (only 13 for diatoms, no planktonic algae sampling)

May–June 2004A.M. Pinder, H. Barrona, M.N. Lyons, D.A. Micklea 26 wetlands

August–September 2004A.M. Pinder, L. Grantb, N. Gibsona, D.A. Mickle

29 wetlands

April–May 2005A.M. Pinder, J.M. McRae, M.N. Lyons, D.A. Mickle

38 wetlands

August–September 2005A.M. Pinder, J.M. McRae, M.N. Lyons, D.A. Mickle

28 wetlands

January–February 2006A.M. Pinder, J.M. McRae, M.N. Lyons, S.D. Lyons

8 wetlands

April–May 2006A.M. Pinder, J.M. McRae, D.A. Mickle, N.Y. Huanga and J.A. Dunlopa 26 wetlands

August–September 2006S.A. Halsea, J. Powlingc, M.N. Lyons, M.T. Casanovad and D.A. Mickle

4 wetlands for all taxonomic groups (29 for all aquatic plant groups)

a Department of Environment and Conservationb James Cook Universityc The University of Melbourned Royal Botanic Gardens Melbourne

Page 25: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 27

collected by P.G. Kendrick and G.J. Angus.

By June 2008, all terrestrial fauna records were identified, the data compiled and analysis and written interpretation commenced for separate papers reporting the spider, scorpion, beetle, ant, reptile and frog, small ground-dwelling mammal, microbat, original mammal fauna and bird data-sets.

Terrestrial fl ora

Flora sampling at the 304 terrestrial sites and an additional 118 fl ora-only sites commenced in April 2004 (fi rst 151 terrestrial and 60 fl ora-only sites) and, for the second 153 terrestrial and 58 fl ora-only sites, in April 2006, with at least two visits to each site in different seasons, depending on rainfall patterns (Table 3). Two cyclones in early 2004, following an unusually dry year in 2003, delayed the program, but 2005 brought good dry-season then wet-season rains that allowed the fl ora sampling to be completed at all sites by September 2006. Specimen curation, identifi cation and data-entry of the 80,000 voucher specimens commenced in November 2004 and are expected to be completed by December 2009, when analysis and interpretation can begin.

In addition to the core survey team of seven personnel from the Department of Environment and Conservation, a further 31 people were involved in the fi eld program (Table 3). Most of these were botanists, ecologists and volunteers affi liated with the Western Australian Herbarium or herbaria in eastern and northern Australia. The three-year fi eld program involved 180 days of fi eldwork, a total of 1,260 person days of collecting and close to 128,000 km of vehicle travel.

Surface aquatic biota

Following a site selection trip in June/July 2003,

sampling of the fi rst 29 wetlands commenced in August and September 2003 (Table 4). Between 26 and 38 wetlands were sampled on each subsequent trip – at the beginning and end of the 2004 and 2005 wet seasons, and at the end of the 2006 wet season. Eight ephemeral wetlands were sampled towards the end of the 2006 wet season, following cyclone Clare, and four wetlands were sampled towards the end of the 2006 dry season. All invertebrate specimens were identifi ed by April 2007 and aquatic fl ora specimens by February 2008, with analysis and writing of separate papers on aquatic invertebrates and aquatic fl ora commencing thereafter.

Stygofauna

In the fi rst year of fi eldwork (2002), bores on mine leases were the focus of sampling. As the survey progressed, emphasis shifted to Western Australian Departments of Water and Main Roads bores and then pastoral-lease bores. Fieldwork was conducted during most dry season months between October 2002 and August 2006 by M. Scanlon, J. Cocking and H. Barron, with assistance from S.A. Halse, J.M. McRae, S. Eberhard and A. MacIntosh. Sampling methods were refined during a preliminary fi eldtrip by S.A. Halse, M. Scanlon, J. Cocking, J. Bradbury and R. Shiel (Adelaide University) and R. Leijs (South Australian Museum). A review of sampling methods was undertaken with P. De Deckker (Australian National University).

Wet season months were spent sorting stygofauna samples and either undertaking identifications or processing specimens for identification by relevant morphological and molecular taxonomists. A considerable amount of taxonomic work was commissioned or facilitated, including work on ostracods (Ivana Karanovic, Western Australian

Table 5 Year-to-year comparison of bi-monthly rainfall (mm), averaged across the Pilbara. Table values are from Bu-reau of Meteorology weather stations as represented in Figure 2: Port Hedland (004032), Roebourne (004035), Marble Bar (004020), Wittenoom (005026) and Newman (007151). The period of the stygofauna survey is outlined; the period of the terrestrial zoology survey is shaded grey; the period of the botanical sampling is underlined; and the period of the surface aquatic survey is shown in bold.

Year

Bi-monthly rainfall (mm)

Annual (mm)Dec & Jan Feb & Mar Apr & May Jun & July Aug & Sep Oct & Nov

2001 164 13 12 19 1 0 418

2002 40 12 30 0 1 21 207

2003 112 48 15 4 0 3 319

2004 90 92 5 3 1 4 390

2005 10 5 18 44 0 33 222

2006 200 160 1 0 12 8 614

Long-term average 78 42 24 10 2 18 348

Page 26: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

28 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Museum), copepods (Tom Karanovic, Western Australian Museum; Danny Tang, University of Western Australia), isopods (Buz Wilson and Stephen Keable, Australian Museum; Niel Bruce, Museum of Tropical Queensland) and water mites (Mark Harvey, Western Australian Museum). Identifi cations were completed by January 2007, except for some continuing taxonomic refi nements, and data analysis began in June 2008.

Integration of information

Papers i nteg rat i ng t he su r vey resu lt s (including manuscripts on species/community distributions, environmental patterns and reserve recommendations) will be prepared as soon as all datasets become available. As papers are completed, all records will be stored in accessible archives, and all specimens lodged in relevant State natural history collections along with relevant databases.

Conditions at the time of sampling

Rainfall averages across the Pilbara were unusually dry during 2002 and 2005, although there was above-average dry season rainfall in 2005 that resulted in minor fl ood events across most of the Pilbara (Table 5). Tropical cyclones Monty and Fay in early 2004 caused widespread inundation and severe fl oods in all major Pilbara river systems. Tropical cyclones Clare and Glenda in early 2006 also caused widespread inundation, and resulted in severe fl oods in the Ashburton, Robe, Fortescue and Port Hedland coastal rivers but only minor fl ooding in the De Grey/Oakover system. No cyclones affected the Pilbara in the 2004/5 wet season.

ACKNOWLEDGEMENTS

The project was funded by the Western Australian Department of Environment and Conservation, with contributions from the Western Australian Museum, the Commonwealth Government through its National Heritage Trust (NHT2), Straits Resources (Whim Creek Operation) and Rio Tinto Iron Ore (Dampier Salt Operation). In-kind support was provided by Rio Tinto Iron Ore, BHP Billiton Iron Ore and Kitchener Mining’s Bamboo Creek operation.

We gratefully acknowledge each of the numerous Pilbara pastoralists and Aboriginal communities for permission to access their leases and/or land. In particular, Robyn and Tony Richardson of Mt Florance Station provided free access to their camping ground for the survey site installation and sampling teams, and Rio Tinto Iron Ore provided access to subsidised housing for the fi rst installation team while operating out of Karratha.

Department of Conservation and Environment staff in Karratha, Karijini and Millstream provided

subsidised accommodation for the site selection, instal lat ion and sampling teams, and the Department of Water provided access to Table Hill, Harding Dam and sites along the West Pilbara water supply pipeline. Rio Tinto Iron Ore and BHP Billiton Iron Ore gave permission for survey teams to enter their exploration leases and use their rail access roads.

Allan Burbidge and Lesley Gibson provided helpful comments on the draft.

REFERENCES

Adams, J. (1985). The defi nition and interpretation of

guild structure in animal communities. Journal of Animal Ecology 54: 43–59.

ANCA (1996). A directory of important wetlands in Australia.

2nd edition. Australian Nature Conservation Agency:

Canberra, Australia.

Anon. (1991). Ecological survey of Abydos-Woodstock Reserve, Western Australia. Western Australian

Museum, Perth.

Anon. (2006). Pilbara economic perspective: an update on the economy of Western Australia’s Pilbara region. Department of Local Government and Regional

Development: Perth, Australia.

Austin, M.P., Cunningham,R.B. and Fleming, P.M. (1984).

New approaches to direct gradient analysis using

environmental scalars and statistical curve-fitting

procedures. Vegetatio 55: 11–27.

Austin, M.P. and Heyligers, P.C. (1989). Vegetation

survey design for conservation: gradsec sampling of

forests in north-eastern New South Wales. Biological Conservation 50: 13–32.

Beard, J.S. (1975). Vegetation survey of Western Australia. 1:1 000 000 Vegetation Series sheet 5 - Pilbara. Map and explanatory notes. University of Western Australia

Press: Nedlands, Australia.

Beard, J.S. (1990). Plant life of Western Australia. Kangaroo

Press: Kenthurst, Australia.

Bettenay, E., Churchwood, H.M. and McArthur, W.M.

(1967). Atlas of Australian soils sheet 6, Meekatharra to Hamersley Range area. CSIRO and Melbourne

University Press: Melbourne, Australia.

Biota Environmental Sciences (2002). Proposed Hope Downs rail corridor from Weeli Wolli Siding to Port Hedland – vertebrate fauna survey. Hope Downs Management

Services: Perth, Australia.

Biota Environmental Sciences (2007). Mesa A troglobitic fauna studies update. Unpublished report prepared

for Pilbara Iron: Perth, Australia. (online: http://

www.pilbarairon.com/documents/Mesa%20A%20

Troglofauna%20Studies%20Update%20July%2007.

pdf)

Bortolus, A. (2008). Error cascades in the biological

sciences: the unwanted consequences of using bad

taxonomy in ecology. Ambio 37: 114–118.

Bowers, M.A. (1997). Mammalian landscape ecology.

Journal of Mammalogy 78: 997–998.

Braithwaite, R.W. (1984). Problems of scale, complexity

and patchiness in sampling vertebrate fauna (pp 131–

Page 27: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 29

156). In: Myers, K., Margules, C.R. and Musto, I. (eds), Survey methods for nature conservation vol. 1. CSIRO

Division of Water and Land Resources: Canberra,

Australia.

Burbidge, A.A. and McKenzie, N.L. (eds) (1983). Wildlife of the Great Sandy Desert. Western Australian Wildlife

Research. Bulletin No. 12: 1–127. Department of

Fisheries and Wildlife: Perth, Australia.

Burbidge, A.H., Harvey, M.S. and McKenzie, N.L. (eds)

(2000a). Biodiversity of the southern Carnarvon Basin,

Western Australia. Records of the Western Australian Museum, Supplement 61: 1–595.

Burbidge, A.H., Johnstone, R.E., Fuller, P.J. and Stone, P.

(2000b). Terrestrial birds of the southern Carnarvon

Basin, Western Australia: contemporary patterns of

occurrence. Records of the Western Australian Museum, Supplement 61: 449–464.

Burbidge, N.T. (1959). Notes on plants and plant habitats observed in the Abydos-Woodstock area, Pilbara district, Western Australia. CSIRO Division of Plant Industry

Technical Paper No. 12. CSIRO: Melbourne, Australia.

CALM (1999). Karijini National Park. Management Plan

No. 40. Department of Conservation and Land

Management: Perth, Australia.

Casson, N. (1994). The biology and ecology of T. basedowii

and T. wiseana associations in relation to aridity and fi re.

PhD thesis. Curtin University of Technology: Perth,

Australia.

Casson, N.E. and Fox, J.E.D. (1987). The post-fire

regeneration responses of Triodia wiseana and T. basedowii. Australian Rangelands Journal 9: 53–55.

Colls, K. and Whitaker, R. (1995). The Australian weather book. National Books: Frenchs Forest, Australia.

CSIRO and Bureau of Meteorology (2007). Climate change in Australia. Technical Report 2007. Offi ce of Climate

Change: Canberra, Australia.

Dale, P.E.R. (1983). Scale problem in classifi cation: an

application of a stochastic method to evaluate the

relative homogeneity of sample units. Australian Journal of Ecology 8: 189–198.

Dunlop, M. and Brown, P.R. (2008). Implications of climate change for Australia’s National Reserve System – a preliminary assessment, CSIRO Sustainable Ecosystems,

Report to the Department of Climate Change, and the

Department of the Environment, Water, Heritage and

the Arts: Canberra, Australia.

Dunlop, J.N. and Porter, B. (1985). The conservation of mulga communities in south-eastern Pilbara. Mulga Research

Centre Special Report. Prepared for the Department of

Conservation and Environment: Perth, Australia.

Eberhard, S.M., Halse, S.A. and Humphreys, W.F. (2005).

Stygofauna in the Pilbara region, north-west Western

Australia: a review. Journal of the Royal Society of Western Australia 88: 167–176.

Eberhard, S.M. and Humphreys, W.F. (1999). Management

of stygofauna in Western Australia. Proceedings of the 13th Australasian conference on cave and karst management, Mount Gambier, South Australia, April 1999.

Australasian Cave and Karst Management Association

Inc.: Adelaide, Australia.

ecologia Environmental Consultants (1997). Hope Downs biological survey. Unpublished report prepared for

Hope Downs Management Services: Perth, Australia.

Environment Australia (2001). A directory of important wetlands in Australia. 3rd edition. Environment

Australia: Canberra, Australia.

Environment Australia (2008). Revision of the Interim Biogeographic Regionalisation for Australia (IBRA) and development of version 6.1. National Reserves System.

Department of Environment, Water, Heritage and

the Arts: Canberra, Australia. (online: http://

www.environment.gov.au/parks/nrs/science/

bioregionframework/ibra/index.html)

Environmental Protection Authority (1992). Marandoo mine and central Pilbara railway: report and recommendations of the Environmental Protection Authority. Bulletin 643. Department of Environmental

Protection: Perth, Australia.

Environmental Protection Authority (1999). West Angelas Iron Ore Project, East Pilbara, Ashburton, Roebourne: report and recommendations of the Environmental Protection Authority. Bulletin 924, Department of

Environmental Protection: Perth, Australia.

Ferrier, S. and Watson, G. (1997). An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. NSW National Parks and Wildlife Service:

Sydney, Australia. (online: http://www.environment.

gov.au/biodiversity/publications/technical/

surrogates/pubs/surrogates.pdf)

Fleishman, E., Betrus, C.J., Blair, R.B., MacNally, R.

and Murphy, D.D. (2002). Nestedness analysis and

conservation planning: the importance of place,

environment, and life history across taxonomic

groups. Oecologia 133: 78–89.

Fox, J.E.D. and Dunlop, J.N. (1983). Mulga study, National Highway Project, Packsaddle to Munjina. Mulga

Research Centre Report No. 1. Prepared for Main

Roads Department: Perth, Australia.

Gaston, K.J. and Blackburn, T.M. (1999). A critique for

macroecology. Oikos 84: 353–368.

Griffi n, G.F. and Friedel, M.H. (1984). Effects of fi re on

central Australian rangelands. II Changes in tree and

shrub populations. Australian Journal of Ecology 9:

395–403.

Griffi n, G.F. and Friedel, M.H. (1985). Discontinuous

change in central Australia: some implications of

major ecological events for land management. Journal of Arid Environments 9: 63–80.

Harvey, M.S., Berry, O., Edward, K.L. and Humphreys,

G. (2008). Molecular and morphological systematics

of hypogean schizomids (Schizomida: Hubbardiidae)

in semiarid Australia. Invertebrate Systematics 22:

167–194.

Hennig, P. (2004). A brief land-use history (pp 13–18).

In: van Vreeswyk, A.M.E., Payne, A.L., Leighton,

K.A. and Hennig, P. (eds), An inventory and condition survey of the Pilbara region, Western Australia. Technical

Bulletin No. 92. Western Australian Department of

Agriculture: Perth, Australia.

Hickman, A.H. (1978). Nullagine, Western Australia, Sheet SF 51-5 International Index. 1:250 000 Geological Series Explanatory Notes. Australian Government Publishing

Service: Canberra, Australia.

Page 28: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

30 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Hickman, A.H. (1983). Geology of the Pilbara Block and its environs. Bulletin 127, Western Australian Geological

Survey: Perth, Australia.

Hickman, A.H., Chin, R.J. and Gibson, D.L. (1983).

Yarrie, Western Australia, Sheet SF 51-1 International Index. 1:250 000 Geological Series Explanatory Notes.

Australian Government Publishing Service: Canberra,

Australia.

Higgs, P. (2005). Cataloguing biological surveys within

Western Australia: the Pilbara experience. Journal of Royal Society of Western Australia 88: 51–56.

Hobbs, R.J. and McIntyre, S. (2005). Categorizing

Australian landscapes as an aid to assessing the

generality of landscape management guidelines.

Global Ecology and Biogeography 14: 1–15.

Hobbs, T.J., Morton, S.R., Masters, P. and Jones, K.R.

(1984). Infl uence of pit-trap design on sampling of

reptiles in arid spinifex grasslands. Wildlife Research

21: 483–490.

Hodgkinson, K.F. (2002). Fire regimes in Acacia wooded

landscapes: effects of functional processes and

biological diversity (pp 259–280). In: Bradstock,

R.A., Williams, J.E. and Gill, A.M. (eds), Flammable Australia: the fi re regimes and biodiversity of a continent. Cambridge University Press: Melbourne, Australia.

Houlder, D.J., Hutchinson, M.F., Nix, H.A. and McMahon,

J.P. (2000). ANUCLIM user guide, version 5.1. Centre

for Resource and Environmental Studies, Australian

National University: Canberra, Australia.

How, R.A. and Cowan, M.A. (2006). Collections in space

and time: A biogeographical examination of native

frogs, mammals and reptiles in Western Australia.

Pacifi c Conservation Biology 12: 111–133.

Huston, M.A. (2002). Introductory essay: critical issues

for improving predictions (pp 7–21). In: Scott, J.M.,

Heglund, P.J., Morrison, M.L., Haufl er, J.B., Raphael,

M.G., Wall, W.A. and Samson, F.B. (eds), Predicting species occurrences: issues of accuracy and scale. Island

Press: Washington, U.S.A.

Integrated Environmental Services (1980). An ecological appreciation of the West Angelas area, Western Australia.

Report prepared for Cliffs International Inc.

Jennings, J.N. and Mabbutt, J.A. (1977). Physiographic

outlines and regions. In: Jeans, D.N. (ed.), Australia – a geography. Sydney University Press: Sydney, Australia.

Johnson, S.L. (2004). Geology and hydrogeology (pp 39–

51). In: van Vreeswyk, A.M.E., Payne, A.L., Leighton,

K.A. and Hennig, P. (eds), An inventory and condition survey of the Pilbara region, Western Australia. Technical

Bulletin No. 92. Western Australian Department of

Agriculture: Perth, Australia.

Keighery, G.J., Gibson, N., van Leeuwen, S., Lyons, M.N.

and Patrick, S. (2007). Biological survey and setting

priorities for fl ora conservation in Western Australia.

Australian Journal of Botany 55: 308–315.

Keighery, G.J., Halse, S.A., Harvey, M.S. and McKenzie,

N.L. (2004). A biodiversity survey of the Western

Australian agricultural zone. Records of the Western Australian Museum, Supplement 67: 1–384.

Leighton, K.A. (2004). Climate (pp 19–38). In: van

Vreeswyk, A.M.E., Payne, A.L., Leighton, K.A. and

Hennig, P. (eds), An inventory and condition survey

of the Pilbara region, Western Australia. Technical

Bulletin No. 92. Western Australian Department of

Agriculture: Perth, Australia.

MacNally, R. and Quinn, G.P. (1997). Symposium

introduction: the importance of scale in ecology.

Australian Journal of Ecology 23: 1–7.

Margules, C.R. and Austin, M.P. (1994). Biological

models for monitoring species decline. Philosophical Transactions of the Royal Society of London B 344: 69–75.

Maslin, B.R. and van Leeuwen, S. (2008). New taxa of

Acacia (Leguminosae: Mimosoideae) and notes on

other species from the Pilbara and adjacent desert

regions of Western Australia. Nuytsia 18: 139–188.

McDonald, R.C., Isabelle, R.L., Speight, J.G., Walker,

J. and Hopkins, M.S. (1984). Australian soil and land survey fi eld handbook. 2nd edition. Inkata Press:

Melbourne, Australia.

McKenzie, N.L., Belbin. L., Margules, C.R. and Keighery,

G.J. (1989). Selecting representative reserve systems

in remote areas: a case study in the Nullarbor region,

Australia. Biological Conservation 50: 239–261.

McKenzie, N.L. and Burbidge, A.A. (2002). Mammals

(pp 84–96). In: Sattler, P. and Creighton, C. (eds),

Australian terrestrial biodiversity assessment 2002. National Land and Water Resources Audit: Canberra,

Australia.

McKenzie, N.L., Burbidge, A.A., Baynes, A., Brereton, R.,

Dickman, C.R., Gibson, L.A., Gordon, G., Menkhorst,

R.W., Robinson, A.C., Williams, M.R. and Woinarski,

J.C.Z. (2006). Analysis of factors implicated in the

recent decline of Australia’s mammalian fauna.

Journal of Biogeography 34 (4): 597–611.

McKenzie, N.L., Gibson, N., Keighery G.J. and Rolfe,

J.K. (2004). Patterns in the biodiversity of terrestrial

environments in Western Australian wheatbelt.

Records of the Western Australian Museum, Supplement 67: 293–336.

McKenzie, N.L., Halse, S.A. and Gibson, N. (2000a). A

nature reserve system for the southern Carnarvon

Basin, Western Australia. Records of the Western Australian Museum, Supplement 61: 547–567.

McKenzie, N.L., Johnston, R.B. and Kendrick, P.G. (eds)

(1991a). Kimberley rainforests of Australia. Surrey Beatty

& Sons: Chipping Norton, Australia.

McKenzie, N.L., May, J.E. and McKenna, S. (2003).

Bioregional summary of the 2002 biodiversity audit for Western Australia. Department of Conservation and

Land Management: Perth, Australia.

McKenzie, N.L., Robinson, A.C. and Belbin, D.L. (1991b).

Biogeographic survey of the Nullarbor district,

Australia (pp 109–126). In: Margules, C.R. and Austin,

M.P (eds), Nature conservation: cost effective biological surveys and data analysis. CSIRO Division of Wildlife

and Ecology: Canberra, Australia.

McKenzie, N.L. and Rolfe, J.R. (1986). Structure of bat

guilds in the Kimberley mangroves, Australia. Journal of Animal Ecology 55: 401–420.

McKenzie, N.L., Rolfe, J.K., Aplin, K.P., Cowan, M.A. and

Smith, L.A. (2000b). Herpetofauna of the southern

Carnarvon Basin, Western Australia. Records of the Western Australian Museum, Supplement 61: 335–360.

Miles, J.M. and Burbidge, A.A. (eds) (1975). A biological

Page 29: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 31

survey of the Prince Regent River Reserve, north-west Kimberley, Western Australia. Western Australian

Wildlife Research. Bulletin No. 3. Department of

Fisheries and Wildlife: Perth, Australia.

Morgan, G. (2001). Landscape health in Australia: a rapid assessment of the relative condition of Australia’s bioregions and subregions. National Land and Water Resources

Audit, Environment Australia: Canberra, Australia.

Morton, S.R., Short, J. and Barker, R.D. (1995). Refugia for biological diversity in arid and semi-arid Australia: A

report to the Biodiversity Unit of The Department of

Environment, Sport and Territories, Biodiversity Series,

Paper No. 4: Canberra, Australia.

Muir, B.G. (ed.) (1983). A fauna survey of the Hamersley Range National Park Western Australia 1980. National Parks

Authority of Western Australia: Perth, Australia.

Nano, C.E.M. and Clarke, P.J. (2008). Variegated desert

vegetation: covariation of edaphic and fi re variables

provides a framework for understanding mulga–

spinifex coexistence. Austral Ecology 33: 848–862.

Oliver, I. and Beattie, A.J. (1996). Designing a cost-effective

invertebrate survey: a test of methods for rapid

assessment of biodiversity. Ecological Applications 6:

594–607.

Oliver, I., Holmes, A., Dangerfi eld, J.M., Gillings, M., Pik,

A.J., Britton, D.R., Holley, M., Montgomery, M.E.,

Raison, M., Logan, V., Pressey, R.L. and Beattie, A.J.

(2004). Land systems as surrogates for biodiversity

in conservation planning. Ecological Applications 14:

485–503.

Paini, D.R. (2004). Impact of the feral honeybee (Apis mellifera) (Hymenoptera: Apidae) on native bees: a

review. Austral Ecology 29: 399–407.

Paton, D.C. (1996). Overview of the feral and managed honeybees of Australia: distribution, extent of interactions with native biota, evidence of impacts and future research.

Australian Nature Conservation Society: Canberra,

Australia.

Payne, A.L. (2004). Land systems (pp 19–38). In: van

Vreeswyk, A.M.E., Payne, A.L., Leighton, K.A. and

Hennig, P. (eds), An inventory and condition survey of the Pilbara region, Western Australia. Technical Bulletin

No. 92. Western Australian Department of Agriculture:

Perth, Australia.

Payne, A.L., Mitchell, A.A. and Holman, W.F. (1988).

An inventory and condition survey of rangelands in the Ashburton River catchment, Western Australia. Revised

edition. Technical Bulletin No. 62. Western Australian

Department of Agriculture: Perth, Australia.

Payne, A.L. and Tille, P.J. (1992). An inventory and condition survey of the Roebourne plains and surrounds, Western Australia. Technical Bulletin No. 83. Western Australian

Department of Agriculture: Perth, Australia.

Playford, P. (2001). Subterranean biotas in Western Australia:

Report for the Environmental Protection Authority, 10

September 2001. Environmental Protection Authority:

Perth, Australia.

Rice, B. and Westoby, M. (1999). Regeneration after fi re in

Triodia R. Br. Australian Journal of Ecology. 24: 563–572.

Rolfe, J.K. and McKenzie, N.L. (2000). Comparison of

methods used to capture herpetofauna: An example

from the Carnarvon Basin. Records of the Western

Australian Museum, Supplement 61: 361–370.

Rosenzweig, M.L. and Abramski, Z. (1986). Detecting

density-dependent habitat selection. The American Naturalist 126: 405–417.

Ruddock, A. (2008). Resource sector engagement: the Pilbara region. The Chamber of Minerals and Energy of

Western Australia: Perth, Australia. (online: http://

www.bitre.gov.au/publications/49/Files/Amy_

Ruddock.ppt#285,1 accessed 17 October 2008)

Solem, A. and McKenzie, N.L. (1991). The composition

of land snail communities in Kimberley rainforest

communities (pp 247–263). In: McKenzie, N.L.,

Johnston, R.B. and Kendrick, P.G. (eds), Kimberley rainforests of Australia. Surrey Beatty and Sons Pty Ltd:

Chipping Norton, Australia.

Start, A.N. (1986). Status and management of mulga in

the Pilbara region of Western Australia (pp 136–138).

In: Sattler, P. (ed.), The mulga lands. Royal Society of

Queensland: Brisbane, Australia.

Suijdendorp, H. (1981). Responses of the hummock

grasslands of north-western Australia to fire (pp

117–126). In: Gill, A.M., Groves, R.H. and Noble, I.R.

(eds), Fire and the Australian biota. Australian Academy

of Science: Canberra, Australia.

Taylor, J.A. and Friend, G.R. (1984). Sampling strategies for

fauna surveys (pp 179–192). In: Myers, K., Margules,

C.R. and Musto, I. (eds), Survey methods for nature conservation, Vol. 1. CSIRO Division of Water and Land

Resources: Canberra, Australia.

Thackway, R., and Cresswell, I.D. (eds) (1995). Toward an

Interim Biogeographic Regionalisation for Australia: a

framework for setting priorities in the national reserves

system cooperative program. Australian Nature

Conservation Agency: Canberra, Australia.

Thorne, A.M. and Trendall, A.F. (2001). Geology of the Fortescue Group, Pilbara Craton, Western Australia.

Bulletin No. 144. Geological Survey of Western

Australia: Perth, Australia.

Thorne, A.M. and Tyler, I.M. (1997). Roy Hill, Western Australia, Sheet SF 50-12 International Index. 1:250 000 Geological Series Explanatory Notes. Australian

Government Publishing Service: Canberra, Australia.

Tille, P. (2006). Soil-landscapes of Western Australia’s rangelands and arid interior. Resource Management

Technical Report No. 313. Department of Agriculture

and Food: Perth, Australia.

Tongway, D.J., Valentin, C. and Seghieri, J. (2001). Banded vegetation patterning in arid and semi-arid environments: ecological processes and consequences for management. Ecological Studies no. 149. Springer Verlag: New York,

U.S.A.

Trendall, A.F. (1990). Pilbara Craton (pp 128–158). In:

Geology and mineral resources of Western Australia.

Memoir 3, Geological Survey of Western Australia:

Perth, Australia.

Trudgen, M.E. and Casson, N. (1998). Flora and vegetation surveys of Orebody A and Orebody B in the West Angelas Hill Area, an area surrounding them, and of rail options considered to link them to the existing Robe River Iron Associates rail line. Report prepared for Robe River Iron

Associates: Perth, Australia.

Tyler, I.M., Hunter, W.M. and Williams, I.R. (1990).

Page 30: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

32 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Newman, Western Australia, sheet SF50-16. 1:250 000 Geological Series Explanatory Notes (2nd edition). Australian Government Publishing Service: Canberra, Australia.

van Etten, E.J.B. (1998). Environmental factors effecting the boundary between mulga (Acacia aneura) and hummock grassland (Triodia spp.) communities. Master of Applied Science (Natural Resources) thesis. Curtin University of Technology: Bentley, Australia.

van Etten, E.J.B. (2000). Vegetation of the Hamersley Range, Western Australia – characteristics and comparisons. Doctor of Philosophy thesis. School of Environmental Biology, Curtin University of Technology: Perth, Australia.

van Leeuwen, S.J., Start, A.N., Bromilow, R.B. and Fuller, P.J. (1995). Fire and fl oristics of mulga woodlands in the Hamersley Range, Western Australia (pp 169–175). In: Page, M.J. and Beutel, T.S. (eds), Ecological research and management in the mulga lands. Gatton College, University of Queensland: Lawes, Australia.

van Vreeswyk, A.M.E. (2004). Resource condition (pp 385–400). In: van Vreeswyk, A.M.E., Payne, A.L., Leighton, K.A. and Hennig, P. (eds), An inventory and condition survey of the Pilbara region, Western Australia. Technical Bulletin No. 92. Western Australian Department of Agriculture: Perth, Australia.

van Vreeswyk, A.M.E., Payne, A.L., Leighton, K.A. and Hennig, P. (eds) (2004). An inventory and condition survey of the Pilbara region, Western Australia. Technical Bulletin No. 92. Western Australian Department of Agriculture: Perth, Australia.

Warner, R.R. and Chesson, P.L. (1985). Co-existence

mediated by recruitment fl uctuations: a fi eld guide to the storage effect. The American Naturalist 125: 769–787.

WEL (2007). Pluto LNG development—public environment report / public environment review. supplement and response to submissions. Woodside Energy Limited, March 2007.

Western Australian Government (2002). Focus on the future: the Western Australian State sustainability strategy, consultation draft. Department of Premier and Cabinet: Perth, Australia.

Whitmore, T.C. (1984). Tropical rainforests of the Far East. Clarendon Press: Oxford, U.K.

Wiens, J.A. (1985). Vertebrate responses to environmental patchiness in arid and semi-arid ecosystems (pp 169–193). In: Pickett, S.T.A. and White, P.S. (eds), The ecology of natural disturbance and patch dynamics. Academic Press: New York, U.S.A.

Williams, J.E. (2002). Fire regimes and their impacts in the mulga (Acacia aneura) landscapes of central Australia. Environment Australia: Canberra, Australia. (online: http://www.environment.gov.au/soe/2001/publications/technical/fi re/pubs/part3.pdf)

Woinarski, J., Fensham, R., Whitehead, P. and Fisher, A. (2000). Digest of biodiversity changes and threatening processes across each rangeland bioregion. Appendix A to background paper 1: A review of changes in status and threatening processes. In: Developing an analytical framework for monitoring biodiversity in Australia’s rangelands. Tropical Savannas Cooperative Research Centre: Darwin, Australia. (online: http://www.anra.gov.au/topics/rangelands/pubs/change/bp01-part2.pdf)

Page 31: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 33

AP

PE

ND

IX A

Bri

ef d

escr

ipti

on

of

the

304 t

erre

stri

al

bio

div

ersi

ty s

ites

sa

mp

led

fo

r p

lan

ts a

nd

an

ima

ls d

uri

ng

th

e P

ilb

ara

bio

log

ica

l su

rvey

. E

ach

en

try

co

nsi

sts

of

site

lab

el t

hat

co

mp

rise

s th

e su

rvey

are

a c

od

e (F

ig.

1) c

on

cate

nat

ed w

ith

th

e si

te n

um

ber

, th

en t

he

site

’s l

atit

ud

e, l

on

git

ud

e, 1

:250,

00

0 m

ap s

hee

t su

rfac

e g

eolo

gy

co

de

ass

esse

d

by

tw

o o

f th

e au

tho

rs o

n t

he

site

(N

McK

& S

vL

), f

oll

ow

ed b

y a

des

crip

tio

n o

f th

e si

te’s

su

rfac

e a

nd

/or

veg

etat

ion

. T

he

fi n

al

colu

mn

s a

re t

he

stra

tig

rap

hic

an

d

reg

oli

th u

nit

s, d

eter

min

ed b

y i

nte

rsec

tin

g t

he

site

co

ord

inat

es w

ith

th

e D

epa

rtm

ent

of

Min

era

ls a

nd

En

erg

y (

Geo

log

ica

l S

urv

ey)

geo

gra

ph

ica

l in

form

atio

n

syst

em,

incl

ud

ing

a p

ho

to i

nte

rpre

tati

on

of

the

site

(R

. L

an

gfo

rd,

per

son

al

com

mu

nic

atio

n).

L

atit

ud

es &

lo

ng

itu

des

wer

e d

eter

min

ed b

y G

PS

usi

ng

th

e A

ust

rali

an

Geo

det

ic D

atu

m 1

984;

pre

cisi

on

wa

s a

bo

ut

10 m

. B

edro

ck a

nd

reg

oli

th c

od

es a

re e

xp

lain

ed b

elo

w t

he

tab

ula

tio

n.

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

BD

RN

012

2.4

44

312

1.2

320

Qs.

Red

sa

nd

du

ne

of

Lit

tle

Sa

nd

y D

eser

t. D

eep

red

sa

nd

.P

_-M

N-s

Qs

Sa

nd

du

ne

BD

RN

02

22

.441

712

1.12

90

Qw

. D

epre

ssio

ns

in u

nd

ula

tin

g u

pla

nd

. S

ton

y c

lay

to

les

s th

an

30

cm

ov

er

du

ricr

ust

. M

ixed

peb

ble

s a

nd

gra

vel

in

pro

fi le

an

d a

s su

rfac

e st

rew

. M

ulg

a.A

P_-_

pj-

ccx

Qw

Ro

ck;

pro

xim

al

coll

uv

ium

BD

RN

03

22

.411

812

1.07

20 T

b.

Un

du

lati

ng

up

lan

d.

Dis

con

tin

uo

us

sha

llo

w s

ton

y c

lay

ov

er m

ass

ive

sheet

cap

rock

. S

urf

ace

cov

ered

in

co

ars

e T

erti

ary

gra

vel

.A

P_-_

pj-

ccx

Tb

Sil

iceo

us

lag

BD

RN

04

22

.63

08

120.

996

0Q

e. Q

uat

ern

ary

ell

uv

ial

pla

in.

Bro

wn

sa

nd

y c

lay

to

20 c

m w

ith

sto

nes

in

p

rofi

le &

su

rfac

e st

rew

. O

ver

?ro

ck h

ard

pa

n.

Lo

w o

pen

wo

od

lan

d o

f m

ulg

a.P

_-M

N-s

Qe

Ro

ck;

pro

xim

al

coll

uv

ium

BD

RN

05

22

.60

38

120.

784

0C

zc.

Ro

llin

g c

ou

ntr

y. T

erti

ary

co

llu

viu

m (

Tc)

. D

eep

cla

y (

red

-bro

wn

) w

ith

su

rfac

e co

ver

of

iro

nst

on

e g

rav

el &

ro

cks.

Aca

cia

shru

bla

nd

.A

P_-_

pj-

ccx

Tc

Fer

rug

ino

us

gra

vel

; co

llu

viu

m o

r la

g

BD

RN

06

22

.578

112

0.8

00

0d

d’.

Ste

ep D

avis

Do

leri

te h

ills

ide.

Sto

ny

cla

y w

ith

su

rfac

e co

ver

of

bro

ken

ro

ck t

o 2

0 c

m o

ver

ma

ssiv

e ro

ck.

P_-o

dR

ock

; p

rox

ima

l co

llu

viu

m

BD

RN

072

2.5

44

212

0.8

00

0M

Nb

. U

nd

ula

tin

g v

all

ey s

ide-s

lop

e (g

entl

e) &

fl o

or.

Deep

sa

nd

y c

lay

wit

h

va

rnis

hed

gra

vel

& p

ebb

le s

urf

ace

cov

er.

Ba

lfo

ur

Ma

ng

an

ese

Fo

rmat

ion

.P

_-M

N-s

Fer

rug

ino

us

gra

vel

; co

llu

viu

m o

r la

g

BD

RN

08

22

.53

44

120.

783

0 C

zk

. U

nd

ula

tin

g c

alc

rete

pla

in.

Pa

le c

alc

are

ou

s fi

ne

loa

my

cla

y w

ith

su

rfac

e o

f ca

lcre

te &

iro

nst

on

e g

rav

el &

peb

ble

s. E

ucal

yptu

s so

cial

is m

all

ee.

AP

_-_

pj-

ccx

Cz

kM

ixed

ca

lcre

te a

nd

fe

rru

gin

ou

s g

rav

el

BD

RN

09

22

.60

9812

0.729

0F

n.

Ste

ep N

ym

erin

a b

asa

lt h

ills

ide.

Bo

uld

er s

cree

bel

ow

bre

ak

away

. B

row

n

clay

to

dep

th w

ith

ro

cks

& f

rag

men

ts i

n p

rofi

le &

as

surf

ace

cov

er b

etw

een

b

ou

lder

s. M

ulg

a.A

-FO

m-b

-HA

EF

erru

gin

ou

s d

uri

cru

st;

wea

ther

ed r

ock

BD

RN

102

2.5

186

120.

678

0T

l. T

erti

ary

lat

erit

e ri

se (

?=C

zl

Tb

Cz

p).

Fin

e lo

am

y l

igh

t b

row

n s

an

d w

ith

la

teri

te f

rag

men

ts &

gra

vel

to

20 c

m o

ver

pav

emen

t. S

urf

ace

stre

w o

f ro

cks,

p

ebb

les

& g

rav

el.

A-F

Om

-b-H

AE

Fer

rug

iniz

ed r

ock

; p

rox

ima

l co

llu

viu

m

BD

RN

112

2.5

169

120.

659

0F

t. L

ow

sto

ny

mu

dst

on

e &

ba

salt

ris

e in

va

lley

of

un

du

lati

ng

up

lan

d.

Sh

all

ow

bro

wn

cla

y p

ack

ed w

ith

bro

ken

ro

cks

to 1

5 c

m o

ver

ma

ssiv

e b

asa

lt

rock

ou

tcro

p.

So

il s

urf

ace

mo

stly

co

ver

ed b

y s

ton

es &

ro

cks.

A-F

Ot-

xb

-k-H

AE

Ro

ck;

pro

xim

al

coll

uv

ium

BD

RN

122

2.7

177

120.

64

60

Ag

b.

Gra

nit

oid

hil

lsid

e. M

ass

ive

ou

tcro

p.

Sh

all

ow

po

cket

s &

cre

vic

es o

f sa

nd

y g

ran

ite

gri

t w

ith

qu

art

zit

e fr

agm

ents

& d

ecay

ing

gra

nit

e ro

cks.

A-g

-PC

NR

ock

ris

e ad

jace

nt

san

d

sheet

Page 32: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

34 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

BD

RN

132

2.7

011

120.

7370

Fk

. U

nd

ula

tin

g u

pla

nd

va

lley

fl o

or

un

it o

f K

yle

na b

asa

lt.

Hea

vy

red

-bro

wn

cl

ay (

wit

h s

ton

es &

gra

vel

in

pro

fi le

& a

s su

rfac

e co

ver

) a

s 20

cm

th

ick

v

eneer

ov

er m

ass

ive

rock

.A

-FO

k-b

-HA

ER

ock

; p

rox

ima

l co

llu

viu

m

BD

RS

012

3.39

1312

0.52

30

Qc.

Gen

tly

slo

pin

g p

lain

of

coll

uv

ial

clay

wit

h r

ock

fra

gm

ents

& b

uck

sho

t in

p

rofi

le t

o d

epth

(L

ittl

e S

an

dy

Des

ert

veg

etat

ion

).P

_-H

Aj-

xci

-od

Qc

Co

llu

viu

m;

coll

uv

ial

fan

BD

RS

02

23.

38

40

120.

479

0Q

a. P

lain

of

hea

vy

all

uv

ial

clay

. S

catt

ered

Euc

alyp

tus

vict

rix

& C

orym

bia.

P_-H

Aj-

xci

-od

Qa

All

uv

ium

on

fl o

od

pla

in

BD

RS

03

23.

359

512

0.4

60

0M

Ns(

c).

Ro

cky

scr

ee

& o

utc

rop

slo

pe

& h

ill

top

. Q

ua

rtz s

an

dst

on

e in

terb

edd

ed w

ith

co

ng

lom

erat

e. S

ha

llo

w s

kel

eta

l so

il i

n p

ock

ets

&

crev

ices—

fi n

e b

row

n c

lay

ey s

an

d.

P_-M

N-s

Sil

iceo

us

bed

rock

slo

pes

BD

RS

04

23.

372

512

0.4

590

Ql.

All

uv

ial

san

dy

cla

y p

lain

in

cise

d b

y v

ery

na

rro

w c

reek

bed

wit

h r

iver

sa

nd

bed

. E

ucal

yptu

s vi

ctri

x.P

_-H

Ao

-cib

Qa

Sa

nd

y d

rain

age

cha

nn

el i

n

all

uv

ial

fl o

od

pla

in

BD

RS

05

23.

36

53

120.

34

50

Qs.

Qu

ater

na

ry a

eoli

an

sa

nd

pla

in.

Fir

m r

ed c

lay

ey s

an

d t

o d

epth

(L

ittl

e S

an

dy

Des

ert

veg

etat

ion

).P

_-H

Aj-

xci

-od

Qs

Aeo

lia

n s

an

d p

lain

BD

RS

06

23.

362

712

0.29

50

Qw

. P

lain

bel

ow

ba

nd

ed i

ron

hil

ls w

ith

su

rfac

e st

rew

of

ba

nd

ed i

ron

p

ebb

les

in p

lace

s. F

irm

sa

nd

y c

lay

to

dep

th.

P_-H

Ab

-cib

Cz

cR

ock

; p

rox

ima

l co

llu

viu

m

BD

RS

072

3.38

0712

0.2

510

Hb

. S

teep

ba

nd

ed i

ron

hil

lsid

e &

to

p.

Sh

eet

ou

tcro

p,

scre

e, r

ock

str

ew &

sh

all

ow

sk

elet

al

clay

in

po

cket

s, c

rev

ices

etc

.P

_-H

Ab

-cib

Fer

rug

iniz

ed r

ock

; p

rox

ima

l co

llu

viu

m

BD

RS

08

23.

458

812

0.15

50

Ab

. S

teep

ba

salt

hil

lsid

e. O

utc

rop

& r

ock

-str

ewn

slo

pe.

Dis

con

tin

uo

us,

sh

all

ow

cla

y s

oil

s p

ack

ed w

ith

ro

ck f

rag

men

ts &

sto

nes

.A

-og

-PS

YR

ock

; p

rox

ima

l co

llu

viu

m

BD

RS

09

23.

46

5912

0.17

60

Au

a. S

chis

t h

ills

ide.

Ou

tcro

p &

ro

ck-s

trew

n s

lop

e u

nd

er r

ock

wa

ll,

wit

h

dis

con

tin

uo

us

sha

llo

w c

lay

so

ils

pac

ked

wth

ro

ck f

rag

men

ts.

A-u

-PS

YF

erru

gin

ized

ro

ck;

pro

xim

al

coll

uv

ium

BD

RS1

02

3.47

03

120.

215

0C

zc.

Cen

oz

oic

co

llu

via

l p

lain

wit

h s

urf

ace

stre

w o

f q

ua

rtz

ite

peb

ble

s &

o

ther

ro

ck f

rag

men

ts o

n fi

rm

red

sa

nd

y c

lay.

Gro

ves

of

mu

lga.

A-u

-PS

YC

zc

Co

llu

viu

m

BD

RS1

12

3.49

8212

0.29

00

Cz

c. P

lain

of

fi n

e sa

nd

y c

lay

wit

h q

ua

rtz &

ca

lcre

te f

rag

men

ts i

n p

rofi

le &

o

n s

urf

ace

as

peb

ble

s &

dec

ayin

g r

ock

s.A

-g-P

SY

Pro

xim

al

coll

uv

ium

BD

RS1

22

3.5352

120.

325

0A

g.

Un

du

lati

ng

gra

nit

e p

lain

wit

h s

catt

ered

ou

tcro

ps

& s

ha

llo

w s

heet

s &

p

ock

ets

of

fria

ble

bro

wn

gri

tty

cla

y m

an

tlin

g d

ecay

ing

gra

nit

e o

utc

rop

.A

-g-P

SY

Dis

tal

coll

uv

ium

or

all

uv

ial

gra

vel

BD

RS1

32

3.41

28

120.

3170

Qw

. L

igh

t b

row

n fi

ne-t

extu

red

cla

y t

o d

epth

. M

ulg

a w

oo

dla

nd

.A

-g-P

SY

Qw

Dis

tal

coll

uv

ium

or

all

uv

ial

gra

vel

DR

C01

20.7

68

011

6.8

420

Arw

b?.

Lo

w s

ton

y h

ills

; sm

all

tre

es s

catt

ered

/Tr

iodi

a.A

-RO

r-x

b-u

Ro

ck;

pro

xim

al

coll

uv

ium

DR

C02

20.7

716

116.

85

00

Ql.

Hea

vin

g c

lay

pla

in w

ith

Ro

ebo

urn

e P

lain

s g

rass

lan

d.

A-C

Ek

r-g

gQ

wb

Dis

tal

coll

uv

ial

or

sheet

-fl

oo

d f

an

DR

C0

320

.794

511

6.8

570

Qw

. S

na

kew

oo

d/

Trio

dia;

ou

twa

sh p

lain

; sa

nd

y c

lay

wit

h q

ua

rtz

ite

surf

ace

stre

w.

A-C

Ek

r-g

gQ

wb

Dis

tal

coll

uv

ial

or

sheet

-fl

oo

d f

an

DR

C0

420

.852

111

6.94

50

Ql.

Euc

alyp

tus

vict

rix

ov

er t

uss

ock

gra

ss &

Aca

cia

shru

bs

on

fl o

od

pla

in/

riv

er

ba

nk

all

uv

ium

.A

-RO

n-x

ca-f

Qa

aA

llu

via

l ch

an

nel

an

d

ov

erb

an

k d

epo

sits

on

fl

oo

dp

lain

Page 33: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 35

DR

C0

520

.939

911

7.0

35

0A

b.

Trio

dia

wit

h s

catt

ered

eu

caly

pts

& A

caci

a sh

rub

s; s

ton

y u

nd

ula

tin

g h

illy

co

un

try

; B

rad

ley

ba

salt

.A

-WH

b-b

Ro

ck;

pro

xim

al

coll

uv

ium

DR

C0

621

.036

411

7.10

60

Afd

c. T

rue

Pil

ba

ra h

illt

op

; C

oo

ya

Po

oy

a d

ole

rite

; to

p o

f m

ass

ive

mes

a. B

are

b

lack

bo

uld

er s

cree.

Sto

ny

cre

vic

e so

il w

ith

Tri

odia

& s

catt

ered

sh

rub

s.A

-FO

h-x

s-f-

HA

WR

ock

; p

rox

ima

l co

llu

viu

m

DR

C07

20.9

34

611

7.11

50

Qc.

Aca

cia

& G

revi

llea/

Trio

dia;

sto

ny

va

lley

fl o

or.

A-F

Or-

b-H

AW

Qc

Co

llu

viu

m i

n l

ow

er s

lop

es

an

d f

an

s

DR

C0

820

.852

611

7.0

960

Aao

. G

ran

ito

id h

ills

wit

h b

are

bo

uld

ers

on

slo

pes

wit

h s

hru

bs

& T

riod

ia.

A-O

Pa

n-x

o-a

Bed

rock

ou

tcro

p

DR

C0

920

.80

80

117.

073

0Q

w.

Sh

eet

wa

sh d

epo

sits

on

lo

wer

slo

pes

to

hil

ls.

A-R

Or-

xb

-uQ

cS

heet

-fl o

od

fa

n o

r co

llu

via

l fo

ots

lop

es

DR

C10

20.7

36

411

7.0

99

0A

Ci.

Ro

cky

hil

ls s

lop

e &

to

p w

ith

Tri

odia

& s

catt

ered

Aca

cia

in g

ull

ies.

A-G

Ce-c

aR

ock

; p

rox

ima

l co

llu

viu

m

DR

C11

20.6

88

411

7.0

070

AF

r. R

ock

hil

ls w

ith

scr

ee

& T

riod

ia.

A-_

re-b

Ro

ck;

pro

xim

al

coll

uv

ium

DR

C12

20.6

676

116.

997

0Q

hm

. U

n-s

am

ple

d f

or

fau

na.

In

ter-

tid

al

mu

d s

heet

beh

ind

ma

ng

rov

e.A

-GC

e-c

aQ

hm

uS

up

rati

da

l fl

ats

DR

E01

20.4

80

611

7.9

940

Qh

m.

Sa

mp

hir

e.A

-MR

-gm

Qh

mS

up

rati

da

l m

ud

fl a

ts

DR

E02

20.4

756

117.

995

0Q

pm

b.

Bea

ch s

an

d d

un

e.A

-MR

-gm

Qp

mb

Co

ast

al

san

d d

un

es

DR

E03

20.4

302

118.

06

40

Qh

m.

Lim

esto

ne

coa

sta

l ri

dg

es.

A-M

R-g

mQ

pm

bC

alc

are

nit

e ru

bb

le

DR

E0

420

.428

611

8.0

620

0. T

uss

ock

gra

ss fl

at;

deep

no

n-s

ali

ne

clay

.A

-MR

-gm

Qh

mS

up

rati

da

l m

ud

fl a

ts

DR

E0

520

.48

04

118.

04

00

Qx

. S

pin

ifex

fl a

t; o

ran

ge

loa

my

sa

nd

.A

-MR

-gm

Qh

ms

Su

pra

tid

al

mu

d fl

ats

DR

E0

620

.52

56

118.

0770

Qa.

Flo

od

pla

in;

Co

oli

ba

h,

Aca

cia,

Bu

ffel

Gra

ss.

A-M

R-g

mQ

aoA

llu

via

l si

lt a

nd

cla

y i

n

fl o

od

pla

in

DR

E07

20.6

074

118.

1570

Acf

. C

orym

bia/

Aca

cia/

Trio

dia.

A-S

Tp

t-g

fQ

aoA

llu

via

l si

lt a

nd

cla

y i

n

fl o

od

pla

in

DR

E0

820

.84

85

117.

855

0A

dm

. S

teep

slo

pe

of

ran

ge;

Tri

odia

wit

h s

catt

ered

sh

rub

s o

n s

cree

& o

utc

rop

.A

-WC

r-f

Bed

rock

ou

tcro

p

DR

E0

920

.869

911

7.8

590

Afr

. sc

atte

red

sh

rub

s o

ver

Tri

odia

on

gen

tle

slo

pe.

A-C

Dm

-sQ

cC

oll

uv

ium

in

lo

wer

slo

pes

a

nd

fa

ns

DR

E10

20.9

198

117.

861

0A

s. s

catt

ered

sh

rub

s o

ver

Tri

odia

; fl

at.

A-C

Dm

-sT

hin

sa

nd

an

d c

oll

uv

ium

DR

E11

20.9

499

117.

85

00

Qx

. E

ucal

yptu

s/O

wen

ia/A

caci

a/Tr

iodi

a; fl

at

red

sa

nd

y l

oa

m w

ith

?ca

lcre

te i

n

pro

fi le

.A

-CD

m-s

Qw

bS

heet

-fl o

od

fa

n

DR

E12

20.9

101

117.

983

0C

zk

. E

ucal

yptu

s lo

w o

pen

wo

od

lan

d o

ver

Tri

odia

.A

-CD

m-s

Qao

All

uv

ial

silt

an

d c

lay

in

fl

oo

dp

lain

DR

E13

20.9

696

118.

04

80

Ag

. P

lain

wit

h s

catt

ered

ou

tcro

ps;

red

lo

am

y c

lay

pla

in;

spa

rse

low

tre

es &

sp

ars

e sh

rub

s o

ver

Tri

odia

.A

-ST

pe-g

iT

hin

sa

nd

an

d c

oll

uv

ium

DR

W01

20.8

429

116.

367

0Q

sc.

Co

ast

al

san

d d

un

es;

Aca

cia

cori

acea

; b

uff

el &

sp

inif

ex.

A-M

Rer

-gm

Qh

ms

Sa

nd

du

ne

or

fore

du

ne

DR

W02

20.8

44

611

6.3

670

Qh

m.

Co

ast

al

lim

esto

ne

rid

ge;

sp

inif

ex &

bu

ffel

.A

-MR

er-g

mQ

hm

sB

road

sw

ale

beh

ind

fo

red

un

e

DR

W0

320

.851

411

6.37

70Q

hm

. C

oa

sta

l sa

mp

hir

e &

bu

ffel

; Tr

iodi

a sa

nd

pla

in.

A-M

Rer

-gm

Qh

ms

Lo

w c

oa

sta

l d

un

e

Page 34: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

36 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

DR

W0

420

.876

111

6.6

470

Ql.

Riv

er f

ron

tag

e; r

iver

ine.

A-M

Rw

h-g

gp

Qa

aA

llu

viu

m i

n r

iver

ch

an

nel

s a

nd

ov

erb

an

k d

epo

sits

DR

W0

520

.8539

116.

669

0A

rnc.

Scr

ee

slo

pe

of

na

rro

w a

bru

pt

ran

ge.

A-R

On

-xca

-fR

ock

an

d p

rox

ima

l co

llu

viu

m

DR

W0

621

.061

911

6.26

50

Qlx

. S

na

kew

oo

d o

n p

lain

.A

-MR

er-g

mQ

pF

loo

dp

lain

or

dis

tal

coll

uv

ial

fan

s; c

ha

nn

elle

d

DR

W07

21.0

557

116.

252

0Q

x.

Qx

sa

nd

y c

lay

ma

ntl

ing

; A

g e

xp

ress

ed a

s p

lain

wit

h s

catt

ered

fl a

t o

utc

rop

s; A

caci

a &

eu

caly

pts

(sc

atte

red

) o

ver

Tri

odia

.A

-MR

er-g

mC

oll

uv

ium

wit

h c

alc

rete

DR

W0

821

.06

33

116.

23

40

Qw

. E

llu

via

l &

ou

twa

sh p

lain

ma

ntl

ing

Ag

wit

h q

ua

rtz

ite

stre

w o

n s

urf

ace

as

ou

twa

sh p

lain

; sa

nd

y c

lay

; A

caci

a sh

rub

s o

ver

Tri

odia

.A

-MR

er-g

mQ

bC

oll

uv

ial

foo

tslo

pes

DR

W0

921

.069

911

6.20

70Q

w.

Ky

len

a v

olc

an

ic o

utw

ash

slo

pe;

sa

nd

y c

lay

; ta

ll A

caci

a sh

rub

th

ick

et

ov

er T

riod

ia.

A-F

Om

-b-H

AW

Co

llu

via

l fo

ots

lop

es

DR

W10

21.0

699

116.

204

0P

fm.

Ky

len

a v

olc

an

ic s

pu

r; r

ock

y r

idg

e o

f sp

ur

wit

h T

riod

ia &

sca

tter

ed

shru

bs.

A-F

Om

-b-H

AW

Pro

xim

al

coll

uv

ium

DR

W11

21.0

655

116.

150

0P

hb

. S

cree,

bo

uld

er &

ou

tcro

p s

lop

e w

ith

sh

all

ow

po

cket

s o

f so

il.

P_

-HA

b-c

ibR

ock

an

d p

rox

ima

l co

llu

viu

m

DR

W12

21.0

539

116.

134

0Q

x.

Gen

tle

Qx

slo

pe;

cla

y &

cra

b h

ole

s; S

na

kew

oo

d &

sa

ltb

ush

& t

uss

ock

g

rass

.P

_-H

Ab

-cib

Co

llu

viu

m i

n l

ow

er s

lop

es

an

d f

an

s

DR

W13

21.0

197

116.

1110

Qh

m.

Co

ast

al

sam

ph

ire

fl at

beh

ind

ma

ng

al.

P_-H

Ab

-cib

Ql

All

uv

ial

cha

nn

el a

nd

o

ver

ba

nk

dep

osi

ts o

n

fl o

od

pla

in

MB

E01

21.2

882

119.

6770

Qc.

Un

du

lati

ng

pla

in o

f Q

uat

ern

ary

co

llu

viu

m w

ith

ca

lcre

te r

ises

. P

ale

b

row

n s

an

dy

cla

y w

ith

ca

lcre

te &

ba

salt

peb

ble

s a

s w

ell

as

va

rnis

hed

gra

vel

in

pro

fi le

& a

s su

rfac

e st

rew

.A

-FO

h-x

s-f-

HA

MD

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

MB

E02

21.3

116

119.

601

0P

k.

Ky

len

a B

asa

lt u

nd

ula

tin

g u

pla

nd

& r

oll

ing

hil

ls.

Ou

tcro

p &

ro

cks

wit

h

thin

ven

eer

of

bro

wn

sa

nd

y c

lay

& s

urf

ace

stre

w o

f st

on

es,

rock

s, p

ebb

les

&

qu

art

z.

A-F

Oh

-xs-

f-H

AM

Co

llu

via

l fo

ots

lop

es

MB

E0

321

.42

55

119.

552

0 A

g.

Gra

nit

oid

pla

in.

Co

ars

e g

ritt

y p

lain

ov

er m

ass

ive

gra

nit

e at

50

cm

d

epth

.A

-g-P

SS

heet

-fl o

od

fa

n o

r d

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

MB

E0

421

.437

611

9.5

40

0Q

l. R

iver

ine

lev

ee

ba

nk

& b

ed o

f co

ars

e ri

ver

sa

nd

. R

iver

gu

ms

&

pap

erb

ark

s.A

-g-P

SQ

aA

llu

via

l ch

an

nel

MB

E0

521

.449

011

9.539

0P

d.

Ma

ssiv

e b

are

bla

ck d

olo

rite

scr

ee

& b

ou

lder

s a

s to

p &

sid

es o

f a

bru

pt

ran

ge.

Fin

e b

row

n s

an

dy

sil

t in

cre

vic

es b

etw

een

bo

uld

ers.

A-g

-PS

Pro

xim

al

coll

uv

ial

foo

tslo

pes

MB

E0

621

.50

6211

9.41

80

Ag

. M

ass

ive

gra

nit

oid

hil

l w

ith

scr

ee

& s

heet

ou

tcro

p.

Bro

wn

sil

ty g

rit

in

crev

ices.

A-S

R-g

Gra

nit

e b

edro

ck

MB

E07

21.3

759

119.

3720

Qa.

All

uv

ial

pla

in o

f li

gh

t b

row

n g

ritt

y c

lay.

Hea

vil

y g

raz

ed.

A-g

-PS

Cz

cgS

an

d a

nd

sil

t in

ou

twa

sh f

an

Page 35: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 37

MB

E0

821

.339

311

9.3

66

0Q

b.

Hea

vin

g c

lay

pla

in w

ith

ro

cks

in p

rofi

le;

gil

ga

i.A

-WA

-xb

-fQ

wD

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

MB

E0

921

.279

011

9.41

30

Ph

r. M

ass

ive

ba

salt

scr

ee

slo

pe

of

ran

ge

wit

h s

kel

eta

l so

il i

n c

rev

ices

.A

-FO

r-b

-HA

MF

erru

gin

ised

bed

rock

rid

ge

MB

E11

21.2

36

511

9.4

08

0A

b.

Gen

tle

ba

salt

hil

l sl

op

e &

to

p.

Ma

ssiv

e o

utc

rop

pin

g b

asa

lt;

bro

wn

sa

nd

y

loa

m w

ith

ro

cks

in p

rofi

le.

A-W

A-x

b-f

Co

llu

via

l fo

ots

lop

es b

elo

w

bed

rock

ou

tcro

p

MB

E12

21.2

184

119.

401

0A

b.

Sm

all

va

lley

in

ma

ssiv

e b

asa

lt r

an

ges

wit

h s

cree,

bro

wn

sa

nd

y c

lay

wit

h

sto

nes

in

pro

fi le

& s

urf

ace

stre

w.

A-W

A-x

b-f

Co

llu

via

l fo

ots

lop

es

MB

E13

21.1

56

311

9.4

06

0C

zk

. C

eno

zo

ic c

alc

rete

ris

es.

Pa

le s

an

dy

cla

y w

ith

ca

lcre

te f

rav

el a

s su

rfac

e st

rew

& i

n p

rofi

le.

A-W

A-x

b-f

Cz

rkC

alc

rete

mo

un

d

MB

W01

21.0

296

118.

9110

Au

. U

ltra

ma

fi c

rid

ge.

Ma

ssiv

e ro

ck o

utc

rop

& s

urf

ace

wit

h s

kel

eta

l so

il i

n

crev

ices.

A-W

A-x

b-f

Bed

rock

an

d p

rox

ima

l co

llu

viu

m

MB

W02

21.0

28

811

8.91

70A

b.

Lo

wer

slo

pe

of

ma

ssiv

e b

asa

lt h

ill

wit

h p

atch

es o

f b

row

n s

an

dy

lo

am

w

ith

ro

cks

in p

rofi

le &

as

surf

ace

cov

er b

ut

ma

inly

ma

ssiv

e b

asa

lt o

utc

rop

.A

-WA

-xb

-fB

edro

ck a

nd

pro

xim

al

coll

uv

ial

foo

tslo

pes

MB

W0

321

.061

311

8.91

10A

b.

Sid

e o

f m

ass

ive

ba

salt

hil

l w

ith

ro

cks,

ou

tcro

p &

are

as

of

san

dy

cla

y

wit

h r

ock

fra

gm

ents

in

pro

fi le

& a

s su

rfac

e st

rew

.A

-WA

-xb

-fC

oll

uv

ial

foo

tslo

pes

MB

W0

421

.067

311

8.89

90

Au

. M

ass

ive

ou

tcro

ps

& r

ock

-sh

eet

s a

s ti

lted

str

ata f

orm

ing

ult

ram

afi

c h

ills

ide.

Sk

elet

al

bro

wn

sa

nd

y c

lay

in

gap

s w

ith

ro

cks

in p

rofi

le &

su

rfac

e st

rew

.A

-WA

-xb

-fB

edro

ck

MB

W0

521

.095

011

8.8

870

Cz

k.

Slo

pes

& l

ow

hil

ls o

f C

eno

zo

ic c

alc

rete

. S

heet

& r

ub

ble

ca

lcre

te.

Pa

le

bro

wn

sa

nd

y r

ub

ble

in

pro

fi le

wit

h s

ton

y s

urf

ace

stre

w.

A-g

-PY

Cz

agC

alc

rete

ru

bb

le a

nd

co

llu

viu

m i

n d

ista

l sl

op

es

MB

W0

621

.115

611

8.8

520

Qg

. Q

uat

ern

ary

gra

vel

ly s

an

dp

lain

. D

eep

fi r

m p

ale

bro

wn

sa

nd

wit

h

surf

ace

of

va

rnis

hed

gra

vel

& s

catt

ered

peb

ble

s.A

-g-P

YC

zag

Dis

tal

coll

uv

ium

in

ou

twa

sh

fan

s

MB

W07

21.0

63

311

8.76

00

Ql.

Riv

erin

e le

vee

of

all

uv

ial

san

d w

ith

riv

er s

ton

es t

hro

ug

h p

rofi

le i

n

cha

nn

els,

riv

er g

um

s et

c.A

-g-P

LQ

aoA

llu

via

l st

rea

m b

ed a

nd

b

an

ks

MB

W0

821

.071

111

8.6

820

Qs.

Qu

ater

na

ry s

an

d s

heet

. F

irm

red

cla

yey

sa

nd

.A

-g-P

LQ

aoA

llu

via

l fl

oo

dp

lain

MB

W0

921

.128

811

8.69

00

Qeg

. Q

uat

ern

ary

ell

uv

ial

gra

vel

. F

irm

gra

vel

ly s

an

d o

ver

ha

rdp

an

at

35

cm

. G

rav

el &

qu

art

zit

e p

ebb

les

on

su

rfac

e.A

-g-P

LQ

cD

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

MB

W10

21.2

793

118.

698

0A

gb

. G

ran

ite

ou

tcro

p h

ill

wit

h p

rofi

le o

f g

rit

& d

eco

mp

osi

ng

gra

nit

e a

s p

ock

ets

in h

oll

ow

s o

n t

op

of

ou

tcro

p.

A-S

Rn

u-g

mp

Qrg

Gra

nit

ic b

edro

ck a

nd

p

rox

ima

l co

llu

viu

m

MB

W11

21.3

651

118.

7010

Ag

c. G

rit

& d

ecay

ing

gra

nit

e fr

agm

ents

as

pro

fi le

to

30

cm

in

dep

ress

ion

on

b

are

gra

nit

e h

ills

. M

ass

ive

bo

uld

ers

& s

heet

ou

tcro

p o

n o

ne

sid

e.A

-SR

nu

-gm

pG

ran

itic

bed

rock

an

d

pro

xim

al

coll

uv

ium

MB

W12

21.4

007

118.

710

0A

gc.

Gra

nit

oid

pla

in o

f d

eep

gra

nit

e g

rit

con

tain

ing

gra

vel

, q

ua

rtz

ite

peb

ble

s in

pro

fi le

& a

s su

rfac

e st

rew

ov

er s

heet

gra

nit

e at

30

cm

.A

-SR

nu

-gm

pC

oll

uv

ial

gra

vel

or

lag

MB

W13

21.4

589

118.

727

0A

gm

. G

ran

ite

pla

in o

f re

d g

ritt

y s

an

dy

cla

y t

o 3

0 c

m t

hen

so

lid

. S

urf

ace

stre

w o

f q

ua

rtz &

dec

om

po

sin

g g

ran

ite.

A-g

-PY

Co

llu

via

l g

rav

el o

r la

g

NE

0121

.2389

120.

531

0A

Fk

. K

yle

na b

asa

lt u

nd

ula

tin

g h

ill

cou

ntr

y;

ka

rst

clay

& r

ock

pro

fi le

.A

-FO

k-b

-HA

EP

rox

ima

l co

llu

via

l fo

ots

lop

es

Page 36: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

38 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

NE

02

21.2

462

120.

539

0P

ftc.

Ba

nd

ed c

arb

on

ate

scre

e sl

op

e; m

ass

ive

rock

s &

scr

ee

wit

h s

ma

ll a

rea

s sh

all

ow

sk

elet

al

soil

s in

cra

cks

& c

rev

ices

.A

-FO

k-b

-HA

EB

edro

ck a

nd

pro

xim

al

coll

uv

ium

NE

03

21.2

716

120.

58

50

Pft

t. M

ing

ah

Tu

ff M

emb

er o

f th

e T

um

bia

na F

orm

atio

n a

s te

rrac

e; p

rofi

le

deep

sto

ny

cla

y w

ith

su

rfac

e st

rew

.A

-FO

k-b

-HA

ET

hin

co

llu

viu

m o

r la

g o

ver

b

edro

ck

NE

04

21.3

337

120.

7520

Ph

c. C

ara

win

e d

olo

mit

e h

ill

slo

pe;

ma

ssiv

e st

on

e &

sto

ne

frag

men

t p

rofi

le.

A-F

Om

-b-H

AE

Bed

rock

an

d p

rox

ima

l co

llu

viu

m

NE

05

21.3

377

120.

770

0P

H.

Lew

in s

ha

le;

deep

sto

ny

cla

y w

ith

ou

tcro

ps

of

sheet

sh

ale

.A

-FO

m-b

-HA

ED

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

NE

06

21.3

299

120.

876

0Q

c. Q

uat

ern

ary

co

llu

via

l o

utw

ash

pla

in;

deep

sa

nd

y c

lay

wit

h p

ebb

les

in

pro

fi le

.A

-HA

c-k

ds

R1t

pa

Co

llu

via

l g

rav

el

NE

0721

.287

912

0.89

10Q

b.

Hea

vin

g c

lay

pla

in w

ith

tu

sso

ck g

rass

.C

P-_

pa-s

epg

-CA

A1f

cbA

llu

via

l fl

oo

dp

lain

NE

08

21.3

263

120.

9710

Qp

. Q

uat

ern

ary

sa

nd

y c

lay

cen

oz

oic

gra

vel

& q

ua

rtz s

urf

ace

stre

w.

CP

-_p

a-s

epg

-CA

C1

Dis

tal

coll

uv

ium

in

ou

twa

sh

fan

s

NE

09

21.3

219

121.

0020

To

. D

uri

cru

st t

op

of

mes

a.C

P-_

pa-s

epg

-CA

Cz

os

Co

llu

viu

m;

calc

rete

ru

bb

le

NE

1021

.316

012

1.0

48

0Q

a. R

ipa

ria

n d

eep

cla

y.C

P-_

pa-s

epg

-CA

Qa

All

uv

ial

cha

nn

els

an

d

fl o

od

pla

in

NE

1121

.30

44

121.

200

0P

h.

Ko

on

ga

lin

g V

olc

an

ics

(Afk

); u

nd

ula

tin

g s

ton

y h

ill

cou

ntr

y w

ith

ro

cky

cl

ay s

urf

ace/

rock

.A

-FO

k-b

-HA

EC

oll

uv

ial

gra

vel

or

lag

NE

1221

.28

84

121.

237

0A

gr.

Gra

nit

e b

ou

lder

hil

ls;

ma

ssiv

e o

utc

rop

s &

bo

uld

ers.

A-G

R-g

Co

llu

via

l fo

ots

lop

es

NE

1321

.295

712

1.26

40

Qx

. G

reat

Sa

nd

y D

eser

t d

un

e-i

nte

rdu

ne;

deep

sa

nd

pro

fi le

.A

-GR

-gQ

sS

an

d p

lain

an

d d

un

es

NW

0121

.979

412

0.2

240

Ag

f. G

ran

ito

id u

nd

ula

tin

g h

ills

wit

h o

utc

rop

s &

gri

tty

pro

fi le

of

dec

om

po

sin

g r

ock

& c

lay.

A-m

g-P

KG

ran

itic

bed

rock

an

d

pro

xim

al

coll

uv

ium

NW

02

21.9

478

120.

194

0A

s. M

osq

uit

o C

reek

Fo

rmat

ion

gre

yw

ack

e et

c. u

nd

ula

tin

g h

ill

cou

ntr

y r

ock

sc

ree

(dec

om

po

sin

g r

ock

) o

n m

ass

ive

ou

tcro

p.

A-N

Uq

-mh

Co

llu

via

l fo

ots

lop

es

NW

03

21.7

703

120.

092

0A

fh.

Qu

art

z P

orp

ho

ry (

Pp

) et

c.;

bo

uld

er s

lop

e to

ra

ng

e.A

-FO

h-x

s-f-

HA

EB

edro

ck a

nd

pro

xim

al

coll

uv

ium

in

fo

ots

lop

es

NW

04

21.6

785

120.

08

80

Ph

r. M

ou

nt

Ro

e B

asa

lt;

ma

ssiv

e b

asa

lt a

s u

nd

ula

tin

g h

ill

cou

ntr

y s

ton

y c

lay

p

rofi

le o

ver

ma

ssiv

e o

utc

rop

.A

-FO

r-b

-HA

EC

oll

uv

ial

foo

tslo

pes

NW

05

21.6

773

120.

155

0A

av.

Ag

glo

mer

ate,

ha

rd c

lay

pla

in w

ith

su

rfac

e st

rew

of

sma

ll s

ton

es.

A-W

Ap

-fS

ilt,

sa

nd

an

d g

rav

el o

n

dis

tal

coll

uv

ial

foo

tslo

pes

NW

06

21.6

44

212

0.0

63

0P

Hg

. H

ard

y S

an

dst

on

e h

ills

ide.

A-F

Oh

-xs-

f-H

AE

Bed

rock

an

d p

rox

ima

l co

llu

viu

m

NW

0721

.49

9212

0.10

90

Ab

. O

utw

ash

fo

ot

slo

pe-A

rch

aea

n b

asa

lt,

pro

fi le

is

surf

ace

stre

w o

f d

eco

mp

osi

ng

ba

salt

ov

er m

ass

ive

ba

salt

.A

-KE

w-x

f-s

Co

llu

via

l fo

ots

lop

es

NW

08

21.4

799

120.

091

0A

b.

Arc

haea

n b

asa

lt &

ard

ersi

te.

A-W

A-x

b-f

Co

llu

via

l fo

ots

lop

es

Page 37: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 39

NW

09

21.4

619

120.

013

0A

gp

. P

lain

of

deep

gri

tty

cla

y.A

-g-P

OT

hin

sa

nd

an

d c

oll

uv

ium

o

ver

bed

rock

NW

1021

.46

84

120.

007

0Q

eg.

Un

du

lati

ng

pla

in o

f d

eco

mp

osi

ng

ell

uv

ial

gra

nit

e so

ils

wit

h s

an

dy,

g

ritt

y &

sto

ny

pro

fi le

.A

-g-P

OT

hin

sa

nd

an

d c

oll

uv

ium

NW

1121

.407

712

0.07

10A

gm

. G

ran

ito

irit

e u

nd

ula

tin

g p

lain

s co

un

try

deep

sa

nd

y &

gri

tty

cla

y

pro

fi le

wit

h d

eco

mp

osi

ng

gra

nit

e ro

cks

in p

rofi

le.

A-g

-PE

Co

llu

via

l g

rav

el o

r la

g

NW

1221

.392

312

0.07

10A

gm

. L

arg

e g

ran

ite

bo

uld

ers

emer

gin

g t

hro

ug

h s

urf

ace

of

clay

gri

tty

to

d

epth

wit

h d

eco

mp

osi

ng

gra

nit

e; b

edro

ck a

t 21

cm

av

erag

e.A

-g-P

EB

edro

ck r

ise

wit

h b

ou

lder

s a

nd

th

in p

rox

ima

l co

llu

viu

m

OY

E01

21.6

23

011

6.39

00

Qp

. H

eav

ing

cla

y u

pla

nd

pla

in o

n F

m b

asa

lt.

Her

bs

& a

nn

ua

l g

rass

es.

A-F

Om

-b-H

AW

Bed

rock

an

d p

rox

ima

l co

llu

viu

m

OY

E02

21.6

28

311

6.4

46

0F

m.

Ba

salt

up

lan

d.

Fin

e sa

nd

wit

h m

ino

r cl

ay &

sto

nes

in

pro

fi le

, sc

atte

red

b

asa

lt b

ou

lder

s o

utc

rop

pin

g.

A-F

Om

-b-H

AW

Bed

rock

, in

clu

din

g

core

sto

nes

, a

nd

pro

xim

al

coll

uv

ium

OY

E0

321

.63

43

116.

4920

Fm

. B

asa

lt u

pla

nd

. F

ine

clay

ey s

an

d w

ith

ro

cks

in p

rofi

le &

as

surf

ace

stre

w.

A-F

Om

-b-H

AW

Co

llu

via

l fo

ots

lop

es

OY

E0

421

.671

411

6.726

0Q

g.

Qu

ater

na

ry v

all

ey a

llu

viu

m a

mo

ng

Fm

ba

salt

hil

ls.

Bro

wn

cla

yey

sa

nd

to

dep

th.

A-F

Om

-b-H

AW

All

uv

ial

va

lley

fl o

or

OY

E0

521

.68

35

116.

7510

Fjo

. M

ass

ive

mu

dst

on

e h

ill

slo

pe

thin

ly m

an

tled

in

lig

ht

san

dy

-cla

y p

ack

ed

wit

h s

ton

es.

A-F

Oj-

xs-

b-H

AW

Qg

Co

llu

viu

m a

nd

bed

rock

d

ebri

s

OY

E0

621

.707

411

6.76

70Q

l. R

iver

ine

cha

nn

el t

hro

ug

h C

zk

wit

h t

all

riv

er g

um

s et

c. G

ritt

y a

llu

via

l si

lt &

cla

y o

f le

vee

ba

nk

.A

-HA

m-c

ib-H

AW

Qr

All

uv

ial

stre

am

ch

an

nel

OY

E07

21.7

118

116.

764

0C

zk

. C

eno

zo

ic c

alc

rete

—m

ass

ive

ou

tcro

p t

hin

ly m

an

tled

(in

com

ple

tely

) in

ca

lcre

te f

rag

men

ts &

bro

wn

sil

t.A

-HA

m-c

ib-H

AW

Cz

kC

alc

rete

mo

un

d

OY

E0

821

.84

0111

6.6

83

0C

zc.

Cen

oz

oic

co

llu

viu

m.

Lig

ht

san

dy

bro

wn

cla

y c

om

pac

ted

wit

h s

ton

es a

s u

nd

ula

tin

g C

eno

zo

ic r

ises

in

ma

in v

all

ey.

Su

rfac

e st

rew

of

bu

cksh

ot

gra

vel

&

peb

ble

s.A

-HA

d-k

d-H

AW

Cz

cS

heet

-fl o

od

fa

n o

r d

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

OY

E0

921

.87

7611

6.51

70H

d.

Ma

ssiv

e H

am

ersl

ey D

olo

mit

e o

utc

rop

as

sma

ll h

ill

wit

h d

isco

nti

nu

ou

s th

in p

atch

es o

f re

d c

lay

& r

ock

fra

gm

ents

as

surf

ace

cov

er.

A-H

Ad

-kd

-HA

WB

edro

ck

OY

E10

21.8

748

116.

5020

Qg

. Q

uat

ern

ary

pla

in o

f fi

rm r

ed s

an

dy

cla

y w

ith

peb

ble

s in

pro

fi le

as

bro

ad

va

lley

fl o

or.

A-H

Ad

-kd

-HA

WQ

gD

ista

l co

llu

viu

m o

r a

llu

via

l g

rav

el

OY

E11

21.8

724

116.

4720

Tp

. T

erti

ary

pis

oli

te b

rea

kaw

ay s

carp

& s

lop

e—

ma

ssiv

e T

p o

utc

rop

& s

cree

slo

pe.

Tp

ro

cks

& g

rav

el i

n m

atri

x o

f cl

ay o

n s

lop

e.A

-HA

d-k

d-H

AW

Qg

Co

llu

via

l fo

ots

lop

es b

elo

w

bed

rock

ou

tcro

p

OY

E12

21.8

439

116.

353

0Q

p.

Qu

ater

na

ry v

all

ey fl

oo

r—o

utw

ash

pla

in o

f h

eav

y c

lay

wit

h p

ebb

les

in

pro

fi le

.A

-HA

m-c

ib-H

AW

Qp

All

uv

ial

silt

an

d s

an

d

OY

E13

21.9

518

116.

489

0H

r. M

ass

ive

rock

, sc

ree

& r

ock

fra

gm

ents

wit

h c

lay

in

cre

vic

es.

P_

-HA

b-c

ibT

pC

oll

uv

ial

foo

tslo

pes

bel

ow

b

edro

ck o

utc

rop

OY

W01

21.9

655

115.

9770

Qg

. F

lat

coll

uv

ial

san

d s

heet

wit

h s

om

e cl

ay c

on

ten

t &

pis

oli

te s

ton

es i

n

pro

fi le

.K

-_n

y-s

pQ

gD

ista

l co

llu

viu

m i

n l

ow

er

slo

pes

an

d f

an

s

Page 38: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

40 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

OY

W02

21.9

50

911

5.8

870

Ql.

Co

llu

via

l cl

ay v

all

ey fl

oo

r w

ith

ha

rdp

an

in

pla

ces.

P_

-WY

U-x

s-k

Ql

All

uv

ial

fl o

od

pla

in s

ilt

an

d

clay

OY

W0

321

.947

111

5.8

30

0W

a. G

entl

e ri

ses

& f

oo

tslo

pes

aro

un

d f

oo

t o

f T

p h

ills

. 2

cm

of

qu

art

z p

ebb

les

on

60

cm

of

lig

ht

clay

ov

er m

ass

ive

mu

dst

on

e.K

-_n

y-s

pQ

pt

Dis

tal

coll

uv

ium

in

lo

wer

sl

op

es a

nd

fa

ns

OY

W0

421

.917

111

5.7

240

Qg

. G

entl

e g

rav

elly

slo

pe

of

fi rm

cla

y t

o d

epth

.P

_-W

YU

-xs-

kQ

pt

Co

llu

via

l fo

ots

lop

es

OY

W0

521

.912

711

5.71

80

Kn

. G

entl

y u

pla

nd

slo

pes

. S

ton

y s

urf

ace

of

rock

s &

peb

ble

s o

ver

fi r

m c

lay

p

ack

ed w

ith

co

ng

lom

erat

e.P

_-W

YU

-xs-

kD

ista

l co

llu

viu

m o

r a

llu

via

l g

rav

el

OY

W0

621

.898

011

5.70

50

Cz

l. U

nd

ula

tin

g p

late

au.

Red

gra

vel

ly c

lay

ov

er m

ass

ive

ferr

icre

te.

K-W

N-s

fl -W

CC

oll

uv

ial

gra

vel

or

lag

on

b

edro

ck r

ise

OY

W07

21.7

34

011

5.8

08

0Q

l. R

iver

ine

lev

ee

—g

ritt

y s

an

dy

all

uv

ium

mix

ed w

ith

riv

er s

ton

es.

K-W

N-s

fl -W

CQ

lA

llu

via

l st

rea

m c

ha

nn

el

gra

vel

an

d s

an

d

OY

W0

821

.731

611

5.8

08

0K

n.

Ma

ssiv

e K

n b

rea

kaw

ay s

cree

of

con

glo

mer

ate

cem

ente

d i

nto

fe

rru

gin

ou

s la

teri

te.

Sk

elet

al

clay

& s

ton

es o

ver

ma

ssiv

e d

uri

cru

st o

n t

op

of

mes

a.K

-WN

-sfl

-WC

Ql

Cem

ente

d a

llu

via

l g

rav

els

in o

ld t

erra

ce

OY

W0

921

.689

611

5.8

420

Tp

. L

ater

itic

up

lan

d.

Gra

vel

ly c

lay

to

dep

th w

ith

bu

cksh

ot

surf

ace.

P_-W

YU

-xs-

kT

pD

rain

age

cha

nn

el w

ith

g

rav

elly

sil

t a

nd

cla

y, o

ver

fe

rru

gin

ou

s ri

se

OY

W10

21.8

42

511

5.582

0Q

a. M

ass

ive

all

uv

ial

clay

to

dep

th w

ith

?h

ard

pa

n—

fl o

od

way

.K

-WN

-sfl

-WC

Ql

Flo

od

pla

in s

ilt

an

d c

lay

OY

W11

21.7

937

115.

467

0Q

c/C

zc.

Co

llu

via

l p

lain

of

clay

wit

h s

ha

llo

w v

eneer

of

red

sa

nd

y c

lay.

K-W

N-s

fl -W

CC

zc

Flo

od

pla

in s

ilt

an

d c

lay

OY

W12

21.7

776

115.

367

0Q

s/C

zp

. L

ow

du

nefi

eld

ass

oci

ated

wit

h c

lay

pa

ns.

Red

sa

nd

wit

h m

ass

ive

clay

at

60

cm

ex

po

sed

in

blo

w-o

uts

bet

ween

lu

net

tes.

K-W

N-s

fl -W

CC

zp

Flo

od

pla

in

OY

W13

21.7

80

811

5.24

80

Qs/

Cz

c. R

esid

ua

l p

lain

of

deep

red

sa

nd

.K

-WN

-sfl

-WC

Cz

cF

loo

dp

lain

sil

t a

nd

cla

y

PE

0121

.86

4711

7.78

70Q

r. A

llu

via

l p

lain

wit

h g

rass

lan

d.

A-H

Am

-cib

-HA

WQ

aa

All

uv

ial

silt

an

d c

lay

on

fl

oo

dp

lain

PE

02

21.8

822

117.

795

0Q

g.

Aca

cia/

Trio

dia

on

sto

ny

pla

in o

f sa

nd

y c

lay.

A-H

Ad

-kd

-HA

WQ

wL

ow

er s

lop

es o

f sh

eet

-fl o

od

fa

n;

dis

tal

coll

uv

ium

PE

03

21.8

764

117.

7410

Qr.

Cra

ckin

g c

lay

pla

in w

ith

gra

ssla

nd

.A

-HA

m-c

ib-H

AW

Qw

cA

llu

via

l si

lt a

nd

cla

y o

n

fl o

od

pla

in

PE

04

21.7

950

117.

857

0P

fjw

. M

all

ee/

spin

ifex

.A

-FO

j-x

s-b

-HA

WP

rox

ima

l fo

ots

lop

e co

llu

viu

m;

sub

rou

nd

ed t

o

sub

an

gu

lar

bed

rock

deb

ris

PE

05

21.8

915

118.

00

00

Qp

g.

Sn

ak

ewo

od

/tu

sso

ck g

rass

on

riv

er a

llu

viu

m.

A-H

Am

-cib

-HA

WQ

aoA

llu

via

l o

r d

ista

l co

llu

via

l g

rav

el;

reli

ct v

all

ey fi

ll

PE

06

21.8

562

117.

980

0Q

pt.

Mu

lga/

Trio

dia

bu

cksh

ot;

red

sa

nd

y c

lay

pla

in.

A-H

Am

-cib

-HA

WQ

wU

pp

er s

lop

es o

f sh

eet

-fl o

od

fa

n;

dis

tal

coll

uv

ium

Page 39: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 41

PE

0721

.786

811

7.862

0P

tjd

. Tr

iodi

a h

illt

op

wit

h s

catt

ered

Eu

caly

pts

; W

oo

dja

na S

an

dst

on

e m

emb

er.

A-F

Oj-

xs-

b-H

AW

Co

llu

viu

m a

nd

bed

rock

d

ebri

s

PE

08

21.7

66

511

7.82

50

Ptj

d.

Scr

ee

slo

pe

un

der

sca

rp.

A-F

Oj-

xs-

b-H

AW

Co

llu

via

l fo

ots

lop

es b

elo

w

bed

rock

ou

tcro

p

PE

09

21.7

141

117.

776

0P

fm.

Trio

dia

& s

catt

ered

Eu

caly

pts

; te

rmit

e m

ou

nd

s; h

ard

sto

ny

so

il p

rofi

le.

A-F

Om

-b-H

AW

Co

llu

via

l sl

op

es a

nd

b

edro

ck d

ebri

s

PE

1021

.662

511

7.70

50

Cz

t (Q

px)

. C

rack

ing

cla

y t

ab

lela

nd

-gra

ssla

nd

.A

-FO

m-b

-HA

WC

zcb

Dis

sect

ed d

ista

l co

llu

via

l fo

ots

lop

es o

f sh

eet

-fl o

od

fa

n;

gra

vel

ly s

ilt

an

d c

lay

PE

1121

.83

36

117.

6110

Ph

m.

Gre

ville

a &

Aca

cia

shru

bs/

Trio

dia

on

rid

ge.

A-H

Am

-cib

-HA

WB

edro

ck d

ebri

s a

nd

p

rox

ima

l co

llu

via

l g

rav

el o

n

low

hil

l

PE

122

2.0

592

117.

693

0P

hd

. S

hru

bs/

Trio

dia.

A-H

Ad

-kd

-HA

WC

oll

uv

ial

slo

pes

an

d

bed

rock

deb

ris

PH

YC

0120

.375

111

9.93

20Q

s. B

road

in

terd

un

e sa

nd

pla

in.

Fir

m r

ed s

an

d w

ith

min

or

clay

to

dep

th.

K-_

ca-s

pQ

sA

eoli

an

sa

nd

pla

in

PH

YC

02

20.3

911

119.

90

90

Ag

p.

Gra

nit

oid

pla

in.

Dec

ayin

g g

ran

ite

& q

ua

rtz

peb

ble

s a

s su

rfac

e st

rew

o

n fi

rm

gri

tty

cla

y p

rofi

le t

o d

epth

.K

-_ca

-sp

Cz

cC

oll

uv

ial

gra

vel

wit

h

bed

rock

in

dis

sect

ed s

heet

o

r fa

n;

som

e cl

ayp

an

s

PH

YC

03

20.4

296

119.

969

0A

gp

. H

oll

ow

in

to

p o

f g

ran

ite

ou

tcro

p h

ill.

Dec

ayin

g g

ran

ite

in m

atri

x o

f g

rit

as

dep

osi

t o

n s

heet

gra

nit

e at

fo

ot

of

gra

nit

e sc

ree.

A-g

-PM

Gra

nit

ic b

edro

ck o

utc

rop

; sh

eet

s, d

om

es a

nd

co

rest

on

es

PH

YC

04

20.9

337

119.

90

30

Ql.

Rip

ari

an

lev

ee

ba

nk

s o

f sa

nd

y c

lay

su

pp

ort

ing

bu

ffel

gra

ss,

sep

ara

ted

by

d

ry w

ater

co

urs

e o

f co

ars

e g

ritt

y s

an

d l

ined

wit

h r

iver

gu

ms.

A-W

Ad

-fQ

aa

sA

llu

via

l st

rea

m b

ed a

nd

b

an

ks;

ad

jace

nt

ov

erb

an

k

dep

osi

ts

PH

YC

05

20.9

359

119.

858

0A

av.

Ag

glo

mer

ate

fl at

in

sm

all

va

lley

bet

ween

lo

w b

asa

lt h

ills

(A

b).

Deep

cl

ay p

rofi

le w

ith

are

as

of

ba

salt

gra

vel

on

su

rfac

e in

pat

ches

. M

ass

ive

Trio

dia.

A-W

Ad

-fQ

aoA

llu

via

l g

rav

el;

rew

ork

ed

coll

uv

ium

; in

sm

all

va

lley

fl

oo

r

PH

YC

06

20.8

35

611

9.67

20Q

f. Q

uat

ern

ary

(o

ld)

pla

in o

f re

-wo

rked

sa

nd

y c

lay.

Deep

pro

fi le

.A

-g-P

MQ

wS

ilty

sa

nd

in

dis

tal

fan

s o

r re

lict

all

uv

ial

fl o

od

pla

in

PH

YC

0720

.911

011

9.6

50

0A

b.

Ste

ep o

utc

rop

& s

cree

on

lo

wer

slo

pe

at e

nd

of

ba

salt

rid

ge.

Bro

ken

&

dec

ayin

g r

ock

in

sh

all

ow

cla

y m

atri

x i

nco

mp

lete

ly m

an

tlin

g s

lop

e.A

-GC

-xca

-bB

edro

ck r

idg

e a

nd

ad

jace

nt

coll

uv

ial

foo

tslo

pes

, w

ith

b

ou

lder

s

PH

YC

08

20.9

229

119.

610

0P

fk.

Ky

len

a b

asa

lt o

utc

rop

as

gen

tle

slo

pes

, ri

ses

& l

ow

rid

ges

. B

rok

en r

ock

s &

sto

nes

in

sh

all

ow

cla

y m

atri

x i

nco

mp

lete

ly m

an

tlin

g t

he

ou

tcro

p s

urf

ace

by

fi l

lin

g c

rev

ices

& c

ov

erin

g i

t in

sh

all

ow

sh

eet

s.A

-FO

h-x

s-f-

HA

MB

edro

ck a

nd

pro

xim

al

coll

uv

ium

in

fo

ots

lop

es

PH

YC

09

20.8

952

119.

6020

Qk

. C

alc

rete

ris

es o

f o

ld,

un

du

lati

ng

& p

art

iall

y s

trip

ped

Cen

oz

oic

va

lley

fl

oo

r. S

heet

ca

lcre

te w

ith

su

per

fi ci

al

ma

ntl

e o

f d

ecay

ing

ca

lcre

te g

rav

el.

A-G

C-x

ca-b

Cz

rkD

ista

l co

llu

via

l g

rav

el i

n

low

er s

lop

es a

nd

fa

ns;

in

clu

des

ca

lcre

te r

ub

ble

Page 40: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

42 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

PH

YC

1020

.89

9611

9.59

00

Qg

. V

all

ey fl

oo

r p

lain

. D

eep

Qu

ater

na

ry a

llu

via

l cl

ay w

ith

su

rfac

e co

ver

of

ba

salt

, ca

lcre

te &

qu

art

z p

ebb

les.

A-G

C-x

ca-b

Qc

Co

llu

via

l fo

ots

lop

e g

rav

el;

min

or

calc

rete

PH

YC

1120

.852

611

9.59

20A

st.

Arc

haea

n s

ilts

ton

e &

sa

nd

sto

ne.

Ste

ep o

utc

rop

& s

cree

slo

pe

bel

ow

sc

arp

wit

h d

ecay

ing

sil

tsto

ne

frag

men

ts i

n s

kel

eta

l th

in s

an

dy

sil

t m

atri

x

inco

mp

lete

ly m

an

tlin

g s

lop

e.A

-GC

-xca

-bC

za

zC

oll

uv

ial

foo

tslo

pes

bel

ow

fe

rru

gin

ised

an

d c

emen

ted

a

llu

viu

m

PH

YC

1220

.824

511

9.539

0Q

b.

Hea

vy

cra

ckin

g c

lay

pla

in w

ith

sin

k-h

ole

s ra

ther

th

an

hea

ves

, b

ut

effe

ctiv

ely

th

e sa

me

wit

ho

ut

the

sto

nes

.A

-WA

-xb

-fQ

wb

Sh

eet

-fl o

od

fa

n o

f g

rav

elly

si

lt a

nd

cla

y w

ith

gil

ga

i su

rfac

e

PH

YE

0120

.698

812

0.8

570

Qs.

Du

ne

cres

t. R

ed d

eser

t sa

nd

to

dep

th.

CP

-_p

a-s

epg

-CA

Qs

Aeo

lia

n s

an

d p

lain

PH

YE

02

20.7

039

120.

9020

Qs.

In

terd

un

e sa

nd

pla

in.

Red

des

ert

san

d t

o d

epth

.C

P-_

pa-s

epg

-CA

Qsf

Aeo

lia

n s

an

d d

un

e

PH

YE

03

20.7

487

120.

930

0

Cz

oc.

Mes

as

of

Cen

oz

oic

op

ali

ne

sili

ca,

mu

dst

on

e &

min

or

calc

are

ou

s m

ud

sto

ne

(sim

ila

r in

ap

pea

ran

ce t

o c

alc

rete

). T

op

s o

f m

esa

s a

re m

ass

ive

sheet

ex

po

sure

s th

inly

ma

ntl

ed b

y p

ebb

les

in m

atri

x o

f fi

ne

clay

fi l

lin

g

crev

ices

& d

epre

ssio

ns.

CP

-_p

a-s

epg

-CA

Cz

os

Sil

icifi

ed

ca

rbo

nat

e d

ebri

s a

nd

ou

tcro

p

PH

YE

04

20.7

38

812

0.89

50

Cz

c. U

nd

ula

tin

g C

eno

zo

ic c

alc

rete

pla

in.

Red

sa

nd

th

inly

& i

nco

mp

lete

ly

ma

ntl

ing

pa

le b

row

n c

lay

ey s

an

d c

on

tain

ing

ca

lcre

te &

op

ali

ne

peb

ble

s &

ir

on

sto

ne

gra

vel

ov

er c

alc

rete

.C

P-_

pa-s

epg

-CA

Qa

a

All

uv

ial

or

coll

uv

ial

gra

vel

; so

me

carb

on

ate

gra

vel

; er

od

ed t

erra

ce o

r v

all

ey

fl o

or

PH

YE

05

20.8

549

120.

853

0Q

l. R

iver

ine

fro

nta

ge

of

Oa

ko

ver

Riv

er.

Sa

nd

y a

llu

via

l cl

ay o

f le

vee

ba

nk

. R

iver

Gu

ms

etc.

CP

-_p

a-s

epg

-CA

Qa

as

Sil

t, s

an

d a

nd

cla

y i

n

all

uv

ial

cha

nn

el

PH

YE

06

20.8

613

120.

8210

Qc.

Qu

ater

na

ry c

oll

uv

ium

—g

entl

e ca

lcre

te s

lop

e v

ersi

on

, p

ale

lo

am

y c

lay

w

ith

ca

lcre

te s

ton

es &

gra

vel

in

pro

fi le

& a

s su

rfac

e st

rew

.C

P-_

pa-s

epg

-CA

Qc

Dis

tal

coll

uv

ial

gra

vel

in

o

utw

ash

fa

ns

PH

YE

0720

.93

4712

0.87

60

Qep

. Q

uat

ern

ary

ell

uv

ial

pla

in.

Sa

nd

y c

lay

wit

h s

urf

ace

stre

w o

f g

rav

el &

p

ebb

les.

CP

-_p

a-s

epg

-CA

Cz

agA

llu

via

l fl

oo

dp

lain

or

terr

ace

gra

vel

s

PH

YE

08

20.8

64

512

0.76

60

Qb

. H

eav

ing

cla

y p

lain

of

crac

kin

g c

lay

s w

ith

qu

art

z f

rag

men

ts i

n p

rofi

le.

CP

-_p

a-s

epg

-CA

Qao

bA

llu

via

l p

lain

of

gra

vel

ly s

ilt

an

d c

lay

wit

h g

ilg

ai

surf

ace

PH

YE

09

20.9

181

120.

623

0A

fk.

Ky

len

a b

asa

lt h

ill.

Lo

w r

ou

nd

ed h

ills

wit

h o

cca

sio

na

l b

ou

lder

s. H

iils

h

ave

ma

ntl

e o

f sa

nd

y c

lay

wit

h s

ton

es &

bro

ken

ro

ck i

n p

rofi

le.

A-F

Ok

-b-H

AE

Qc

Co

llu

via

l g

rav

el i

n d

ista

l fo

ots

lop

es o

r fa

ns

PH

YE

1020

.819

312

0.537

0Q

c/A

g.

Gra

nit

oid

co

llu

via

l p

lain

—o

ran

ge-b

row

n g

ritt

y c

lay

ov

er h

ard

cla

y

at 3

0 c

m.

A-g

-PW

Qa

aA

llu

via

l si

lt a

nd

cla

y o

n fl

at

in v

all

ey

PH

YE

1120

.76

60

120.

3770

Qeg

. Q

uat

ern

ary

all

uv

ial

gra

vel

. O

ran

ge-b

row

n g

ritt

y c

lay

to

dep

th w

ith

d

efi n

ite

surf

ace

sk

in o

f en

cru

stin

g o

rga

nis

ms.

A-g

-PW

Qw

gG

rav

elly

sil

t a

nd

sa

nd

in

sh

eet

-fl o

od

fa

n

PH

YE

1220

.747

112

0.2

58

0A

ci.

Arc

ha

ean

Ch

ert

ran

ge.

Ma

ssiv

e o

utc

rop

on

ste

ep s

lop

e w

ith

ma

ssiv

e sc

ree

slo

pes

. S

kel

eta

l lo

am

y s

an

d &

ro

ck f

rag

men

ts i

n c

rev

ices

&

dep

ress

ion

s.A

-GC

-xci

-sB

edro

ck a

nd

pro

xim

al

coll

uv

ium

PH

YE

1320

.724

212

0.20

20P

fh.

Had

ley

Sa

nd

sto

ne

hil

lsid

e. S

teep

slo

pe

of

lig

ht

scre

e &

ru

bb

le.

Sk

elet

al

san

dy

so

il &

ro

ck f

rag

men

ts i

n c

rev

ices

.A

-WA

-xb

-fC

oll

uv

ial

foo

tslo

pes

bel

ow

b

edro

ck o

utc

rop

Page 41: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 43

PH

YW

0119

.997

611

9.359

0Q

cd.

Un

con

soli

dat

ed r

idg

e o

f ca

lca

reo

us

bea

ch s

an

d w

ith

so

me

clay

(h

ence

te

rmit

e m

ou

nd

s).

Spin

ifex

long

ifoliu

s &

bu

ffel

, h

eav

ily

gra

zed

.A

-g-P

IB

1bA

eoli

an

sa

nd

in

co

ast

al

du

ne

PH

YW

02

20.0

34

311

9.3

34

0Q

cs.

Hea

vy

cra

ckin

g c

lay

of

sub

-co

ast

al

fl at

s—R

oeb

ou

rne

Pla

ins

equ

iva

len

t.A

-g-P

IQ

as

All

uv

ial

fl o

od

pla

in;

silt

y

clay

PH

YW

03

20.1

623

119.

36

80

Qa.

Pla

in o

f d

eep

sa

nd

y c

lay

—v

ery

fi r

m a

t d

epth

.K

-_ca

-sp

Qao

Flo

od

pla

in;

all

uv

ial

silt

an

d

san

d

PH

YW

04

20.2

616

119.

419

0Q

s. P

ind

an

sa

nd

—4

0 c

m o

f re

d s

an

d m

an

tlin

g c

lay.

A-P

I-x

b-s

Qs

Aeo

lia

n s

an

d d

un

e

PH

YW

05

20.2

852

119.

43

00

Qb

. H

eav

y, s

easo

na

lly

in

un

dat

ed c

lay

pla

in.

A-P

I-x

b-s

Qao

cF

loo

dp

lain

or

lacu

stri

ne

silt

y c

lay

PH

YW

06

20.2

42

511

9.57

50

Qs.

Pin

da

n s

an

d.

Fir

m r

ed s

an

d w

ith

so

me

clay

co

nte

nt.

K-_

ca-s

pQ

sA

eoli

an

sa

nd

pla

in

PH

YW

0720

.324

611

9.21

10Q

l. R

iver

ine.

Sa

nd

y c

lay

lev

ee

ba

nk

wit

h a

rea

s o

f ri

ver

sto

ne

& g

rav

el.

A-W

C-f

Qa

aA

llu

via

l v

all

ey fl

at

or

fl o

od

pla

in

PH

YW

08

20.3

259

119.

175

0A

c. S

teep

ba

nd

ed i

ron

ov

er c

her

t o

utc

rop

& s

cree

slo

pe

wit

h r

ock

fra

gm

ents

in

sh

all

ow

gri

tty

cla

y m

atri

x fi

lli

ng

gap

s &

cre

vic

es.

A-P

I-x

b-s

Qc

Co

llu

via

l fo

ots

lop

es b

elo

w

sili

ceo

us

bed

rock

ou

tcro

p

PH

YW

09

20.3

359

119.

138

0A

cf.

Ste

ep p

late

au e

dg

e, c

her

t-ir

on

sto

ne

bre

ak

away

& s

cree

slo

pe

wit

h r

ock

fr

agm

ents

in

sh

all

ow

gri

tty

cla

y m

atri

x fi

lli

ng

gap

s &

cre

vic

es.

A-G

C-x

ci-s

Co

llu

via

l fo

ots

lop

es b

elo

w

sili

ceo

us

bed

rock

ou

tcro

p

PH

YW

1020

.311

111

9.0

950

Qf.

Pla

in o

f a

llu

viu

m.

Rew

ork

ed r

ed g

ritt

y s

an

d w

ith

cla

y a

t su

rfac

e &

th

rou

gh

pro

fi le

. S

an

d d

om

inat

es m

ix t

o a

t le

ast

60

cm

.A

-GC

-xci

-sQ

aoF

loo

dp

lain

sil

t a

nd

sa

nd

PH

YW

1120

.32

5111

8.92

20Q

f. P

lain

of

rew

ork

ed a

llu

via

l g

ritt

y g

ran

itic

so

il w

ith

so

me

surf

ace

clay

. T

erm

ite

mo

un

ds.

A-g

-PI

A1c

Flo

od

pla

in s

ilt

an

d s

an

d

PH

YW

1220

.391

411

8.92

30

Qeg

. G

ran

ito

id p

lain

of

gri

tty

cla

yey

sa

nd

wit

h t

hin

cla

y o

n s

urf

ace.

A-g

-PI

Co

llu

via

l fa

n o

r d

ista

l fo

ots

lop

es

PH

YW

1320

.347

811

8.89

20Q

a. P

lain

of

Qu

ater

na

ry a

llu

viu

m.

Rew

ork

ed g

ritt

y g

ran

itic

sa

nd

wit

h c

lay

at

su

rfac

e.A

-g-P

IA

1cF

loo

dp

lain

or

ov

erb

an

k s

ilt

an

d s

an

d a

dja

cen

t to

riv

er

cha

nn

el

PW

0121

.339

711

7.26

00

Pd

c. S

lop

es o

f d

ole

rite

bo

uld

er h

ills

—b

are

to

ps

wit

h T

riod

ia o

n s

lop

es.

A-F

Ocp

-od

Bed

rock

, d

om

inat

ed b

y

core

sto

nes

, a

nd

pro

xim

al

coll

uv

ium

PW

02

21.3

28

011

7.24

30

Pfk

. A

caci

a sh

rub

s/Tr

iodi

a o

n b

ou

lder

fi e

ld;

Ky

ale

ne

ba

salt

scr

ee

slo

pe.

A-F

Ok

-b-H

AW

Co

llu

via

l fo

ots

lop

es

PW

03

21.3

413

117.

189

0P

fp.

Un

du

lati

ng

up

lan

d w

ith

sca

tter

ed s

pa

rse

trees

ov

er T

riod

ia i

n s

ton

y h

ill

cou

ntr

y.A

-FO

t-x

b-k

-HA

WB

edro

ck a

nd

pro

xim

al

coll

uv

ium

in

fo

ots

lop

es

PW

04

21.3

949

117.

1710

Qp

x.

Hea

vin

g c

lay

pla

in w

ith

ro

ck s

trew

on

su

rfac

e.A

-FO

m-b

-HA

WC

zcb

Co

llu

viu

m a

nd

bed

rock

d

ebri

s

PW

05

21.5

773

117.

062

0Q

a. P

aper

ba

rks,

sed

ges

etc

. o

f sw

am

p.

A-H

Am

-cib

-HA

WQ

aa

Riv

er c

ha

nn

els

an

d

ov

erb

an

k s

edim

ents

PW

06

21.6

772

116.

975

0Q

c. A

caci

a/Tr

iodi

a; b

uck

sho

t p

lain

.A

-HA

d-k

d-H

AW

Ql

Sh

eet

fl o

od

fa

n;

silt

an

d c

lay

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

Page 42: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

44 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

PW

0721

.64

2411

7.0

370

Qc.

Sn

ak

ewo

od

/Aca

cia/

tuss

ock

gra

ss.

A-H

Ad

-kd

-HA

WQ

aa

Flo

od

pla

in;

calc

rete

deb

ris

on

ed

ge

of

terr

ace

PW

08

21.6

04

211

7.07

80

Cz

k.

Eu

caly

pts

ov

er s

pin

ifex

; ca

lcre

ted

sa

nd

.A

-HA

m-c

ib-H

AW

Cz

mV

all

ey fl

at;

sil

ty a

llu

viu

m

PW

09

21.5

713

117.

05

60

Qa.

Riv

er g

um

an

d C

ajep

ut

nea

r p

ipel

ine

cro

ssin

g.

A-F

Oj-

xs-

b-H

AW

Qa

aF

loo

dp

lain

or

ov

erb

an

k

adja

cen

t to

riv

er c

ha

nn

els

PW

1021

.56

34

117.

059

0P

fjw

. S

nap

py

gu

m/

Trio

dia;

sto

ny

gro

un

d.

A-F

Oj-

xs-

b-H

AW

Bed

rock

deb

ris

an

d

pro

xim

al

coll

uv

ial

gra

vel

on

lo

w h

ill

PW

1121

.54

02

117.

057

0P

fjd

. E

uca

lyp

ts o

ver

Aca

cia

ov

er T

riod

ia o

n s

ton

y g

rou

nd

.A

-FO

j-x

s-b

-HA

WC

oll

uv

ial

gra

vel

or

lag

on

b

edro

ck r

ise

PW

1221

.38

4111

7.0

610

Pfm

. Tr

iodi

a a

nd

sca

tter

ed H

akea

on

sto

ny

sa

nd

.A

-FO

m-b

-HA

WC

zc

Co

llu

via

l g

rav

el o

r la

g o

n

bed

rock

ris

e

PW

1321

.310

411

7.27

60

Ql.

Flu

vit

ide

pla

ins;

ta

ll o

pen

Aca

cia

shru

bs

ov

er T

riod

ia.

A-F

Oh

-xs-

f-H

AW

Qa

aA

llu

via

l v

all

ey fl

at

or

fl o

od

pla

in

RH

NC

012

3.361

111

9.11

20C

zl.

Cen

oz

oic

du

ricr

ust

.A

-FO

-od

-HA

SC

zr

Co

llu

via

l g

rav

el i

n

foo

tslo

pes

RH

NC

02

23.

3195

119.

1020

Cz

k.

Cen

oz

oic

ca

lcre

te.

A-F

O-o

d-H

AS

Cz

kC

alc

rete

mo

un

d

RH

NC

03

23.

2662

119.

134

0Q

w.

Red

sa

nd

y c

lay

ov

er s

heet

, h

ard

pa

n a

t <

10cm

of

cap

ov

er c

lay.

A-H

Am

-cib

-HA

SQ

wS

heet

-fl o

od

fa

n o

r d

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

RH

NC

04

23.

25

09

119.

145

0P

Hb

. L

ow

er s

cree

slo

pe

& o

utc

rop

of

ran

ge.

A-H

As-

xsl

-ci

Co

llu

via

l fo

ots

lop

es b

elo

w

bed

rock

ou

tcro

p

RH

NC

05

23.

2136

119.

2020

Qa.

Deep

red

cla

y.A

-HA

d-k

d-H

AS

Qw

All

uv

ial

silt

an

d c

lay

on

v

all

ey fl

at

RH

NC

06

23.

1852

119.

238

0Q

x.

Va

lley

fl o

or

deep

red

cla

y w

ith

su

rfac

e p

ebb

les

stre

w.

A-H

Ad

-kd

-HA

SQ

wD

ista

l co

llu

via

l g

rav

el i

n

low

er s

lop

es a

nd

fa

ns

RH

NC

072

3.14

60

119.

266

0A

hm

’. H

ills

ide;

ma

ssiv

e ro

ck o

utc

rop

s &

ro

cky

cla

y (

sha

llo

w)

pro

fi le

.A

-HA

m-c

ib-H

AS

Cz

cC

oll

uv

ial

foo

tslo

pe

gra

vel

RH

NC

08

23.

1032

119.

039

0A

Fd

. U

nd

ula

tin

g h

ill

cou

ntr

y w

ith

ro

ck o

utc

rop

s &

sto

ny

cla

y p

rofi

le

(sh

all

ow

).A

-FO

-od

-HA

SB

edro

ck d

ebri

s a

nd

p

rox

ima

l co

llu

via

l g

rav

el o

n

low

hil

l

RH

NC

09

23.

0538

119.

1770

AH

b.

Wit

ten

oo

m d

olo

mit

e (m

ud

sto

ne)

on

fo

ot

slo

pes

to

PH

b m

esa;

so

il w

ith

ro

ck s

cree

ov

er m

ass

ive

do

lom

ite.

A-H

Ad

-kd

-HA

SC

oll

uv

ial

foo

tslo

pes

bel

ow

b

edro

ck o

utc

rop

RH

NC

102

2.9

312

119.

185

0Q

a. R

ipa

ria

n d

eep

cla

y &

ro

ck p

rofi

le w

ith

co

bb

les

etc.

ov

er C

zk

ba

sem

ent.

H

ard

dig

gin

g o

n f

ence

s.A

-HA

s-x

sl-c

iQ

aF

loo

dp

lain

or

ov

erb

an

k

adja

cen

t to

riv

er c

ha

nn

els

RH

NC

112

2.9

146

119.

209

0P

Hb

. B

rock

ma

n I

ron

Fo

rmat

ion

.P

_-H

Aj-

xci

-od

Co

llu

via

l fo

ots

lop

es

RH

NC

122

2.8

524

119.

265

0P

Hj.

Weel

i W

oll

i F

orm

atio

n;

rock

pro

fi le

wit

h s

kel

eta

l so

ils

ov

er m

ass

ive

rock

wit

h o

utc

rop

s.P

_-H

Aj-

xci

-od

Co

llu

via

l sl

op

es a

nd

fe

rru

gin

ised

bed

rock

deb

ris

RH

NC

132

2.8

372

119.

2710

Qa.

All

uv

ial

clay

wit

h c

oll

uv

ial

gri

t, c

ob

ble

s &

riv

er s

an

d;

dro

p o

ff o

f C

eno

zo

ic s

urf

ace

(Cz

k)

on

to r

iver

fl a

t (Q

a).

Ha

rd d

igg

ing

on

fen

ces.

P_-H

Aj-

xci

-od

Cz

kF

loo

dp

lain

or

ov

erb

an

k

adja

cen

t to

riv

er c

ha

nn

els

Page 43: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 45

RH

NE

012

2.8

201

119.

613

0Q

s. R

ed s

an

d d

un

e o

n Q

x.

A-H

Ad

-kd

-HA

EQ

sR

ed a

eoli

an

sa

nd

in

du

nes

a

nd

sa

nd

pla

in

RH

NE

02

22

.76

6111

9.6

310

Qw

. G

entl

e w

ash

slo

pe,

bro

wn

cla

y w

ith

peb

ble

s o

n s

urf

ace

& i

n p

rofi

le.

A-H

Ad

-kd

-HA

EQ

wD

ista

l co

llu

via

l g

rav

el i

n

ou

twa

sh f

an

s

RH

NE

03

22

.707

311

9.70

90

Qx

. M

ulg

a o

n Q

x.

A-H

Ad

-kd

-HA

EQ

wA

llu

via

l ch

an

nel

s a

nd

fl

oo

dp

lain

RH

NE

04

22

.69

0711

9.7

750

Qx

. Q

uat

ern

ary

pla

in-b

row

n s

an

dy

cla

y.A

-HA

d-k

d-H

AE

Qw

All

uv

ial

pla

in o

r d

ista

l sh

eet

fl

oo

d f

an

RH

NE

05

22

.675

711

9.8

410

Cz

k.

Ca

lcre

te &

sn

ak

ewo

od

; d

eep

red

-bro

wn

gri

tty

cla

y w

ith

ca

lcre

te.

A-H

Ad

-kd

-HA

EQ

wA

llu

via

l sa

nd

an

d g

rav

el o

n

fl o

od

pla

in

RH

NE

06

22

.661

111

9.91

90

Cz

k.

Ca

lcre

te.

A-H

Ad

-kd

-HA

EQ

wA

llu

via

l p

lain

; p

oss

ible

ca

lcre

te d

ebri

s

RH

NE

072

2.5

082

119.

784

0Q

a (

sali

ne)

. D

eep

sa

lin

e cl

ay p

rofi

le;

sam

ph

ire

of

Fo

rtes

cue

Ma

rsh

.A

-HA

d-k

d-H

AE

Qa

All

uv

ial

silt

an

d c

lay

on

fl

oo

dp

lain

RH

NE

08

22

.451

811

9.97

60

AH

m.

Ba

nd

ed i

ron

sto

ne

Ner

ra M

am

ba

Fo

rmat

ion

; m

ass

ive

rock

wit

h

skel

eta

l su

rfac

e so

il.

A-H

Am

-cib

-HA

EC

oll

uv

ial

foo

tslo

pes

wit

h

ferr

ug

ino

us

gra

vel

an

d r

ock

d

ebri

s

RH

NE

09

22

.415

411

9.98

40

AF

jc.

Jeer

ina

h F

orm

atio

n p

elit

e &

th

in b

edd

ed m

etad

olo

mit

e; s

ton

y p

rofi

le/

ma

ssiv

e m

etad

olo

mit

e.A

-FO

j-x

s-b

-HA

EC

oll

uv

ial

gra

vel

or

lag

on

b

edro

ck r

ise

RH

NE

102

2.1

178

119.

8770

Cz

p.

Cen

oz

oic

pis

oli

te p

lain

wit

h s

urf

ace

of

late

rite

gra

vel

wit

h d

eser

t v

arn

ish

; d

eep

gra

vel

ly c

lay

pro

fi le

.A

-FO

m-b

-HA

EE

nrb

-cip

Fer

rug

ino

us

gra

vel

; co

llu

viu

m o

r la

g

RH

NE

112

2.0

947

119.

753

0A

Fk

. K

yle

na B

asa

lt;

red

-bro

wn

ha

rd s

ton

y c

lay

pro

fi le

.A

-FO

k-b

-HA

EC

oll

uv

ial

foo

tslo

pes

to

b

edro

ck r

ises

RH

NE

122

2.0

853

119.

704

0A

gsm

. S

ha

llo

w b

row

n g

ritt

y c

lay

ov

er d

eco

mp

osi

ng

gra

nit

e sh

eet

; g

ran

ito

id

un

du

lati

ng

pla

in.

A-g

-PS

Co

llu

viu

m a

nd

bed

rock

d

ebri

s

RH

NW

012

2.5

35

011

8.97

70P

hb

. P

hb

slo

pe

wit

h m

ass

ive

sheet

ba

nd

ed i

ron

fo

rmat

ion

wit

h s

urf

ace

stre

w &

sk

elet

al

soil

in

th

in d

isco

nti

nu

ou

s su

rfac

e.P

_-H

Ab

-cib

Co

llu

viu

m a

nd

bed

rock

d

ebri

s o

n u

pp

er s

lop

es o

f ri

dg

e

RH

NW

02

22

.5358

118.

998

0C

zr.

Cz

r h

aem

atit

e; G

oet

hit

e d

epo

sits

on

ba

nd

ed i

ron

fo

rmat

ion

& a

dja

cen

t sc

ree

dep

osi

ts;

sheet

ro

ck &

peb

ble

s; s

nap

py

gu

m,

op

en G

revi

llea,

Aca

cia,

Tr

iodi

a.A

-HA

s-x

sl-c

iC

zr

Co

llu

viu

m a

nd

bed

rock

d

ebri

s o

n u

pp

er s

lop

es o

f ri

dg

e

RH

NW

03

22

.46

65

119.

02

30

Qx

. p

lain

sa

nd

y c

lay

wit

h r

ock

fra

gm

ents

in

pro

fi le

.A

-HA

d-k

d-H

AE

C1f

Sh

eet

-fl o

od

fa

n o

r d

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

RH

NW

04

22

.33

46

118.

989

0Q

a. C

oo

lib

ah

op

en w

oo

dla

nd

to

15 m

, A

caci

a a

nd

Hak

ea.

A-H

Ad

-kd

-HA

EQ

aA

llu

via

l v

all

ey fl

at

or

fl o

od

pla

in

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

RH

NW

05

22

.317

511

8.98

00

Qa.

Cra

ckin

g c

lay

Qa

fl a

t w

ith

tu

sso

ck g

rass

of

Eri

achn

e be

ntha

mii.

A-H

Ad

-kd

-HA

EQ

aA

llu

via

l si

lt a

nd

cla

y i

n

fl o

od

pla

in

Page 44: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

46 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

RH

NW

06

22

.301

811

9.01

30

Qa.

Cla

y w

ith

su

rfac

e st

rew

; S

na

kew

oo

d,

Pti

lotu

s, t

uss

ock

gra

ss.

A-H

Ad

-kd

-HA

EC

1fC

oll

uv

ial

an

d a

llu

via

l g

rav

els

in f

an

or

fl o

od

pla

in

RH

NW

072

2.2

217

119.

02

50

AH

m.

Ma

rra

Ma

mb

a b

an

ded

iro

n f

orm

atio

n o

n l

ow

ro

llin

g h

ills

wit

h s

ton

y

soil

; sh

all

ow

co

ver

.A

-HA

m-c

ib-H

AE

All

uv

ial

va

lley

fl o

or

wit

h

som

e b

ou

lder

s

RH

NW

08

22

.10

68

119.

001

0C

zc.

Ch

ich

este

r T

ab

lela

nd

s cr

ack

ing

& h

eav

ing

cla

y w

ith

tu

sso

ck g

rass

lan

d.

A-F

Om

-b-H

AE

R2C

bVb

All

uv

ial

or

dis

tal

coll

uv

ial

gra

vel

; re

lict

va

lley

fi l

l

RH

NW

09

22

.06

88

118.

979

0A

Ftc

. B

edd

ed d

olo

mit

e &

pel

ite;

un

du

lati

ng

up

lan

ds

of

Ch

ich

este

r R

an

ge;

re

d c

lay

ey &

ro

cky

str

ata w

ith

ou

tcro

ps.

A-F

Om

-b-H

AE

Bed

rock

ris

e w

ith

th

in

pro

xim

al

coll

uv

ium

RH

NW

102

2.1

347

119.

024

0A

Fm

. u

pp

er s

cree

slo

pe.

A-F

Oj-

xs-

b-H

AE

Co

llu

viu

m a

nd

bed

rock

d

ebri

s

RH

NW

112

2.2

941

119.

061

0Q

a. M

ulg

a g

rov

e o

n Q

a-c

oll

apsi

ng

cla

y w

ith

so

me

sna

kew

oo

d.

A-H

Ad

-kd

-HA

EC

1fS

heet

-fl o

od

fa

n o

r d

ista

l co

llu

viu

m i

n o

utw

ash

fa

ns

RH

NW

122

2.3

469

119.

010

0Q

a. S

ali

ne

clay

wit

h s

am

ph

ire.

A-H

Ad

-kd

-HA

EW

1F

loo

dp

lain

; a

llu

via

l si

lt a

nd

sa

nd

RH

NW

132

2.3

614

119.

007

0C

zk

. C

ali

che

La

nd

Sy

stem

.A

-HA

d-k

d-H

AE

C1

Co

llu

via

l fo

ots

lop

e g

rav

el

TC

MB

C01

23.

36

38

117.

625

0Q

s. P

lain

of

fi rm

pa

le s

an

d w

ith

so

me

clay

in

pro

fi le

. S

trew

of

fi n

e b

uck

sho

t o

n s

urf

ace

in p

lace

s. A

shb

urt

on

Reg

ion

.P

_-W

YU

-xs-

kQ

aA

llu

via

l fl

oo

dp

lain

an

d

ov

erb

an

k d

epo

sits

TC

MB

C02

23.

36

00

117.

68

40

Cz

c. S

ma

ll r

ise

in g

ibb

er p

lain

am

on

g g

entl

y r

oll

ing

hil

ls o

f A

shb

urt

on

R

egio

n.

Deep

cla

y p

rofi

le w

ith

sto

ny

su

rfac

e st

rew

& s

om

e b

ou

lder

s.

Sca

tter

ed m

ulg

a o

ver

sn

ak

ewo

od

.P

_-W

YU

-xs-

kC

zc

Co

llu

via

l g

rav

el o

r la

g o

n

bed

rock

ris

e

TC

MB

C0

32

3.3

392

117.

8020

Cz

k.

Slo

pe

of

roll

ing

ca

lcre

te h

ills

& m

esa

s. C

alc

are

ou

s cl

ay s

oil

wit

h s

om

e h

ard

sil

iceo

us

calc

rete

th

rou

gh

pro

fi le

& s

urf

ace

stre

w o

f ca

lcre

te,

ba

salt

&

iro

nst

on

e p

ebb

les.

Re-w

ork

ed.

P_-W

YU

-xs-

kC

zc

Co

llu

via

l fo

ots

lop

es t

o

calc

rete

ris

es

TC

MB

C0

42

3.3

347

117.

8770

Cz

c. G

entl

e sl

op

e b

elo

w B

rock

ma

n I

ron

(H

b) h

ill.

Deep

cla

y w

ith

gri

t &

ir

on

sto

ne

thro

ug

h p

rofi

le &

su

rfac

e st

rew

of

iro

nst

on

es,

cob

ble

s &

gib

ber

w

ith

so

me

larg

e b

ou

lder

s.P

_-W

YU

-xs-

kC

zc

Sh

eet

-fl o

od

or

coll

uv

ial

fan

; g

rav

el

TC

MB

C0

52

3.31

83

117.

870

0H

b.

Bro

ckm

an

Iro

n r

idg

e-t

op

& s

teep

up

per

slo

pe.

Sk

elet

al

red

cla

y i

n

po

cket

s &

dep

ress

ion

s b

etw

een

ma

ssiv

e b

an

ded

iro

n s

cree

& o

utc

rop

s.

Ro

cky

str

ew o

n s

urf

ace.

P_-H

Ab

-cib

Co

llu

via

l g

rav

el o

r la

g o

n

bed

rock

ris

e

TC

MB

C0

62

3.41

9311

7.8

410

Wb

. C

heel

a S

pri

ng

Ba

salt

. S

teep

scr

ee

slo

pe

wit

h m

ass

ive

ou

tcro

ps

&

skel

eta

l g

ritt

y r

ed-b

row

n s

oil

wit

h r

ock

in

pro

fi le

in

cre

vic

es &

sh

all

ow

p

ock

ets

wit

h s

urf

ace

stre

w o

f b

asa

lt f

rag

men

ts.

P_-W

YU

-xs-

kC

oll

uv

ial

slo

pes

an

d

bed

rock

deb

ris

TC

MB

C07

23.

4161

117.

870

0Q

a. P

lain

of

Qu

ater

na

ry a

llu

via

l cl

ay s

oil

. D

eep

cla

y w

ith

peb

ble

s th

rou

gh

p

rofi

le.

Su

rfac

e co

ver

ed i

n p

ebb

les

in r

un

-off

are

as.

P_-W

YL

-xs-

bQ

aA

llu

via

l si

lt a

nd

cla

y i

n

va

lley

fl a

t

TC

MB

C0

82

3.37

5811

7.9

90

0C

zc.

Red

cla

y s

lop

e o

ver

ha

rdp

an

or

du

ricr

ust

. S

ton

es,

cob

ble

s &

ro

cks

thro

ug

h p

rofi

le.

P_-H

Aj-

xci

-od

Cz

cS

heet

-fl o

od

or

coll

uv

ial

fan

; g

rav

el;

dis

tal

or

rew

ork

ed

Page 45: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 47

TC

MB

C0

92

3.3

361

118.

036

0H

j. M

od

erat

ely

ste

ep s

lop

e o

n s

ide

of

Weel

i W

oll

i ir

on

sto

ne

hil

l. R

ed-b

row

n

clay

pro

fi le

co

nta

inin

g r

ock

s &

ma

ntl

e o

f b

an

ded

iro

n r

ock

s &

bo

uld

ers,

o

ver

lyin

g m

ass

ive

iro

nst

on

e.P

_-H

Aj-

xci

-od

Bed

rock

deb

ris

an

d

pro

xim

al

coll

uv

ial

gra

vel

on

lo

w h

ill

TC

MB

C10

23.

28

48

118.

1010

Ql.

Riv

erin

e co

ars

e g

ritt

y s

an

d a

llu

viu

m w

ith

ca

lcre

te &

ca

lca

reo

us

con

glo

mer

ate

as

cob

ble

s &

peb

ble

s, &

ma

ssiv

e ca

lcre

te a

t d

epth

. R

iver

Gu

ms

etc.

P_-T

K-s

Qa

All

uv

ial

cha

nn

el a

nd

o

ver

ba

nk

dep

osi

ts

TC

MB

C11

23.

2869

118.

124

0C

zk

. M

ass

ive

sheet

ca

lcre

te s

up

erfi

cia

lly

ma

ntl

ed b

y d

eco

mp

osi

ng

ca

lcre

te

frag

men

ts,

rock

s, b

ou

lder

s &

gib

ber

in

lig

ht

bro

wn

cla

y m

atri

x.

Op

ali

ne

frag

men

ts o

n s

urf

ace.

P_-T

K-s

Cz

kC

alc

rete

gra

vel

an

d

coll

uv

ium

TC

MB

C12

23.

293

411

8.15

60

Qw

. F

lat

pla

in o

f g

ritt

y r

ed c

lay

wit

h s

urf

ace

stre

w o

f ro

cks

& p

ebb

les.

S

ton

es i

n p

rofi

le &

ha

rdp

an

at

20–

30

cm

.P

_-T

K-s

Cz

cD

ista

l co

llu

via

l g

rav

el i

n

sheet

-fl o

od

fa

ns

TC

MB

E01

22

.571

311

8.3

070

Cz

c. U

nd

ula

tin

g s

ton

y v

all

ey fl

oo

r o

f in

cise

d C

eno

zo

ic c

oll

uv

ium

. R

ock

fr

agm

ents

& fi

ne

gra

vel

in

a r

ed c

lay

mat

rix

wit

h g

rav

elly

& s

ton

y s

urf

ace

cov

er.

P_-H

Ab

-cib

Cz

cC

oll

uv

ial

gra

vel

in

fo

ots

lop

es t

o l

ow

hil

ls

TC

MB

E02

22

.58

3911

8.29

10Q

w.

Gen

tle

foo

tslo

pe

ou

twa

sh o

f Q

uat

ern

ary

co

llu

viu

m &

all

uv

ium

—re

d-

bro

wn

sa

nd

y c

lay

wit

h r

ock

fra

gm

ents

in

pro

fi le

& a

s su

rfac

e st

rew

.A

-HA

s-x

sl-c

iQ

wC

oll

uv

ial

gra

vel

in

fo

ots

lop

es

TC

MB

E0

32

2.6

215

118.

351

0P

Hj.

Gen

tle

foo

tslo

pe

bel

ow

a l

ow

ba

nd

ed i

ron

rid

ge.

Red

cla

y p

rofi

le

con

tain

ing

ro

ck f

rag

men

ts w

ith

sm

all

an

gu

lar

rock

fra

gm

ents

as

surf

ace

stre

w.

P_-H

Aj-

xci

-od

Co

llu

via

l g

rav

el i

n

foo

tslo

pes

TC

MB

E0

42

2.6

207

118.

315

0Q

w.

Pla

in o

f Q

uat

ern

ary

all

uv

ium

& c

oll

uv

ium

; o

utw

ash

fro

m P

hb

hil

ls.

Sa

nd

y r

ed c

lay

wit

h s

ma

ll r

ock

fra

gm

ents

in

pro

fi le

& a

s su

rfac

e st

rew

.P

_-H

Aj-

xci

-od

Qw

Dis

tal

coll

uv

ial

gra

vel

in

lo

wer

slo

pes

an

d f

an

s

TC

MB

E0

52

2.6

09

911

8.29

90

Ph

b.

Ste

ep h

ill

slo

pe

of

Bro

ckm

an

ba

nd

ed i

ron

fo

rmat

ion

. M

ass

ive

rock

o

utc

rop

& b

ou

lder

s w

ith

bro

ken

dec

ayin

g r

ock

in

sh

all

ow

cla

y m

atri

x

inco

mp

lete

ly m

an

tlin

g s

lop

e.P

_-H

Ab

-cib

Bed

rock

ou

tcro

ps

an

d

pro

xim

al

coll

uv

ial

gra

vel

on

lo

w h

ill

TC

MB

E0

62

2.6

35

611

8.2

260

Qa.

Mo

un

t B

ruce

fl a

ts.

Cla

yp

lain

wit

h h

ard

pa

n o

f ir

on

sto

ne

at 2

0 c

m.

A-H

Ad

-kd

-HA

SQ

aA

llu

via

l p

lain

; g

rav

elly

sil

t a

nd

cla

y

TC

MB

E07

22

.714

811

8.26

50

Cz

k.

Cen

oz

oic

ca

lcre

te v

all

ey fi

ll

on

un

du

lati

ng

pla

in w

ith

in

cise

d d

rain

age.

D

ecay

ing

ca

lcre

te f

rag

men

ts &

co

ars

e ir

on

sto

ne

gra

vel

(a

ng

ula

r) i

n d

eep

cl

ay m

atri

x o

ver

lyin

g d

ecay

ing

ca

lcre

te s

heet

ov

er d

eep

cla

y.A

-HA

m-c

ib-H

AS

Cz

kC

alc

rete

ru

bb

le a

nd

fe

rru

gin

ou

s co

llu

viu

m

TC

MB

E0

82

2.7

23

011

8.26

90

Ql.

Riv

erin

e a

llu

via

l d

epo

sit

of

Tu

ree

Cre

ek.

Co

ars

e a

llu

via

l g

rit

& r

iver

st

on

es a

s lo

w l

evee

ba

nk

in

bed

of

riv

er.

A-H

Am

-cib

-HA

SQ

aA

llu

viu

m i

n s

trea

m c

ha

nn

el

an

d o

ver

ba

nk

dep

osi

ts

TC

MB

E0

92

2.6

123

118.

023

0A

Hm

. H

ills

lop

e o

f m

ass

ive

ba

nd

ed i

ron

ou

tcro

p w

ith

dec

ayin

g r

ock

in

sh

all

ow

cla

y m

atri

x.

A-H

Am

-cib

-HA

SC

zc

Co

llu

via

l g

rav

el o

r la

g i

n

foo

tslo

pes

TC

MB

E10

22

.60

8711

7.93

60

Qb

. H

eav

ing

cla

y. C

rack

ing

& h

eav

ing

cla

y p

rofi

le t

o d

epth

wit

h r

ock

s &

st

on

es.

A-F

Ou

-bb

oC

zc

Ro

cky

rid

ge

wit

h l

ag o

r p

rox

ima

l co

llu

viu

m

TC

MB

E11

22

.66

06

117.

86

40

Afu

. G

entl

e lo

wer

slo

pe

wit

h s

ton

y s

urf

ace

& d

eep

sto

ny

cla

y p

rofi

le.

A-F

Ou

-bb

oC

oll

uv

ial

gra

vel

or

lag

on

b

edro

ck r

ise

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

Page 46: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

48 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

TC

MB

E12

22

.68

00

117.

84

80

Afu

. H

illt

op

an

d m

ass

ive

scre

e u

pp

er s

lop

e &

sh

eet

ou

tcro

p (

vo

lca

nic

fl o

w)

wit

h d

ecay

ing

ro

ck i

n a

sh

all

ow

cla

y m

atri

x.

A-F

Ou

-bb

oB

edro

ck r

idg

e

TC

MB

E13

22

.69

9111

7.81

60

Ab

. M

ass

ive

scre

e sl

op

e (s

teep

) o

f b

asa

lt w

ith

are

as

of

dec

om

po

sin

g b

asa

lt i

n

sha

llo

w c

lay

mat

rix

.A

-FO

-od

-HA

SB

edro

ck,

incl

ud

ing

co

rest

on

es

TC

MB

W01

22

.826

711

7.37

10A

gm

. G

ran

ito

id s

lop

e w

ith

ell

uv

ial

soil

pro

fi le

of

gri

tty

sa

nd

gra

nit

ic s

oil

, d

eco

mp

osi

ng

gra

nit

e &

ma

ssiv

e g

ran

ite

sheet

ou

tcro

ps.

A-m

gn

-PR

KB

edro

ck;

san

d a

nd

gra

vel

in

pro

xim

al

coll

uv

ial

foo

tslo

pes

TC

MB

W02

22

.83

44

117.

38

00

Ag

m.

Gra

nit

oid

pla

in o

f re

d s

an

d s

oil

wit

h s

om

e cl

ay i

n p

rofi

le &

sm

all

g

rav

el f

rag

men

ts o

n s

urf

ace.

A-m

gn

-PR

KC

oll

uv

ial

foo

tslo

pes

to

b

edro

ck r

ises

; sa

nd

an

d

min

or

gra

vel

TC

MB

W0

32

2.8

08

411

7.47

70C

zp

. P

iso

liti

c d

uri

cru

st.

(sim

ila

r to

CzL

) S

kel

eta

l re

d-b

row

n g

ritt

y c

lay

ov

er

ma

ssiv

e la

teri

tise

d i

ron

sto

ne

wh

ich

is

exp

ose

d a

s su

rfac

e ca

pp

ing

in

pla

ces.

S

oil

su

rfac

e co

ver

ed i

n r

ock

s &

gra

vel

.A

-FO

h-x

s-b

-HA

SC

zp

Fer

rug

ino

us

bed

rock

deb

ris

an

d p

rox

ima

l co

llu

via

l g

rav

el o

n r

ises

TC

MB

W0

42

2.7

979

117.

493

0A

fo.

Up

per

slo

pe

& t

op

of

a m

eta

ba

salt

ic h

ill.

Sh

all

ow

sk

elet

al

gri

tty

cla

y

inco

mp

lete

ly m

an

tlin

g m

ass

ive

ba

salt

su

rfac

e o

f sc

ree,

ro

cks

& b

ou

lder

s.A

-FO

o-b

bo

Co

llu

via

l fo

ots

lop

es t

o

rise

; si

lice

ou

s ro

ck d

ebri

s;

adja

cen

t to

all

uv

ial

cha

nn

el

TC

MB

W0

52

2.7

197

117.

5120

Cz

k.

Ca

lcre

te r

idg

e &

slo

pe

of

dec

om

po

sin

g w

hit

e/b

row

n c

lay

ov

er m

ass

ive

calc

rete

at

20 c

m d

epth

. C

alc

rete

& q

ua

rtz

ite

frag

men

ts &

gra

vel

on

su

rfac

e w

ith

so

me

iro

nst

on

e.P

_-H

Aw

-fr

Cz

kC

alc

rete

mo

un

d

TC

MB

W0

62

2.6

661

117.

6120

Hb

. B

an

ded

Iro

n r

idg

e. S

teep

ou

tcro

p s

lop

es &

scr

ee.

Sk

elet

al

gri

t in

cr

evic

es &

po

cket

s b

etw

een

ro

cks

& b

ou

lder

s o

n s

teep

slo

pe

wit

h o

utc

rop

s.P

_-H

Ab

-cib

Co

llu

via

l fo

ots

lop

es b

elo

w

bed

rock

ou

tcro

p

TC

MB

W07

22

.50

45

117.

65

00

Qc.

Gen

tle

red

cla

y s

lop

e w

ith

su

rfac

e st

rew

of

bu

cksh

ot,

gra

vel

& l

arg

e ir

on

sto

ne

rock

fra

gm

ents

.A

-FO

p-b

sQ

wD

ista

l g

rav

ely

co

llu

viu

m i

n

sheet

-fl o

od

fa

n

TC

MB

W0

82

2.5

037

117.

704

0Q

w.

Fla

t p

lain

of

crac

kin

g &

mu

lch

ing

gil

ga

i cl

ay w

ith

su

rfac

e st

rew

of

larg

e b

asa

lt r

ock

s &

gra

vel

. S

na

kew

oo

d e

tc.

A-F

Op

-bs

Qa

All

uv

ial

fl o

od

pla

in o

r te

rrac

e g

rav

els

TC

MB

W0

92

2.3

783

117.

467

0C

zc.

Co

llu

via

l sl

op

es b

elo

w i

ron

sto

ne.

Red

cla

y w

ith

sto

nes

in

pro

fi le

&

surf

ace

stre

w o

f st

on

es,

gra

vel

& b

uck

sho

t.A

-FO

u-b

bo

Cz

cD

ista

l co

llu

via

l g

rav

el i

n

sheet

-fl o

od

fa

n;

ero

ded

by

re

cen

t d

rain

age

cha

nn

els

TC

MB

W10

22

.332

611

7.4

85

0Q

a. A

llu

via

l fl

at w

ith

Mu

lga.

Hea

vy

red

cla

y t

o d

epth

wit

h s

om

e su

rfac

e st

rew

of

bu

cksh

ot.

A-H

Ad

-kd

-HA

SQ

wD

ista

l co

llu

viu

m i

n s

heet

-fl

oo

d f

an

TC

MB

W11

22

.320

911

7.47

80

AH

m.

Ma

ssiv

e sh

eet

ou

tcro

p o

f b

an

ded

iro

nst

on

e w

ith

so

me

soil

in

po

cket

s &

su

rfac

e st

rew

of

rock

s &

gra

vel

.A

-HA

m-c

ib-H

AS

Ro

cky

ris

e w

ith

lag

or

pro

xim

al

coll

uv

ium

TC

MB

W12

22

.30

56

117.

481

0Q

a. H

eav

y a

llu

via

l cl

ay,

crac

kin

g w

ith

cra

bh

ole

s &

su

rfac

e st

rew

of

peb

ble

s &

gra

vel

, a

mix

of

qu

art

zit

e, c

alc

rete

& i

ron

sto

ne.

A-H

Ad

-kd

-HA

SQ

aF

loo

dp

lain

sil

t a

nd

cla

y

TC

MB

W13

22

.294

211

7.47

30

Qw

. A

llu

via

l &

co

llu

via

l o

utw

ash

pla

in f

rom

ba

nd

ed i

ron

hil

ls.

Sk

elet

al

gri

tty

red

cla

y w

ith

iro

nst

on

e ro

ck f

rag

men

ts &

bo

uld

ers

thro

ug

h p

rofi

le &

su

rfac

e st

rew

of

rock

s &

peb

ble

s.A

-HA

d-k

d-H

AS

Qw

Dis

tal

coll

uv

ial

gra

vel

in

sh

eet

-fl o

od

fa

n

Page 47: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 49

WY

E01

22

.789

211

6.57

10H

b.

Bro

ckm

an

Iro

n s

lop

e o

f ra

ng

e w

ith

ro

ck s

cree

on

ma

ssiv

e o

utc

rop

.A

-HA

d-k

d-H

AS

Co

llu

via

l fo

ots

lop

es b

elo

w

bed

rock

ou

tcro

p

WY

E02

22

.7727

116.

5220

Qc.

Deep

cla

y w

ith

sto

ny

su

rfac

e.A

-FO

-bb

-HA

SQ

cC

alc

rete

mo

un

d;

calc

are

ou

s ru

bb

le a

nd

fer

rug

ino

us

coll

uv

ium

WY

E0

32

2.7

402

116.

461

0A

Fr.

Mo

un

t R

oe

Ba

salt

hil

lsid

e; s

ton

y s

cree

ov

er m

ass

ive

ba

salt

.A

-FO

r-b

bg

-HA

SC

oll

uv

ial

foo

tslo

pes

bel

ow

b

edro

ck o

utc

rop

WY

E0

42

2.7

112

116.

40

00

Qa.

Cra

bh

ole

hea

vin

g c

lay

of

va

lley

fl o

or;

deep

cla

y w

ith

su

rfac

e st

rew

.A

-FO

r-b

bg

-HA

SQ

aA

llu

via

l fl

oo

dp

lain

or

terr

ace

gra

vel

s

WY

E0

52

2.5

714

116.

148

0F

b.

Mo

un

t Jo

pe

Vo

lca

nic

s (b

asa

lt)

hil

lsid

e; r

ock

y s

cree/

ma

ssiv

e o

utc

rop

.A

-FO

-bb

-HA

SC

oll

uv

ial

foo

tslo

pe

gra

vel

WY

E0

62

2.4

34

811

5.93

00

Qs.

Qu

ater

na

ry S

an

d s

heet

ass

oci

ated

wit

h g

ran

ito

id s

urf

aces

; d

eep

sa

nd

y-

clay

pro

fi le

.P

_-W

YU

-xs-

kQ

cD

ista

l co

llu

viu

m

WY

E07

22

.419

311

5.8

38

0P

gb

r. G

ran

ito

id p

lain

wit

h o

utc

rop

; g

ritt

y c

lay

pro

fi le

wit

h q

ua

rtz

ite

&

dec

om

po

sin

g g

ran

ite

frag

men

ts i

n p

rofi

le &

ma

ny

ou

tcro

pp

ing

bo

uld

ers

etc.

P_-M

O-m

gQ

cG

ran

itic

bed

rock

ris

e,

incl

ud

ing

co

rest

on

es a

nd

p

rox

ima

l co

llu

viu

m

WY

E0

82

2.4

253

116.

215

0W

ai.

Wy

loo

Gro

up

; A

shb

urt

on

Fo

rmat

ion

; fe

rru

gin

ate

mu

dst

on

e &

ba

nd

ed

iro

n f

orm

atio

n;

sto

nes

/m

ass

ive

rock

, ie

gib

ber

scr

ee

surf

ace.

P_-W

YU

-xs-

kB

edro

ck o

utc

rop

s a

nd

co

llu

via

l g

rav

el o

n l

ow

hil

l

WY

E0

92

2.4

376

116.

274

0W

d.

Du

ck C

reek

do

lom

ite

of

the

Wy

loo

Gro

up

; st

on

y s

urf

ace

ov

er d

olo

mit

e &

mu

dst

on

e o

utc

rop

.P

_-W

YU

-xs-

kB

edro

ck o

utc

rop

s a

nd

th

in

coll

uv

ial

gra

vel

on

lo

w h

ill

WY

E10

22

.43

00

116.

28

00

Tp

. T

erti

ary

pis

oli

te l

ow

hil

ls &

bre

ak

away

sh

eet

pis

oli

te a

t to

p o

f a

bru

pt

rise

.P

_-W

YU

-xs-

kC

oll

uv

ial

gra

vel

or

lag

on

b

edro

ck r

ise

WY

E11

22

.40

80

116.

3720

Wm

. W

ylo

o G

rou

p M

ou

nt

McG

rath

Fo

rmat

ion

; b

ou

lder

scr

ee

on

cla

y w

ith

st

on

es i

n p

rofi

le.

P_-W

YL

-xs-

bQ

cB

edro

ck r

idg

e a

nd

ad

jace

nt

coll

uv

ial

foo

tslo

pes

, w

ith

b

ou

lder

s

WY

E12

22

.410

711

6.39

20W

b.

Wy

loo

Gro

up

Ch

eel

a S

pri

ng

s B

asa

lt;

low

hil

l to

p l

oo

se s

ton

e o

ver

m

ass

ive

sheet

ba

salt

.P

_-W

YL

-xs-

bC

oll

uv

ial

gra

vel

or

lag

on

b

edro

ck r

ise

WY

E13

22

.424

911

6.4

33

0W

g.

Yy

loro

Gro

up

Bea

sley

Riv

er q

ua

rtz

ite;

ro

ck s

cree/

ma

ssiv

e ‘q

ua

rtz

ite’

o

utc

rop

.P

_-W

YL

-xs-

bC

oll

uv

ial

foo

tslo

pe

gra

vel

b

elo

w b

edro

ck o

utc

rop

WY

W01

22

.10

4111

5.56

80

Ia.

Mo

un

t W

ara

mb

oo

Min

nie

Gro

up

, sa

nd

sto

ne

thin

bed

ded

are

nit

e; t

hin

la

yer

of

rock

peb

ble

s &

cla

y o

ver

ma

ssiv

e st

on

e.P

_-M

M-s

Bed

rock

deb

ris

an

d

pro

xim

al

coll

uv

ial

gra

vel

o

n r

ise

WY

W02

22

.120

111

5.57

00

Wa.

Wy

loo

Gro

up

Ash

bu

rto

n F

orm

atio

n;

steep

ly i

ncl

ined

?m

ud

sto

ne;

p

ebb

le s

trew

qu

art

zit

e et

c o

ver

ma

ssiv

e ro

ck w

ith

nea

r-v

erti

cal

stri

kes

.P

_-W

YU

-xs-

k

Bed

rock

ris

e o

r lo

w h

ill,

d

om

inat

ed b

y o

utc

rop

, w

ith

m

ino

r p

rox

ima

l co

llu

via

l d

ebri

s o

r la

g

WY

W0

32

2.1

697

115.

561

0Q

c. S

na

kew

oo

d c

oll

uv

ial

clay

pla

in;

deep

cla

y w

ith

su

rfac

e st

rew

of

gib

ber

.P

_-M

M-s

Qc

Dis

tal

coll

uv

ial

an

d a

llu

via

l g

rav

els

in l

arg

e fa

n o

r fl

oo

dp

lain

Page 48: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

50 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eL

at

SL

on

g E

Ha

bit

at

De

scri

pti

on

(b

y s

ite s

ele

ctio

n t

ea

m)

Be

dro

ckR

eg

oli

thP

ho

to I

nte

rpre

tati

on

WY

W0

42

2.1

88

611

5.55

40

Qs.

Du

ne;

red

sa

nd

du

ne;

deep

red

sa

nd

.P

_-M

M-s

Qs

Aeo

lia

n s

an

d p

lain

WY

W0

52

2.1

933

115.

55

40

Ib.

Mo

un

t B

rod

agee

Min

nie

Gro

up

; (a

ren

ite

& c

on

glo

mer

ate)

; st

on

y s

urf

ace

on

ma

ssiv

e ro

ck.

P_-M

M-s

Co

llu

via

l fo

ots

lop

es b

elo

w

bed

rock

ou

tcro

p

WY

W0

62

2.2

56

011

5.49

10K

n.

Lo

wer

Cre

tace

ou

s W

inn

ing

Gro

up

, N

an

uta

rra S

an

dst

on

e &

sil

tsto

ne

tid

al

& s

up

ra t

ida

l; s

an

dy

cla

yst

on

e at

30

cm

ov

er s

heet

ro

ck.

K-_

na-s

sC

zc

Dis

tal

coll

uv

ial

an

d a

llu

via

l g

rav

els

in l

arg

e fa

n o

r fl

oo

dp

lain

; q

ua

rtz g

rav

el

an

d s

an

d

WY

W07

22

.255

411

5.4

370

Qs.

Sh

eet

ov

er w

ith

lat

e C

eno

zo

ic c

alc

rete

(C

zk

) w

ith

deep

sa

nd

ma

ntl

e;

deep

red

sa

nd

.P

_-M

O-m

gC

zk

All

uv

ial

pla

in o

r d

ista

l sh

eet

fl

oo

d f

an

; si

lty

sa

nd

WY

W0

82

2.4

984

115.

558

0Q

s. ‘

Sa

nd

pla

in’;

deep

red

sa

nd

.P

_-M

R-x

md

-mk

Qc

Aeo

lia

n s

an

d p

lain

WY

W0

92

2.4

64

011

5.6

34

0M

iw.

Ba

ng

ema

ll G

rou

p W

on

gid

a d

olo

mit

e; s

ton

y s

urf

ace

on

ma

ssiv

e o

utc

rop

.P

_-M

EP

1-k

tB

edro

ck o

utc

rop

s a

nd

p

rox

ima

l co

llu

via

l g

rav

el o

n

low

hil

l o

r ri

se

WY

W10

22

.452

311

5.6

610

Mia

. B

an

gem

all

Gro

up

Irr

egu

lly

Sa

nd

sto

ne;

sto

ny

cla

y o

n h

ill

up

per

slo

pe.

P_-M

EP

1-k

tC

oll

uv

ial

foo

tslo

pe

gra

vel

a

nd

lag

on

bed

rock

ris

es

WY

W11

22

.86

35

115.

50

30

Qc.

Qu

ater

na

ry c

oll

uv

ium

; d

eep

cla

y.P

_-M

R-x

md

-mk

Qc

All

uv

ial

cha

nn

els

an

d

fl o

od

pla

in;

silt

y s

an

d

WY

W12

22

.917

911

5.57

80

np

?. M

orr

issy

met

am

orp

hic

su

it o

f m

icro

gn

eiss

& s

chis

t a

s lo

w r

oll

ing

hil

ls;

sto

ny

ou

tcro

p o

n t

op

of

hil

l.P

_-M

R-x

md

-mk

Bed

rock

ou

tcro

ps

an

d

pro

xim

al

coll

uv

ial

gra

vel

o

n r

ise

BE

DR

OC

K C

OD

EN

AM

EL

ITH

OL

OG

Y

A-_

re-b

RE

GA

L F

OR

MA

TIO

NM

ass

ive

an

d p

illo

wed

ba

salt

, w

ith

lo

cal

ko

mat

iiti

c p

erid

oti

te;

min

or

cher

t; m

eta

mo

rph

ose

d

A-C

Dm

-sM

AL

LIN

A F

OR

MA

TIO

NIn

terb

edd

ed s

ha

le,

silt

sto

ne,

sa

nd

sto

ne,

an

d m

ediu

m-

to fi

ne-g

rain

ed w

ack

e; m

eta

mo

rph

ose

d

A-C

Ek

r-g

gK

AR

RA

TH

A G

RA

NO

DIO

RIT

EG

ran

od

iori

te a

nd

to

na

lite

; fo

liat

ed w

ith

lo

cal

com

po

siti

on

al

ba

nd

ing

; m

eta

mo

rph

ose

d

A-F

O-b

b-H

AS

FO

RT

ES

CU

E G

RO

UP

Un

ass

ign

ed b

asa

lt

A-F

Ocp

-od

CO

OY

A P

OO

YA

DO

LE

RIT

EF

ine-

to m

ediu

m-g

rain

ed d

ole

rite

sil

l; l

oca

lly

fo

rms

dy

kes

wit

hin

HA

RD

EY

FO

RM

AT

ION

A-F

Oh

-xs-

b-H

AS

HA

RD

EY

FO

RM

AT

ION

Sa

nd

sto

ne;

mu

dst

on

e; s

ilts

ton

e; c

on

glo

mer

ate;

fel

sic

an

d m

afi

c v

olc

an

ic s

an

dst

on

e a

nd

co

ng

lom

erat

e; a

nd

b

asa

ltic

fl o

ws

an

d b

recc

ia;

met

am

orp

ho

sed

A-F

Oh

-xs-

f-H

AE

HA

RD

EY

FO

RM

AT

ION

Sed

imen

tary

an

d f

elsi

c v

olc

an

ic r

ock

s; l

oca

l in

tru

siv

e ro

cks

A-F

Oh

-xs-

f-H

AM

HA

RD

EY

FO

RM

AT

ION

Sed

imen

tary

an

d f

elsi

c v

olc

an

ic r

ock

s; l

oca

l in

tru

siv

e ro

cks

A-F

Oh

-xs-

f-H

AW

HA

RD

EY

FO

RM

AT

ION

Sed

imen

tary

an

d f

elsi

c v

olc

an

ic r

ock

s; l

oca

l in

tru

siv

e ro

cks

A-F

Oj-

xs-

b-H

AE

JEE

RIN

AH

FO

RM

AT

ION

Mu

dst

on

e; s

ilts

ton

e; s

an

dst

on

e; c

her

t; m

ass

ive

ba

salt

ic fl

ow

s; b

asa

ltic

pil

low

lav

a; b

asa

ltic

bre

ccia

; a

nd

m

ino

r fe

lsic

vo

lca

nic

last

ic r

ock

; in

tru

ded

by

nu

mer

ou

s d

ole

rite

sil

ls;

met

am

orp

ho

sed

Page 49: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 51

A-F

Oj-

xs-

b-H

AW

JEE

RIN

AH

FO

RM

AT

ION

Mu

dst

on

e; s

ilts

ton

e; s

an

dst

on

e; c

her

t; m

ass

ive

ba

salt

ic fl

ow

s; b

asa

ltic

pil

low

lav

a; b

asa

ltic

bre

ccia

; a

nd

m

ino

r fe

lsic

vo

lca

nic

last

ic r

ock

; in

tru

ded

by

nu

mer

ou

s d

ole

rite

sil

ls;

met

am

orp

ho

sed

A-F

Ok

-b-H

AE

KY

LE

NA

FO

RM

AT

ION

Ma

ssiv

e, a

my

gd

alo

ida

l, o

r v

esic

ula

r b

asa

lt a

nd

ba

salt

ic a

nd

esit

e; l

oca

l k

om

atii

tic

ba

salt

, d

acit

e a

nd

rh

yo

lite

A-F

Ok

-b-H

AW

KY

LE

NA

FO

RM

AT

ION

Ma

ssiv

e, a

my

gd

alo

ida

l, o

r v

esic

ula

r b

asa

lt a

nd

ba

salt

ic a

nd

esit

e; l

oca

l k

om

atii

tic

ba

salt

, d

acit

e a

nd

rh

yo

lite

A-F

Om

-b-H

AE

MA

DD

INA

FO

RM

AT

ION

Ma

ssiv

e, a

my

gd

alo

ida

l, o

r v

esic

ula

r b

asa

lt a

nd

ba

salt

ic a

nd

esit

e; l

oca

l k

om

atii

tic

ba

salt

, d

acit

e a

nd

rh

yo

lite

A-F

Om

-b-H

AW

MA

DD

INA

FO

RM

AT

ION

Ma

ssiv

e, a

my

gd

alo

ida

l, o

r v

esic

ula

r b

asa

lt a

nd

ba

salt

ic a

nd

esit

e; l

oca

l k

om

atii

tic

ba

salt

, d

acit

e a

nd

rh

yo

lite

A-F

Oo

-bb

oB

OO

NG

AL

FO

RM

AT

ION

Pil

low

ed a

nd

ma

ssiv

e b

asa

ltic

fl o

ws;

ba

salt

ic b

recc

ia;

silt

sto

ne;

mu

dst

on

e; m

ino

r ch

ert;

met

am

orp

ho

sed

A-F

O-o

d-H

AS

FO

RT

ES

CU

E G

RO

UP

Do

leri

te d

yk

e o

r si

ll

A-F

Op

-bs

PY

RA

DIE

FO

RM

AT

ION

Py

rox

ene

spin

ifex

-tex

ture

d b

asa

ltic

fl o

ws

an

d p

illo

w l

ava;

ma

fi c

vo

lca

nic

last

ic r

ock

; m

ino

r ch

ert;

lo

cal

ko

mat

iite

; m

eta

mo

rph

ose

d

A-F

Or-

bb

g-H

AS

MO

UN

T R

OE

BA

SA

LT

Am

yg

da

loid

al

ba

salt

ic fl

ow

s a

nd

bre

ccia

; a

nd

ba

salt

ic v

olc

an

icla

stic

sa

nd

sto

ne;

met

am

orp

ho

sed

A-F

Or-

b-H

AE

MO

UN

T R

OE

BA

SA

LT

Am

yg

da

loid

al

ba

salt

ic fl

ow

s a

nd

bre

ccia

; a

nd

ba

salt

ic v

olc

an

icla

stic

sa

nd

sto

ne;

met

am

orp

ho

sed

A-F

Or-

b-H

AM

MO

UN

T R

OE

BA

SA

LT

Am

yg

da

loid

al

ba

salt

ic fl

ow

s a

nd

bre

ccia

; a

nd

ba

salt

ic v

olc

an

icla

stic

sa

nd

sto

ne;

met

am

orp

ho

sed

A-F

Or-

b-H

AW

MO

UN

T R

OE

BA

SA

LT

Am

yg

da

loid

al

ba

salt

ic fl

ow

s a

nd

bre

ccia

; a

nd

ba

salt

ic v

olc

an

icla

stic

sa

nd

sto

ne;

met

am

orp

ho

sed

A-F

Ot-

xb

-k-H

AE

TU

MB

IAN

A F

OR

MA

TIO

NB

asa

ltic

vo

lca

nic

ro

cks

an

d c

arb

on

ate

rock

s

A-F

Ot-

xb

-k-H

AW

TU

MB

IAN

A F

OR

MA

TIO

NB

asa

ltic

vo

lca

nic

ro

cks

an

d c

arb

on

ate

rock

s

A-F

Ou

-bb

oB

UN

JIN

AH

FO

RM

AT

ION

Pil

low

ed a

nd

ma

ssiv

e b

asa

ltic

fl o

ws;

ba

salt

ic b

recc

ia;

an

d b

asa

ltic

vo

lca

nic

sa

nd

sto

ne;

min

or

cher

t;

am

yg

da

loid

al

ba

salt

fl o

ws

occ

ur

in u

pp

er p

art

s o

f fo

rmat

ion

; m

eta

mo

rph

ose

d

A-G

Ce-c

aC

LE

AV

ER

VIL

LE

FO

RM

AT

ION

Ch

ert

an

d b

an

ded

iro

n-f

orm

atio

n;

min

or

fels

ic v

olc

an

icla

stic

ro

ck;

met

am

orp

ho

sed

A-G

C-x

ca-b

GO

RG

E C

RE

EK

GR

OU

PB

an

ded

iro

n f

orm

atio

n,

cher

t, s

ilic

icla

stic

sed

imen

tary

ro

cks,

an

d m

afi

c v

olc

an

ic r

ock

s; m

eta

mo

rph

ose

d

A-G

C-x

ci-s

GO

RG

E C

RE

EK

GR

OU

PB

an

ded

iro

n-f

orm

atio

n a

nd

sil

icic

last

ic s

edim

enta

ry r

ock

; m

eta

mo

rph

ose

d

A-g

-PC

NC

OO

NIN

IA I

NL

IER

Gra

nit

e to

gra

no

dio

rite

; v

ari

ab

ly f

oli

ated

A-g

-PE

MO

UN

T E

DG

AR

GR

AN

ITIC

CO

MP

LE

XU

nd

ivid

ed g

ran

ito

id r

ock

; m

eta

mo

rph

ose

d

A-g

-PL

CA

RL

IND

I G

RA

NIT

IC C

OM

PL

EX

Un

div

ided

gra

nit

oid

ro

ck;

met

am

orp

ho

sed

A-g

-PM

MU

CC

AN

GR

AN

ITIC

CO

MP

LE

XU

nd

ivid

ed g

ran

ito

id r

ock

; m

eta

mo

rph

ose

d

A-g

-PO

CO

RU

NN

A D

OW

NS

GR

AN

ITIC

CO

MP

LE

XU

nd

ivid

ed g

ran

ito

id r

ock

; m

eta

mo

rph

ose

d

A-g

-PS

SH

AW

GR

AN

ITIC

CO

MP

LE

XG

ran

itic

ro

ck;

met

am

orp

ho

sed

A-g

-PS

YS

YL

VA

NIA

IN

LIE

RG

ran

ite

to g

ran

od

iori

te;

va

ria

bly

fo

liat

ed

A-g

-PW

WA

RR

AW

AG

INE

GR

AN

ITIC

CO

MP

LE

XU

nd

ivid

ed g

ran

ito

id r

ock

; m

eta

mo

rph

ose

d

A-g

-PY

YU

LE

GR

AN

ITIC

CO

MP

LE

XG

ran

itic

ro

ck;

met

am

orp

ho

sed

Page 50: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

52 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

BE

DR

OC

K C

OD

EN

AM

EL

ITH

OL

OG

Y

A-G

R-g

GR

EG

OR

Y R

AN

GE

SU

ITE

Sy

eno

gra

nit

e a

nd

gra

no

ph

yre

; w

ell

foli

ated

, g

nei

ssic

, o

r sh

eare

d

A-H

Ac-

kd

sC

AR

AW

INE

DO

LO

MIT

EM

ass

ive-

to w

ell-

bed

ded

, re

cry

sta

llis

ed d

olo

mit

e, a

nd

str

om

ato

liti

c d

olo

mit

e; m

ino

r ch

ert

A-H

Ad

-kd

-HA

EW

ITT

EN

OO

M F

OR

MA

TIO

NT

hin

- to

med

ium

-bed

ded

do

lom

ite,

do

lom

itic

mu

dst

on

e, c

her

t, a

nd

fel

sic

to m

afi

c v

olc

an

ic s

an

dst

on

e;

met

am

orp

ho

sed

A-H

Ad

-kd

-HA

SW

ITT

EN

OO

M F

OR

MA

TIO

NT

hin

- to

med

ium

-bed

ded

do

lom

ite,

do

lom

itic

mu

dst

on

e, c

her

t, a

nd

fel

sic

to m

afi

c v

olc

an

ic s

an

dst

on

e;

met

am

orp

ho

sed

A-H

Ad

-kd

-HA

WW

ITT

EN

OO

M F

OR

MA

TIO

NT

hin

- to

med

ium

-bed

ded

do

lom

ite,

do

lom

itic

mu

dst

on

e, c

her

t, a

nd

fel

sic

to m

afi

c v

olc

an

ic s

an

dst

on

e;

met

am

orp

ho

sed

A-H

Am

-cib

-HA

EM

AR

RA

MA

MB

A I

RO

N F

OR

MA

TIO

NC

her

t, b

an

ded

iro

n-f

orm

atio

n,

mu

dst

on

e, a

nd

sil

tsto

ne;

met

am

orp

ho

sed

A-H

Am

-cib

-HA

SM

AR

RA

MA

MB

A I

RO

N F

OR

MA

TIO

NC

her

t, b

an

ded

iro

n-f

orm

atio

n,

mu

dst

on

e, a

nd

sil

tsto

ne;

met

am

orp

ho

sed

A-H

Am

-cib

-HA

WM

AR

RA

MA

MB

A I

RO

N F

OR

MA

TIO

NC

her

t, b

an

ded

iro

n-f

orm

atio

n,

mu

dst

on

e, a

nd

sil

tsto

ne;

met

am

orp

ho

sed

A-H

As-

xsl

-ci

MO

UN

T M

cRA

E S

HA

LE

an

d M

OU

NT

S

YL

VIA

FO

RM

AT

ION

Mu

dst

on

e, s

ilts

ton

e, c

her

t, b

an

ded

iro

n-f

orm

atio

n,

an

d d

olo

mit

e; m

eta

mo

rph

ose

d

A-K

Ew

-xf-

sW

YM

AN

FO

RM

AT

ION

Fel

sic

vo

lca

nic

an

d v

olc

an

icla

stic

ro

cks;

lo

cal

cla

stic

sed

imen

tary

ro

cks,

ch

ert

an

d b

asa

lt;

met

am

orp

ho

sed

A-m

gn

-PR

KR

OC

KL

EA

DO

ME

Fo

liat

ed;

gn

eiss

ic;

or

mig

mat

itic

gra

nit

oid

s

A-m

g-P

KK

UR

RA

NA

GR

AN

ITIC

CO

MP

LE

XB

ioti

te m

eta

mo

nz

og

ran

ite

an

d g

nei

ssic

met

agra

no

dio

rite

wit

h g

reen

sto

ne

xen

oli

ths,

fo

liat

ed t

o g

nei

ssic

b

ioti

te m

eta

mo

nz

og

ran

ite

an

d m

eta

syen

og

ran

ite,

an

d m

usc

ov

ite-b

eari

ng

mo

nz

og

ran

ite

A-M

Rer

-gm

ER

AM

UR

RA

MO

NZ

OG

RA

NIT

ES

eria

te b

ioti

te m

on

zo

gra

nit

e co

nta

inin

g m

afi

c sc

hli

eren

an

d v

ein

s o

f p

egm

atit

e; m

eta

mo

rph

ose

d

A-M

R-g

mM

AIT

LA

ND

RIV

ER

SU

PE

RS

UIT

EM

on

zo

gra

nit

e, m

ino

r g

ran

od

iori

te,

loca

lly

K-f

eld

spa

r p

orp

hy

riti

c, a

nd

lo

cal

gn

eiss

ic g

ran

itic

ro

cks

A-M

Rw

h-g

gp

WH

YJA

BB

Y G

RA

NO

DIO

RIT

EF

oli

ated

, m

icro

clin

e p

orp

hy

riti

c h

orn

ble

nd

e g

ran

od

iori

te;

loca

lly

co

nta

ins

xen

oli

ths

of

ton

ali

te g

nei

ss;

met

am

orp

ho

sed

A-N

Uq

-mh

MO

SQ

UIT

O C

RE

EK

FO

RM

AT

ION

Met

am

orp

ho

sed

sa

nd

sto

ne,

sil

tsto

ne,

an

d s

ha

le;

gra

ded

bed

din

g a

nd

lo

cal

cro

ss-b

edd

ing

; in

clu

des

m

eta

mo

rph

ose

d t

urb

idit

e d

epo

sits

A-o

g-P

SY

SY

LV

AN

IA I

NL

IER

Gab

bro

sil

ls a

nd

dy

kes

; m

eta

mo

rph

ose

d

A-O

Pa

n-x

o-a

AN

DO

VE

R I

NT

RU

SIO

NG

ab

bro

, le

uco

gab

bro

, se

rpen

tin

ised

per

ido

tite

an

d d

un

ite,

py

rox

enit

e, a

nd

min

or

an

ort

ho

site

; m

eta

mo

rph

ose

d

AP

_-_

pj-

ccx

PIN

JIA

N C

HE

RT

BR

EC

CIA

Ch

ert

bre

ccia

an

d p

oo

rly

bed

ded

ch

ert

A-P

I-x

b-s

PIL

BA

RA

SU

PE

RG

RO

UP

Ma

fi c

an

d u

ltra

ma

fi c

vo

lca

nic

ro

cks;

min

or

cher

t; m

eta

mo

rph

ose

d

A-R

On

-xca

-fN

ICK

OL

RIV

ER

FO

RM

AT

ION

Ch

ert,

ba

nd

ed i

ron

-fo

rmat

ion

, se

dim

enta

ry c

arb

on

ate

rock

s, f

erru

gin

ou

s si

lici

cla

stic

ro

cks,

qu

art

zo

se

san

dst

on

e, c

on

glo

mer

ate,

fel

sic

vo

lca

nic

an

d i

ntr

usi

ve

rock

s; m

eta

mo

rph

ose

d

A-R

Or-

xb

-uR

UT

H W

EL

L F

OR

MA

TIO

NM

afi

c a

nd

ult

ram

afi

c v

olc

an

ic a

nd

in

tru

siv

e ro

cks;

min

or

cher

t; m

eta

mo

rph

ose

d

A-S

R-g

CO

ON

DIN

A,

CO

OG

LE

GO

NG

, a

nd

SP

EA

R

HIL

L M

ON

ZO

GR

AN

ITE

SY

ou

ng

er g

ran

itic

ro

cks

rela

ted

to

tin

—ta

nta

lum

min

era

lisa

tio

n;

loca

lly

ab

un

da

nt

peg

mat

ite

Page 51: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 53

A-S

Rn

u-g

mp

NU

MB

AN

A M

ON

ZO

GR

AN

ITE

Med

ium

- to

co

ars

e-g

rain

ed f

eld

spa

r(-q

ua

rtz)

po

rph

yri

tic

mo

nz

og

ran

ite;

ma

ssiv

e to

wea

kly

fo

liat

ed;

loca

l fl

ow

-ali

gn

ed f

eld

spa

r p

hen

ocr

yst

s; l

oca

l g

arn

et-b

eari

ng

peg

mat

ite

an

d g

ran

ite

dy

kes

A-S

Tp

e-g

iP

EA

WA

H G

RA

NO

DIO

RIT

EH

orn

ble

nd

e-b

ioti

te h

igh

-Mg

dio

rite

, g

ran

od

iori

te a

nd

to

na

lite

; m

eta

mo

rph

ose

d

A-S

Tp

t-g

fP

OR

TR

EE

GR

AN

ITE

Alk

ali

gra

nit

e, m

ediu

m-g

rain

ed,

py

rox

ene-b

eari

ng

, fo

liat

ed t

o m

ass

ive;

met

am

orp

ho

sed

A-u

-PS

YS

YL

VA

NIA

IN

LIE

RU

ltra

ma

fi c

rock

; u

nd

ivid

ed;

incl

ud

es m

eta

mo

rph

ose

d p

erid

oti

te;

du

nit

e; p

yro

xen

e p

erid

oti

te;

an

d

serp

enti

nit

e a

nd

ta

lc s

chis

t

A-W

Ap

-fPA

NO

RA

MA

FO

RM

AT

ION

Fel

sic

vo

lca

nic

ro

ck;

loca

l se

dim

enta

ry r

ock

; m

eta

mo

rph

ose

d

A-W

A-x

b-f

WA

RR

AW

OO

NA

GR

OU

PM

afi

c, u

ltra

ma

fi c,

an

d f

elsi

c v

olc

an

ic a

nd

in

tru

siv

e ro

cks,

an

d s

edim

enta

ry r

ock

s; m

eta

mo

rph

ose

d

A-W

C-f

WH

IM C

RE

EK

GR

OU

PF

elsi

c v

olc

an

ic a

nd

sed

imen

tary

ro

cks;

in

terp

rete

d f

rom

aer

om

agn

etic

dat

a

A-W

Cr-

fR

ED

HIL

L V

OL

CA

NIC

SF

elsi

c v

olc

an

icla

stic

ro

cks,

in

tru

siv

e p

orp

hy

riti

c d

acit

e a

nd

dac

itic

to

rh

yo

liti

c la

va;

in

clu

des

deb

ris-

fl o

w,

turb

idit

e a

nd

fl u

via

l fa

cies

; m

eta

mo

rph

ose

d

A-W

Hb

-bB

RA

DL

EY

BA

SAL

TP

illo

w b

asa

lt,

ma

ssiv

e b

asa

lt,

do

leri

te s

ills

, a

nd

min

or

fels

ic t

uff

, sa

nd

sto

ne,

sh

ale

an

d c

her

t;

met

am

orp

ho

sed

CP

-_p

a-s

epg

-CA

PA

TE

RS

ON

FO

RM

AT

ION

Co

ng

lom

erat

e (i

ncl

ud

ing

dia

mic

tite

), s

an

dst

on

e a

nd

sil

tsto

ne;

la

rgel

y g

laci

gen

e

K-_

ca-s

pC

AL

LA

WA

FO

RM

AT

ION

Ver

y fi

ne-

to c

oa

rse-g

rain

ed s

an

dst

on

e, c

on

glo

mer

ate

K-_

na-s

sN

AN

UT

AR

RA

FO

RM

AT

ION

Sil

ty,

fi n

e-

to c

oa

rse-g

rain

ed,

po

orl

y s

ort

ed s

an

dst

on

e, s

ilts

ton

e, c

lay

sto

ne,

gre

ensa

nd

, m

ino

r co

ng

lom

erat

e

K-_

ny

-sp

NA

NU

TA

RR

A F

OR

MA

TIO

N a

nd

Y

AR

RA

LO

OL

A C

ON

GO

ME

RA

TE

Po

orl

y s

ort

ed s

an

dst

on

e (i

n p

lace

s g

lau

con

itic

), c

ob

ble

to

bo

uld

er c

on

glo

mer

ate,

an

d s

ilts

ton

e

K-W

N-s

fl -W

CW

INN

ING

GR

OU

PS

ha

le,

silt

sto

ne,

ma

rl,

an

d b

asa

l sa

nd

sto

ne;

co

mm

on

ly g

lau

con

itic

P_-H

Ab

-cib

BR

OC

KM

AN

IR

ON

FO

RM

AT

ION

Ba

nd

ed i

ron

-fo

rmat

ion

, ch

ert,

mu

dst

on

e, a

nd

sil

tsto

ne;

met

am

orp

ho

sed

P_-H

Aj-

xci

-od

WE

EL

I W

OL

LI

FO

RM

AT

ION

Ba

nd

ed i

ron

-fo

rmat

ion

(o

ften

jasp

ilit

ic),

mu

dst

on

e, s

ilts

ton

e, a

nd

nu

mer

ou

s d

ole

rite

sil

ls;

met

am

orp

ho

sed

P_-H

Ao

-cib

BO

OL

GE

ED

A I

RO

N F

OR

MA

TIO

NF

ine-g

rain

ed,

fi n

ely

la

min

ated

ba

nd

ed i

ron

-fo

rmat

ion

; m

ud

sto

ne,

sil

tsto

ne

an

d c

her

t; m

eta

mo

rph

ose

d

P_-H

Aw

-fr

WO

ON

GA

RR

A R

HY

OL

ITE

Rh

yo

lite

, rh

yo

dac

ite,

rh

yo

liti

c b

recc

ia,

an

d b

an

ded

iro

n-f

orm

atio

n;

met

am

orp

ho

sed

P_-M

EP

1-k

tY

ILG

AT

HE

RR

A a

nd

IR

RE

GU

LL

Y

FO

RM

AT

ION

SS

tro

mat

oli

tic

an

d n

on

-str

om

ato

liti

c d

olo

sto

ne,

do

lom

itic

sil

tsto

ne,

sa

nd

sto

ne,

sil

tsto

ne,

an

d c

on

glo

mer

ate

P_-M

M-s

MO

UN

T M

INN

IE G

RO

UP

Un

div

ided

, q

ua

rtz s

an

dst

on

e, c

on

glo

mer

ate,

sil

tsto

ne

an

d m

ud

sto

ne

P_-M

N-s

MA

NG

AN

ES

E G

RO

UP

Sa

nd

sto

ne,

sil

tsto

ne,

mu

dst

on

e, c

on

glo

mer

ate,

ch

ert

an

d d

olo

sto

ne

P_-M

O-m

gM

OO

RA

RIE

SU

PE

RS

UIT

EF

oli

ated

an

d g

nei

ssic

gra

nit

e

P_-M

R-x

md

-mk

MO

RR

ISS

EY

ME

TA

MO

RP

HIC

SP

elit

ic a

nd

psa

mm

itic

sch

ist;

ca

lc-s

ilic

ate

rock

; m

ino

r a

mp

hib

oli

te

P_-o

dD

ole

rite

dy

ke,

sil

l, a

nd

plu

g;

incl

ud

es c

um

ula

te a

nd

gra

no

ph

yri

c d

iffe

ren

tiat

es

P_-T

K-s

TU

RE

E C

RE

EK

GR

OU

PM

ud

sto

ne;

sil

tsto

ne;

sa

nd

sto

ne;

co

ng

lom

erat

e; l

oca

l st

rom

ato

liti

c d

olo

mit

e; a

nd

ba

salt

; m

eta

mo

rph

ose

d

P_-W

YL

-xs-

bL

OW

ER

WY

LO

O G

RO

UP

Co

ng

lom

erat

e, s

an

dst

on

e, m

ud

sto

ne,

ba

salt

, ch

ert,

an

d l

oca

lly

str

om

ato

liti

c d

olo

mit

e

P_-W

YU

-xs-

kU

PP

ER

WY

LO

O G

RO

UP

Wac

ke,

mu

dst

on

e, f

erru

gin

ou

s m

ud

sto

ne,

ba

nd

ed i

ron

fo

rmat

ion

, ch

ert,

sa

nd

sto

ne,

co

ng

lom

erat

e, f

elsi

c a

nd

ma

fi c

vo

lca

nic

ro

cks,

an

d l

oca

lly

str

om

ato

liti

c d

olo

mit

e

Page 52: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

54 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

RE

GO

LIT

H C

OD

ER

EG

OL

ITH

A1c

Sa

nd

, si

lt a

nd

gra

vel

in

act

ive

dra

inag

e ch

an

nel

s; i

ncl

ud

es c

lay,

sil

t a

nd

sa

nd

in

po

orl

y d

efi n

ed d

rain

age

cou

rses

on

fl o

od

pla

ins

A1f

cbA

llu

via

l sa

nd

, si

lt a

nd

cla

y o

n fl

oo

dp

lain

s, w

ith

gil

ga

i su

rfac

e in

are

as

of

exp

an

siv

e cl

ay

B1b

Co

ast

al

du

nes

an

d b

each

dep

osi

ts;

shel

ly s

an

d c

on

tain

ing

An

an

da

ra g

ran

osa

; in

clu

des

bac

ksh

ore

dep

osi

ts

C1

Co

llu

via

l sa

nd

, si

lt a

nd

gra

vel

in

ou

twa

sh f

an

s; s

cree

an

d t

alu

s; p

rox

ima

l m

ass

-wa

stin

g d

epo

sits

; u

nco

nso

lid

ated

C1f

Fer

rug

ino

us

coll

uv

ium

; u

nco

nso

lid

ated

sil

t, s

an

d a

nd

ro

ck d

ebri

s; p

rox

ima

l m

ass

-wa

stin

g d

epo

sits

Cz

agC

on

soli

dat

ed a

llu

via

l g

rav

el,

san

d a

nd

sil

t; l

oca

l ca

rbo

nat

e ce

men

t; d

isse

cted

Cz

az

Sil

icifi

ed

an

d f

erru

gin

ised

ch

an

nel

dep

osi

ts;

cem

ente

d q

ua

rtz

ite

an

d b

an

ded

-iro

n f

orm

atio

n c

last

s in

co

ng

lom

erat

e

Cz

cC

oll

uv

ium

; p

art

ly c

on

soli

dat

ed a

nd

co

nso

lid

ated

fer

rug

inis

ed s

ilt,

sa

nd

an

d g

rav

el;

va

lley

-fi l

l d

epo

sits

dis

sect

ed

by

pre

sen

t d

rain

age

Cz

cC

oll

uv

ium

; p

art

ly c

on

soli

dat

ed q

ua

rtz a

nd

ro

ck f

rag

men

ts i

n s

ilt

an

d s

an

d m

atri

x;

old

va

lley

-fi l

l d

epo

sits

; lo

call

y d

eriv

ed

Cz

cbC

oll

uv

ium

, d

isse

cted

by

pre

sen

t-d

ay d

rain

age,

wit

h g

ilg

ai

surf

ace

in a

rea

s o

f ex

pa

nsi

ve

clay

Cz

cgC

oll

uv

ium

; cl

ay,

silt

, sa

nd

an

d g

rav

el d

eriv

ed f

rom

gra

nit

ic r

ock

; v

ari

ab

ly c

on

soli

dat

ed a

nd

dis

sect

ed

Cz

kC

alc

rete

, sa

nd

y l

imes

ton

e; i

n s

heet

s a

nd

len

ses;

old

va

lley

fi l

l

Cz

kC

alc

rete

; im

pu

re e

art

hy

lim

esto

ne

an

d w

hit

e p

orc

ella

nit

e; w

ith

all

uv

ium

at

the

ba

se i

n p

lace

s; c

orr

elat

ed i

n p

art

wit

h O

ak

ov

er F

orm

atio

n

Cz

kC

alc

rete

; lu

mp

y t

o n

od

ula

r o

r m

ass

ive,

au

thig

enic

lim

esto

ne

Cz

kC

alc

rete

; sh

eet

ca

rbo

nat

e u

sua

lly

fo

rmed

in

maj

or

dra

inag

e li

nes

Cz

mM

ills

trea

m F

orm

atio

n;

do

lom

ite

an

d c

alc

are

ou

s d

olo

mit

e, w

ith

sil

cret

e, c

lay

an

d l

oca

l b

asa

l co

ng

lom

erat

e

Cz

os

Oa

ko

ver

Fo

rmat

ion

, u

pp

er u

nit

; v

ug

gy,

wh

ite

to g

rey

op

ali

ne

sili

ca;

sili

cifi

ed c

arb

on

ate;

min

or

calc

are

ou

s sa

nd

sto

ne

Cz

pC

lay

pa

n-d

om

inat

ed t

erra

in;

clay

pa

ns

wit

h l

on

git

ud

ina

l a

nd

net

du

nes

, a

nd

/o

r fl

at d

efl a

tio

n-l

ag s

urf

aces

; cl

ay,

silt

, sa

nd

an

d g

rav

el

Cz

pR

ob

e P

iso

lite

; p

iso

liti

c li

mo

nit

e d

epo

sits

; d

evel

op

ed a

lon

g r

iver

ch

an

nel

s

Cz

rL

ater

ite;

in

clu

des

su

rfi c

ial

hem

atit

e-g

oet

hit

e d

epo

sits

on

ba

nd

ed i

ron

-fo

rmat

ion

an

d a

dja

cen

t sc

ree

dep

osi

ts;

form

s H

am

ersl

ey S

urf

ace

Cz

rkC

alc

rete

; m

ass

ive,

no

du

lar

an

d c

aver

no

us

lim

esto

ne,

va

ria

bly

sil

icifi

ed

; re

sid

ua

l o

rig

in

En

rb-c

ipR

ob

e P

iso

lite

; p

iso

liti

c li

mo

nit

e, g

oet

hit

e a

nd

hem

atit

e d

epo

sits

; d

evel

op

ed a

lon

g p

ala

eod

rain

age

lin

es;

dis

sect

ed b

y p

rese

nt-

day

dra

inag

e

Qa

All

uv

ium

; u

nco

nso

lid

ated

or

pa

rtly

co

nso

lid

ated

sil

t, s

an

d a

nd

gra

vel

; in

dra

inag

e ch

an

nel

s a

nd

ad

jace

nt

fl o

od

pla

ins

Qa

aA

llu

viu

m;

san

d a

nd

gra

vel

in

riv

ers

an

d c

reek

s; c

lay,

sil

t a

nd

sa

nd

in

ch

an

nel

s o

n fl

oo

dp

lain

s

Qa

as

All

uv

ium

; u

nco

nso

lid

ated

sa

nd

, si

lt a

nd

gra

vel

in

dis

cret

e ch

an

nel

bed

s

Qao

Ov

erb

an

k d

epo

sits

; a

llu

via

l sa

nd

, si

lt a

nd

gra

vel

on

fl o

od

pla

ins

adja

cen

t to

ma

in d

rain

age

cha

nn

els

an

d i

nte

rch

an

nel

isl

an

ds;

min

or

clay

Qao

bA

llu

via

l cl

ay a

nd

sil

t d

epo

sits

on

fl o

od

pla

ins

wit

h g

ilg

ai

(cra

bh

ole

) su

rfac

e in

are

as

of

exp

an

siv

e cl

ay

Qao

cA

llu

via

l sa

nd

, si

lt a

nd

cla

y;

mix

ed fl

oo

dp

lain

dep

osi

ts c

ha

ract

eris

ed b

y n

um

ero

us

sma

ll c

lay

pa

ns

Qa

sA

llu

via

l a

nd

aeo

lia

n c

oa

sta

l sa

nd

dep

osi

ts

Qb

All

uv

ium

; u

nco

nso

lid

ated

sa

nd

, g

rav

el a

nd

peb

ble

d;

ov

er k

un

ka

r o

r g

ran

ite

Qc

Co

llu

viu

m a

nd

min

or

all

uv

ium

; q

ua

rtz p

ebb

le a

nd

ro

ck f

rag

men

ts i

n s

ilt

an

d s

an

d;

adja

cen

t to

bed

rock

; sc

ree,

ta

lus

slo

pe

dep

osi

ts

Qe

Co

llu

viu

m a

nd

elu

viu

m;

clay

, h

ard

pa

n,

pa

rtly

fer

rug

inis

ed s

ilt,

sa

nd

an

d g

rav

el d

eriv

ed f

rom

an

d o

ver

lyin

g o

lder

co

llu

viu

m a

nd

cap

rock

Page 53: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 55

Qg

Co

llu

viu

m;

un

con

soli

dat

ed t

o l

oo

sely

co

nso

lid

ated

pie

dm

on

t d

epo

sits

; sc

ree,

ta

lus

Qh

mM

ari

ne

mu

d a

nd

sil

t o

n s

up

rati

da

l fl

ats;

in

clu

des

in

tert

ida

l d

epo

sits

wit

h m

an

gro

ves

Qh

ms

Co

ast

al

san

d i

n b

each

dep

osi

ts a

nd

du

nes

; ch

iefl

y m

ari

ne

san

d r

ewo

rked

by

win

d,

bu

t in

clu

des

so

me

rew

ork

ed a

llu

viu

m n

ear

del

tas;

sh

elly

sa

nd

co

nta

ins

Ana

ndra

gra

nosa

(M

ala

ysi

an

Co

ckle

)

Qh

mu

Sil

t a

nd

mu

d i

n s

up

rati

da

l to

in

tert

ida

l fl

ats

an

d l

ago

on

s

Ql

Flo

od

dep

osi

ts;

un

con

soli

dat

ed fl

uv

iati

le a

nd

sh

eet

-fl o

od

dep

osi

ts i

n l

evees

, ri

ver

ter

race

s

Qp

Elu

viu

m a

nd

all

uv

ium

; re

sid

ua

l ‘h

igh

lev

el’

clay

an

d s

an

dy

cla

y p

lain

wit

h g

ilg

ais

; in

term

itte

nt

ven

eer

of

all

uv

ium

; re

sid

ua

l d

epo

sits

of

san

d,

gra

vel

an

d p

ebb

les;

sh

eet

ku

nk

ar

in p

lace

s

Qp

mb

Co

ast

al

lim

esto

ne;

lim

e-c

emen

ted

sh

elly

sa

nd

, d

un

e sa

nd

an

d b

each

co

ng

lom

erat

e

Qp

tE

luv

ium

; re

sid

ua

l, u

nco

nso

lid

ated

or

loo

sely

co

nso

lid

ated

, lo

w-a

ng

le s

lop

e d

epo

sits

; a

ng

ula

r to

su

bro

un

ded

sh

ale

an

d i

ron

sto

ne

frag

men

ts;

qu

art

z a

nd

qu

art

zit

e p

ebb

les

Qr

All

uv

ium

; u

nco

nso

lid

ated

fl u

via

tile

sed

imen

ts

Qrg

Qu

art

zo

feld

spat

hic

elu

via

l sa

nd

, w

ith

qu

art

z a

nd

ro

ck f

rag

men

ts;

ov

erly

ing

an

d d

eriv

ed f

rom

gra

nit

ic r

ock

Qs

Aeo

lia

n s

an

d;

lig

ht

to d

ark

red

sa

nd

in

sh

eet

s, a

nd

lo

ng

itu

din

al

(sei

f) a

nd

ch

ain

du

nes

Qsf

Aeo

lia

n s

an

d w

ith

lag

dep

osi

ts;

iro

nst

on

e-p

ebb

le,

rock

-fra

gm

ent,

or

qu

art

z-p

ebb

le v

eneer

; in

sh

eet

s a

nd

bet

ween

du

nes

Qw

Lo

w-g

rad

ien

t sh

eet

wa

sh d

epo

sits

; re

d-b

row

n s

an

dy

an

d c

lay

ey a

llu

viu

m a

nd

co

llu

viu

m a

nd

peb

ble

s o

n d

ista

l o

utw

ash

fa

ns;

no

defi

ned

d

rain

age;

dis

tin

ctiv

e v

eget

atio

n;

stri

ped

ph

oto

to

ne

Qw

bS

heet

wa

sh c

lay

an

d s

ilt

in d

ista

l o

utw

ash

fa

ns,

wit

h g

ilg

ai

(cra

bh

ole

) su

rfac

e in

are

as

of

exp

an

siv

e cl

ay

Qw

cS

heet

wa

sh s

an

d,

silt

an

d c

lay

in

dis

tal

ou

twa

sh f

an

s, w

ith

nu

mer

ou

s cl

ayp

an

s a

nd

min

or

clay

-fi l

led

dra

inag

es

Qw

gS

heet

wa

sh s

an

d a

nd

qu

art

z p

ebb

les

ov

erly

ing

an

d d

eriv

ed f

rom

gra

nit

oid

ro

cks

R1t

pa

Res

idu

al

bo

uld

ers,

co

bb

les

an

d p

ebb

les

in c

lay,

sil

t a

nd

sa

nd

; in

clu

des

lo

call

y t

ran

spo

rted

mat

eria

l; d

eriv

ed f

rom

fl u

vio

gla

cia

l P

ater

son

F

orm

atio

n

R2C

bVb

Res

idu

al

an

d s

heet

wa

sh c

lay

an

d s

ilt

con

tain

ing

fra

gm

ents

of

ba

salt

; ex

pa

nsi

ve

clay

wit

h g

ilg

ai

surf

ace;

ov

erli

es b

asa

lt o

n a

rea

s o

f p

late

au;

loca

lly

dis

sect

ed b

y p

rese

nt-

day

dra

inag

e

Tb

Mix

ed s

ilic

eou

s ca

pro

ck a

nd

co

llu

viu

m;

seco

nd

ary

sil

iceo

us

bre

ccia

, ja

sper

oid

al

cha

lced

on

y o

ver

ult

ram

afi

c ro

cks

Tc

Co

llu

viu

m;

con

soli

dat

ed,

ferr

ug

inis

ed s

ilt,

sa

nd

an

d g

rav

el;

dis

sect

ed b

y p

rese

nt

dra

inag

e

Tp

Ro

be

Pis

oli

te;

pis

oli

tic,

oo

liti

c a

nd

ma

ssiv

e li

mo

nit

e g

oet

hit

e h

emat

ite

dep

osi

ts c

on

tain

ing

fo

ssil

wo

od

fra

gm

ents

; ir

on

ore

; co

rrel

ated

wit

h

Po

on

da

no

Fo

rmat

ion

W1

Sil

t, s

an

d a

nd

peb

ble

s in

dis

tal

sheet

wa

sh f

an

s; n

o d

efi n

ed d

rain

age

Page 54: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

56 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

AP

PE

ND

IX B

Tem

per

atu

re (

oC

) a

nd

pre

cip

itat

ion

(m

m)

esti

mat

es f

or

the

304 t

erre

stri

al

bio

div

ersi

ty s

ites

sa

mp

led

du

rin

g t

he

Pil

ba

ra b

iod

iver

sity

su

rvey

, d

eriv

ed f

rom

A

NU

CL

IM (

Ho

uld

er e

t al

. 20

00)

. K

ey t

o c

olu

mn

lab

els:

Ta

nn

An

nu

al

mea

n t

emp

erat

ure

; T

dir

Tem

per

atu

re d

iurn

al

ran

ge;

iso

T i

soth

erm

ali

ty;

Tse

a T

emp

erat

ure

se

aso

na

lity

; m

xTw

P W

arm

est

per

iod

ma

xim

um

tem

per

atu

re;

mn

TcP

Co

ldes

t p

erio

d m

inim

um

tem

per

atu

re;

Ta

r T

emp

erat

ure

an

nu

al

ran

ge;

Tw

eQ

Wet

test

q

ua

rter

mea

n t

emp

erat

ure

; T

drQ

Dri

est

qu

art

er m

ean

tem

per

atu

re; T

wm

Q W

arm

est

qu

art

er m

ean

tem

per

atu

re; T

coQ

Co

ldes

t q

ua

rter

mea

n t

emp

erat

ure

; P

an

n

An

nu

al

mea

n p

reci

pit

atio

n;

Pw

eP

Wet

test

per

iod

pre

cip

itat

ion

; P

sea P

reci

pit

atio

n s

easo

na

lity

; P

we

Q W

ette

st Q

ua

rter

pre

cip

itat

ion

; P

wm

Q W

arm

est

qu

art

er

pre

cip

itat

ion

; P

coQ

Co

ldes

t q

ua

rter

pre

cip

itat

ion

. F

urt

her

ex

pla

nat

ion

is

pro

vid

ed b

elo

w t

he

tab

ula

tio

n.

Sit

eT

an

nT

dir

isoT

Tse

am

xTw

Pm

nT

cPT

ar

Tw

eQ

Td

rQT

wm

QT

coQ

Pa

nn

Pw

eP

Pse

aP

we

QP

wm

QP

coQ

BD

RN

0124

.915

.50.

48

1.98

39.9

7.7

32.2

31.1

24.8

31.6

16.9

229

148

812

911

236

BD

RN

02

24.6

15.5

0.4

81.

99

39.7

7.5

32.2

30.

824

.531

.316

.52

3715

8713

311

538

BD

RN

03

24.8

15.6

0.4

81.

9839

.87.

632

.331

.024

.631

.516

.72

36

158

813

411

637

BD

RN

04

24.5

15.5

0.4

82

.02

39.6

7.2

32.4

30.

824

.331

.316

.32

30

1587

129

112

32

BD

RN

05

24.2

15.6

0.4

82

.02

39.5

7.0

32.5

30.

624

.031

.116

.124

915

86

139

121

35

BD

RN

06

24.2

15.5

0.4

82

.02

39.4

7.0

32.5

30.

524

.031

.016

.02

5115

86

140

122

35

BD

RN

0724

.315

.60.

48

2.0

139

.57.

132

.53

0.6

24.1

31.1

16.1

25

015

86

140

122

35

BD

RN

08

24.3

15.6

0.4

82

.01

39.5

7.1

32.5

30.

624

.131

.116

.12

5115

86

141

122

35

BD

RN

09

24.2

15.6

0.4

82

.02

39.4

6.9

32.5

30.

52

3.9

31.0

16.0

252

1686

141

123

35

BD

RN

102

3.9

15.5

0.4

82

.02

39.2

6.8

32.4

30.

22

3.7

30.

715

.826

516

84

147

129

38

BD

RN

112

3.8

15.5

0.4

82

.02

39.2

6.7

32.4

30.

22

3.6

30.

715

.726

816

84

149

130

39

BD

RN

122

3.8

15.4

0.4

82

.04

39.2

6.7

32.5

30.

32

3.6

30.

815

.62

58

168

514

312

537

BD

RN

1324

.015

.50.

48

2.0

439

.36.

832

.53

0.4

23.

83

0.9

15.8

25

016

86

139

122

35

BD

RS

012

3.5

15.1

0.4

62

.10

38.

96.

232

.729

.92

3.1

30.

715

.124

815

80

131

115

37

BD

RS

02

23.

515

.10.

46

2.1

038.

96.

232

.73

0.2

23.

13

0.7

15.1

248

158

013

211

537

BD

RS

03

23.

615

.20.

46

2.0

939

.06.

332

.73

0.3

23.

23

0.8

15.3

247

1581

132

115

36

BD

RS

04

23.

615

.10.

46

2.0

938.

96.

332

.73

0.3

23.

23

0.7

15.2

247

158

013

211

537

BD

RS

05

23.

615

.10.

46

2.0

938.

96.

332

.63

0.3

23.

23

0.8

15.3

249

1581

134

117

37

BD

RS

06

23.

615

.10.

46

2.0

938.

96.

332

.53

0.3

23.

23

0.8

15.3

251

1581

135

118

38

BD

RS

072

3.6

15.1

0.4

62

.09

38.

86.

332

.53

0.3

23.

23

0.7

15.3

253

1581

136

119

38

BD

RS

08

23.

314

.90.

46

2.1

038.

66.

132

.53

0.1

22

.03

0.5

15.0

256

168

013

712

84

0

BD

RS

09

23.

314

.90.

46

2.1

038.

66.

132

.53

0.1

22

.93

0.6

15.0

25

415

80

136

126

39

Page 55: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 57

BD

RS1

02

3.4

15.0

0.4

62

.10

38.

76.

232

.53

0.2

23.

03

0.6

15.0

252

158

013

512

539

BD

RS1

12

3.4

15.0

0.4

62

.10

38.

76.

132

.629

.82

2.9

30.

615

.024

915

7913

312

338

BD

RS1

22

3.3

15.0

0.4

62

.11

38.

76.

032

.729

.82

2.9

30.

514

.924

714

7913

112

038

BD

RS1

32

3.5

15.1

0.4

62

.09

38.

86.

332

.63

0.3

23.

13

0.7

15.2

25

015

80

134

125

38

DR

C01

25.

812

.90.

53

1.4

536.

712

.224

.53

0.6

25.

43

0.7

19.9

278

1794

164

154

49

DR

C02

25.

812

.90.

53

1.4

536.

712

.224

.53

0.6

25.

43

0.7

19.9

278

1794

164

154

49

DR

C0

326

.013

.00.

53

1.4

536.

912

.324

.73

0.8

25.

63

0.9

20.1

276

1795

164

154

48

DR

C0

426

.013

.20.

53

1.47

37.2

12.1

25.

13

0.9

25.

631

.020

.028

418

9817

416

64

6

DR

C0

526

.013

.40.

53

1.5

037

.411

.92

5.5

30.

92

5.7

31.1

19.9

296

2010

318

818

24

4

DR

C0

62

5.6

13.4

0.52

1.5

437

.311

.42

5.9

30.

724

.73

0.8

19.3

317

23

108

207

203

43

DR

C07

26.1

13.4

0.53

1.5

037

.512

.02

5.6

31.0

25.

831

.220

.029

920

104

192

186

43

DR

C0

826

.113

.30.

53

1.4

837

.212

.12

5.2

30.

92

5.7

31.1

20.0

296

1910

118

617

74

5

DR

C0

926

.013

.10.

53

1.47

37.0

12.1

25.

03

0.8

25.

63

0.9

20.0

294

189

918

217

24

6

DR

C10

26.0

13.0

0.53

1.4

536.

912

.224

.73

0.8

25.

63

0.9

20.1

293

1897

180

168

47

DR

C11

25.

912

.90.

53

1.4

436.

712

.324

.43

0.7

25.

53

0.8

20.1

286

1796

173

161

48

DR

C12

26.0

12.8

0.53

1.4

336.

612

.324

.33

0.7

25.

53

0.8

20.1

28

417

9617

115

94

8

DR

E01

25.

913

.00.

53

1.4

236.

312

.024

.33

0.6

25.

63

0.7

20.1

302

2010

119

217

841

DR

E02

25.

913

.00.

53

1.4

236.

312

.024

.33

0.6

25.

63

0.7

20.1

302

2010

119

217

841

DR

E0

32

5.8

12.9

0.53

1.41

36.

111

.924

.23

0.4

25.

53

0.5

20.0

30

420

101

192

179

41

DR

E0

42

5.8

12.9

0.53

1.41

36.

111

.924

.23

0.4

25.

53

0.5

20.0

30

420

101

192

179

41

DR

E0

52

5.9

13.0

0.53

1.4

236.

211

.924

.33

0.5

25.

03

0.6

20.0

30

420

101

193

179

41

DR

E0

62

5.9

13.1

0.53

1.4

336.

411

.824

.53

0.5

25.

03

0.7

20.0

30

420

101

193

180

41

DR

E07

25.

913

.30.

53

1.4

636.

611

.62

5.0

30.

62

5.0

30.

719

.93

0720

101

196

184

41

DR

E0

826

.013

.60.

53

1.51

37.4

11.6

25.

83

0.9

25.

231

.019

.831

220

102

201

192

41

DR

E0

926

.013

.60.

521.

5137

.511

.52

5.9

30.

82

5.2

31.0

19.8

314

2010

220

318

44

2

DR

E10

25.

913

.70.

521.

53

37.5

11.4

26.1

30.

82

5.1

31.0

19.6

318

2110

320

618

84

2

DR

E11

26.0

13.7

0.52

1.53

37.7

11.5

26.3

31.0

25.

231

.219

.831

621

104

205

188

41

DR

E12

26.0

13.8

0.52

1.53

37.6

11.4

26.2

30.

92

5.2

31.1

19.7

315

2010

220

418

441

DR

E13

26.0

13.9

0.52

1.55

37.9

11.3

26.6

30.

92

5.2

31.2

19.7

317

2010

220

518

641

DR

W01

25.

913

.10.

54

1.4

036.

712

.324

.33

0.6

25.

43

0.7

20.2

264

1691

144

140

49

Page 56: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

58 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eT

an

nT

dir

isoT

Tse

am

xTw

Pm

nT

cPT

ar

Tw

eQ

Td

rQT

wm

QT

coQ

Pa

nn

Pw

eP

Pse

aP

we

QP

wm

QP

coQ

DR

W02

25.

913

.10.

54

1.4

036.

712

.324

.33

0.6

25.

43

0.7

20.2

264

1691

144

140

49

DR

W0

32

5.9

13.2

0.5

41.

4136.

712

.324

.43

0.7

25.

43

0.7

20.2

264

1691

145

141

49

DR

W0

426

.013

.20.

53

1.4

537

.012

.224

.83

0.8

25.

53

0.9

20.1

265

1691

151

140

51

DR

W0

526

.013

.20.

53

1.4

537

.012

.224

.83

0.8

25.

53

0.9

20.1

265

1692

152

141

50

DR

W0

62

5.8

13.8

0.5

41.

45

37.1

11.7

25.

43

0.7

25.

33

0.8

19.9

273

1791

148

139

53

DR

W07

25.

813

.80.

54

1.4

537

.111

.72

5.4

30.

72

5.3

30.

819

.927

317

9114

813

953

DR

W0

82

5.8

13.8

0.5

41.

45

37.1

11.7

25.

43

0.7

25.

33

0.8

20.0

272

1691

146

136

53

DR

W0

92

5.6

13.8

0.5

41.

45

37.0

11.5

25.

43

0.5

25.

13

0.6

19.8

277

179

014

813

855

DR

W10

25.

613

.80.

54

1.4

537

.011

.52

5.4

30.

52

5.1

30.

619

.827

717

90

148

138

55

DR

W11

25.

913

.80.

55

1.4

337

.011

.72

5.3

30.

72

5.3

30.

820

.126

716

9114

013

653

DR

W12

25.

913

.80.

55

1.4

337

.011

.72

5.2

30.

72

5.3

30.

820

.126

716

9114

013

653

DR

W13

25.

913

.70.

55

1.41

36.

911

.92

5.0

30.

62

5.2

30.

720

.126

715

9214

013

553

MB

E01

26.4

15.5

0.51

1.76

40.

810

.33

0.5

31.9

26.2

32.2

19.2

325

2110

020

618

04

2

MB

E02

26.1

15.6

0.51

1.76

40.

610

.13

0.5

31.6

25.

932

.018

.932

92

210

020

918

24

2

MB

E0

32

5.8

15.7

0.51

1.78

40.

69.

73

0.9

31.4

24.7

31.8

18.5

325

219

920

618

141

MB

E0

42

5.9

15.8

0.51

1.79

40.

69.

731

.031

.524

.731

.818

.632

421

99

205

181

40

MB

E0

52

5.8

15.8

0.51

1.79

40.

69.

631

.031

.524

.731

.818

.532

321

99

204

180

40

MB

E0

62

5.9

15.9

0.51

1.79

40.

79.

631

.131

.524

.731

.918

.632

121

99

202

180

39

MB

E07

26.1

15.9

0.52

1.75

40.

79.

93

0.8

31.6

25.

732

.018

.932

62

210

120

718

34

0

MB

E0

826

.115

.90.

521.

744

0.7

9.9

30.

731

.62

5.7

31.9

19.0

328

22

101

209

184

40

MB

E0

92

5.3

15.4

0.51

1.75

39.8

9.5

30.

33

0.8

24.9

31.1

18.2

34

22

39

921

619

14

4

MB

E11

25.

315

.30.

511.

7439

.79.

63

0.1

30.

824

.931

.118

.23

44

23

100

217

192

44

MB

E12

25.

515

.40.

511.

7339

.99.

83

0.1

31.0

25.

131

.318

.43

43

23

100

217

191

44

MB

E13

26.1

15.4

0.52

1.71

40.

210

.329

.931

.42

5.7

31.7

19.1

34

024

102

218

190

43

MB

W01

25.

615

.10.

521.

63

39.0

10.2

28.

93

0.9

25.

031

.119

.032

02

210

320

718

74

0

MB

W02

25.

615

.10.

521.

63

39.0

10.2

28.

93

0.9

25.

031

.119

.032

02

210

320

718

74

0

MB

W0

32

5.5

15.2

0.52

1.6

539

.110

.029

.13

0.8

24.9

31.0

18.8

324

22

103

208

190

40

MB

W0

42

5.6

15.3

0.52

1.6

539

.310

.129

.231

.02

5.0

31.2

18.9

321

22

103

206

188

40

MB

W0

52

5.5

15.3

0.52

1.6

539

.210

.029

.33

0.8

24.9

31.1

18.8

323

22

102

208

190

40

MB

W0

62

5.7

15.4

0.52

1.6

639

.510

.029

.431

.02

5.0

31.3

18.9

320

22

102

206

188

39

Page 57: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 59

MB

W07

25.

815

.10.

53

1.62

39.1

10.3

28.

731

.02

5.1

31.2

19.2

315

2110

320

318

339

MB

W0

82

5.8

15.0

0.53

1.62

39.0

10.4

28.

631

.12

5.1

31.2

19.2

314

2110

220

318

139

MB

W0

92

5.8

15.2

0.52

1.6

439

.210

.328.

931

.12

5.1

31.3

19.1

316

2110

220

318

339

MB

W10

25.

715

.50.

521.

68

39.7

10.0

29.7

31.1

25.

131

.418

.931

820

101

204

187

39

MB

W11

25.

615

.60.

521.

7039

.99.

93

0.0

31.1

25.

031

.418

.732

020

101

205

189

39

MB

W12

25.

615

.70.

521.

714

0.0

9.8

30.

231

.12

5.0

31.4

18.6

320

2010

020

418

938

MB

W13

25.

615

.70.

521.

72

40.

29.

83

0.4

31.2

25.

031

.518

.631

920

100

204

189

38

NE

0126

.315

.40.

511.

744

0.5

10.2

30.

331

.726

.232

.019

.13

02

1898

190

166

37

NE

02

26.3

15.4

0.51

1.74

40.

510

.23

0.3

31.6

26.2

32.0

19.1

30

318

9819

016

637

NE

03

26.1

15.4

0.51

1.76

40.

39.

93

0.4

31.4

25.

931

.818

.83

04

1896

189

165

38

NE

04

26.0

15.4

0.5

01.

77

40.

39.

73

0.6

31.5

25.

931

.818

.729

417

9418

015

638

NE

05

26.0

15.4

0.51

1.7

74

0.3

9.7

30.

631

.52

5.9

31.8

18.7

293

1794

179

156

38

NE

06

26.1

15.4

0.51

1.76

40.

29.

83

0.5

31.5

26.0

31.8

18.8

289

1794

176

153

38

NE

0726

.215

.40.

511.

754

0.3

9.9

30.

431

.526

.131

.918

.9289

1794

176

153

38

NE

08

26.1

15.4

0.51

1.76

40.

29.

83

0.4

31.5

26.0

31.9

18.9

28

517

9317

214

938

NE

09

26.2

15.4

0.51

1.76

40.

39.

93

0.4

31.6

26.1

31.9

18.9

282

1693

170

147

37

NE

1026

.315

.40.

511.

754

0.3

9.9

30.

431

.626

.232

.019

.027

916

9316

914

637

NE

112

5.7

15.2

0.5

01.

7639

.79.

53

0.2

31.0

24.8

31.4

18.4

291

169

017

114

841

NE

122

5.7

15.2

0.5

01.

7639

.79.

53

0.1

31.1

24.8

31.4

18.4

289

169

017

014

741

NE

132

5.7

15.2

0.5

01.

7639

.79.

63

0.1

31.1

24.9

31.5

18.5

28

816

90

170

147

40

NW

0124

.716

.30.

50

1.96

40.

27.

332

.93

0.8

24.5

31.3

16.8

30

816

88

179

160

44

NW

02

24.6

16.3

0.5

01.

964

0.1

7.3

32.9

30.

724

.431

.216

.731

217

88

182

163

44

NW

03

24.9

16.3

0.5

01.

924

0.3

7.7

32.6

30.

92

3.8

31.3

17.1

315

1892

189

170

41

NW

04

25.

016

.10.

50

1.9

04

0.2

8.1

32.1

30.

92

3.9

31.3

17.3

317

1993

192

171

42

NW

05

25.

116

.10.

50

1.9

04

0.3

8.2

32.2

31.0

24.1

31.5

17.4

313

1893

190

169

41

NW

06

25.

016

.00.

50

1.89

40.

28.

232

.03

0.8

23.

931

.317

.332

019

9319

417

34

2

NW

072

5.3

15.7

0.5

01.

85

40.

28.

831

.431

.024

.331

.417

.731

819

9519

617

441

NW

08

25.

415

.70.

50

1.8

44

0.3

9.0

31.3

31.1

24.4

31.5

17.9

317

1996

197

174

41

NW

09

25.

815

.70.

50

1.82

40.

69.

331

.331

.424

.731

.818

.331

220

9819

617

339

NW

102

5.7

15.8

0.5

01.

83

40.

59.

231

.331

.324

.631

.718

.231

319

9819

617

339

NW

112

5.8

15.6

0.5

01.

814

0.5

9.5

31.1

31.4

24.8

31.8

18.4

312

1998

197

173

39

Page 58: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

60 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eT

an

nT

dir

isoT

Tse

am

xTw

Pm

nT

cPT

ar

Tw

eQ

Td

rQT

wm

QT

coQ

Pa

nn

Pw

eP

Pse

aP

we

QP

wm

QP

coQ

NW

1226

.015

.60.

50

1.8

04

0.6

9.6

31.0

31.5

25.

031

.918

.631

119

99

197

173

39

OY

E01

26.1

14.7

0.52

1.6

339

.611

.328.

331

.62

5.2

31.7

19.5

34

421

9320

319

159

OY

E02

25.

914

.60.

521.

64

39.4

11.1

28.

231

.42

5.0

31.5

19.3

349

22

9320

719

659

OY

E0

32

5.6

14.5

0.51

1.6

539

.110

.928.

231

.124

.731

.218

.9356

22

9321

120

16

0

OY

E0

42

5.6

14.4

0.51

1.67

39.1

10.8

28.

331

.124

.731

.318

.835

42

395

213

207

55

OY

E0

52

5.6

14.4

0.51

1.67

39.1

10.8

28.

331

.124

.731

.318

.835

42

395

213

207

55

OY

E0

62

5.6

14.4

0.51

1.6

839

.210

.728.

431

.224

.731

.318

.835

42

395

213

208

54

OY

E07

25.

614

.40.

511.

68

39.2

10.7

28.

431

.224

.731

.318

.835

42

395

213

208

54

OY

E0

82

5.6

14.6

0.51

1.70

39.4

10.6

28.

831

.324

.731

.418

.7358

23

9321

320

657

OY

E0

92

5.9

14.8

0.51

1.69

39.8

10.8

29.0

31.6

25.

031

.719

.1351

22

9220

719

858

OY

E10

25.

914

.80.

511.

6939

.810

.829

.031

.62

5.0

31.7

19.1

351

22

9220

719

858

OY

E11

26.0

14.9

0.51

1.6

84

0.0

10.9

29.0

31.7

25.

131

.819

.23

48

22

9220

519

558

OY

E12

26.1

14.9

0.52

1.67

40.

011

.128.

931

.62

5.2

31.8

19.4

34

021

9119

918

758

OY

E13

25.

514

.70.

50

1.71

39.6

10.5

29.1

31.3

24.6

31.4

18.7

356

22

9120

819

861

OY

W01

25.

914

.80.

521.

64

39.6

11.0

28.

631

.32

5.4

31.5

19.3

328

2092

189

182

62

OY

W02

25.

914

.70.

521.

6239

.511

.128.

431

.32

5.3

31.5

19.4

323

2094

187

179

62

OY

W0

32

5.8

14.6

0.52

1.61

39.3

11.2

28.

131

.22

5.3

31.4

19.4

320

2094

185

177

62

OY

W0

42

5.6

14.4

0.52

1.59

38.

911

.227

.731

.02

5.0

31.2

19.3

321

2095

184

175

64

OY

W0

52

5.6

14.4

0.52

1.58

38.

911

.227

.631

.02

5.0

31.2

19.3

321

2095

184

174

64

OY

W0

62

5.7

14.4

0.52

1.58

38.

811

.327

.531

.02

5.0

31.2

19.4

318

2095

182

172

64

OY

W07

25.

914

.40.

53

1.55

38.

811

.527

.331

.22

5.3

31.3

19.7

30

619

9317

416

361

OY

W0

82

5.9

14.4

0.53

1.55

38.

711

.527

.231

.22

5.4

31.3

19.7

30

518

9317

316

261

OY

W0

92

5.9

14.4

0.53

1.5

438.

711

.527

.231

.22

5.4

31.3

19.7

30

318

9317

216

161

OY

W10

25.

714

.10.

53

1.5

438.

511

.626

.831

.02

5.0

31.1

19.6

311

1995

175

163

66

OY

W11

25.

613

.80.

53

1.5

038.

011

.926

.13

0.8

25.

53

0.9

19.7

307

1894

169

155

60

OY

W12

25.

513

.50.

53

1.4

837

.712

.12

5.6

30.

72

5.3

30.

719

.63

0718

9316

515

06

3

OY

W13

25.

413

.30.

53

1.4

637

.412

.22

5.2

30.

52

5.2

30.

619

.63

05

1793

160

155

66

PE

012

5.6

14.0

0.49

1.74

39.1

10.5

28.

631

.22

5.0

31.4

18.5

349

23

102

22

520

64

6

PE

02

25.

213

.90.

491.

7638.

810

.228.

63

0.9

24.6

31.1

18.1

357

23

101

227

210

48

PE

03

25.

614

.00.

491.

7539

.210

.528.

731

.22

5.0

31.5

18.5

351

23

102

226

208

46

Page 59: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 61

PE

04

25.

313

.90.

491.

7438.

810

.428.

53

0.9

24.8

31.2

18.3

352

23

102

226

207

46

PE

05

25.

514

.00.

491.

7639

.210

.428.

831

.22

5.0

31.4

18.4

34

52

210

12

2120

44

4

PE

06

25.

413

.90.

491.

7639

.010

.328.

731

.024

.831

.218

.23

492

210

12

23

206

45

PE

072

5.3

13.9

0.49

1.74

38.

810

.428.

53

0.9

24.8

31.2

18.3

352

23

102

226

207

46

PE

08

25.

313

.90.

491.

7438.

810

.428.

43

0.9

24.8

31.2

18.3

355

2410

22

28

210

47

PE

09

25.

113

.90.

491.

72

38.

510

.328.

23

0.7

24.5

30.

918

.136

824

103

238

220

48

PE

1024

.913

.80.

491.

72

38.

210

.228.

03

0.5

24.3

30.

718

.038

02

510

424

62

295

0

PE

112

5.4

14.0

0.49

1.74

39.0

10.4

28.

631

.124

.831

.318

.436

524

103

235

218

48

PE

122

5.0

13.8

0.4

81.

793

8.9

10.0

28.

93

0.8

24.5

31.1

17.8

357

22

982

23

207

49

PH

YC

0126

.913

.70.

521.

4739

.112

.826

.331

.426

.531

.520

.732

72

310

421

220

238

PH

YC

02

26.9

13.7

0.52

1.4

839

.112

.826

.431

.526

.631

.620

.732

72

310

421

220

238

PH

YC

03

27.0

13.7

0.52

1.49

39.4

12.9

26.5

31.5

26.7

31.7

20.8

327

23

105

213

203

38

PH

YC

04

26.8

14.7

0.51

1.6

54

0.5

11.5

28.

931

.926

.632

.220

.03

30

22

103

214

186

38

PH

YC

05

27.0

14.8

0.51

1.6

54

0.6

11.6

29.0

32.1

26.8

32.3

20.2

327

22

104

212

183

38

PH

YC

06

26.9

14.6

0.52

1.62

40.

111

.728.

431

.926

.632

.120

.23

312

310

421

419

639

PH

YC

0726

.814

.80.

521.

64

40.

211

.52

8.7

31.9

26.5

32.1

20.0

331

23

104

214

196

39

PH

YC

08

26.7

14.8

0.52

1.6

44

0.2

11.4

28.

831

.926

.532

.119

.93

322

310

321

419

74

0

PH

YC

09

26.8

14.8

0.52

1.6

34

0.1

11.5

28.

631

.926

.532

.120

.03

312

310

421

419

639

PH

YC

1026

.814

.80.

521.

64

40.

111

.42

8.7

31.9

26.5

32.1

20.0

331

23

104

214

196

39

PH

YC

1126

.314

.60.

511.

63

39.6

11.2

28.

431

.426

.031

.619

.53

3924

103

218

200

41

PH

YC

1226

.714

.70.

521.

6139

.811

.528.

331

.826

.432

.020

.132

924

104

213

194

39

PH

YE

0126

.614

.80.

521.

5739

.611

.328.

331

.426

.431

.620

.031

519

101

203

174

35

PH

YE

02

26.5

14.8

0.52

1.58

39.6

11.1

28.

431

.326

.331

.519

.931

419

101

202

173

35

PH

YE

03

26.5

14.9

0.52

1.59

39.6

11.1

28.

631

.426

.431

.619

.931

119

101

200

171

35

PH

YE

04

26.6

14.9

0.52

1.58

39.7

11.2

28.

531

.426

.431

.620

.031

119

101

200

171

35

PH

YE

05

26.7

15.0

0.52

1.62

40.

011

.128.

931

.626

.531

.920

.03

03

1810

019

416

73

4

PH

YE

06

26.7

15.0

0.52

1.62

40.

011

.128.

931

.626

.531

.920

.03

04

1910

019

516

83

4

PH

YE

0726

.615

.10.

521.

64

40.

110

.929

.231

.626

.531

.919

.83

00

189

919

016

435

PH

YE

08

26.7

14.9

0.52

1.62

40.

111

.228.

931

.626

.531

.819

.93

08

1910

119

817

035

PH

YE

09

26.3

14.8

0.51

1.6

54

0.0

10.9

29.1

31.4

26.2

31.6

19.5

319

199

920

317

638

PH

YE

1026

.914

.70.

511.

614

0.3

11.6

28.

731

.726

.732

.020

.231

520

103

205

177

35

Page 60: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

62 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eT

an

nT

dir

isoT

Tse

am

xTw

Pm

nT

cPT

ar

Tw

eQ

Td

rQT

wm

QT

coQ

Pa

nn

Pw

eP

Pse

aP

we

QP

wm

QP

coQ

PH

YE

1127

.114

.50.

511.

58

40.

512

.128.

432

.026

.932

.220

.531

821

105

209

180

35

PH

YE

1227

.214

.40.

511.

574

0.5

12.4

28.

132

.027

.032

.220

.632

12

210

621

218

235

PH

YE

1327

.314

.30.

511.

574

0.5

12.5

28.

032

.027

.132

.220

.732

12

210

621

218

335

PH

YW

0126

.413

.10.

54

1.37

36.

712

.624

.23

0.7

26.4

30.

820

.729

421

104

189

182

35

PH

YW

0226

.413

.20.

54

1.38

36.

812

.524

.33

0.7

26.4

30.

820

.629

421

104

189

183

35

PH

YW

03

26.4

13.4

0.5

41.

42

37.2

12.4

24.8

30.

92

5.9

31.0

20.6

297

2110

319

018

535

PH

YW

04

26.5

13.6

0.53

1.4

537

.612

.32

5.3

31.0

26.0

31.2

20.5

30

421

103

194

189

35

PH

YW

05

26.5

13.6

0.53

1.4

637

.712

.22

5.5

31.1

26.0

31.2

20.5

30

521

103

195

191

35

PH

YW

06

26.6

13.6

0.53

1.4

537

.912

.42

5.5

31.0

26.1

31.2

20.5

310

2110

119

719

238

PH

YW

0726

.313

.50.

54

1.4

537

.312

.02

5.3

30.

926

.431

.020

.329

024

110

190

186

33

PH

YW

08

26.0

13.4

0.53

1.4

537

.011

.82

5.2

30.

626

.13

0.7

20.0

292

2411

119

118

83

4

PH

YW

09

26.2

13.5

0.5

41.

45

37.1

11.9

25.

23

0.8

26.2

30.

920

.229

024

111

191

186

33

PH

YW

1026

.113

.40.

54

1.4

436.

811

.924

.93

0.7

26.1

30.

820

.229

12

311

019

118

53

4

PH

YW

1126

.013

.20.

54

1.4

236.

411

.824

.63

0.5

25.

93

0.7

20.1

294

23

108

192

183

37

PH

YW

122

5.9

13.4

0.5

41.

44

36.

611

.724

.93

0.5

25.

23

0.7

20.0

295

23

108

193

184

38

PH

YW

1326

.013

.20.

54

1.4

236.

311

.824

.63

0.5

25.

23

0.6

20.1

294

22

107

192

183

37

PW

0126

.014

.00.

511.

6138.

511

.327

.231

.32

5.2

31.4

19.5

336

25

111

224

216

41

PW

02

25.

813

.90.

511.

6138.

311

.227

.131

.12

5.0

31.2

19.3

338

2611

12

25

217

42

PW

03

25.

013

.60.

511.

63

37.6

10.7

26.9

30.

324

.23

0.5

18.4

356

2610

62

28

22

24

8

PW

04

25.

113

.70.

511.

63

37.8

10.7

27.1

30.

524

.33

0.6

18.5

357

2610

52

28

22

34

8

PW

05

25.

614

.10.

511.

66

38.

710

.827

.931

.124

.831

.218

.9352

2410

021

921

44

8

PW

06

25.

414

.20.

50

1.6

838.

810

.628.

231

.024

.631

.118

.6356

2497

218

214

51

PW

072

5.5

14.2

0.5

01.

68

38.

810

.728.

131

.024

.731

.218

.7356

249

92

2121

65

0

PW

08

25.

614

.10.

50

1.67

38.

810

.728.

031

.124

.731

.218

.8355

2410

02

22

216

49

PW

09

25.

614

.10.

511.

66

38.

710

.827

.931

.124

.831

.218

.9352

2410

021

921

44

8

PW

102

5.5

14.1

0.51

1.6

638.

710

.827

.931

.024

.731

.218

.8352

2410

02

2021

54

8

PW

112

5.2

14.0

0.5

01.

66

38.

310

.627

.73

0.7

24.4

30.

818

.5359

25

100

22

221

85

0

PW

122

5.2

13.8

0.51

1.6

337

.910

.727

.23

0.6

24.3

30.

718

.63

492

510

32

2021

549

PW

1326

.114

.00.

521.

60

38.

511

.427

.131

.42

5.3

31.5

19.6

331

25

112

22

221

44

0

RH

NC

012

3.1

14.3

0.4

52

.06

38.

36.

731

.629

.82

2.5

30.

214

.93

0117

80

163

154

47

Page 61: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 63

RH

NC

02

23.

114

.30.

45

2.0

638.

26.

831

.529

.82

2.5

30.

214

.93

05

1781

166

157

47

RH

NC

03

23.

114

.20.

45

2.0

538.

26.

831

.429

.72

2.5

30.

214

.93

08

1881

168

160

48

RH

NC

04

23.

114

.20.

45

2.0

538.

26.

831

.429

.72

2.5

30.

114

.93

09

1882

169

161

48

RH

NC

05

23.

114

.30.

46

2.0

538.

16.

831

.329

.92

2.5

30.

114

.931

018

8217

016

347

RH

NC

06

23.

114

.30.

46

2.0

438.

26.

931

.33

0.0

22

.63

0.2

15.0

30

918

8217

016

347

RH

NC

072

3.2

14.3

0.4

62

.04

38.

26.

931

.33

0.0

22

.73

0.2

15.1

310

188

317

216

547

RH

NC

08

23.

414

.20.

46

2.0

238.

37.

331

.13

0.1

22

.83

0.3

15.3

311

188

417

316

747

RH

NC

09

23.

014

.20.

46

2.0

338.

07.

031

.129

.72

2.5

29.9

14.9

319

198

417

817

249

RH

NC

1024

.114

.50.

471.

99

39.1

7.9

31.2

30.

72

3.6

31.0

16.1

296

1889

171

156

44

RH

NC

1124

.214

.60.

471.

99

39.2

7.9

31.3

30.

82

3.7

31.0

16.2

294

1889

171

155

44

RH

NC

1224

.314

.70.

471.

9839

.48.

131

.33

0.9

23.

931

.116

.429

018

90

169

153

43

RH

NC

1324

.414

.70.

471.

9839

.58.

131

.43

0.9

23.

931

.216

.528

818

90

168

152

43

RH

NE

0124

.615

.20.

471.

99

40.

07.

932

.13

0.9

24.2

31.5

16.6

275

1787

157

141

45

RH

NE

02

24.6

15.2

0.47

1.9

94

0.0

7.9

32.1

30.

924

.231

.516

.627

717

8715

814

14

5

RH

NE

03

24.7

15.4

0.4

81.

984

0.1

7.9

32.2

31.0

24.3

31.6

16.7

274

1787

156

140

44

RH

NE

04

24.7

15.4

0.4

81.

99

40.

17.

832

.331

.024

.331

.516

.727

317

86

155

138

43

RH

NE

05

24.6

15.5

0.4

81.

99

40.

17.

732

.431

.02

3.4

31.5

16.7

271

1786

154

137

43

RH

NE

06

24.6

15.6

0.4

82

.00

40.

07.

632

.43

0.9

23.

431

.516

.626

917

85

152

135

42

RH

NE

0724

.815

.60.

48

1.97

40.

27.

932

.331

.024

.431

.516

.827

917

88

161

144

42

RH

NE

08

24.4

15.7

0.4

81.

99

39.9

7.4

32.5

30.

624

.031

.216

.428

317

86

162

144

39

RH

NE

09

24.2

15.7

0.4

81.

99

39.7

7.3

32.5

30.

52

3.9

31.0

16.2

290

1786

165

148

40

RH

NE

1024

.215

.80.

491.

9639

.77.

432

.33

0.6

23.

93

0.8

16.3

310

1889

181

164

41

RH

NE

1124

.215

.70.

491.

9439

.77.

732

.03

0.5

23.

93

0.8

16.4

312

189

018

416

74

2

RH

NE

1224

.715

.80.

491.

934

0.1

8.0

32.0

31.0

24.3

31.2

16.9

30

418

9118

116

44

0

RH

NW

012

3.6

14.0

0.4

61.

9438.

48.

23

0.2

29.9

23.

13

0.2

15.8

33

320

9119

718

147

RH

NW

02

23.

814

.10.

471.

9338.

68.

43

0.3

30.

12

3.3

30.

316

.032

820

9119

517

94

6

RH

NW

03

25.

014

.60.

48

1.89

39.8

9.3

30.

531

.124

.631

.517

.43

05

1993

184

164

41

RH

NW

04

25.

314

.60.

48

1.86

40.

09.

73

0.3

31.2

24.8

31.6

17.8

30

919

9418

816

54

0

RH

NW

05

25.

314

.60.

48

1.86

39.9

9.7

30.

231

.224

.831

.617

.831

119

9418

916

641

RH

NW

06

25.

214

.60.

48

1.86

39.9

9.7

30.

331

.124

.831

.617

.731

019

9418

916

64

0

RH

NW

072

5.1

14.6

0.4

81.

85

39.8

9.7

30.

13

0.9

24.6

31.3

17.6

316

1993

192

168

41

Page 62: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

64 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eT

an

nT

dir

isoT

Tse

am

xTw

Pm

nT

cPT

ar

Tw

eQ

Td

rQT

wm

QT

coQ

Pa

nn

Pw

eP

Pse

aP

we

QP

wm

QP

coQ

RH

NW

08

24.6

14.4

0.4

81.

83

39.3

9.5

29.8

30.

524

.23

0.9

17.3

33

019

9320

018

64

3

RH

NW

09

24.8

14.5

0.49

1.82

39.5

9.7

29.8

30.

624

.331

.017

.532

819

9319

918

44

2

RH

NW

1024

.914

.50.

491.

83

39.6

9.6

29.9

30.

724

.431

.117

.532

319

9319

618

24

2

RH

NW

112

5.2

14.7

0.4

81.

86

40.

09.

63

0.3

31.1

24.7

31.5

17.7

30

918

9318

816

54

0

RH

NW

122

5.3

14.6

0.4

81.

86

40.

09.

73

0.3

31.2

24.9

31.7

17.8

307

1994

187

164

40

RH

NW

132

5.3

14.6

0.4

81.

874

0.0

9.6

30.

331

.224

.831

.617

.73

0719

9418

716

54

0

TC

MB

C01

25.

614

.80.

46

1.97

41.0

8.9

32.1

32.0

25.

432

.617

.72

3912

7312

210

94

8

TC

MB

C02

25.

514

.80.

46

1.98

40.

98.

932

.031

.92

5.4

32.5

17.7

241

1273

123

110

48

TC

MB

C0

32

5.2

14.6

0.4

61.

99

40.

68.

731

.931

.62

5.1

32.2

17.3

25

013

7412

811

549

TC

MB

C0

424

.914

.50.

46

2.0

04

0.2

8.4

31.8

31.2

24.8

31.9

16.9

259

1374

132

120

51

TC

MB

C0

524

.414

.30.

45

2.0

039

.88.

131

.63

0.8

23.

531

.516

.426

914

7313

712

552

TC

MB

C0

624

.314

.40.

45

2.0

239

.77.

931

.83

0.7

23.

331

.416

.226

013

7112

911

853

TC

MB

C07

24.8

14.5

0.4

62

.01

40.

38.

332

.031

.324

.731

.916

.92

50

1373

126

114

50

TC

MB

C0

82

5.0

14.5

0.4

62

.00

40.

38.

431

.931

.424

.932

.017

.02

55

1475

132

119

49

TC

MB

C0

924

.814

.50.

46

2.0

04

0.1

8.4

31.7

31.2

24.8

31.8

16.8

263

1476

137

123

50

TC

MB

C10

24.9

14.4

0.4

62

.00

40.

18.

531

.631

.224

.931

.916

.926

815

7814

112

749

TC

MB

C11

24.8

14.4

0.4

62

.00

40.

08.

431

.631

.124

.831

.816

.827

015

7814

212

949

TC

MB

C12

24.7

14.4

0.4

62

.00

39.9

8.4

31.6

31.1

24.8

31.7

16.7

272

1578

143

130

49

TC

MB

E01

23.

613

.30.

45

1.92

38.

08.

629

.529

.92

3.1

30.

115

.937

721

86

218

211

54

TC

MB

E02

23.

813

.40.

45

1.92

38.

28.

729

.53

0.1

23.

33

0.3

16.0

374

2086

216

209

53

TC

MB

E0

32

3.7

13.4

0.4

51.

9338.

28.

629

.63

0.1

23.

33

0.2

16.0

372

2086

214

207

54

TC

MB

E0

42

3.7

13.4

0.4

51.

9338.

28.

629

.63

0.1

23.

23

0.2

16.0

373

2086

214

208

54

TC

MB

E0

52

3.0

13.2

0.4

51.

9437

.58.

129

.429

.42

2.5

29.6

15.2

386

208

421

821

357

TC

MB

E0

624

.013

.50.

45

1.92

38.

58.

829

.73

0.4

23.

53

0.5

16.3

370

2086

214

206

52

TC

MB

E07

24.0

13.6

0.4

51.

9438.

68.

729

.93

0.4

23.

53

0.6

16.2

36

520

85

209

201

53

TC

MB

E0

82

3.8

13.5

0.4

51.

9438.

48.

529

.93

0.2

23.

33

0.4

16.0

367

208

420

820

15

4

TC

MB

E0

92

3.8

13.4

0.4

51.

9238.

38.

729

.63

0.2

23.

33

0.3

16.1

373

2087

216

207

52

TC

MB

E10

23.

213

.30.

45

1.93

37.8

8.3

29.5

29.6

22

.729

.815

.537

520

84

213

205

55

TC

MB

E11

23.

413

.40.

45

1.93

38.

18.

329

.729

.82

2.8

30.

015

.736

319

83

204

196

55

TC

MB

E12

23.

413

.50.

45

1.93

38.

18.

329

.829

.92

2.8

30.

015

.736

019

83

201

193

55

Page 63: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 65

TC

MB

E13

23.

713

.60.

45

1.93

38.

48.

53

0.0

30.

22

3.1

30.

316

.03

48

188

319

418

653

TC

MB

W01

25.

214

.50.

471.

90

40.

29.

33

0.9

31.6

24.4

31.8

17.6

28

815

80

156

143

50

TC

MB

W02

25.

214

.50.

471.

90

40.

29.

231

.031

.624

.331

.817

.6286

158

015

514

25

0

TC

MB

W0

32

5.1

14.3

0.47

1.91

40.

09.

23

0.8

31.4

24.3

31.7

17.4

291

168

015

814

649

TC

MB

W0

42

5.0

14.3

0.4

61.

9139

.99.

23

0.7

31.3

24.2

31.6

17.4

293

168

015

914

749

TC

MB

W0

524

.814

.20.

46

1.9

039

.69.

13

0.5

31.1

24.0

31.4

17.2

299

1681

164

152

49

TC

MB

W0

624

.614

.00.

46

1.9

039

.39.

13

0.2

30.

82

3.9

31.1

17.0

30

517

8216

915

84

8

TC

MB

W07

24.2

13.7

0.4

61.

88

38.

79.

029

.73

0.3

23.

53

0.6

16.6

332

188

518

817

851

TC

MB

W0

824

.313

.70.

46

1.8

838.

89.

129

.73

0.4

23.

73

0.7

16.7

335

1886

193

182

50

TC

MB

W0

924

.413

.90.

471.

85

38.

89.

329

.63

0.5

23.

73

0.7

17.0

341

1886

196

181

54

TC

MB

W10

24.5

13.8

0.47

1.8

538.

89.

329

.53

0.5

23.

83

0.8

17.0

34

419

8720

018

553

TC

MB

W11

24.5

13.9

0.47

1.8

438.

99.

429

.53

0.5

23.

83

0.8

17.1

34

519

8720

118

65

4

TC

MB

W12

24.6

13.9

0.47

1.8

438.

99.

429

.53

0.6

23.

93

0.8

17.2

347

198

820

218

75

4

TC

MB

W13

24.0

13.7

0.47

1.8

538.

39.

029

.23

0.0

23.

33

0.2

16.5

358

2086

207

192

57

WY

E01

25.

415

.00.

48

1.8

54

0.7

9.5

31.2

31.5

24.2

31.9

18.0

30

417

8216

515

559

WY

E02

25.

615

.10.

48

1.8

44

0.9

9.7

31.2

31.7

24.5

32.1

18.3

30

017

83

163

153

58

WY

E0

32

5.8

15.2

0.49

1.82

41.0

9.8

31.2

31.9

24.6

32.2

18.5

297

178

416

315

258

WY

E0

42

5.9

15.3

0.49

1.81

41.1

10.0

31.1

32.0

24.7

32.3

18.7

293

178

516

215

059

WY

E0

52

5.5

15.2

0.5

01.

784

0.6

10.0

30.

631

.52

5.0

31.8

18.5

301

1887

166

154

63

WY

E0

62

5.9

15.2

0.5

01.

72

40.

610

.53

0.1

31.7

25.

332

.019

.029

918

9116

915

562

WY

E07

25.

615

.10.

50

1.72

40.

310

.429

.931

.52

5.0

31.7

18.8

30

419

9117

016

46

4

WY

E0

82

5.8

15.1

0.5

01.

764

0.5

10.3

30.

331

.62

5.3

31.9

18.7

316

1989

178

167

62

WY

E0

92

5.2

14.9

0.49

1.78

40.

09.

83

0.2

31.1

24.0

31.4

18.1

331

2086

184

173

65

WY

E10

25.

214

.90.

491.

77

40.

09.

93

0.2

31.1

24.1

31.4

18.1

332

2086

184

174

65

WY

E11

25.

615

.00.

50

1.7

74

0.4

10.1

30.

331

.624

.531

.818

.53

3220

8718

617

662

WY

E12

25.

615

.00.

50

1.7

74

0.4

10.1

30.

331

.624

.531

.818

.53

33

2086

187

177

62

WY

E13

25.

815

.10.

50

1.78

40.

510

.23

0.4

31.8

24.7

32.0

18.6

331

2086

186

176

61

WY

W01

25.

414

.50.

521.

6139

.011

.028.

13

0.9

24.7

31.1

19.0

322

2095

184

175

67

WY

W02

25.

514

.50.

521.

6239

.211

.028.

231

.024

.831

.219

.132

020

9618

317

46

6

WY

W0

32

5.5

14.6

0.51

1.6

339

.310

.928.

331

.024

.831

.219

.031

720

9518

017

167

WY

W0

42

5.3

14.5

0.51

1.6

339

.210

.828.

43

0.9

24.6

31.1

18.8

319

2094

180

172

68

Page 64: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

66 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eT

an

nT

dir

isoT

Tse

am

xTw

Pm

nT

cPT

ar

Tw

eQ

Td

rQT

wm

QT

coQ

Pa

nn

Pw

eP

Pse

aP

we

QP

wm

QP

coQ

WY

W0

52

5.3

14.5

0.51

1.6

339

.210

.828.

43

0.9

24.6

31.1

18.8

319

2094

180

172

68

WY

W0

62

5.3

14.6

0.51

1.6

439

.310

.728.

53

0.9

24.5

31.1

18.8

314

1992

174

166

70

WY

W07

25.

514

.60.

511.

63

39.4

10.9

28.

531

.124

.731

.319

.03

08

1992

170

161

70

WY

W0

82

5.0

14.9

0.5

01.

7139

.710

.129

.63

0.9

24.3

31.1

18.3

30

618

88

165

158

72

WY

W0

92

5.6

15.1

0.51

1.70

40.

210

.529

.731

.524

.931

.718

.929

718

90

164

157

67

WY

W10

25.

615

.10.

511.

704

0.2

10.5

29.7

31.5

24.9

31.7

18.9

297

189

016

415

76

6

WY

W11

25.

415

.50.

50

1.7

74

0.8

9.9

31.0

31.5

24.5

31.8

18.4

276

1686

145

139

67

WY

W12

25.

215

.40.

491.

794

0.8

9.6

31.2

31.4

24.3

31.6

18.1

274

168

514

313

767

1.

Ta

nn

T

he

mea

n

of

all

th

e w

eek

ly

mea

n

tem

per

atu

res.

E

ach

w

eek

ly

mea

n t

emp

erat

ure

is

the

mea

n o

f th

at w

eek

’s m

ax

imu

m a

nd

min

imu

m

tem

per

atu

re.

2.

Td

ir T

he

mea

n o

f a

ll t

he

wee

kly

diu

rna

l te

mp

erat

ure

ra

ng

es.

Eac

h w

eek

ly

diu

rna

l ra

ng

e

is

the

dif

fere

nce

b

etw

ee

n

that

we

ek

’s

ma

xim

um

a

nd

m

inim

um

tem

per

atu

re.

3.

isoT

T

he

mea

n

diu

rna

l ra

ng

e (p

ara

met

er

2)

div

ided

b

y

the

An

nu

al

Tem

per

atu

re R

an

ge

(pa

ram

eter

7).

4.

Tse

a T

he

tem

per

atu

re C

oef

fi ci

ent

of

Va

riat

ion

(C

of

V)

is t

he

sta

nd

ard

d

evia

tio

n o

f th

e w

eek

ly m

ean

tem

per

atu

res

exp

ress

ed a

s a p

erce

nta

ge

of

the

me

an

o

f th

ose

te

mp

era

ture

s (i

.e.

the

an

nu

al

me

an

).

Fo

r th

is

calc

ula

tio

n,

the

m

ea

n

in

de

gre

es

Ke

lvin

is

u

sed

. T

his

a

vo

ids

the

po

ssib

ilit

y o

f h

avin

g t

o d

ivid

e b

y z

ero

, b

ut

do

es m

ean

th

at t

he

va

lues

are

u

sua

lly

qu

ite

sma

ll.

5.

mxT

wP

Th

e h

igh

est

tem

per

atu

re o

f a

ny

wee

kly

ma

xim

um

tem

per

atu

re.

6.

mn

TcP

Th

e lo

wes

t te

mp

erat

ure

of

an

y w

eek

ly m

inim

um

tem

per

atu

re.

7.

Ta

r T

he

dif

fere

nce

bet

wee

n t

he

Ma

x T

emp

erat

ure

of

Wa

rmes

t P

erio

d a

nd

th

e M

in T

emp

erat

ure

of

Co

ldes

t P

erio

d.

8.

Tw

eQ

Th

e w

ette

st q

ua

rter

of

the

yea

r is

det

erm

ined

(to

th

e n

eare

st w

eek

),

an

d t

he

mea

n t

emp

erat

ure

of

this

per

iod

is

calc

ula

ted

.

9.

Td

rQ T

he

dri

est

qu

art

er o

f th

e y

ear

is d

eter

min

ed (

to t

he

nea

rest

wee

k),

a

nd

th

e m

ean

tem

per

atu

re o

f th

is p

erio

d i

s ca

lcu

late

d.

10.

Tw

mQ

Th

e w

arm

est

qu

art

er o

f th

e y

ear

is d

eter

min

ed (

to t

he

nea

rest

w

eek

), a

nd

th

e m

ean

tem

per

atu

re o

f th

is p

erio

d i

s ca

lcu

late

d.

11.

Tco

Q T

he

cold

est

qu

art

er o

f th

e y

ear

is d

eter

min

ed (

to t

he

nea

rest

wee

k),

a

nd

th

e m

ean

tem

per

atu

re o

f th

is p

erio

d i

s ca

lcu

late

d.

12.

Pa

nn

Th

e su

m o

f a

ll t

he

mo

nth

ly p

reci

pit

atio

n e

stim

ates

.

13.

Pw

eP

Th

e p

reci

pit

atio

n o

f th

e w

ette

st w

eek

or

mo

nth

, d

epen

din

g o

n t

he

tim

e st

ep.

14.

Pse

a T

he

Co

effi

cien

t o

f V

ari

atio

n (

C o

f V

) is

th

e st

an

da

rd d

evia

tio

n o

f th

e w

eek

ly p

reci

pit

atio

n e

stim

ates

ex

pre

ssed

as

a p

erce

nta

ge

of

the

mea

n o

f th

ose

est

imat

es (

i.e.

th

e a

nn

ua

l m

ean

).

15.

Pw

eQ

Th

e w

ette

st q

ua

rter

of

the

yea

r is

det

erm

ined

(to

th

e n

eare

st w

eek

),

an

d t

he

tota

l p

reci

pit

atio

n o

ver

th

is p

erio

d i

s ca

lcu

late

d.

16.

Pw

mQ

Th

e w

arm

est

qu

art

er o

f th

e y

ear

is d

eter

min

ed (

to t

he

nea

rest

w

eek

), a

nd

th

e to

tal

pre

cip

itat

ion

ov

er t

his

per

iod

is

calc

ula

ted

.

17.

Pco

Q T

he

cold

est

qu

art

er o

f th

e y

ear

is d

eter

min

ed (

to t

he

nea

rest

wee

k),

a

nd

th

e to

tal

pre

cip

itat

ion

ov

er t

his

per

iod

is

calc

ula

ted

.

Page 65: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 67

AP

PE

ND

IX C

So

il c

hem

ica

l d

ata f

or

the

30

4 t

erre

stri

al

bio

div

ersi

ty s

ites

sa

mp

led

du

rin

g t

he

Pil

ba

ra b

iod

iver

sity

su

rvey

. S

ee b

elo

w f

or

des

crip

tio

ns

of

an

aly

sis

met

ho

ds

an

d u

nit

s. R

epo

rted

va

lues

of

<0.

02 f

or

exch

an

gea

ble

cat

ion

s w

ere

trea

ted

as

0.01

me%

fo

r a

ll s

tati

stic

al/

mu

ltiv

ari

ate

an

aly

ses

Sit

e lo

cati

on

s a

re p

rov

ided

in

A

pp

en

dix

A.

Sit

eE

Cp

HS

an

dS

ilt

Cla

yo

rgC

totN

to

tPto

tK

P

ex

Me

tho

de

xC

ae

xM

ge

xN

ae

xK

BD

RN

011

5.6

951.

53.

50.

08

0.0

06

44

0.15

1

a0.

30.

140.

04

0.0

6

BD

RN

02

25.

279

7.5

13.5

0.28

0.02

25

00.

3910

a0.

56

0.2

30.

010.

18

BD

RN

03

15.

886.

54

9.5

0.17

0.01

711

00.

33

2a

0.71

0.31

0.01

0.19

BD

RN

04

25.

77

7.5

814

.50.

23

0.026

33

00.

64

21a

1.24

0.4

20.

010.

33

BD

RN

05

85.

576

.58

15.5

0.5

0.026

220

0.67

4a

1.6

42

.23

0.11

0.24

BD

RN

06

128.

569

.515

15.5

0.6

0.07

329

01.

64

20c

12.6

2.1

40.

06

0.94

BD

RN

076

66.

381

109

0.3

0.0

33

310

0.9

16a

3.28

2.1

70.

44

0.35

BD

RN

08

88.

96

4.5

278.

50.

50.

062

710.

192

c7.

09

1.9

90.

010.

18

BD

RN

09

56.

77

78.

514

.51.

22

0.0

86

690

0.73

14a

3.8

1.37

0.0

60.

54

BD

RN

1015

6.7

6914

.516

.50.

38

0.0

35

25

00.

496

a4.8

41.

44

0.29

0.2

3

BD

RN

112

6.8

80

9.5

10.5

0.4

40.

047

33

00.

9120

a6.

86

6.6

80.

140.

39

BD

RN

121

5.7

86

77

0.72

0.0

3912

02

.510

a1.

240.

520.

03

0.2

BD

RN

132

6.3

80.

58

11.5

0.67

0.0

493

30

1.62

14a

4.3

3.28

0.0

80.

55

BD

RS

0158

5.6

85

4.5

10.5

0.2

20.

031

140

0.6

63

a2

.01

0.98

0.16

0.28

BD

RS

02

36.

476

13.5

10.5

0.4

50.

04

32

201.

1317

a3.

02

1.18

0.0

40.

61

BD

RS

03

25.

68

5.5

59.

50.

390.

038

23

00.

8917

a1.

120.

33

0.01

0.3

BD

RS

04

16.

792

.53

4.5

0.11

0.01

110

01.

399

a1.

42

0.38

0.02

0.18

BD

RS

05

25.

986.

54

9.5

0.18

0.01

693

1.72

4a

10.

670.

04

0.17

BD

RS

06

35.

473

.510

16.5

0.3

30.

032

270

1.2

10a

1.4

80.

510.

02

0.41

BD

RS

072

5.4

875

80.

190.

02

150

1.28

2a

0.6

80.

23

0.01

0.2

BD

RS

08

27

85.

57.

57

0.41

0.0

38

160

1.14

5c

2.3

1.8

30.

010.

23

BD

RS

09

36

84.5

510

.50.

710.

059

220

1.13

6a

2.2

31.

010.

010.

36

BD

RS1

01

6.5

7811

.510

.50.

260.

032

140

1.2

54

a2

.22

1.6

0.0

50.

46

BD

RS1

18

8.8

87.5

75.

50.

63

0.0

5212

01.

196

c6.

521.

45

0.01

0.28

BD

RS1

22

6.5

83

89

0.2

50.

028

140

1.82

6a

1.91

1.52

0.0

60.

37

BD

RS1

36

6.3

77.

512

.510

0.29

0.029

200

2.1

413

a1.

941.

04

0.1

0.4

8

Page 66: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

68 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eE

Cp

HS

an

dS

ilt

Cla

yo

rgC

totN

to

tPto

tK

P

ex

Me

tho

de

xC

ae

xM

ge

xN

ae

xK

DR

C01

128.

576

10.5

13.5

0.6

60.

04

812

00.

83

5c

11.5

22

.68

0.12

0.36

DR

C02

128.

85

0.5

16.5

33

0.4

20.

052

941.

23

4c

19.8

4.0

90.

310.

79

DR

C0

314

7.5

7313

140.

190.

018

120

2.6

613

a4.7

62

.53

0.4

80.

35

DR

C0

412

8.3

7114

.514

.50.

54

0.0

43

220

1.32

14c

10.0

82

.06

0.0

60.

32

DR

C0

511

8.5

70.5

1415

.50.

490.

04

220

01.

1813

c11

.92

.26

0.27

0.36

DR

C0

64

6.4

48.

516

.535

0.69

0.0

518

01.

34

10a

5.4

24.9

10.

130.

5

DR

C07

36.

875

.511

.513

0.36

0.0

44

33

01.

35

24a

4.5

13.

54

0.1

0.49

DR

C0

815

8.2

64

15.5

20.5

1.0

60.

069

420

0.9

39c

13.0

42

.64

0.0

81.

2

DR

C0

94

6.8

7411

150.

40.

036

150

1.32

5a

4.2

3.11

0.13

0.38

DR

C10

57.

275

12.5

12.5

0.62

0.0

48

180

1.32

6a

5.7

2.0

40.

110.

33

DR

C11

67.

271

.512

.516

0.9

0.0

58

210

1.2

28

a9.

524.1

40.

150.

7

DR

C12

110

08.

58

0.5

8.5

110.

30.

017

33

01.

2114

c3.

69.

08

6.18

1.36

DR

E01

110

08.

12

535.

539

.50.

910.

06

44

50

1.81

26c

9.9

12.5

45.

922

.5

DR

E02

89.

197

0.5

2.5

0.2

30.

021

210

2.5

717

c1.

320.

310.

06

0.0

9

DR

E0

359

882

810

0.38

0.0

38

170

2.6

220

c4.0

41.

970.

56

0.4

3

DR

E0

421

8.6

54

17.5

28.

50.

760.

08

48

02

.34

14c

8.02

9.61

0.0

41.

28

DR

E0

524

7.1

84.5

96.

50.

320.

029

210

2.6

727

a2

.52

2.6

80.

40.

96

DR

E0

67

7.6

68.

519

.512

1.0

80.

08

326

02

.04

31a

10.5

43.

28

0.2

31.

62

DR

E07

26.

489

.54.5

60.

390.

028

72

2.7

5a

1.4

50.

77

0.0

40.

23

DR

E0

87

6.5

81.5

99.

50.

760.

05

25

01.

5118

a3.

951.

510.

10.

65

DR

E0

96

7.8

7610

.513

.50.

390.

03

427

01.

63

13a

10.9

51.

88

0.1

0.4

6

DR

E10

48.

681

.59.

59

0.62

0.0

46

970.

965

c3.

88

2.5

40.

08

0.26

DR

E11

67.

782

8.5

9.5

0.51

0.0

43

120

1.0

59

a5.

410.

54

0.0

40.

26

DR

E12

36.

96

418

.517

.50.

48

0.0

3714

01.

7610

a5.

45

2.6

90.

09

0.51

DR

E13

46.

58

46

100.

23

0.02

220

2.5

420

a1.

691.

750.

06

0.28

DR

W01

79.

398

.50.

51

0.26

0.02

324

01.

123

0c

1.38

0.2

30.

070.

04

DR

W02

109.

18

84.5

7.5

0.4

40.

04

215

01.

3214

c5

1.11

0.27

0.4

8

DR

W0

34

7.9

93.5

33.

50.

190.

019

941.

248

c1.

521.

140.

140.

25

DR

W0

411

8.4

874.5

8.5

0.69

0.0

53

120

1.74

6c

5.74

1.8

30.

240.

66

DR

W0

53

47.

169

.516

.514

1.4

40.

112

201.

3213

a10

.69

2.9

20.

310.

87

DR

W0

610

8.9

48.

526

.52

50.

33

0.0

3916

01.

1813

c17

.18

3.16

0.17

0.96

Page 67: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 69

DR

W07

138.

871

15.5

13.5

0.75

0.0

65

160

1.95

8c

13.4

11.

42

0.17

0.73

DR

W0

83

779

912

0.28

0.027

110

2.9

16

a3.

22

.06

0.1

0.35

DR

W0

97

7.1

72

.514

13.5

10.

081

260

1.1

18a

8.58

4.0

30.

120.

92

DR

W10

47.

373

.512

.514

0.5

0.0

45

170

0.87

8a

8.72

4.7

50.

10.

5

DR

W11

67.

372

.510

.517

0.7

0.0

672

200.

976

a8.

393.

110.

100.

61

DR

W12

53

7.4

6717

.515

.50.

70.

062

310

1.2

219

a8.

474.4

70.

71

DR

W13

140

08.

470

18.5

11.5

0.53

0.0

33

240

1.47

20c

6.2

511

.49

2.4

92

.3

MB

E01

160

8.2

65.

519

.515

0.38

0.0

424

01.

627

c13

.23

3.13

0.6

60.

4

MB

E02

36.

461

16.5

22

.50.

810.

072

35

00.

922

5a

5.6

36.

30.

390.

72

MB

E0

32

7.3

83.

56.

510

0.31

0.029

972

.18

7c

4.3

11.

04

0.01

0.3

4

MB

E0

46

8.4

96.5

21.

50.

260.

0271

3.02

2c

2.4

40.

54

0.01

0.1

MB

E0

54

6.7

77

1211

0.86

0.07

235

02

.17

37a

6.62

2.7

60.

08

0.62

MB

E0

66

5.9

85.

57.

57

0.8

80.

06

62

50

3.29

12a

2.5

20.

68

0.0

80.

31

MB

E07

26.

794

3.5

2.5

0.3

0.026

943.

158

a1.

72

0.74

0.0

40.

34

MB

E0

86

8.5

39.5

22

38.

50.

43

0.0

42

120

1.02

10c

24.1

5.0

40.

160.

99

MB

E0

99

882

.59.

58

0.86

0.0

617

00.

56

8c

11.0

42

.88

0.02

0.41

MB

E11

47.

68

0.5

11.5

80.

520.

03

320

00.

38

7c

7.2

34.6

40.

010.

27

MB

E12

88.

27

711

120.

490.

037

260

1.29

10c

9.14

2.1

20.

010.

24

MB

E13

108.

871

.517

11.5

1.0

80.

105

140

0.4

65

c9.

42

2.2

10.

010.

32

MB

W01

37.

272

1414

0.3

40.

03

317

01.

04

9c

5.6

43.

950.

04

0.39

MB

W02

27.

375

1114

0.4

60.

039

170

1.14

11c

5.97

2.2

60.

010.

43

MB

W0

37

8.8

77.

511

.511

0.59

0.0

53

130

1.14

8c

12.7

81.

65

0.0

40.

42

MB

W0

44

7.6

7910

110.

50.

04

140

0.69

7c

7.41

3.0

60.

020.

3

MB

W0

57

8.7

7614

100.

710.

069

140

1.3

46

c10

.63

2.6

80.

04

0.47

MB

W0

62

674

.58.

517

0.67

0.0

4916

01.

733

a1.

60.

99

0.13

0.5

MB

W07

38.

494

.52

.53

0.2

0.01

910

01.

512

c2

.33

1.0

60.

10.

19

MB

W0

82

6.3

70.5

62

3.5

0.2

0.01

911

02

.24

3a

1.7

1.4

1.11

0.3

3

MB

W0

92

6.4

82.5

512

.50.

240.

02

214

01.

924

a2

.32

1.8

40.

130.

28

MB

W10

47.

186

86

0.31

0.02

512

02

.71

4c

1.75

0.72

0.0

80.

25

MB

W11

26.

18

38.

58.

50.

890.

072

50

3.14

7a

1.8

40.

77

0.13

0.28

MB

W12

16.

58

45.

510

.50.

240.

02

513

03.

673

a1.

911.

22

0.1

0.24

MB

W13

26.

28

0.5

712

.50.

22

0.024

100

3.16

3a

1.96

10.

10.

31

Page 68: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

70 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eE

Cp

HS

an

dS

ilt

Cla

yo

rgC

totN

to

tPto

tK

P

ex

Me

tho

de

xC

ae

xM

ge

xN

ae

xK

NE

013

6.8

72

13.5

14.5

0.71

0.0

5152

01.

183

3a

10.2

58.

490.

03

0.58

NE

02

128.

178

.510

11.5

0.67

0.0

526

00

1.47

25

c13

.78

1.47

0.0

80.

68

NE

03

138.

370

10.5

19.5

0.4

50.

04

226

00.

7412

c24

.16

4.9

20.

070.

55

NE

04

98.

675

.510

.514

0.67

0.0

523

30

1.6

12c

9.2

52

.64

0.07

0.4

6

NE

05

89

70.5

15.5

140.

290.

03

419

01.

9211

c12

.23

0.6

40.

070.

42

NE

06

88.

86

6.5

16.5

170.

240.

031

150

1.4

67

c8.

38

1.92

0.0

60.

61

NE

076

8.2

5111

.537

.50.

34

0.0

44

120

1.82

8c

13.9

4.8

30.

161.

11

NE

08

37.

478

.57

14.5

0.18

0.02

170

0.8

56

a3.

011.

690.

010.

33

NE

09

98.

68

011

.58.

50.

740.

062

130

0.8

87

c9.

011.

33

0.0

60.

33

NE

107

8.3

74.5

1411

.50.

570.

052

23

01.

1817

c7.

162

0.0

60.

53

NE

1110

7.9

7910

.510

.50.

310.

032

220

1.0

416

c6.

88

2.2

10.

010.

3

NE

121

6.3

92.5

34.5

0.26

0.02

68

1.71

2a

0.93

0.26

0.01

0.12

NE

131

6.1

96.5

0.5

30.

110.

00

953

1.17

2a

0.4

60.

120.

010.

04

NW

012

6.7

85.

56.

58

0.24

0.026

160

2.0

212

a2

.36

0.93

0.01

0.2

NW

02

410

9.8

65

2411

0.26

0.029

760.

673

c1.

30.

1520

0.39

NW

03

26.

581

8.5

10.5

0.36

0.0

38

370

3.11

28

a2

.67

1.4

0.02

0.41

NW

04

36.

275

1213

0.6

50.

04

635

02

13a

2.8

92

.51

0.01

0.3

NW

05

110

10.1

85

105

0.28

0.02

72

201.

176

c1.

240.

34

5.57

0.14

NW

06

26.

78

5.5

86.

50.

270.

02

589

1.41

4a

1.8

30.

930.

010.

12

NW

076

38.

36

3.5

2115

.50.

510.

052

28

01.

876

c6.

25

1.81

0.49

0.39

NW

08

67.

272

.515

12.5

0.9

90.

061

130

1.0

94

a5.

952

.11

0.01

0.2

2

NW

09

47.

38

47.

58.

50.

390.

04

190

2.4

113

a7.

11.

920.

020

0.26

0

NW

109

986.

57

6.5

0.7

70.

057

180

2.8

96

c6.

66

0.87

0.4

50.

36

NW

114

7.7

83.

57

9.5

0.2

50.

026

210

1.01

14c

4.1

81.

83

0.01

0.27

NW

122

6.6

84

79

0.32

0.02

315

01.

1715

a1.

921.

06

0.02

0.2

OY

E01

48

25.

528

46.

50.

270.

03

392

0.9

93

c2

3.4

38.

020.

56

1.35

OY

E02

26.

87

77.

515

.50.

310.

03

426

00.

9316

a5.

24.1

60.

10.

42

OY

E0

32

6.3

64.

514

.521

0.4

60.

053

30

01.

68

19a

3.62

3.2

30.

150.

49

OY

E0

43

6.7

829.

58.

50.

570.

049

48

02

.02

27a

5.01

1.79

0.1

0.95

OY

E0

54

6.3

63.

519

17.5

0.76

0.0

635

01.

629

a5.

33

2.0

10.

10.

58

OY

E0

612

8.3

5731

121.

70.

134

28

01.

278

c16

.48

1.58

0.01

1.6

4

Page 69: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 71

OY

E07

118.

56

524

111.

670.

164

30

00.

910

c19

.91.

140.

010.

82

OY

E0

86

5.6

64.5

1421

.50.

40.

039

390

0.6

7a

2.4

51.

20.

160.

32

OY

E0

97

8.6

72

208

0.79

0.0

837

01.

2913

c11

.08

3.49

0.01

0.5

OY

E10

26.

678

.59.

512

0.4

0.0

3153

00.

617

a3.

45

1.61

0.07

0.4

2

OY

E11

25.

978

1111

0.75

0.0

5767

00.

6114

a2

.61

1.02

0.0

50.

29

OY

E12

46.

858.

529

.512

1.02

0.07

153

00.

752

2a

7.9

92

.39

0.15

1.0

8

OY

E13

26.

372

.515

12.5

1.07

0.0

63

44

00.

5711

a4.9

61.

65

0.0

80.

38

OY

W01

46.

28

4.5

78.

50.

28

0.02

317

00.

733

a1.

210.

570.

10.

28

OY

W02

46.

53

3.5

41.5

25

1.12

0.11

13

00

2.4

219

a6.

32

.37

0.2

21.

01

OY

W0

376

8.6

63

23

140.

38

0.0

45

160

1.36

6c

51.

63

0.67

0.2

3

OY

W0

492

6.9

74.5

14.5

110.

22

0.02

517

01.

09

3a

3.16

1.52

1.24

0.2

5

OY

W0

53

6.9

769

150.

160.

018

170

0.7

74

a2

.28

1.98

0.16

0.28

OY

W0

614

7.1

769

150.

190.

019

180

0.7

4c

5.32

1.4

80.

30.

34

OY

W07

27.

18

5.5

8.5

60.

40.

03

421

00.

924

c3.

010.

920.

010.

38

OY

W0

87

6.4

80

911

0.31

0.0

34

35

00.

828

a2

.31.

240.

150.

32

OY

W0

92

6.2

759.

515

.50.

20.

021

43

00.

58

9a

1.98

1.36

0.1

0.4

OY

W10

26.

172

1216

0.31

0.0

320

01.

0210

a2

.23

1.15

0.0

80.

51

OY

W11

26.

77

7.5

6.5

160.

34

0.0

316

00.

755

a2

.04

1.0

60.

130.

37

OY

W12

946.

786

4.5

9.5

0.1

0.01

411

01.

014

a1.

571.

20.

590.

26

OY

W13

16.

69

02

80.

130.

013

77

0.72

2a

0.87

0.6

60.

06

0.16

PE

017

7.4

29.5

25.

54

50.

470.

04

627

01.

319

a15

.47

8.56

0.35

1.24

PE

02

26.

371

13.5

15.5

0.28

0.02

338

00.

85

8a

2.4

11.

490.

03

0.59

PE

03

78

213

34

60.

46

0.0

48

240

1.4

29

c14

.45

4.7

90.

09

1.6

5

PE

04

46.

262

15.5

22

.50.

50.

041

240

2.1

86

a3.

55

1.75

0.0

40.

62

PE

05

44

8.1

36

214

30.

310.

03

316

01.

249

c15

.32

6.95

1.28

1.18

PE

06

45.

74

4.5

28

27.5

0.6

80.

051

270

1.2

9a

3.6

1.3

30.

02

0.73

PE

072

5.6

68

12.5

19.5

0.86

0.0

66

270

1.6

67

a2

.07

0.94

0.01

0.4

2

PE

08

36.

567

1419

1.35

0.0

9252

01.

46

34

a7.

412

.62

0.0

30.

93

PE

09

26.

86

3.5

10.5

260.

56

0.0

55

30

01.

54

12a

4.5

23.

890.

04

0.73

PE

104

7.2

33.

518

.54

80.

390.

039

150

1.29

6a

14.3

112

.30.

170.

88

PE

113

5.6

7114

150.

58

0.0

4936

00.

72

8a

1.8

0.9

0.01

0.35

PE

129

8.4

76.5

149.

51.

120.

087

30

02

.06

12c

14.1

41.

890.

04

0.4

3

Page 70: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

72 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eE

Cp

HS

an

dS

ilt

Cla

yo

rgC

totN

to

tPto

tK

P

ex

Me

tho

de

xC

ae

xM

ge

xN

ae

xK

PH

YC

011

5.3

91.5

1.5

70.

22

0.01

258

0.19

3a

0.35

0.15

0.0

50.

07

PH

YC

02

30

5.9

766

180.

760.

037

86

0.38

2a

1.4

40.

820.

70.

32

PH

YC

03

36.

589

5.5

5.5

0.52

0.0

38

160

1.7

10a

1.89

0.7

0.12

0.18

PH

YC

04

48.

293

.53.

53

0.56

0.0

3998

2.2

8c

3.98

1.12

0.01

0.3

PH

YC

05

150

9.1

67.5

19.5

130.

58

0.0

53

220

1.49

10c

8.28

1.5

7.0

40.

25

PH

YC

06

26.

48

45

110.

28

0.024

110

1.8

39

a1.

620.

85

0.0

80.

27

PH

YC

073

6.6

79.5

9.5

110.

820.

06

220

1.6

614

a3.

61.

28

0.12

0.4

2

PH

YC

08

78.

978

12.5

9.5

0.4

40.

04

318

01.

22

10c

11.3

40.

64

0.01

0.31

PH

YC

09

79.

279

.510

.510

0.51

0.0

4798

0.6

67

c7.

011.

20.

010.

2

PH

YC

107

9.1

78.5

129.

50.

54

0.0

43

140

0.8

48

c6.

70.

920.

010.

29

PH

YC

112

6.4

85

510

0.6

0.0

34

270

0.81

12c

1.67

0.59

0.01

0.2

2

PH

YC

127

8.4

50

1436

0.26

0.0

386

0.91

6c

19.5

13.

72

0.1

0.67

PH

YE

011

6.4

98

0.

1

20.

05

0.

001

21

0.39

1

a0.

260.

08

0.01

0.02

PH

YE

02

15.

995

.50.

54

0.0

90.

007

33

0.36

1a

0.36

0.18

0.01

0.0

5

PH

YE

03

68

85

87

0.49

0.0

45

980.

65

c6.

161.

160.

070.

27

PH

YE

04

26.

98

44

120.

22

0.01

66

30.

77

2a

2.2

51.

42

0.0

40.

27

PH

YE

05

88.

16

4.5

1916

.50.

83

0.07

224

01.

42

21c

10.5

23.

470.

070.

6

PH

YE

06

98.

971

.513

.515

0.5

0.0

43

99

0.7

2c

12.8

81.

28

0.0

40.

48

PH

YE

072

6.4

768

160.

240.

026

160

1.0

87

a1.

742

.16

0.18

0.4

3

PH

YE

08

138.

44

5.5

1638.

50.

23

0.0

38

30.

763

c24

.49

2.4

40.

10.

54

PH

YE

09

26.

882

9.5

8.5

0.27

0.0

38

310

1.52

25

a3.

48

3.79

0.14

0.4

PH

YE

103

887

5.5

7.5

0.29

0.024

100

2.4

17

c2

.98

0.69

0.01

0.31

PH

YE

112

889

3.5

7.5

0.16

0.01

381

2.0

15

c2

.27

0.71

0.01

0.15

PH

YE

122

6.6

84.5

7.5

80.

520.

031

220

1.0

912

a3.

22

1.17

0.1

0.2

3

PH

YE

131

6.4

896

50.

320.

02

512

01.

68

7a

1.92

0.8

0.0

50.

18

PH

YW

015

9.2

95.5

22

.50.

260.

026

36

01.

613

3c

1.96

0.26

0.01

0.0

8

PH

YW

02

168.

73

436

30

0.89

0.0

984

40

1.62

23

c14

.64

9.3

0.4

41.

18

PH

YW

03

26.

582

.57.

510

0.26

0.024

25

01.

624

a2

1.69

0.0

80.

4

PH

YW

04

26.

387

.54

8.5

0.28

0.01

789

0.55

4a

1.1

0.49

0.0

60.

17

PH

YW

05

36

68

824

0.2

20.

032

130

0.79

11a

1.24

3.0

90.

390.

48

PH

YW

06

15.

491

.52

70.

310.

018

590.

243

a0.

46

0.18

0.0

30.

08

Page 71: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 73

PH

YW

077

7.9

61.5

16.5

22

1.07

0.0

822

30

1.98

29c

9.16

5.2

21.

03

0.6

5

PH

YW

08

36.

582

99

0.93

0.0

6932

01.

753

4a

3.21

1.97

0.0

60.

52

PH

YW

09

46.

58

3.5

7.5

91.

320.

09

94

201.

6739

a4.2

21.

940.

070.

64

PH

YW

101

6.3

88.

55.

56

0.28

0.01

775

2.2

15

a1.

210.

960.

010.

18

PH

YW

111

6.2

90.

53.

56

0.28

0.01

56

52

.71

3a

0.98

0.6

80.

02

0.15

PH

YW

122

686.

53.

510

0.3

0.01

971

2.4

63

a1.

180.

620.

03

0.18

PH

YW

132

6.6

896

50.

38

0.026

110

2.6

411

a2

.28

1.0

60.

06

0.31

PW

013

6.7

66

1519

0.92

0.0

5726

01.

99

12a

5.8

44.2

60.

08

0.56

PW

02

57.

371

1118

0.6

40.

047

23

01.

819

a11

.92

4.5

0.0

60.

64

PW

03

46.

757

.516

.526

0.98

0.0

63

410

1.61

16a

6.67

3.31

0.0

80.

65

PW

04

57.

921

26.5

52.5

0.28

0.0

316

80.

962

c27

.210

.16

0.89

1.0

5

PW

05

46

08.

25

4.5

26.5

193.

270.

252

260

0.86

8c

11.9

420

.13

4.6

32

.41

PW

06

36.

379

912

0.36

0.028

390

0.35

7a

2.1

91

0.0

80.

37

PW

0714

8.6

29.5

31.5

390.

84

0.07

520

01.

110

c32

.37

2.4

60.

111.

68

PW

08

118.

753

28

191.

110.

08

418

00.

83

5c

24.4

52

.43

0.15

1.01

PW

09

160

8.3

64

2115

2.1

0.16

72

30

0.96

6c

13.9

29.

33

1.75

1.93

PW

104

6.3

51.5

30

18.5

1.7

0.0

9821

01.

46

2a

4.4

22

.37

0.0

40.

41

PW

1121

6.2

66.

514

19.5

0.4

80.

036

130

0.8

54

a3.

261.

940.

28

0.3

3

PW

122

6.6

62.5

1324

.50.

33

0.0

4939

01.

753

0a

3.7

4.8

80.

05

0.6

6

PW

133

767

1617

0.6

0.0

522

50

1.6

515

a6.

734.1

30.

070.

92

RH

NC

012

5.9

73.5

9.5

170.

80.

04

824

00.

64

a3.

130.

980.

010.

6

RH

NC

02

88.

975

.513

.511

0.55

0.0

56

130

0.35

8c

6.79

1.15

0.0

50.

28

RH

NC

03

45.

839

35.

52

5.5

0.3

40.

04

532

00.

85

8a

2.9

42

.68

0.0

80.

77

RH

NC

04

36.

46

418

.517

.52

.18

0.10

33

40

1.12

8a

4.7

71.

54

0.01

0.55

RH

NC

05

87.

25

026

240.

60.

055

610

0.9

941

a6.

170.

810.

011.

4

RH

NC

06

25

74.5

11.5

140.

23

0.02

541

00.

618

a0.

910.

40.

010.

29

RH

NC

0718

5.8

73.5

10.5

161.

48

0.0

9432

00.

784

a4.4

61.

35

0.0

50.

55

RH

NC

08

108.

47

7.5

1111

.50.

84

0.0

68

140

0.36

7c

13.1

43.

04

0.0

60.

34

RH

NC

09

27

77

149

0.6

80.

059

28

02

.05

7a

6.57

2.0

50.

010.

46

RH

NC

109

8.4

877.

55.

50.

760.

06

25

00.

523

c6.

781.

760.

03

0.57

RH

NC

112

68

0.5

811

.51.

180.

06

341

00.

68

6a

2.6

90.

77

0.01

0.3

4

RH

NC

1214

6.4

75.5

1212

.50.

760.

057

270

0.78

6a

4.1

41.

270.

04

0.4

Page 72: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

74 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eE

Cp

HS

an

dS

ilt

Cla

yo

rgC

totN

to

tPto

tK

P

ex

Me

tho

de

xC

ae

xM

ge

xN

ae

xK

RH

NC

138

8.8

90

55

0.53

0.0

412

50

0.6

55

c6.

53

1.51

0.0

50.

55

RH

NE

011

6.4

960.

53.

50.

10.

011

200

1.28

2a

1.01

0.6

40.

010.

24

RH

NE

02

37.

67

715

80.

160.

019

28

01.

414

a1.

761.

190.

28

0.7

7

RH

NE

03

46.

156.

517

26.5

0.5

0.0

532

01.

5119

a3.

46

1.6

0.02

0.71

RH

NE

04

76.

68

06.

513

.50.

150.

016

110

2.1

63

a1.

511.

68

0.31

0.5

RH

NE

05

37.

591

4.5

4.5

0.26

0.02

120

2.1

98

a2

.28

0.67

0.02

0.55

RH

NE

06

118.

771

.514

.514

0.6

0.0

5726

01.

54

18c

7.53

2.5

0.01

0.91

RH

NE

0719

00

7.5

72

16.5

11.5

0.4

20.

02

32

50

1.71

14c

8.11

4.2

82

.16

2.7

3

RH

NE

08

76.

174

.511

14.5

0.59

0.0

55

310

0.9

11a

3.41

1.0

30.

070.

53

RH

NE

09

98.

672

1513

0.6

30.

06

62

50

0.95

9c

16.5

1.0

50.

010.

83

RH

NE

103

5.7

58.

514

.527

0.4

60.

04

229

00.

577

a2

.42

1.9

0.0

80.

45

RH

NE

112

6.8

759.

515

.50.

42

0.0

4941

00.

55

19a

10.1

910

.71

0.0

40.

44

RH

NE

1210

8.2

78.5

813

.50.

60.

056

270

1.3

414

c14

.29

4.1

50.

010.

59

RH

NW

015

679

9.5

11.5

1.2

50.

08

43

40

0.71

5a

3.4

30.

83

0.0

60.

39

RH

NW

02

25.

979

9.5

11.5

0.41

0.0

33

33

00.

72

6a

1.82

0.67

0.02

0.37

RH

NW

03

26.

286.

54.5

90.

210.

016

40

00.

53

27a

1.3

40.

64

0.01

0.3

3

RH

NW

04

96.

84

327

.529

.50.

820.

078

46

01.

45

14a

10.5

53.

140.

25

1.47

RH

NW

05

87.

851

.517

31.5

0.35

0.0

424

01.

53

17c

7.7

2.4

20.

61.

28

RH

NW

06

108.

14

82

23

00.

520.

056

200

1.41

7c

13.1

12

.50.

03

1.8

4

RH

NW

078

5.8

66.

513

20.5

0.6

0.0

493

40

1.0

68

a3.

83

0.8

0.02

0.52

RH

NW

08

68.

13

418

48

0.4

80.

052

140

0.8

415

c4

05.

83

0.2

31.

12

RH

NW

09

26.

876

9.5

14.5

0.32

0.0

427

01.

1619

a6.

957.

240.

04

0.6

6

RH

NW

103

6.4

63

1720

1.6

60.

113

36

01.

249

a6.

591.

72

0.01

0.67

RH

NW

115

7.9

45

16.5

38.

50.

42

0.0

472

30

1.5

12c

9.27

2.7

20.

11.

41

RH

NW

1211

00

8.6

65

278

0.6

40.

058

200

1.27

4c

6.82

6.95

5.0

33.

95

RH

NW

1321

7.4

787.

514

.50.

270.

024

160

0.82

5c

2.8

40.

99

0.27

1.12

TC

MB

C01

117.

486.

56.

57

0.0

80.

013

180

1.24

7c

2.4

12

.01

0.32

0.5

4

TC

MB

C02

166.

781

.512

6.5

0.11

0.01

73

00

0.9

9a

2.4

11.

690.

320.

32

TC

MB

C0

39

975

.515

.59

0.4

0.0

598

0.57

2c

8.8

43.

84

0.01

0.3

TC

MB

C0

43

6.1

60.

518

.521

0.26

0.0

34

310

1.02

7a

2.0

71.

760.

010.

48

TC

MB

C0

53

5.7

6713

.519

.50.

66

0.0

573

40

1.02

7a

2.4

10.

85

0.0

40.

4

Page 73: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 75

TC

MB

C0

63

5.4

80.

56.

513

0.62

0.0

4732

01

5a

1.0

80.

77

0.01

0.28

TC

MB

C07

88.

386.

56.

57

0.2

20.

029

320

1.2

7c

2.3

61.

65

0.37

0.3

4

TC

MB

C0

82

672

1117

0.21

0.024

36

00.

769

a2

.21

1.51

0.0

30.

33

TC

MB

C0

93

6.4

75.5

915

.50.

410.

04

55

40

1.4

431

a3.

34

1.71

0.0

40.

52

TC

MB

C10

88.

693

.52

.54

0.41

0.0

33

30

01.

826

c5.

021.

66

0.13

0.41

TC

MB

C11

98.

879

147

0.61

0.07

210

0.95

14c

8.26

0.7

70.

10.

83

TC

MB

C12

25.

967

.515

17.5

0.21

0.027

34

01.

1412

a1.

811.

070.

02

0.4

6

TC

MB

E01

45.

972

1216

0.58

0.0

44

33

00.

55

5a

2.4

70.

86

0.0

30.

38

TC

MB

E02

26.

46

5.5

15.5

190.

54

0.0

46

290

0.92

5a

3.62

1.26

0.2

0.6

TC

MB

E0

32

67

7.5

1012

.50.

620.

051

260

0.6

53

a2

.26

1.27

0.16

0.37

TC

MB

E0

42

6.3

77

914

0.3

0.02

831

00.

494

a2

.06

0.91

0.0

30.

33

TC

MB

E0

52

670

.513

.516

0.95

0.0

66

45

00.

616

a3.

05

0.8

80.

010.

53

TC

MB

E0

65

6.3

40

33

270.

510.

056

54

01.

118

a6.

48

1.93

0.0

61.

24

TC

MB

E07

108.

876

.515

.58

0.56

0.0

56

270

0.52

5c

9.24

2.0

20.

09

0.56

TC

MB

E0

85

7.4

86

6.5

7.5

0.74

0.0

56

30

00.

762

c5.

612

.04

0.0

80.

77

TC

MB

E0

94

672

.512

.515

1.0

80.

077

420

0.59

6a

3.93

0.96

0.0

60.

45

TC

MB

E10

47.

824

.528.

547

0.3

40.

039

950.

77

2c

23.

279.

510.

56

1.31

TC

MB

E11

46.

46

5.5

16.5

181.

170.

121

290

1.07

13a

5.0

81.

86

0.07

0.89

TC

MB

E12

97

61.5

19.5

192

.04

0.20

16

40

0.97

82c

9.4

61.

56

1.0

61.

29

TC

MB

E13

26.

774

1313

1.3

30.

108

200

0.4

34

a11

.14

4.4

80.

05

0.37

TC

MB

W01

26.

98

59.

55.

50.

160.

024

240

2.0

719

a1.

910.

930.

010.

33

TC

MB

W02

78.

18

010

.59.

50.

33

0.0

36

180

2.6

613

c5.

691.

20.

06

0.41

TC

MB

W0

33

5.9

79.5

1010

.50.

44

0.0

324

60

0.52

5a

1.7

0.56

0.01

0.2

3

TC

MB

W0

427

6.4

67.5

17.5

150.

610.

0721

01.

23

10a

5.71

5.0

60.

23

0.4

4

TC

MB

W0

510

8.9

65.

526

8.5

1.17

0.13

117

00.

45

3c

9.6

63.

77

0.14

0.4

4

TC

MB

W0

64

5.9

5919

22

1.19

0.10

451

00.

7411

a3.

911.

130.

10.

63

TC

MB

W07

25.

85

4.5

1926

.50.

520.

04

647

00.

63

11a

2.9

11.

010.

10.

64

TC

MB

W0

811

8.4

42

2731

0.5

40.

061

25

01.

1115

c13

.82

6.52

0.2

1.27

TC

MB

W0

99

5.5

49.5

25

25.

50.

510.

04

34

200.

76

a4.0

51.

38

0.16

0.8

8

TC

MB

W10

46.

33

4.5

42

23.

50.

68

0.0

66

470

0.86

10a

5.29

1.97

0.17

1.3

TC

MB

W11

26.

26

3.5

19.5

170.

70.

05

447

00.

72

13a

3.8

31.

33

0.15

0.58

TC

MB

W12

47.

619

.532

48.

50.

390.

041

240

0.96

15c

19.6

510

.39

0.27

1.28

Page 74: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

76 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eE

Cp

HS

an

dS

ilt

Cla

yo

rgC

totN

to

tPto

tK

P

ex

Me

tho

de

xC

ae

xM

ge

xN

ae

xK

TC

MB

W13

135.

678

1012

0.29

0.026

46

00.

55

5a

1.79

1.1

0.17

0.29

WY

E01

46

7910

.510

.50.

70.

06

559

00.

9527

a5.

621.

23

0.01

0.62

WY

E02

67.

651

.531

17.5

0.82

0.0

8224

01.

0110

a11

.98

4.6

20.

130.

62

WY

E0

34

7.4

77.

515

.57

0.4

40.

036

40

00.

56

17a

4.8

32

.64

0.02

0.2

5

WY

E0

455

7.9

57.5

22

20.5

0.35

0.0

38

200

1.14

16c

8.92

2.3

70.

071

WY

E0

52

6.9

8110

.58.

50.

35

0.0

372

30

0.95

9a

43.

610.

03

0.32

WY

E0

63

6.2

79.5

7.5

130.

210.

021

160

2.7

67

a1.

571.

210.

04

0.38

WY

E07

126.

786.

56.

57

0.35

0.0

3916

02

.13

8a

2.3

71

0.36

0.67

WY

E0

814

67

711

120.

920.

08

120

01.

2610

0a

3.3

41.

55

0.0

90.

9

WY

E0

912

8.2

7615

.58.

50.

980.

091

470

1.51

21c

8.71

2.8

80.

190.

65

WY

E10

26.

48

3.5

9.5

70.

870.

077

43

00.

747

a3.

141

0.02

0.37

WY

E11

55.

67

711

121.

130.

094

820

1.8

514

0a

4.0

61.

58

0.02

0.62

WY

E12

16.

678

.59

12.5

0.26

0.0

35

34

02

16a

2.5

64.3

10.

010.

47

WY

E13

46.

976

8.5

15.5

0.6

30.

047

33

00.

8712

a4.0

11.

820.

02

0.59

WY

W01

50

6.4

72

.515

.512

0.21

0.024

150

1.26

5a

2.1

22

.08

0.38

0.27

WY

W02

26.

77

7.5

148.

50.

260.

028

170

1.56

6a

2.2

81.

210.

010.

21

WY

W0

310

6.6

7813

90.

130.

015

150

1.0

58

a2

.32

1.0

30.

160.

28

WY

W0

41

6.4

97.5

0.5

20.

08

0.0

05

55

0.4

42

a0.

44

0.1

0.01

0.0

3

WY

W0

53

6.5

82.5

8.5

90.

43

0.0

3918

01.

25

6a

2.2

10.

50.

010.

22

WY

W0

62

782

.55.

512

0.18

0.01

913

01.

796

a2

.71.

05

0.01

0.27

WY

W07

26

75.5

816

.50.

28

0.028

170

2.1

210

a1.

38

10.

03

0.4

2

WY

W0

81

69

0.5

36.

50.

130.

012

110

2.0

26

a0.

72

0.5

0.01

0.14

WY

W0

97

8.5

80.

512

.57

0.38

0.0

44

180

1.27

7c

4.9

91.

58

0.07

0.32

WY

W10

26.

281

910

0.2

30.

027

150

1.0

96

a1.

88

1.19

0.02

0.3

WY

W11

46.

787

6.5

6.5

0.26

0.029

180

1.35

16a

2.1

60.

920.

04

0.4

4

WY

W12

36.

38

4.5

96.

50.

38

0.0

3916

01.

44

7a

2.4

30.

950.

010.

21

Page 75: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 77

Fie

ld S

am

pli

ng

S

am

ple

s fo

r a

na

lysi

s w

ere

ba

sed

on

co

mp

osi

te (

bu

lked

) sa

mp

les

tak

en f

rom

th

e fl

ori

stic

qu

adra

t at

eac

h s

urv

ey s

ite.

Ten

su

b-s

am

ple

s w

ere

tak

en f

rom

a

reg

ula

r g

rid

co

ver

ing

eac

h 5

0 x

50

m q

uad

rat.

Su

b-s

am

ple

s w

ere

tak

en

fro

m t

he

A1

ho

riz

on

at

a u

nif

orm

dep

th b

etw

een

5–1

5 c

m.

Bu

lked

sa

mp

les

each

ab

ou

t 2

kg

wer

e a

ir d

ried

in

th

e fi

eld

pri

or

to d

eliv

ery

to

th

e la

bo

rato

ry.

Ch

em

ica

l A

na

lysi

s M

eth

od

s.A

ll a

na

lyse

s w

ere

con

du

cted

by

th

e W

este

rn A

ust

rali

an

Ch

emis

try

Cen

tre,

P

erth

.

EC

(1

:5)

mS

/mM

easu

red

by

co

nd

uct

ivit

y m

eter

at

25°

C o

n a

1:5

ex

trac

t o

f so

il a

nd

dei

on

ised

w

ater

.

Ray

men

t, G

.E.

an

d H

igg

inso

n,

F.R

. (1

992

). E

lect

rica

l C

on

du

ctiv

ity

pp

15

–16.

In:

Aus

tral

ian

Labo

rato

ry H

andb

ook

of S

oil a

nd W

ater

Che

mic

al M

etho

ds.

Ink

ata P

ress

: M

elb

ou

rne.

(M

eth

od

3A

1).

pH

(H

2O

)M

easu

red

by

pH

met

er o

n a

1:5

ex

trac

t o

f so

il i

n d

eio

nis

ed w

ater

.

Ray

men

t, G

.E.

an

d H

igg

inso

n,

F.R

. (1

992

). S

oil

pH

. p

p 1

7–18

In:

Aus

tral

ian

Lab

orat

ory

Han

dboo

k of

Soi

l an

d W

ater

Che

mic

al M

etho

ds.

Ink

ata

P

ress

, M

elb

ou

rne.

(M

eth

od

4A

1).

Pa

rtic

le S

izin

g (

% s

an

d,

silt

, cl

ay)

Det

erm

ined

by

mo

difi

ed

‘p

lum

met

’ p

roce

du

re.

So

il d

isp

erse

d w

ith

a s

olu

tio

n

of

Ca

lgo

n -

so

diu

m h

yd

rox

ide,

th

en s

ilt

(0.0

02–

0.02

0 m

m)

an

d c

lay

(<

0.0

02

mm

) w

as

mea

sure

d b

y d

ensi

ty m

easu

rem

ents

usi

ng

a p

lum

met

aft

er s

tan

da

rd

sett

lin

g t

imes

.

Lo

ved

ay,

J. (

ed)

(197

4).

Met

hods

for

Ana

lysi

s of

Irr

igat

ed S

oils

. C

om

mo

nw

ealt

h

Bu

rea

u

of

So

ils,

T

ec

hn

ica

l C

om

mu

nic

ati

on

N

o.

54

, C

om

mo

nw

ea

lth

A

gri

cult

ura

l B

ure

aux

: F

arn

ha

m R

oy

al,

En

gla

nd

.

totN

(%

)T

ota

l n

itro

gen

mea

sure

d b

y K

jeld

ah

l d

iges

tio

n o

f so

il.

Ray

men

t, G

.E.

an

d H

igg

inso

n,

F.R

. (1

992

). S

oil

pH

. p

p 4

1–4

3 I

n:

Aus

tral

ian

Lab

orat

ory

Han

dboo

k of

Soi

l an

d W

ater

Che

mic

al M

etho

ds.

Ink

ata

P

ress

: M

elb

ou

rne.

(M

eth

od

7A

2).

totP

(m

g/k

g)

Me

asu

red

b

y

colo

rim

etr

y

on

th

e

Kje

lda

hl

dig

est

fo

r to

tal

N

usi

ng

a

mo

difi

cat

ion

of

the

Mu

rph

y a

nd

Ril

ey m

oly

bd

enu

m b

lue

pro

ced

ure

.

Mu

rph

y, J

. a

nd

Ril

ey,

J.P.

(19

62).

A m

od

ifi e

d s

ing

le s

olu

tio

n m

eth

od

fo

r th

e d

eter

min

atio

n o

f p

ho

sph

ate

in n

atu

ral

wat

ers.

Ana

lyti

ca C

him

ica

Act

a 27:

31–

36.

org

C (

%)

Det

erm

ined

by

th

e m

eth

od

of

Wa

lkle

y a

nd

Bla

ck.

Wa

lkle

y, A

., a

nd

Bla

ck,

I.A

. (1

934)

. A

n e

xa

min

atio

n o

f th

e D

egtj

are

ff m

eth

od

fo

r d

ete

rmin

ing

so

il

org

an

ic

mat

ter

an

d

a

pro

po

sed

m

od

ifi c

atio

n

of

the

chro

mic

aci

d t

itra

tio

n m

eth

od

. So

il Sc

ienc

e 37

: 29

–38.

K (

XR

F)

(%)

Ex

trac

ted

in

0.5

M N

aH

CO

3 (

1:10

0) u

sin

g t

he

pro

ced

ure

of

Jeff

erey

.

Jeff

erey

R.

(198

2).

Mea

sure

men

t of

Pot

assi

um i

n 0.

5M N

aHC

O3

Ext

ract

s of

Soi

l by

Fla

me

AA

S.

An

nu

al

Te

chn

ica

l R

ep

ort

N

o.

2,

Ag

ricu

ltu

ral

Ch

em

istr

y

La

bo

rato

ry,

Go

ver

nm

ent

Ch

emic

al

La

bo

rato

ries

: W

este

rn A

ust

rali

a.

P (

HC

O3)

mg

/kg

Ex

trac

ted

in

0.5

M N

aH

CO

3 (

1:10

0) u

sin

g t

he

pro

ced

ure

of

Co

lwel

l.

Co

lwel

l,

J.D

. (1

963)

. T

he

est

imat

ion

o

f p

ho

sph

oru

s fe

rtil

izer

re

qu

irem

net

s o

n w

hea

t in

so

uth

er N

ew S

ou

th W

ale

s, b

y s

oil

an

aly

sis.

Aus

tral

ian

Jour

nal

of

Agr

icul

ture

and

Ani

mal

Hus

band

ry 3

: 19

0–1

97.

ex

Me

tho

d:

ex

Ca

, e

xM

g,

ex

Na

, e

xK

(m

e%)

Exch

an

gea

ble

Cat

ion

s w

ere

mea

sure

d b

y i

nd

uct

ivel

y c

ou

ple

d p

lasm

a -

ato

mic

em

issi

on

sp

ectr

op

ho

tom

etry

(IC

P-A

ES).

So

lub

le s

alt

s w

ere

rem

ov

ed f

rom

so

ils

wit

h E

C (

1:5)

>20

mS/

m b

y w

ash

ing

wit

h g

lyco

l-et

ha

no

l. C

atio

ns

an

aly

sed

u

sin

g o

ne

of

thre

e ex

trac

tio

n m

eth

od

s:

a)

1M N

H4

Cl

at p

H 7

.0 -

Use

d f

or

neu

tra

l so

ils

(pH

bet

wee

n 6

.5 &

8.0

).

R

aym

ent,

G.E

. &

Hig

gin

son

, F.

R.

(19

92).

Io

n-e

xch

an

ge

Pro

per

ties

. In

:

Aus

tral

ian

Labo

rato

ry H

andb

ook

of S

oil a

nd W

ater

Che

mic

al M

etho

ds.

Ink

ata

P

ress

, M

elb

ou

rne

pp

138

–145.

(M

eth

od

15A

1, 1

5A2)

.

b)

0.1M

BaC

l2 (

un

bu

ffer

ed)

- U

sed

fo

r ac

idic

so

ils

on

ly (

pH

<6.

5)

U

np

ub

lish

ed W

A A

gri

cult

ura

l C

hem

istr

y L

ab

ora

tory

pro

ced

ure

.

C

atio

ns

(Ca,

Mg

, N

a, K

, A

l &

Mg

) w

ere

mea

sure

d b

y I

CP

-AE

S.

c)

1M N

H4

Cl

at p

H 8

.5 -

Use

d f

or

calc

are

ou

s so

ils

Mo

difi

ed

met

ho

d f

rom

Ray

men

t, G

.E.

& H

igg

inso

n,

F.R

. (1

992

). I

on

-exch

an

ge

Pro

per

ties

p

p

148

–15

4.

In:

Aus

tral

ian

Labo

rato

ry H

andb

ook

of S

oil

and

Wat

er

Che

mic

al M

etho

ds.

Ink

ata P

ress

: M

elb

ou

rne.

(M

eth

od

15C

1).

Page 76: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

78 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

AP

PE

ND

IX D

Geo

mo

rph

ic a

ttri

bu

tes

of

the

304 t

erre

stri

al

bio

div

ersi

ty s

ites

sa

mp

led

du

rin

g t

he

Pil

ba

ra b

iod

iver

sity

su

rvey

. K

ey t

o c

olu

mn

lab

els:

so

ilD

So

il d

epth

(cm

); S

ub

s m

ain

su

bst

rate

ty

pe

(sa

nd

y, r

ock

y o

r cl

ayey

); g

m7 g

m10

gm

13

geo

mo

rph

ic u

nit

in

7,

10 a

nd

13 c

ateg

ori

es,

resp

ecti

vel

y;

Slp

slo

pe;

Ele

v e

lev

atio

n (

m);

Asp

asp

ect;

R

ug

50

0 t

op

og

rap

hic

ru

gg

edn

ess

in 5

00

m r

adiu

s; S

un

su

n i

nd

ex;

Fab

u s

urf

ace

rock

fra

gm

ent

ab

un

da

nce

; F

ma

x s

urf

ace

rock

ma

xim

um

siz

e; O

utc

rp e

xte

nt

of

rock

ou

tcro

p;

Cst

dis

tan

ce t

o c

oa

stli

ne

(km

); R

iv d

ista

nce

to

a d

rain

age

lin

e w

ith

a d

isti

nct

rip

ari

an

zo

ne

(km

); G

cov

to

tal

gro

un

d v

eget

atio

n c

ov

er.

Fu

rth

er

exp

lan

atio

n i

s p

rov

ided

bel

ow

th

e ta

bu

lati

on

.

Sit

eso

ilD

Su

bs

gm

7g

m10

gm

13

Slp

Ele

vA

spR

ug

50

0S

un

Fa

bu

Fm

ax

Ou

tcrp

Cst

Riv

Gco

v

BD

RN

0110

0.0

sF

ii

1.0

539

20.

35

2.1

5-0

.14

00

029

9.7

2.4

12

BD

RN

02

20.6

rA

cc

0.51

40

30.

55

1.0

8-0

.28

53

029

6.0

3.3

9

BD

RN

03

19.6

rA

cc

1.3

041

00.

213.

66

2.2

65

31

291.

46.

49

BD

RN

04

24.4

rA

cc

0.62

44

81.

371.

62-0

.99

54

031

2.5

2.1

11

BD

RN

05

26.6

cC

ff

1.6

04

63

1.07

6.55

1.8

34

30

30

4.3

8.0

11

BD

RN

06

12.0

rA

bb

4.5

64

670.

40

7.41

-1.1

34

41

302

.06.

17

BD

RN

0710

.4c

Cf

f1.

214

66

1.6

65.

34

0.14

43

029

8.3

3.6

8

BD

RN

08

25.

6r

Cd

d0.

77

458

0.11

3.75

1.27

43

029

6.9

2.3

8

BD

RN

09

17.2

rA

bb

1.17

48

31.

988.

57-1

.13

55

33

03.

95.

410

BD

RN

1018

.0r

Ac

c0.

7349

61.

783.

60

-0.1

44

41

292

.41.

59

BD

RN

1116

.6r

Ab

b0.

6949

50.

013.

83

0.71

55

129

1.4

0.6

11

BD

RN

126.

8r

Aa

a0.

8152

71.

713.

46

-1.4

14

55

311.

814

.312

BD

RN

132

3.6

rA

cc

1.62

50

00.

296.

490.

00

34

031

3.4

14.5

12

BD

RS

012

5.0

cC

ff

0.47

53

00.

763.

17-0

.42

43

037

9.2

1.7

11

BD

RS

02

36.

4c

Cf

f0.

5751

71.

60

4.0

1-0

.99

00

037

7.2

0.5

5

BD

RS

03

8.6

rA

bb

7.61

526

0.0

08.

299.

315

45

374.0

0.1

15

BD

RS

04

100.

0s

Dj

js0.

4151

70.

45

1.10

-0.1

41

10

375.

50.

613

BD

RS

05

48.

8s

Fi

i0.

8951

40.

23

0.97

1.55

00

037

2.1

3.0

8

BD

RS

06

21.4

cC

ff

0.98

525

1.94

4.4

5-1

.55

33

037

0.9

1.6

9

BD

RS

0710

.2r

Ab

b3.

90

54

31.

947.

23

-2.8

25

43

372

.02

.510

BD

RS

08

26.2

rA

bb

0.69

559

0.01

8.17

0.9

95

54

377.

63.

78

BD

RS

09

15.6

rA

bb

10.0

456

81.

8113

.70

-17.

494

43

379.

21.

515

BD

RS1

021

.4c

Cf

f0.

82552

0.17

3.7

71.

414

30

381

.11.

26

BD

RS1

135.

6c

Cf

f0.

695

48

1.9

92

.50

-0.9

93

30

38

5.5

0.3

5

BD

RS1

224

.8s

Gg

gs

0.51

55

40.

55

2.1

5-0

.28

44

139

0.2

0.7

8

Page 77: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 79

BD

RS1

316

.2c

Cf

f0.

1652

61.

711.

28

-0.2

80

00

376.

70.

48

DR

C01

30.

6r

Ab

b1.

4926

1.92

3.79

-0.9

94

41

5.7

5.1

7

DR

C02

67.8

cB

ee

0.26

201.

45

2.1

00.

143

30

5.8

4.2

7

DR

C0

335.

6c

Cf

f0.

5720

0.20

1.4

40.

99

13

08.

13.

013

DR

C0

474

.4c

Dj

jc0.

46

23

1.0

02

.47

0.56

23

014

.90.

06

DR

C0

520

.0r

Ab

b2

.52

83

0.91

4.7

0-2

.82

44

227

.53.

25

DR

C0

63.

4r

Ab

b20

.67

232

1.11

56.

03

-29.

476

52

38.

81.

47

DR

C07

19.0

rA

cc

0.91

42

2.0

013

.05

-1.1

34

40

28.

10.

48

DR

C0

83.

0r

Aa

a5.

08

54

1.74

11.5

6-0

.42

57

220

.94.4

11

DR

C0

910

.6c

Cf

f2

.45

34

1.8

88.

06

-4.0

94

31

15.9

8.1

8

DR

C10

6.2

rA

bb

6.56

38

1.78

10.2

1-1

.27

44

29.

14.4

9

DR

C11

15.4

rA

bb

0.51

131.

893.

97-0

.85

45

33.

53.

710

DR

C12

71.0

cE

hh

c1.

211

1.75

1.20

-0.1

40

20

0.2

5.1

1

DR

E01

100.

0c

Eh

hc

0.51

71.

891.

17-0

.28

00

00.

96.

23

DR

E02

100.

0s

Fi

i0.

577

2.0

01.

66

-0.7

10

00

0.4

6.5

9

DR

E0

328.

6r

Ab

b1.

178

0.02

1.3

31.

134

44

1.2

6.3

7

DR

E0

410

0.0

cC

ff

0.73

71.

621.

25

0.14

00

01.

06.

69

DR

E0

553.

4s

Fi

i0.

518

1.89

0.9

0-0

.85

00

03.

24.7

11

DR

E0

610

0.0

cC

ff

0.11

122

.00

1.3

4-0

.14

00

09.

50.

35

DR

E07

49.6

sF

ii

0.4

62

31.

00

1.0

4-0

.56

00

021

.62

.411

DR

E0

88.

8r

Ab

b3.

88

491.

00

9.91

4.7

95

54

21.8

0.1

6

DR

E0

926

.4c

Cf

f0.

5759

0.4

04.0

0-0

.14

42

024

.10.

87

DR

E10

22

.8c

Cf

f0.

476

50.

03

1.96

0.71

33

129

.41.

19

DR

E11

48.

0s

Fi

i0.

46

691.

00

1.76

0.56

00

032

.12

.69

DR

E12

32.4

cC

ff

0.57

511.

60

1.19

0.14

13

03

4.7

1.2

8

DR

E13

28.

2s

Gg

gs

0.57

750.

40

1.12

-0.1

42

42

43.

93.

35

DR

W01

100.

0s

Fi

i0.

23

101.

00

1.69

-0.2

80

00

0.2

6.9

7

DR

W02

19.4

rA

cc

0.51

100.

55

1.62

-0.2

81

30

0.3

6.9

10

DR

W0

34

3.4

sE

hh

s0.

577

2.0

01.

12-0

.71

00

01.

45.

77

DR

W0

46.

3s

Dj

js0.

58

200.

02

1.61

0.8

53

40

15.5

0.0

6

DR

W0

520

.7r

Ab

b3.

1241

1.4

86.

871.

55

55

414

.31.

45

DR

W0

658.

0c

Cf

f0.

8951

0.36

1.6

31.

55

53

012

.91.

28

Page 78: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

80 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eso

ilD

Su

bs

gm

7g

m10

gm

13

Slp

Ele

vA

spR

ug

50

0S

un

Fa

bu

Fm

ax

Ou

tcrp

Cst

Riv

Gco

v

DR

W07

42

.2c

Gg

gc

0.91

45

1.0

01.

63

1.13

43

011

.40.

37

DR

W0

89.

2s

Gg

gs

0.16

56

0.29

1.67

0.28

44

111

.11.

36

DR

W0

916

.0c

Cf

f1.

38

45

0.2

55.

08

0.14

34

010

.53.

56

DR

W10

4.6

rA

bb

1.95

45

0.0

06.

33

2.2

65

52

10.3

3.2

7

DR

W11

3.6

rA

bb

1.72

30

0.0

06.

192

.26

55

27.

21.

310

DR

W12

28.

8c

Cf

f0.

1110

1.0

01.

39-0

.14

33

05.

81.

66

DR

W13

51.6

cE

hh

c0.

517

0.11

1.35

0.8

51

30

1.9

1.7

3

MB

E01

76.4

cC

ff

1.2

321

21.

93?

-0.8

55

30

4.9

1.7

10

MB

E02

17.0

rA

cc

1.6

52

53

0.17

7.5

42

.82

45

113

6.2

3.0

7

MB

E0

315

.8s

Gg

gs

0.89

274

0.36

2.4

7-0

.14

24

114

7.3

1.6

11

MB

E0

493

.4s

Dj

js0.

4126

80.

172

.07

0.14

23

014

7.8

0.1

10

MB

E0

510

.0r

Ab

b2

.28

275

1.8

016

.35

-0.5

65

61

148.

80.

610

MB

E0

67.

2r

Aa

a2

.02

243

1.28

21.5

51.

694

75

148.

72

.19

MB

E07

94.0

cC

ff

1.0

319

81.

00

2.0

21.

270

00

133.

70.

911

MB

E0

86

3.0

cB

ee

0.2

320

21.

00

2.3

10.

28

33

012

9.7

1.3

11

MB

E0

914

.2r

Ab

b7.

05

262

1.93

14.5

2-5

.08

45

412

5.9

5.2

9

MB

E11

11.2

rA

bb

1.28

23

41.

8913

.16

-2.1

23

42

121.

69.

28

MB

E12

13.0

rA

cc

0.67

23

01.

5113

.67

-1.1

34

40

119.

59.

29

MB

E13

23.

0r

Cd

d11

.28

236

1.96

17.7

5-9

.59

43

011

1.2

2.8

6

MB

W01

28.

4r

Ab

b1.

34

188

0.0

69.

55

2.1

23

54

81.0

0.0

6

MB

W02

23.

8r

Ab

b5.

09

196

0.24

12.2

70.

715

43

80.

90.

110

MB

W0

317

.2r

Ab

b2

.29

193

0.0

013

.62

2.6

85

41

84.4

0.0

8

MB

W0

42

2.6

rA

bb

3.11

187

0.19

7.91

5.36

54

48

4.4

0.3

7

MB

W0

519

.4r

Cd

d1.

3917

90.

013.

09

1.97

44

187

.20.

77

MB

W0

658.

4s

Fi

i1.

02

176

1.89

1.61

-1.6

91

20

88.

52

.48

MB

W07

60.

8s

Dj

js0.

4714

30.

761.

48

0.71

44

081

.40.

018

MB

W0

847

.4s

Fi

i0.

48

138

1.71

0.9

90.

00

11

081

.51.

27

MB

W0

93

3.2

sF

ii

0.67

155

0.49

1.91

1.13

32

087

.72

.99

MB

W10

20.6

rA

aa

0.81

187

1.14

3.0

30.

85

23

410

4.5

0.9

16

MB

W11

17.6

rA

aa

3.49

248

1.20

10.5

3-5

.08

46

511

3.9

5.2

12

MB

W12

24.2

sG

gg

s0.

922

320.

88

2.8

6-0

.99

32

111

7.9

4.7

9

Page 79: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 81

MB

W13

23.

8s

Gg

gs

0.41

229

0.4

52

.07

-0.1

43

31

124.5

3.1

12

NE

012

2.8

rA

cc

0.87

241

1.39

9.58

-1.4

14

31

150.

93.

54

NE

02

12.8

rA

bb

9.39

274

0.4

513

.56

16.2

25

43

152

.04.6

5

NE

03

21.6

cB

ff

0.47

278

1.24

4.3

30.

42

43

115

5.9

0.7

6

NE

04

21.2

rA

bb

3.58

279

1.38

27.3

4-5

.78

45

416

7.3

5.3

8

NE

05

36.

8c

Bf

f0.

8226

20.

173.

011.

414

41

168.

33.

411

NE

06

36.

4c

Cf

f0.

692

50

1.9

92

.50

-0.7

14

40

171.

04.9

8

NE

076

5.0

cB

ee

0.16

23

40.

291.

210.

00

14

016

7.2

1.7

8

NE

08

23.

4c

Cf

f0.

58

241

1.20

2.8

3-0

.85

43

017

4.2

3.1

9

NE

09

3.8

rA

dd

6.3

02

570.

02

9.47

9.31

43

217

4.9

5.2

8

NE

1092

.0c

Dj

jc0.

36

210

0.6

81.

58

-0.2

83

30

176.

10.

47

NE

1115

.6r

Ab

b1.

08

317

0.47

3.6

4-0

.42

44

218

0.1

2.5

7

NE

1226

.8r

Aa

a4.9

13

30

0.14

6.6

42

.12

45

417

9.8

6.8

9

NE

1310

0.0

sF

ii

1.24

314

0.4

52

.36

2.1

20

00

181.

59.

212

NW

0116

.2s

Ag

gs

2.0

74

25

1.11

6.12

2.2

64

42

220

.20.

48

NW

0211

.4r

Ab

b2

.42

396

0.67

3.67

-1.8

35

42

215.

90.

76

NW

03

14.8

rA

bb

6.02

40

91.

9314

.62

-4.0

94

64

194.

22

.69

NW

04

9.0

rA

bb

0.82

398

0.4

55.

05

1.41

44

218

4.2

6.8

9

NW

05

46.

2c

Cf

f0.

9237

31.

50

6.0

60.

42

32

018

6.1

6.1

13

NW

06

7.0

rA

bb

3.95

410

1.72

6.12

-0.1

45

43

179.

82

.47

NW

073

0.0

rA

bb

2.7

139

51.

38

7.4

01.

83

23

216

5.9

2.5

12

NW

08

12.8

rA

bb

3.12

372

1.4

06.

33

-5.0

84

43

163.

30.

912

NW

09

36.

6c

Gg

gc

1.37

318

0.0

03.

34

1.69

22

015

5.0

1.3

11

NW

102

5.6

sF

ii

1.02

321

0.11

3.12

0.56

34

115

9.5

0.5

10

NW

1124

.8s

Gg

gs

1.6

63

05

1.27

3.3

41.

413

42

155.

01.

39

NW

1220

.4r

Aa

a0.

983

00

1.94

2.8

1-0

.71

35

315

3.4

0.7

8

OY

E01

75.0

cB

ee

0.62

259

0.6

34.6

40.

99

54

072

.01.

64

OY

E02

9.0

rA

cc

0.92

260

0.13

3.81

0.4

25

51

76.3

4.4

8

OY

E0

36.

0c

Cf

f2

.44

282

0.81

7.55

3.53

54

179

.15.

510

OY

E0

43

0.8

cC

ff

0.8

03

08

1.0

05.

48

-0.9

90

00

95.5

9.1

14

OY

E0

59.

0r

Ac

c2

.31

325

1.9

93.

98-2

.40

54

098

.17.

814

OY

E0

627

.8c

Dj

jc0.

23

301

0.0

04.2

90.

28

13

010

1.2

5.5

14

Page 80: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

82 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eso

ilD

Su

bs

gm

7g

m10

gm

13

Slp

Ele

vA

spR

ug

50

0S

un

Fa

bu

Fm

ax

Ou

tcrp

Cst

Riv

Gco

v

OY

E07

4.2

rC

dd

1.3

431

20.

06

4.9

62

.12

44

210

1.4

5.1

11

OY

E0

826

.2c

Cf

f1.

08

321

0.47

3.41

1.8

35

40

108.

73.

313

OY

E0

93.

0r

Ab

b2

.02

258

0.32

4.2

53.

53

44

310

0.0

1.8

8

OY

E10

14.6

cC

ff

0.72

244

0.6

82

.66

-0.5

64

30

98.8

1.4

9

OY

E11

2.8

rA

cc

1.6

42

34

0.79

7.67

2.4

04

33

96.4

1.0

8

OY

E12

30.

4c

Cf

f0.

1619

91.

711.

40

0.0

01

20

85.

72

.219

OY

E13

15.6

rA

bb

2.8

929

61.

3215

.87

-4.5

13

41

104.0

0.4

9

OY

W01

20.2

sF

ii

1.0

314

81.

99

2.7

1-1

.41

12

070

.46.

46

OY

W02

28.

0c

Cf

f0.

1611

50.

290.

84

0.0

00

00

62.9

14.8

5

OY

W0

336.

0c

Cf

f0.

5713

51.

60

2.6

9-0

.99

43

059

.120

.76

OY

W0

419

.6c

Cf

f0.

7310

41.

622

.18

-1.2

75

30

50.

513

.76

OY

W0

510

.6r

Cd

d0.

8111

30.

293.

510.

00

54

049

.712

.97

OY

W0

610

.2r

Ac

c1.

38

108

0.0

02

.45

1.55

53

047

.710

.89

OY

W07

100.

0s

Dj

js0.

2667

1.89

6.4

5-0

.14

13

04

0.2

0.5

9

OY

W0

85.

4r

Ab

b1.

7169

1.0

06.

05

-2.1

25

44

40.

10.

48

OY

W0

918

.2c

Cf

f0.

4782

0.76

1.67

-0.4

25

30

40.

64.9

8

OY

W10

35.

8c

Cf

f0.

5757

0.20

1.14

0.9

90

00

36.

77.

35

OY

W11

11.4

cC

ff

0.32

35

0.29

1.0

60.

56

00

027

.24.1

7

OY

W12

26.4

sF

ii

0.81

270.

86

1.8

51.

130

00

21.6

4.2

4

OY

W13

31.0

sF

ii

0.4

811

0.29

0.93

0.8

50

00

18.5

16.1

8

PE

0167

.2c

Cf

f0.

23

356

1.0

01.

110.

28

12

012

9.2

0.1

10

PE

02

15.0

cC

ff

1.0

8361

0.47

2.3

81.

83

22

013

1.3

1.0

4

PE

03

100.

0c

Be

e0.

2635

41.

891.

46

-0.4

21

40

129.

40.

84

PE

04

15.6

cC

ff

1.8

436

81.

874.1

7-3

.10

44

012

2.5

5.2

6

PE

05

61.8

cD

jjc

0.16

375

0.29

1.0

00.

28

53

013

6.2

0.4

4

PE

06

35.

4c

Cf

f0.

51382

1.4

52

.13

-0.8

54

20

131.

92

.56

PE

073.

2r

Ac

c1.

5938

01.

936.

76-1

.13

44

212

1.7

6.2

4

PE

08

4.8

rA

bb

6.6

038

32

.00

7.52

-8.4

64

42

118.

97.

06

PE

09

20.4

cA

ff

0.69

407

0.0

02

.47

0.8

53

30

112

.52

.15

PE

1049

.4c

Be

e0.

36

418

1.95

2.2

3-0

.56

43

010

5.7

0.6

8

PE

1112

.0r

Ac

c4.1

137

11.

55

5.49

-7.0

54

41

121.

61.

26

Page 81: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 83

PE

128.

8r

Ab

b7.

6147

00.

99

19.1

9-9

.31

45

014

7.7

0.4

6

PH

YC

0193

.8s

Fi

i0.

9814

20.

193.

08

0.28

21

04

4.6

8.9

8

PH

YC

02

22

.4c

Gg

gc

0.87

130

1.39

1.71

0.56

23

04

5.2

5.9

9

PH

YC

03

5.6

rA

aa

0.4

811

61.

712

.27

-0.8

53

65

51.7

5.4

10

PH

YC

04

100.

0c

Dj

jc0.

1114

41.

00

1.8

4-0

.14

12

09

9.7

0.0

11

PH

YC

05

13.2

cC

ff

0.8

314

00.

733.

98-0

.71

32

098

.50.

510

PH

YC

06

13.4

cC

ff

0.26

113

0.11

1.62

0.14

13

08

4.0

5.4

11

PH

YC

078.

6r

Ab

b9.

63

138

0.0

036.

08

11.5

65

42

92.1

2.8

4

PH

YC

08

36.

8r

Ab

b1.

83

133

2.0

06.

03

-2.2

64

42

93.3

0.3

6

PH

YC

09

16.4

rC

dd

1.3

413

11.

34

2.2

0-2

.12

33

19

0.2

1.9

8

PH

YC

1015

.2c

Cf

f0.

6913

01.

164.3

30.

713

30

90.

53.

011

PH

YC

114.4

rA

bb

6.38

128

1.0

413

.95

7.61

55

28

5.4

1.2

9

PH

YC

124

2.0

cB

ee

0.81

109

1.9

91.

27-1

.13

12

082

.57.

47

PH

YE

0110

0.0

sF

ii

3.39

164

0.29

3.36

5.92

00

010

4.9

13.3

7

PH

YE

02

100.

0s

Fi

i0.

4116

20.

170.

820.

140

00

107.

214

.910

PH

YE

03

3.0

rC

dd

3.8

019

01.

66

6.98

0.4

24

32

112

.713

.28

PH

YE

04

12.0

cC

ff

0.58

162

0.8

01.

08

-0.5

63

10

110.

511

.410

PH

YE

05

95.4

cD

jjc

0.94

158

1.24

2.5

70.

85

12

012

1.0

0.1

13

PH

YE

06

31.6

cC

ff

0.92

173

0.5

02

.77

1.55

32

012

0.4

3.0

10

PH

YE

0710

.8c

Cf

f0.

6717

40.

491.

51-0

.28

34

013

0.3

1.1

14

PH

YE

08

65.

0c

Be

e0.

2616

30.

111.

490.

141

20

118.

76.

910

PH

YE

09

15.4

rA

cc

0.47

185

1.97

9.2

3-0

.42

33

011

9.2

1.4

10

PH

YE

1021

.8s

Gg

gs

0.47

164

1.24

1.81

-0.7

10

00

106.

14.3

17

PH

YE

1116

.6c

Cf

f0.

4712

40.

03

1.2

50.

42

12

096

.42

.712

PH

YE

125.

2r

Ab

b2

.55

131

0.82

25.

10-2

.54

46

492

.75.

113

PH

YE

1316

.4r

Ab

b8.

1213

90.

116.

9313

.54

44

189

.04.4

9

PH

YW

0110

0.0

sF

ii

1.62

101.

63

2.7

6-2

.82

00

00.

914

.78

PH

YW

02

48.

2c

Be

e0.

117

1.0

01.

24-0

.14

00

05.

011

.313

PH

YW

03

33.

8c

Cf

f0.

3219

1.71

0.9

90.

00

00

017

.814

.711

PH

YW

04

45.

4s

Fi

i0.

5732

0.20

1.8

80.

99

00

02

5.0

9.6

10

PH

YW

05

15.0

cB

ee

0.82

240.

45

1.73

1.41

00

026

.58.

37

PH

YW

06

91.2

sF

ii

0.2

355

0.0

01.

77

0.28

00

017

.85.

18

Page 82: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

84 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eso

ilD

Su

bs

gm

7g

m10

gm

13

Slp

Ele

vA

spR

ug

50

0S

un

Fa

bu

Fm

ax

Ou

tcrp

Cst

Riv

Gco

v

PH

YW

0749

.6c

Dj

jc0.

34

22

1.0

01.

37-0

.42

12

03

3.0

0.0

10

PH

YW

08

5.0

rA

bb

3.6

44

41.

7515

.75

-6.3

55

54

31.4

2.5

12

PH

YW

09

7.6

rA

bb

6.21

55

0.52

13.9

7-3

.10

46

329

.45.

413

PH

YW

1056.

0s

Fi

i0.

1121

1.0

01.

310.

140

00

24.3

7.6

7

PH

YW

114

5.6

cC

ff

0.58

100.

02

1.36

0.8

50

00

10.2

3.3

10

PH

YW

1235.

2s

Fi

i0.

473

41.

242

.15

0.4

21

30

15.4

2.7

8

PH

YW

134

8.6

cC

ff

0.94

131.

241.

46

0.8

50

00

9.5

0.0

12

PW

011.

0r

Ab

b3.

22

161

0.11

6.3

41.

695

50

65.

10.

53

PW

0226

.0r

Ab

b3.

22

186

1.39

19.1

4-5

.22

43

26

4.1

2.4

6

PW

03

5.2

rA

cc

2.3

83

48

1.82

5.61

-0.7

14

41

66.

81.

45

PW

04

72

.6c

Be

e0.

813

45

1.71

3.4

3-1

.41

54

072

.94.1

4

PW

05

100.

0c

Dj

jc1.

28

292

0.82

2.1

7-1

.27

00

095

.50.

68

PW

06

30.

2c

Cf

f0.

623

35

0.07

1.95

0.9

93

20

105.

713

.28

PW

0741

.4c

Cf

f0.

2631

70.

55

1.0

6-0

.14

24

010

2.6

8.0

11

PW

08

16.4

rC

dd

0.4

63

071.

00

1.6

6-0

.56

23

097

.92

.510

PW

09

100.

0c

Dj

jc2

.22

28

80.

43

3.24

3.81

24

095

.10.

03

PW

102

.2r

Ab

b1.

34

30

91.

945.

78-2

.12

44

194

.20.

65

PW

113

4.2

rA

bb

0.8

33

371.

273.

88

-1.2

74

41

91.8

3.2

4

PW

122

3.0

cC

ff

1.49

316

0.62

4.2

2-0

.99

44

074

.90.

35

PW

1329

.0c

Cf

f0.

2613

01.

45

1.5

00.

143

40

61.7

0.7

9

RH

NC

0117

.2r

Ac

c1.

186

871.

493.

55

-1.9

74

32

328.

70.

210

RH

NC

0227

.0r

Cd

d0.

46

703

2.0

02

.79

-0.5

64

32

324.1

4.4

6

RH

NC

03

19.0

cC

ff

0.32

708

0.29

1.4

50.

00

12

032

0.2

10.6

12

RH

NC

04

10.0

rA

bb

13.6

774

20.

754

2.3

9-1

2.2

74

42

319.

312

.311

RH

NC

05

70.6

cC

ff

0.4

870

60.

291.

35

0.8

51

20

318.

216

.98

RH

NC

06

26.4

cC

ff

0.41

694

1.55

1.29

0.14

33

031

7.2

16.7

11

RH

NC

07

10.2

rA

bb

4.2

86

891.

7511

.74

-7.4

75

42

314.8

14.9

9

RH

NC

08

31.6

rA

bb

0.47

701

0.76

5.96

-0.4

24

42

299.

82

.59

RH

NC

09

14.0

rA

bb

10.5

16

620.

116

8.56

17.6

34

43

301

.51.

28

RH

NC

1072

.8c

Dj

jc2

.02

575

0.32

6.18

3.53

33

029

0.0

0.0

14

RH

NC

111.

8r

Ab

b6.

17555

1.87

12.3

7-2

.82

55

4289

.70.

214

Page 83: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 85

RH

NC

126.

6r

Ab

b4.6

153

00.

23

15.0

20.

715

41

28

5.6

0.4

8

RH

NC

1370

.2c

Dj

jc0.

985

070.

42

2.1

31.

691

30

28

4.0

0.0

14

RH

NE

0110

0.0

sF

ii

0.0

04

260.

28

1.0

00.

00

00

029

2.0

6.9

15

RH

NE

02

23.

6c

Cf

f0.

2641

81.

891.

02

-0.4

24

30

287

.09.

68

RH

NE

03

29.6

cC

ff

0.41

415

1.55

0.8

30.

140

00

28

3.6

15.2

13

RH

NE

04

35.

8c

Cf

f0.

5741

22

.00

1.17

-0.7

11

20

28

4.2

16.3

7

RH

NE

05

32.0

cC

ff

0.51

415

1.4

51.

09

-0.8

52

10

28

5.1

12.4

9

RH

NE

06

54.8

cC

ff

0.26

416

0.11

0.79

0.14

23

1286.

74.4

14

RH

NE

072

3.0

cE

hh

c0.

48

411

1.71

1.37

-0.8

52

30

265.

71.

26

RH

NE

08

7.2

rA

bb

4.7

747

00.

45

9.26

-1.6

95

43

265.

60.

113

RH

NE

09

19.6

rA

bb

1.3

449

20.

06

3.13

2.1

25

31

261.

81.

48

RH

NE

1029

.2c

Cf

f0.

6952

50.

012

.77

0.71

53

02

27.6

4.9

7

RH

NE

1120

.8c

Cf

f2

.10

474

0.13

4.6

60.

99

44

02

22

.47.

16

RH

NE

1218

.0s

Gg

gs

1.0

84

42

0.47

2.8

81.

83

34

221

9.4

7.3

8

RH

NW

015.

2r

Ab

b11

.62

657

1.96

33.

19-9

.87

44

424

1.4

16.8

11

RH

NW

0211

.0r

Ab

b4.

7257

01.

80

15.2

9-1

.13

44

124

2.7

18.4

8

RH

NW

03

39.2

cA

ff

0.47

44

20.

03

2.3

60.

713

40

237

.511

.78

RH

NW

04

31.6

cD

jjc

0.57

412

0.0

01.

510.

710

00

22

3.5

0.9

8

RH

NW

05

34.2

cB

ee

0.16

412

0.29

1.02

0.28

42

02

21.4

3.0

10

RH

NW

06

47.4

cC

ff

0.36

415

0.6

82

.13

-0.2

84

30

220

.94.3

14

RH

NW

0714

.2r

Ac

c1.

974

470.

195.

920.

56

55

121

2.3

13.2

10

RH

NW

08

55.

6c

Be

e1.

38

520

0.2

54.9

82

.40

44

019

9.4

11.3

6

RH

NW

09

27.0

rA

cc

1.49

50

00.

08

5.07

0.9

94

41

194.

87.

99

RH

NW

107.

2r

Ab

b2

.54

489

1.59

9.4

3-4

.37

45

420

2.8

14.4

13

RH

NW

116

3.8

cB

ee

0.2

341

82

.00

1.36

-0.2

83

30

220

.87.

411

RH

NW

124

5.4

cE

hh

c0.

474

08

1.97

1.8

4-0

.42

12

02

25.

70.

512

RH

NW

1320

.8r

Cd

d0.

8241

31.

83

3.0

5-0

.28

43

02

27.0

1.6

11

TC

MB

C01

36.

4s

Fi

i0.

4132

30.

45

1.0

00.

712

20

289

.84.5

12

TC

MB

C02

19.4

cC

ff

0.41

34

80.

45

1.75

0.71

54

0289

.81.

810

TC

MB

C0

32

5.2

rC

dd

4.4

438

00.

33

7.3

4-0

.42

43

0289

.20.

810

TC

MB

C0

419

.0c

Cf

f1.

38

449

1.41

5.93

-2.2

65

40

289

.90.

88

TC

MB

C0

513

.6r

Ab

b8.

2056

31.

3731

.17

-13.

25

55

328

8.1

2.6

16

Page 84: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

86 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Sit

eso

ilD

Su

bs

gm

7g

m10

gm

13

Slp

Ele

vA

spR

ug

50

0S

un

Fa

bu

Fm

ax

Ou

tcrp

Cst

Riv

Gco

v

TC

MB

C0

613

.8r

Ab

b15

.40

44

20.

44

35.

5127

.07

54

229

8.5

4.1

10

TC

MB

C07

29.4

cC

ff

1.13

396

0.59

3.67

1.8

33

30

298.

73.

313

TC

MB

C0

828.

8r

Cc

c1.

28

421

0.02

7.02

1.27

53

029

6.6

1.3

15

TC

MB

C0

911

.6r

Ab

b7.

394

46

0.0

021

.37

9.02

55

129

3.4

0.3

13

TC

MB

C10

41.8

sD

jjs

0.6

54

620.

294.2

00.

00

43

0289

.20.

110

TC

MB

C11

31.4

rC

dd

0.47

479

1.24

2.8

0-0

.71

53

0289

.90.

59

TC

MB

C12

23.

2r

Cc

c0.

624

870.

63

1.2

5-0

.42

43

029

1.1

2.0

10

TC

MB

E01

31.8

cC

ff

1.0

88

03

0.47

6.92

1.8

34

30

217.

313

.813

TC

MB

E02

24.7

cC

ff

0.4

676

21.

00

7.6

0-0

.56

43

021

8.2

12.6

14

TC

MB

E0

320

.6c

Cf

f1.

1875

61.

499.

66

-1.9

74

30

224

.18.

710

TC

MB

E0

428.

6c

Cf

f1.

0275

21.

45

6.2

3-1

.69

43

02

23.

08.

110

TC

MB

E0

58.

2r

Ab

b11

.30

828

1.98

30.

69-1

0.86

45

42

21.2

9.6

11

TC

MB

E0

647

.6c

Cc

c0.

23

708

1.0

01.

01-0

.28

12

02

21.9

9.9

10

TC

MB

E07

34.8

rC

dd

1.13

68

31.

413.

83

0.71

43

02

31.5

0.8

6

TC

MB

E0

810

0.0

sD

jjs

0.41

68

40.

172

.99

0.71

13

02

32.3

0.0

14

TC

MB

E0

97.

8r

Ab

b2

.89

72

20.

05

17.8

14.

514

42

214.4

17.7

10

TC

MB

E10

68.

0c

Be

e0.

6976

41.

00

6.3

30.

85

45

021

2.7

17.0

5

TC

MB

E11

11.6

cC

ff

2.1

781

70.

05

7.4

83.

38

34

021

6.6

11.5

17

TC

MB

E12

7.0

rA

bb

7.2

59

05

0.76

14.6

010

.86

45

321

8.3

10.4

13

TC

MB

E13

9.0

rA

bb

7.47

825

0.29

25.

590.

144

54

219.

711

.110

TC

MB

W01

13.0

sG

ii

0.57

44

50.

40

4.3

90.

99

44

22

29.0

7.9

16

TC

MB

W02

31.6

sF

ii

1.14

439

1.0

02

.82

-1.4

12

20

229

.96.

518

TC

MB

W0

313

.0r

Ac

c0.

65

474

1.71

2.0

6-1

.13

44

22

27.4

1.4

12

TC

MB

W0

410

.6r

Ab

b2

.43

48

81.

66

10.3

70.

28

55

32

26.2

0.6

11

TC

MB

W0

529

.4r

Cd

d2

.82

532

1.93

7.6

4-4

.51

44

421

7.8

0.6

10

TC

MB

W0

63.

0r

Ab

b10

.89

586

1.18

33.

80

11.0

04

44

212

.74.2

13

TC

MB

W07

18.2

cC

ff

1.0

86

38

0.15

1.7

70.

42

32

019

5.5

4.1

17

TC

MB

W0

869

.6c

Be

e0.

116

38

1.0

02

.64

-0.1

43

40

196.

41.

012

TC

MB

W0

920

.0c

Cf

f1.

08

607

0.0

52

.49

1.69

52

017

9.8

7.8

13

TC

MB

W10

36.

6c

Cf

f0.

34

587

1.0

01.

750.

42

00

017

4.9

3.1

16

TC

MB

W11

8.4

rA

bb

3.20

60

51.

578.

120.

99

53

217

3.5

1.8

13

Page 85: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 87

TC

MB

W12

60.

6c

Be

e0.

6757

90.

491.

41-0

.28

22

017

1.9

0.3

8

TC

MB

W13

14.0

cC

ff

0.98

58

81.

943.

35

-1.5

55

30

170.

60.

89

WY

E01

17.0

rA

bb

17.1

33

03

1.76

27.0

7-3

0.74

56

417

9.4

5.8

7

WY

E02

28.

0c

Cf

f1.

44

246

0.0

52

.70

2.2

63

30

174.9

4.2

9

WY

E0

338.

6r

Ab

b5.

1024

21.

40

5.27

3.24

53

316

8.2

3.7

4

WY

E0

439

.4c

Be

e0.

4119

50.

45

1.4

8-0

.14

33

016

1.9

0.9

9

WY

E0

510

.0r

Ab

b3.

90

181

1.61

6.12

-6.7

74

32

135.

09.

34

WY

E0

628.

8s

Fi

i0.

6713

90.

141.

490.

28

11

011

1.3

2.9

6

WY

E07

27.0

sG

gg

s0.

6215

50.

072

.38

0.9

93

62

106.

011

.66

WY

E0

810

.0r

Cb

b3.

00

210

0.35

4.2

6-0

.42

54

412

5.2

7.5

7

WY

E0

913

.8r

Ac

c3.

942

260.

83

4.8

0-3

.95

34

412

9.9

6.7

6

WY

E10

7.2

rA

bb

2.0

82

390.

017.

05

2.1

23

33

129.

76.

94

WY

E11

2.4

rA

bb

6.13

272

0.4

214

.30

10.5

84

54

134.0

7.0

5

WY

E12

16.0

rA

cc

2.2

526

41.

413.

34

1.41

44

113

5.6

6.8

5

WY

E13

3.6

rA

bb

19.5

4281

1.11

28.

58

-27.

64

44

213

9.6

5.4

5

WY

W01

12.8

rA

cc

1.5

010

80.

014.1

61.

55

54

162

.85.

54

WY

W02

3.4

rA

bb

1.70

117

1.67

17.0

5-2

.96

54

36

4.5

5.6

6

WY

W0

316

.2c

Cf

f0.

23

105

2.0

01.

66

-0.2

85

30

69.2

6.0

5

WY

W0

410

0.0

sF

ii

1.5

412

70.

268.

00

0.14

00

070

.94.

86

WY

W0

50.

8r

Ab

b13

.21

144

0.35

10.3

5-1

.69

44

471

.34.5

6

WY

W0

616

.2r

Cc

c0.

72

111

0.6

81.

67-0

.56

23

075

.99.

37

WY

W07

11.8

sF

ii

0.11

88

0.0

01.

590.

141

10

74.3

14.7

7

WY

W0

887

.8s

Fi

i0.

36

921.

321.

790.

28

00

010

3.7

7.7

6

WY

W0

910

.4r

Ab

b1.

64

123

0.02

5.0

31.

55

43

410

2.3

15.2

4

WY

W10

17.4

rA

cc

2.5

013

51.

734.4

3-4

.37

54

010

2.1

17.7

5

WY

W11

37.4

cC

ff

0.41

123

0.4

51.

04

0.71

00

012

2.7

11.1

4

WY

W12

17.6

rA

bb

2.4

016

42

.00

3.0

4-2

.96

54

213

2.1

12.7

6

soil

D S

oil

pro

fi le

dep

th t

o h

ard

pa

n,

usu

all

y s

hee

t ro

ck.

Su

bs

Su

bst

rate

ty

pe

in t

hre

e ca

teg

ori

es:

rock

y, s

an

dy

or

clay

ey (

see

Tab

le b

elo

w).

gm

7, g

m10

, g

m1

3 G

eom

orp

hic

cat

ego

risa

tio

ns.

Page 86: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

88 N.L. McKenzie, S. van Leeuwen, A.M. Pinder

Su

bst

rate

gm

7g

m10

gm

13

de

scri

pti

on

Ro

cky

Aa

aG

ran

ite

hil

ls w

ith

ba

re s

lop

es a

nd

bo

uld

ers

& p

atch

es s

oil

an

d v

eget

atio

n i

n c

rev

ices

, d

epre

ssio

ns

etc.

Ro

cky

Ab

b

Ma

ssiv

e ro

cks

of

hil

lto

ps

an

d s

cree

slo

pes

ass

oci

ated

wit

h h

ill

sca

rps,

ste

ep s

lop

es e

tc.,

usu

all

y s

teep

. S

oil

& v

eget

atio

n s

hall

ow

, d

isco

nti

nu

ou

s &

ma

inly

in

cre

vic

es a

nd

po

cket

s. R

ock

ou

tcro

ps

freq

uen

t

Ro

cky

Ac

cF

lat

sto

ny

up

lan

ds,

slo

pes

an

d p

lain

s w

ith

sh

all

ow

so

ils

(0.5

m)

ov

er p

avem

ent

or

ha

rdp

an

; in

clu

des

su

rfac

e g

eolo

gic

al

un

its

Tg

, C

zl

etc.

(A

pp

en

dix

A).

So

ils

usu

all

y s

ton

y, b

ut

larg

e ro

cks

infr

equ

ent

or

ab

sen

t

Ro

cky

Cd

dC

alc

rete

or

op

ali

ne

hil

ls a

nd

mes

as.

Ma

ntl

ed i

n s

ha

llo

w s

oil

s w

ith

fra

gm

ents

(su

rfac

e g

eolo

gy

: C

zk

, T

o,

Cz

o).

Cla

yey

Be

eH

eav

y c

rack

ing

/ h

eav

ing

cla

y p

lain

s a

nd

ver

y g

entl

e sl

op

es,

usu

all

y w

ith

sto

nes

Cla

yey

Cf

fD

eep

cla

yey

pro

fi le

s, o

ften

wit

h s

urf

ace

stre

w a

nd

/o

r st

on

y p

rofi

le,

as

pla

ins,

gen

tle

slo

pes

. Q

c, C

zc

etc.

Cla

yey

Gg

gc

Gra

nit

oid

slo

pe

or

pla

in w

ith

gri

tty

cla

y p

rofi

le m

an

tlin

g s

heet

gra

nit

e at

>3

0 c

m d

epth

in

mo

st p

lace

s. S

heet

or

bo

uld

er o

utc

rop

s in

p

lace

s.

Cla

yey

Dj

jcR

iver

ine

lev

ee

of

all

uv

ial

clay

-sil

t ra

the

r th

an

sa

nd

, o

r cl

ay p

an

s w

ith

Riv

er G

um

s, P

aper

ba

rk t

rees

or

Euc

alyp

tus

vict

rix

etc.

G

eolo

gic

al

un

its

Ql

an

d Q

a.

Cla

yey

Eh

hc

Sa

lin

e m

ud

; b

are

or

wit

h s

am

ph

ire.

Sa

nd

yF

ii

Deep

sa

nd

an

d/o

r fi

rm (

slig

htl

y c

lay

ey)

san

d a

s d

un

es a

nd

pla

ins,

des

ert

as

wel

l a

s b

each

sa

nd

s. M

ay m

an

tle

gra

nit

e o

r cl

ay a

t >

0.5

m

dep

th a

nd

/o

r h

ave

scat

tere

d e

xp

osu

res

of

clay

or

rock

.

Sa

nd

yG

gg

sG

ran

ito

id s

lop

e o

r p

lain

wit

h g

ritt

y s

an

d p

rofi

le m

an

tlin

g s

heet

gra

nit

e at

>3

0 c

m d

epth

in

mo

st p

lace

s. S

heet

or

bo

uld

er o

utc

rop

s in

p

lace

s.

Sa

nd

yD

jjs

Riv

erin

e le

vee

or

riv

er b

ed o

f sa

nd

or

riv

erin

e g

rit-

san

d m

ix w

ith

riv

er g

um

s, p

aper

ba

rk e

tc.(

Ql

ma

inly

sa

nd

).

Sa

nd

yE

hh

sS

an

d v

eneer

ov

er s

ali

ne

mu

d w

ith

Bu

ffel

or

Trio

dia

Slp

S

lop

e a

ng

le.

Der

ived

b

y

L.A

. G

ibso

n

fro

m

the

ST

RM

(S

hu

ttle

R

ad

ar

To

po

gra

ph

y

Mis

sio

n)

90

-m

reso

luti

on

D

igit

al

Ele

vat

ion

M

od

el

(DE

M)

usi

ng

Sp

atia

l A

na

lyst

to

ols

in

Arc

GIS

9.1

(E

SR

I In

c.,

Red

lan

ds,

CA

, U

SA),

re

sam

ple

d a

t 10

0-m

pix

el r

eso

luti

on

.

Ele

v E

lev

atio

n a

bo

ve

mea

n s

ea l

evel

, d

eriv

ed f

rom

th

e D

EM

as

des

crib

ed f

or

Slp

.

Asp

A

spe

ct,

deri

ve

d

fro

m

the

D

EM

a

s d

esc

rib

ed

fo

r S

lp,

the

n

furt

her

tra

nsf

orm

ed [i

.e.

cos(

asp

ect-

135o)

+1]

to

g

ive

no

rth

-wes

t (v

alu

e o

f 0)

a

nd

so

uth

-ea

st (

va

lue

of

2) a

s th

e ex

trem

es.

Ru

g5

00 T

op

og

rap

hic

ru

gg

edn

ess

wa

s d

eriv

ed f

rom

th

e D

EM

as

des

crib

ed

for

Slp

by

per

form

ing

a n

eig

hb

ou

rho

od

fu

nct

ion

in

Arc

GIS

(i.

e. s

tan

da

rd

dev

iati

on

in

ele

vat

ion

) in

a 5

00

m r

adiu

s.

Su

n S

un

in

dex

= t

an

(Slp

) ×

co

s(A

sp)

× 1

00

ex

pre

ssed

in

rad

ian

s, a

nd

in

dic

ates

th

e a

mo

un

t o

f so

lar

rad

iati

on

th

at a

sit

e re

ceiv

es.

Fab

u A

vis

ua

l es

tim

atio

n o

f th

e ab

un

da

nce

of

coa

rse

sto

ne

frag

men

ts o

n t

he

gro

un

d’s

su

rfac

e (f

oll

ow

ing

McD

on

ald

et a

l. 19

84)

.

Fm

ax T

he

ma

xim

um

dim

ensi

on

(si

ze-

cla

ss)

of

coa

rse

sto

ne

frag

men

ts o

n t

he

gro

un

d’s

su

rfac

e (f

rom

McD

on

ald

et a

l. 19

84)

.

Page 87: Supp78 Biodiversity Pilbaramuseum.wa.gov.au/sites/default/files/SuppWAMuseum_2009... · 2015. 7. 21. · biological survey and monitoring program …’. (Western Australian Government

Pilbara Biodiversity Survey Introduction 89

Fa

bu

Fm

ax (

mm

)

0 =

No

co

ars

e fr

agm

ents

0 =

No

ne

1 =

Ver

y f

ew1 =

Sm

all

peb

ble

s (2

–6)

2 =

Few

2 =

Med

ium

peb

ble

s (6

–20)

3 =

Co

mm

on

3 =

La

rge

peb

ble

s (2

0–

60)

4 =

Ma

ny

4 =

Co

bb

les

(60

–20

0)

5 =

Ab

un

da

nt

5 =

Sto

nes

(20

0–

60

0)

6 =

Ver

y a

bu

nd

an

t6

= B

ou

lder

s (6

00

–20

00)

7 =

La

rge

bo

uld

ers

(>20

00)

Ou

tcrp

Th

e ex

ten

t o

f ro

ck o

utc

rop

at

the

site

(fr

om

McD

on

ald

et a

l. 19

84)

.

Cst

Dis

tan

ce t

o t

he

coa

st w

as

gen

erat

ed f

rom

dig

itis

ed h

yd

rolo

gy

in

form

atio

n

ava

ila

ble

fro

m D

EC

Co

rpo

rate

GIS

dat

ase

t.

Riv

D

ista

nce

to

a

s m

ajo

r d

rain

ag

e

lin

e

wa

s g

en

era

ted

fr

om

d

igit

ise

d

hy

dro

log

y i

nfo

rmat

ion

av

ail

ab

le f

rom

DE

C C

orp

ora

te G

IS d

ata

set.

Gco

v A

n i

nd

ex o

f to

tal

gro

un

d c

ov

er (

i.e.

sh

rub

s <

2 m

etre

s, g

rass

es a

nd

sed

ges

) at

eac

h s

ite.

Th

e co

ver

of

each

veg

etat

ion

str

atu

m w

as

vis

ua

lly

es

tim

ated

, sc

ore

d (

1: <

2%,

2: 2

–10%

, 3:

10

–30%

, 4:

30

–70%

, a

nd

5:

>70

%)

an

d

tall

ied

. It

is

der

ived

fro

m ‘

veg

etat

ion

co

mp

lex

ity

’ ad

apte

d f

rom

New

som

e a

nd

Cat

lin

g (

1979

).

Sco

re

Str

uct

ure

01

23

Tre

e ca

no

py

(%

)0

<3

03

0–7

0>

70

Sh

rub

co

ver

(%

)0

<3

03

0–7

0>

70

Gro

un

d h

erb

s/g

rass

esS

pa

rse

<0.

5 m

Sp

ars

e >

0.5 m

Den

se <

0.5 m

Den

se >

0.5 m

Lo

gs,

ro

cks,

deb

ris

etc.

0<

30

30

–70

>70

Co

mp

lex

ity

Sco

re (

ve

gC

)S

um

of

sco

res