supersymmetric bethe ansatz and baxter equations from discrete hirota dynamics v. kazakov (ens,...

29
Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin, hep-th/0703147.

Upload: andra-ward

Post on 03-Jan-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Supersymmetric Bethe Ansatz and Baxter Equations

from Discrete Hirota Dynamics

V. Kazakov (ENS, Paris)

NBI, Copenhagen 18/04/07

with A.Sorin and A.Zabrodin, hep-th/0703147.

Page 2: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Motivation• Classical and quantum integrability are intimately related

(not only through the classical limit!)

• Quantization = discretization: Quantum spin chain Discrete classical Hirota dynamics

• We study SUSY spin chain via Hirota equation for fusion rules, with specific integrable boundary conditions.

More general and more transparent with SUSY! • An alternative to algebraic Bethe ansatz

[Klumper,Pierce 92’], [Kuniba,Nakanishi,’92]

[Kulish,Sklianin’80-85]

[Krichever,Lupan,Wiegmann, Zabrodin’97]

Page 3: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Plan

R-matrix and Yang-Baxter eq. for SUSY spin chain

Bazhanov-Reshetikhin rel. & Hirota eq. for fusion

SUSY boundary cond., Bäcklund transf. & undressing

Baxter TQ relations & Hirota eq for Q-functions (QQ relations)

SUSY nested Bethe ansätze & examples, gl(1|1), gl(2|1)…Fusion in quantum space…

[Bazhanov,Reshetikhin’90]

Page 4: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Rα′β′

α β(u-v) u

v

α

β

α′

β′

gl(K|M) super R-matrix

Unity: graded permutation:

for even (odd) components

Page 5: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

=u

v

α

βα′

β′

α′′

β′′

0

u

v

α

β

α′

β′

α′′

β′′

0

γ′′γ′

γ

γ′′γ′

γ

Yang-Baxter relation for R-matrix

Page 6: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Monodromy Matrix and Transfer Matrix

• Transfer matrix = supertrace of monodromy matrix

• Defines all conserved charges of (inhomogeneous) super spin chain.

T γN ,{βi}

γ0, {αi} =

α2

γN

β2

α1

β1

αN

βN

γN-1γ1 γ2γ0

← quantum space →

↑ auxiliary space

How to calculate it?

u1 u2 uN

Page 7: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Fusion: Higher Irreps in Auxiliary Space

u+2 u+4

u

u

u-2

• Projector to irrep : cross all lines with these rapidities, in lexicographic order along (super) Young tableau.

• Based on degeneracy of R-matrix into projectors at special values:

• Defines the transfer matrix in irrep λ :

uu-2u+4

uu+2

auxiliary

quantum

Page 8: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

T-matrix Eigenvalues as Quantum Characters

• “Conservation laws”:

• Bazhanov-Reshetikhin determinant formula:

• Expresses for general irrep λ

through for the row

s

Page 9: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

sT(a,s,u) →

Hirota relation for rectangular tableaux

T (u+1)T(u-1) T(u) T (u)

T(u)

T (u)

s

a

• From BR formula, by Jakobi relation for det:

Page 10: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Hirota relation

• Direct consequence of Bazhanov-Reshetikhin quantum

character formula.

• Hirota eq. – integrable, Master equation of the soliton theory.

• The classical inverse scattering method can be applied.

• We use Hirota eq. to find all possible Baxter’s TQ relations and nested Bethe ansatz equations for superalgebras.

Page 11: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

s

K

M

SUSY Boundary Conditions: Fat Hook

• All super Young tableaux of gl(K|M) live within this fat hook

T(a,s,u)≠0

Page 12: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

↑First Lax pair of linear problems for , equiv. to Hirota eq.

↓s

a

F(u) T(u)

F(u+1) F(u)

T(u+1)

T(u+1)

T(u)T(u+1)F(u)

T(u+1)

F(u+1)

F(u)

Bäcklund Transformation – I (BT-I)

On the horizontal boundary: one can put F(K,s,u)=0.

F(u)

Page 13: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

s

K

M

K-1

Undressing by BT-I: vertical move

T(a,s,u) ≡ TK,M (a,s,u) → F(a,s,u) ≡ TK-1,M(a,s,u)

gl(K|M) gl(K-1|M)∩

TK-1,M(a,s,u) also satisfies Hirota eq., but with shifted B.C.

Notation:

Page 14: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

s

a

T(u) F*(u)

T(u+1) F*(u+1)T(u)

F*(u+1)

F*(u)F*(u+1)T(u)

F*(u+1)

T(u+1)

T(u)

Bäcklund Transformation - II

↑Second Lax pair of linear problems

Page 15: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

s

K

MM-1

Undressing by BT-II: horizontal move

TK,M (a,s,u) → F*(a,s,u) ≡ TK,M-1 (a,s,u) …….→Tk,m (a,s,u)

• One can repeat this procedure until the full undressing K,M=0: T0,0(u)=1.

gl(K|M) gl(K-1|M) …… gl(k|m) … 0

∩ ∩ ∩

• Example: first of eqs. BT-II at a stage (k,m) of undressing:

Nesting:

Page 16: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Extracting trivial zeroes

• T-functions become polynomials of the same power N=Length of spin chain,

Page 17: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

s

k

m

Tk,m (a,s,u)≠ 0

Qk,0(u+a+m)Q0,m(u-a-m)(-1)m(a-k)

Qk,0(u+s+k) Q0,m(u-s-k)

Qk,m(u-s)

Qk,m(u+a)

Boundary conditions…..

• B.C. respect Hirota equation.

• B.C. defined through Baxter’s Q-functions:

k=1,…,k=1,…,KKm=1,…Mm=1,…M

Qk,m(u)=Πj (u-uj )

[Tsuboi’97]

Page 18: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

k

m

(K,M)

(0,M)0

(K,0)

1

2

3 4 5

67

8

9

Full undressing along a zigzag path

• By construction T(u,a,s) are polynomials in u.

• Qk,m (u) and Tk,m(u,a,s) are also polynomials of u.

Analyticity:

At each (k,m)-vertex

there is a Qk,m(u)

Page 19: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Strategy

• Express T-functions through Q-functions.

• Find Q-functions from analyticity (polynomiality).

• This gives Nested Bethe Ansatz

Page 20: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Generalized Baxter’s T-Q Relations

• Diff. operator encoding all T’s for symmetric irreps:

are shift operators on (k,m) plane.

where

• From Hirota eq.:

Page 21: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

k

m

(K,M)

(0,M)0

(K,0)

x

n1

n2

1

2

3 4 5

67

8

9

- coordinate on (k,m) plane

- unit vector in the direction of shift

Generalized Baxter’s T-Q Relations

[V.K.,Sorin,Zabrodin’07]

Page 22: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

m

k

Q (u+2)

Q (u)

Q (u)

Q (u+2)

Q (u+2)

Q (u)

Hirota eq. for Baxter’s Q-functionsk+1,m k+1,m+1

k,m k,m+1

Zero curvature cond.for shift operators

[V.K.,Sorin,Zabrodin’07]

Page 23: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Bethe Ansatz Equations along a zigzag path

1, if

-1, ifwhere

and Cartan matrix along the zigzag path

• BAE’s follow from zeroes of various terms in Hirota QQ relation

Page 24: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

M

K

M-m

K-kl′km

lkm

μkm

Higher irreps in quantum spaceauxiliary

quantum

μKM

arbitrary polynomial

Page 25: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

s

Q1,0(u+s+1) Q0,1(u-s-1)

Q1,0(u+a+1)Q0,1(u-a-1) (-1)

Q1,1(u-s)

Q1,1(u+a)a-1

gl(1|1) algebra

• We reproduce BAE’s and Baxter’s TQ relations, including the irreps with continuous labels, in accordance with

[Fendley,Intriligator’92]

Page 26: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

s

Q2,0(u+s+2) Q0,1(u-s-2)

Q2,0(u+a+1)Q0,1(u-a-1) (-1)a-2

Q2,1(u-s)

Q2,1(u+a)

T2,1 (1,s,u)

gl(2|1) algebra

[Frahm,Pfanmüller’96]

• We reproduce BAE’s and Baxter’s TQ relations, including the irreps with continuous labels, in accordance with

• Related to Beisert’s su(2|2) S-matrix.

Page 27: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

Applications and Problems • Generalizations: noncompact irreps, mixed

(covariant+contravariant) irreps, so(M|K), sp(M|K) algebras.

• Non-standard R-matrices, like Hubbard or su(2|2) S-matrix in AdS/CFT, should be also described by Hirota equation with different B.C. Beisert’05

Arutyunov,Frolov,Zamaklar’06

• A powerful tool for constructing and studying supersymmetric spin chains and 2d integrable field theories, including classical limits. An alternative to the algebraic Bethe ansatz.

Page 28: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

M

K (K,M)

(0,0) m

k

Page 29: Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,

a

s

μ\μ(a,s)

μ(a,s)