c. beskidt , w. de boer, d. kazakov , f. ratnikov

25
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Experimentelle Kernphysik www.kit.edu C. Beskidt, W. de Boer, D. Kazakov, F. Ratnikov LHC and direct DM searches ne Constraints: LHC, WMAP, XENON100, Electroweak, heavy flavour ng problems: highly correlated parameters -> multistep fitting tech ts (Beskidt, WdB, Kazakov,Ratnikov, arxiv.org/1202.3366)

Upload: amal

Post on 23-Feb-2016

33 views

Category:

Documents


0 download

DESCRIPTION

LHC and direct DM searches. C. Beskidt , W. de Boer, D. Kazakov , F. Ratnikov. Outline CMSSM Constraints: LHC, WMAP, XENON100, Electroweak, heavy flavour Fitting problems: highly correlated parameters -> multistep fitting technique - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

KIT – Universität des Landes Baden-Württemberg undnationales Forschungszentrum in der Helmholtz-Gemeinschaft

Institut für Experimentelle Kernphysik

www.kit.edu

C. Beskidt, W. de Boer, D. Kazakov, F. Ratnikov

LHC and direct DM searches

Outline

CMSSM Constraints: LHC, WMAP, XENON100, Electroweak, heavy flavour

Fitting problems: highly correlated parameters -> multistep fitting technique

Results (Beskidt, WdB, Kazakov,Ratnikov, arxiv.org/1202.3366)

Page 2: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

2Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

Constraints considered

Variables calculated withMicrOMEGAs 2.4.1

Minuit for minimization

LHC limits on pseudoscalar Higgs and squarks and gluinos.

Page 3: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

3Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

CMSSM – PRE-LHC CONSTRAINTS

Higgs Mass mh mh > 114,4 GeVMuon g-2b→sγ BRexp(b→sγ) = (3,55 ± 0,24)·10-4

Bs→μμ BRexp(Bs→μμ) < 1,1·10-8

B→τν BRexp(B→τν) = (1,68 ± 0,31)·10-4

Relic Density Ωh2 Ωh2 = 0,1131 ± 0,0034CMSSM: 4 Parameter m0, m1/2, A0, tanβ and sign of μ

Fitting problem: STRONG correlations between 3 of 4 free parameters

10exp 104,122,30 theoaaa

Solution: multistep fitting technique, i.e. fit parameters with strongest correlation (A0, tanβ) first for every pair of m0, m1/2

Page 4: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

4Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

EXAMPLES OF HIGH CORRELATION

χ2 for Bs → μμ and Ωh2

co-annihilation region

mA exchange

focus point region

Origin of correlation:Both strongly dependent ontanβ

Bs → μμ Ωh2

For given m0 only very specific values of tan

For given tan only very specific values of A0

Page 5: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

5Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

Excluded regions (95% C.L.) pre-LHC

WHITE = ALLOWED

Page 6: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

6Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

Why CMSSM?

CMSSM provides UNIFICATION of gauge couplings

CMSSM provides UNIFICATION of Yukawa couplings

CMSSM assumes UNIFICATION of gaugino masses m1/2

Mgluino=2.7 m1/2, MWIMP=0.4 m1/2

CMSSM predicts EWSB with 114 < Mhiggs < 130 GeV LHC: 116<Mhiggs<131 GeV

CMSSM provides WIMP Miracle: annihilation x-section a few pb-> correct relic density scattering cross section < 10-8 pb consistent with xenon100

Page 7: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

7Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

Why CMSSM?

CMSSM provides UNIFICATION of gauge couplings

CMSSM provides UNIFICATION of Yukawa couplings

CMSSM assumes UNIFICATION of gaugino masses m1/2

Mgluino=2.7 m1/2, MWIMP=0.4 m1/2

CMSSM predicts EWSB with 114 < Mhiggs < 130 GeV LHC: 116<Mhiggs<131 GeV

CMSSM provides WIMP Miracle: annihilation x-section a few pb-> correct relic density scattering cross section < 10-8 pb consistent with xenon100

U. A

mal

di, W

dB, H

. Für

sten

au, P

LB, 1

991,

w

db. C

, San

der,

PLB

200

4, h

ep-p

h/03

0704

9

Yukawa coupling Unificationwdb et al, PLB 2001,arXiv:hep-ph/0106311

WIMP largely Bino DM may be supersymmetric partner of CMB

LHC: 116<Mh<131 GeV

Page 8: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

8Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

NO CONSTRAINT FROM RELIC DENSITY ALONE!

f

f

A

χ

χ

~

~

tan(β)·mfd

mW

8

N1N3(4)

tan(β)·mfd ↔ tan(β)mfu

f

f

A

χ

χ

~

~

tan(β)·mfd

mWmW

88

N1N3(4)

tan(β)·mfd ↔ tan(β)mfu4

2tan

Am

Relic density Ωh2 inversely proportional to annihilation x-section σ Main annihilation diagram via pseudo-scalar Higgs A

Dial tanβ for correct mA → tanβ ≈ 50 in most of parameter range

2/12 mmmA

Large enough annih. Cross sectionnear resonance, i.e . 2mmA

Page 9: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

9Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

tan 50

Koannihilation

WITH LHC: RELIC DENSITY BECOMES CONSTRAINT

mAm1/2

Beskidt, wdb, Kazakov, arXiv:1008.2150

Page 10: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

10Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

mA cross sections tan2

Beskidt, dB et al.1008.2150, PLB 2011

tanβ ≈ 50

mA > 400 GeVfor tan50

Page 11: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

11Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

LHC DIRECT SEARCHES

qqqgggpp ~~,~~,~~

qq~~ qg~~gg~~

95% CL exclusion by CMS + ATLAS follows tot0.1-0.2 pb

2=tot2/σeff

2 , Δ2 = 2 –2min = 5,99 for 95% C.L:

Page 12: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

12Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

LHC DIRECT SEARCHES

Excluded:(95% C.L:

GeV620~ gmGeV1000~ qm

Expected sensitivityat 14 TeV: almost 2x

Page 13: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

13Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

Cross section limits WIMP-Nucleon scattering

from rotation curve 0.3-1.3 GeV/cm3

Scattering rate R:

X-section dominated by Higgs exchange

Quark mass and Higgsino comp. of Neutralino

Page 14: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

14Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

=

Change of slope precisely measured by VLBI measurementsCan ONLY be explained by local ringlike substructure in DM,e.g. from disruption of Canis Major satellite.Supported by magic ring of stars and gas flaring

WdB, Weber, arXiv:1011.6323

=0.3 GeV/cm3

=1.3 GeV/cm3

Can local DM density be as large as 1.3 GeV/cm3?

Page 15: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

15Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

CM

Sgt

Sun

From David Law, CaltechTidal force ΔFG 1/r3

no ring

with outer ring

Kalberla, et al-. arXiv:0704.3925

Gas flaring needs outer ring with mass of 2.1010M☉!

R [kpc]

FWH

M g

as la

yer

[kpc

]

Canis Major disruption suggested by magic ring of stars

(SDSS)

Evidence for local DM Substructure

Page 16: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

16Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

LARGE UNCERTAINTY FROM VIRTUAL STRANGE QUARKS

Effective couplings

Consider conservatively much lower s-quark density from lattice calculations(and distrust N scattering in non-perturbative regime)Also considered lowest possible local DM density of 0.3 GeV/cm3

Page 17: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

17Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

HIGGSINO COMP. LARGE FOR LARGE M0

Higgs exchange becomeslarge, if Higgsino componentof WIMP becomes large

EWSB requiressmall andlarge N13 for large m0

Large x-section Easy to exclude

Page 18: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

18Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

COMBINED EXCLUSION PLOT

Page 19: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

19Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

INFLUENCE FROM G-2

Preferred region from g-2 excluded largely by LHCWithout g-2 no preferred region above exclusion (red), i.e. flat, but it helps exclusion at large m0

Page 20: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

20Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

The main players

LHCdirectsearches:

f

f

A

χ

χ

~

~

tan(β)·mfd

mW

8

N1N3(4)

tan(β)·mfd ↔ tan(β)mfu

f

f

A

χ

χ

~

~

tan(β)·mfd

mWmW

88

N1N3(4)

tan(β)·mfd ↔ tan(β)mfu

LHCHiggssearches+h2:

Direct DMsearches+h2:

LightSUSYmasses

Inter-MediateSUSYmasses

HeavySUSYmasses

Sensitive region

Combination: in CMSSM WIMP > 160 GeV, gluino > 1 TeV

Summary (arxiv1202.3366)

Page 21: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

21Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

Backup

Page 22: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

22Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

BEST-FIT POINT

Point 1: electroweak + cosmological constraints

Point 2: electroweak + cosmological + LHC (direct searches and mA+Ωh2) + DDMS

Page 23: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

23Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

COMPARISON TO OTHER GROUPS

Strong correlation between A0 und tanβ

Buchmueller et al. arXiv: 1110.3568

Page 24: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

24Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

HOW TO TREAT THEORETICAL ERRORS?

Theoretical errors can be treated as nuisance parameters and integrated over in the probability distribution (=convolution for symm. distr.) If errors Gaussian, this corresponds to adding the experimental and theoretical errors in quadratureAssume σtheo ~ σexp (only then important)

Convolution of 2 Gaussians Convolution of Gaussian + “flat top Gaussian”

Adding errors linearly more conservative approach for theory errors.

2exp

22 theo exp~ theo

Page 25: C.  Beskidt , W. de Boer, D.  Kazakov , F.  Ratnikov

25Wim de Boer, DM2012, Marina del Rey, Feb. 23, 2012

CP-even lightest Higgs <130 GeVCP-even neutral heavy Higgs HCP-odd neutral Higgs ACP-even charged Higgses H

mA2=m1

2+m22 becomes ALWAYS

small at large tan

EWSB and Pseudoscalar Higgs Mass mA

Higgs potential:

m2mt

m1mb tan

EWSB wenn m2 <0, possible byrad. corr. AND 140 < mt < 200 GeV(pred. from SUSY, Inoue et al, 1982,wdb et al., hep-ph/9805378)

At large m0: should become smallin order to reach m2<0 before mZ