superconducting hybrids based on qsh systems lecture 2

37
Superconducting hybrids based on QSH systems Lecture 2 Björn Trauzettel 11th Capri Spring School Transport in Nanostructures April 13-17, 2015 Capri, Italy Pablo Burset (Uni Würzburg) François Crépin (Uni Würzburg) Fabrizio Dolcini (PolyTech Torino) Florian Geissler (Uni Würzburg) Ewelina Hankiewicz (Uni Würzburg) Naoto Nagaosa (Tokyo University) Yukio Tanaka (Nagoya University) Grigory Tkachov (Uni Würzburg)

Upload: others

Post on 16-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Superconducting hybrids based on QSH systems Lecture 2

Superconducting hybrids based on QSH systems

Lecture 2

Björn Trauzettel

11th Capri Spring School

Transport in Nanostructures

April 13-17, 2015 Capri, Italy

Pablo Burset (Uni Würzburg) François Crépin (Uni Würzburg)

Fabrizio Dolcini (PolyTech Torino) Florian Geissler (Uni Würzburg)

Ewelina Hankiewicz (Uni Würzburg) Naoto Nagaosa (Tokyo University) Yukio Tanaka (Nagoya University) Grigory Tkachov (Uni Würzburg)

Page 2: Superconducting hybrids based on QSH systems Lecture 2

Summary Lecture 1

0 0

0 0*B

e

dFM

hFM

G

H

HH

x

x

Page 3: Superconducting hybrids based on QSH systems Lecture 2

Outline

• Classification: Symmetry of pairing amplitude

• Transport signature: Crossed Andreev reflection in NSN junctions

• Doppler shift: Topological SQUID based on helical edge states

Page 4: Superconducting hybrids based on QSH systems Lecture 2

Model and setup

Crépin, Burset & BT arXiv 2015

BdG Hamiltonian

1 2zBd F xG yz xiv m x x xH

† † †

1

2, , ,

R

B

L

G

L

d

R

H Hdx

spin space

particle-hole space

Page 5: Superconducting hybrids based on QSH systems Lecture 2

Green’s functions

, ,

, ,

, , , , ,

R

A

M

G r r i t t r r

G r r i t t r r

G x x T x x

XeeX

Xhh

Xeh

Xhe

G

G

GG

G

X Xeh eh

X Xeh e

Xeh

h

G G

GG

G

( , )r x t

4x4 matrix

Page 6: Superconducting hybrids based on QSH systems Lecture 2

Scattering states: N side

1 1 1

2 2 2

3 3 3

4 4 4

e h e

e h e

e h

e h

ik x ik x ik x

e h e

ik x ik x ik x

h h e

ik x ik x

e h

ik x ik x

e h

x e a e b e

x e b e a e

x c e d e

x d e c e

e h

k k

McMillan Phys. Rev. 1968

Page 7: Superconducting hybrids based on QSH systems Lecture 2

Scattering states: S side

1 1 1

2 2 2

3 3 3

4 4 4

S Se h

S Se h

S S Se e e

S S Sh h e

ik x ik x

e h

ik x ik x

e h

ik x ik x ik x

e h h

ik x ik x ik x

h h e

x c e d e

x d e c e

x e a e b e

x e b e a e

2 2 2 2 S Se h

k k

McMillan Phys. Rev. 1968

Page 8: Superconducting hybrids based on QSH systems Lecture 2

Green’s functions from scattering states

, , , ,i i t tR RG x x dte G x t x t

,RBdG

w H x G x x x x

0

1lim , ,R R

z zF

G x x G x xiv

1

3 4

1 2

3 4

2

if ,

if

T T

RT T

A x A x x xG x x

A

x

xx x x

x

xx A

McMillan Phys. Rev. 1968

Page 9: Superconducting hybrids based on QSH systems Lecture 2

Pairing amplitude

ReeR

Rhh

Reh

Rhe

G

G

GG

G

Green‘s function

2R

R R

R RhR

eG

F

Fi

FF

F

Pairing amplitude

0 0 2,, ,, , ,R

iR R

ifF x xx xf x x i

triplet singlet

Crépin, Burset & BT arXiv 2015

Page 10: Superconducting hybrids based on QSH systems Lecture 2

Antisymmetry of pairing amplitude

0 0 2,, ,, , ,R

iR R

ifF x xx xf x x i

triplet singlet

Crépin, Burset & BT arXiv 2015

0 0

, , ,

, , ,

,

,R A

i i

R A

f x x f x

f x x

x

x x f

Page 11: Superconducting hybrids based on QSH systems Lecture 2

Classification of pairing amplitude

Tanaka, Sato & Nagaosa JPSJ 2012

0 0 2,, ,, , ,R

iR R

ifF x xx xf x x i

Berezinskii JETP Lett 1974

0 0

, , ,

,

,

, , ,R Ri i

R R

f

f x x f x

x x

x

x f x

0 0, , ,

, , , ,

,R A

i i

R A

f

f x x f x x

x x f x x

orbital

frequency

Page 12: Superconducting hybrids based on QSH systems Lecture 2

Classification of pairing amplitude

frequency, spin, orbital

even, singlet, even -> ESE odd, singlet, odd -> OSO even, triplet, odd -> ETO odd, triplet, even -> OTE

Tanaka, Sato & Nagaosa JPSJ 2012

0 0 2,, ,, , ,R

iR R

ifF x xx xf x x i

Berezinskii JETP Lett 1974

0 0

, , ,

,

,

, , ,R Ri i

R R

f

f x x f x

x x

x

x f x

0 0, , ,

, , , ,

,R A

i i

R A

f

f x x f x x

x x f x x

orbital

frequency

Page 13: Superconducting hybrids based on QSH systems Lecture 2

Classification of pairing amplitude

frequency, spin, orbital

even, singlet, even -> ESE odd, singlet, odd -> OSO even, triplet, odd -> ETO odd, triplet, even -> OTE

Tanaka, Sato & Nagaosa JPSJ 2012

0 0 2,, ,, , ,R

iR R

ifF x xx xf x x i

S and T mix if spin rotational symmetry is broken

(orbital) E and O mix if inversion is broken

-> NS junctions

Berezinskii JETP Lett 1974

Page 14: Superconducting hybrids based on QSH systems Lecture 2

Classification of pairing amplitude: results

, ,

, , , , , ,R R Rbulk edge

f x x f x x f x x

frequency, spin, orbital

-> ESE, OSO, ETO, OTE

, ,, , , ,

x x x xR Rbulk edge

f x x e f x x e

Crépin, Burset & BT arXiv 2015

(in region IV)

Page 15: Superconducting hybrids based on QSH systems Lecture 2

Classification of pairing amplitude: results

, ,

, , , , , ,R R Rbulk edge

f x x f x x f x x

3x LOTE

OTE OTE

ESE

0

0.5m

Crépin, Burset & BT arXiv 2015

Page 16: Superconducting hybrids based on QSH systems Lecture 2

Outline

• Classification: Symmetry of pairing amplitude

• Transport signature: Crossed Andreev reflection in NSN junctions

• Doppler shift: Topological SQUID based on helical edge states

Page 17: Superconducting hybrids based on QSH systems Lecture 2

Detection of OTE: idea

use crossed Andreev reflection

Crépin, Burset & BT arXiv 2015

Page 18: Superconducting hybrids based on QSH systems Lecture 2

Detection of OTE: results

LAR EC CAR

ER

-> dilemma

2 20

tanh 2 ta 1nhCAR

ECT

dmT

Crépin, Burset & BT arXiv 2015

Adroguer et al. PRB 2010

Page 19: Superconducting hybrids based on QSH systems Lecture 2

Way out …

221

1CAR EC

TI

GV

T

… add complexity

Page 20: Superconducting hybrids based on QSH systems Lecture 2

Way out …

221

1CAR EC

TI

GV

T

… add complexity

OTE

Page 21: Superconducting hybrids based on QSH systems Lecture 2

Outline

• Classification: Symmetry of pairing amplitude

• Transport signature: Crossed Andreev reflection in NSN junctions

• Doppler shift: Topological SQUID based on helical edge states

Page 22: Superconducting hybrids based on QSH systems Lecture 2

Inspiring experiments

Hart et al. Nature Phys 2014

Pribiag et al. arXiv 2014

Hg(Cd)Te QWs InAs/GaSb QWs

Vorführender
Präsentationsnotizen
The SC is in both cases aluminum and the superconducting coherence length is much smaller than the width of the sample.
Page 23: Superconducting hybrids based on QSH systems Lecture 2

Setup & Hamiltonian

Tkachov, Burset, BT & Hankiewicz arXiv 2014

0

0 *

i x

yi xBdG

y

i x e

xi x

h xH

e h

0, 2

, 2

Lxx

Lx

0

00

, x2 2

, x2 2

Lx

L

Page 24: Superconducting hybrids based on QSH systems Lecture 2

Setup & Hamiltonian

Tkachov, Burset, BT & Hankiewicz arXiv 2014

0

0 *

i x

yi xBdG

y

i x e

xi x

h xH

e h

2x

SF x

v ih U xp

x

Page 25: Superconducting hybrids based on QSH systems Lecture 2

Setup & Hamiltonian

Tkachov, Burset, BT & Hankiewicz arXiv 2014

0

0 *

i x

yi xBdG

y

i x e

xi x

h xH

e h

2x

SF x

v ih U xp

x

shielding response of SC -> Doppler shift

0

2

2S x

eB

w

c

Bwp A

Tkachov & Falko PRB 2004 Tkachov & Richter PRB 2005

Rohlfing et al. PRB 2009

Page 26: Superconducting hybrids based on QSH systems Lecture 2

Josephson current: basics

Beenakker & Brouwer Chaos, Solitons & Fractals 1997

2e dJ

F

d

phase difference

free energy

0

2 ln 2 cosh -independent2B

B

k T dT

Fk

DOS

0

22 ln det 1

B A n N nn

e dJ k T S i S i

d 2 1

n Bn k T

Vorführender
Präsentationsnotizen
S_N: describes elastic scattering by the normal metal; S_A: describes AR
Page 27: Superconducting hybrids based on QSH systems Lecture 2

Josephson current

Tkachov, Burset, BT & Hankiewicz arXiv 2014

0 220

2

2 2

22

,

1

i i

u

n n

n n n

Bn i

n

i

A B A B

A B A B

e eeJ

A B A

k T

e eB

B

0 0

0S

k L

Vorführender
Präsentationsnotizen
Omega_n=(2n+1) pi kB T = fermionic Matsubara frequencies
Page 28: Superconducting hybrids based on QSH systems Lecture 2

Josephson current

Tkachov, Burset, BT & Hankiewicz arXiv 2014

0 220

2

2 2

22

,

1

i i

u

n n

n n n

Bn i

n

i

A B A B

A B A B

e eeJ

A B A

k T

e eB

B

0 0, ,

l uJ B J B

0 0

0S

k L

/

2

2

2 2

n FL v

nSF F Sn

n

p B

A

piv B

e

iv

B

B-dependent Andreev reflection

Vorführender
Präsentationsnotizen
Omega_n=(2n+1) pi kB T = fermionic Matsubara frequencies
Page 29: Superconducting hybrids based on QSH systems Lecture 2

When is it relevant?

Tkachov, Burset, BT & Hankiewicz arXiv 2014

max ,2

F S

B

v pk T

0

**

2; min ,F

RB

AF

v vB

w k TB

quite small: a few mT

Page 30: Superconducting hybrids based on QSH systems Lecture 2

When is it relevant?

Tkachov, Burset, BT & Hankiewicz arXiv 2014

max ,2

F S

B

v pk T

0

**

2; min ,F

RB

AF

v vB

w k TB

How does the maximum current at zero field change as a function of B?

B=0 current-phase relation

0,max

,m

J B J B

0 0 0, , ,

u lJ B J B J B

Page 31: Superconducting hybrids based on QSH systems Lecture 2

Results: long junction

Tkachov, Burset, BT & Hankiewicz arXiv 2014

L

020

8Re

iB

mA eB

ek TJ B

even-odd effect

0

AR oscB B

wL

Pribiag et al. arXiv 2014

Vorführender
Präsentationsnotizen
Fig d: Each current initially has a sawtooth profile. The two currents tend to enhance or cancel each other.
Page 32: Superconducting hybrids based on QSH systems Lecture 2

Results: short junction L

strong suppression

0

AR oscB B

wL

Tkachov, Burset, BT & Hankiewicz arXiv 2014

Calado et al. arXiv 2015

Vorführender
Präsentationsnotizen
Fig d: Each current initially has a sawtooth profile. The two currents tend to enhance or cancel each other.
Page 33: Superconducting hybrids based on QSH systems Lecture 2

Summary Lecture 2

Page 34: Superconducting hybrids based on QSH systems Lecture 2

Gauge-invariant phase

Tkachov, Burset, BT & Hankiewicz arXiv 2014

4 4, , , , ,

y x x yB x y j x y B x y j x y

c c

0, 0, ,B x yB

,2

wB x B

bc imply: , , , , x x

B x y B x y j x y j x y

Ampère‘s law:

Page 35: Superconducting hybrids based on QSH systems Lecture 2

Gauge-invariant phase

Tkachov, Burset, BT & Hankiewicz arXiv 2014

4 4, , , , ,

y x x yB x y j x y B x y j x y

c c

0, 0, ,B x yB

,2

wB x B

Ampère‘s law:

type-II SC ->

j

00

2Agauge-invariant

phase gradient

Page 36: Superconducting hybrids based on QSH systems Lecture 2

Gauge-invariant phase

Tkachov, Burset, BT & Hankiewicz arXiv 2014

0

22 2Ndl

winding number

, 0 0x

x , , x xj x y j x y

, 0 piecewise const.x

Page 37: Superconducting hybrids based on QSH systems Lecture 2

Gauge-invariant phase

Tkachov, Burset, BT & Hankiewicz arXiv 2014

0

22 2Ndl

0

, 0 , 02 2

L L

integral over path 3

integrals over path 2&4 vanish

integral over path 1

* *, ,2 2 2 2 2

L Lw w w

0

0 22

w N