study on the structure and properties of xylan extracted ...862284/fulltext01.pdf · study on the...

67
LICENTIATE THESIS IN FIBRE AND POLYMER SCIENCE STOCKHOLM, SWEDEN 2015 Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and sugarcane straw DANILA MORAIS DE CARVALHO KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF CHEMICAL SCIENCE AND ENGINEERING Sugarcane bagasse xylan Eucalyptus xylan Sugarcane straw xylan

Upload: phunghanh

Post on 18-Mar-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

LICENTIATE THESIS IN FIBRE AND POLYMER SCIENCE STOCKHOLM, SWEDEN 2015

Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and sugarcane straw DANILA MORAIS DE CARVALHO

KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF CHEMICAL SCIENCE AND ENGINEERING

Sugarcane bagasse

xylan

Eucalyptus xylan

Sugarcane straw xylan

Page 2: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and
Page 3: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and sugarcane straw DANILA MORAIS DE CARVALHO Licentiate Thesis No. 59, 2015 KTH Royal Institute of Technology Fibre and Polymer Science Department of Fibre and Polymer Technology SE-100 44 Stockholm, Sweden

Page 4: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

TRITA-CHE Report 2015:59 ISSN 1654-1081 ISBN 978-91-7595-718-0

Akademisk avhandling som med tillstånd av KTH i Stockholm framlägges till offentlig granskning för avläggande av teknisk licentiatexamen fredagen den 13 november kl. 10:00 i Rånbyrummet, Teknikringen 56, Stockholm. The paper was reprinted with permission of © Elsevier 2015 © Danila Morais de Carvalho 2015 Printed by Universitetsservice US AB

Page 5: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

Abstract

Lignocellulosic biomasses are an important source of chemical components such as cellulose, lignin and hemicelluloses, and can be used for a variety of purposes in both the pulp and paper and chemical conversion industries. Xylan, the main hemicellulose found in hardwood and grass plants, plays an important role during the pulping/pretreatment process reactions, including those used in 2nd generation bioethanol production. It may also play an important role in the production of certain novel materials.

This thesis evaluates the composition of eucalyptus (Eucalyptus urophylla x Eucalyptus grandis), sugarcane bagasse and sugarcane straw, with a specific focus on the structure and properties of xylan. The chemical characterization of biomasses showed that sugarcane bagasse and straw contain larger amounts of extractives, ash and silica than eucalyptus. The large amount of silica leads to an overestimation of the Klason lignin content, if not corrected. By using a complete mass balance approach, sugarcane bagasse and straw were shown to contain smaller amounts of lignin (18.0% and 13.9%, respectively) than previously reported for these raw materials, and certainly a much smaller amount of lignin than was found in eucalyptus (27.4%). The hemicellulose content in sugarcane bagasse (28.7%) and straw (29.8%) was much higher than that in eucalyptus (20.3%).

In order to investigate the structure of the xylan in greater detail, it was extracted with dimethyl sulfoxide from holocellulose, obtained by either peracetic acid or sodium chlorite delignification. The structure of the isolated xylans was confirmed by FTIR and 1H NMR analysis. In eucalyptus, the O-acetyl-(4-O-methylglucurono)xylan (MGX) was identified. This had a molar ratio of xylose units to branches of 4-O-methylglucuronic acid of 10:1.1 and a degree of acetylation of 0.39. All 4-O- methylglucuronic acid groups were attached to position O-2 of the xylose units, which had an acetyl group in position O-3. The acetyl groups were distributed in positions O-3 (64%), O-2 (26%) and O-2,3 (10%). The MGX had a molecular weight (Mw) of about 42 kDa.

In bagasse and straw, arabinoxylan (AX) was identified. This had a molar ratio of xylose units to arabinosyl substitutions of 10:0.5 for bagasse and 10:0.6 for straw. A degree of acetylation was 0.29 and 0.08 for bagasse and straw, respectively. The arabinose units were attached preferentially to position O-3 in AX. In the xylan from bagasse, the acetyl groups were found in positions O-3 (60%), O-2 (13%) and O-2,3 (27%), while in the xylan from straw, the acetyl groups were distributed between positions O-3 (67%) and O-2 (33%). The AX had a molecular weight (Mw) of about 38 kDa and 30 kDa for bagasse and straw, respectively.

The differences in the structure of xylan present in the various biomasses played an important role during hydrothermal pretreatment, which is often used as the first step in 2nd generation ethanol production. The varying amounts of uronic acid and acetyl groups resulted in different starting pH levels of liquor and, thus, affected the chemical transformation in the biomasses in different ways. The hydrothermal pretreatment resulted mostly in the removal and/or transformation of hemicelluloses, but also in the formation of a significant number of pseudo-lignin structures. In addition, in eucalyptus, pseudo-extractives structures were generated. The sugarcane straw showed the highest mass loss during the investigated pretreatment. 

Page 6: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

Page 7: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

Sammanfattning

Lignocellulosa i biomassa är en viktig källa till kemiska komponenter som cellulosa, lignin, och hemicellulosa och har stora användningsområden inom både kemikalie- samt massa och papperindustrin. Xylan, den huvudsakliga hemicellulosan i lövträd och gräsväxter, spelar en viktig roll under kok- och förbehandlingsprocesser, samt de processer som används vid produktion av 2:a generationens bioetanol. Xylan kan också spela en viktig roll för produktionen av nya material.

I denna avhandling utvärderas sammansättningen av eukalyptus (Eucalyptus urophylla x Eucalyptus grandis), sockerrörsbagass, och sockerrörsstrå med fokus på xylans struktur och egenskaper. Den kemiska karaktäriseringen av biomassan visade att sockerrörs bagass och strå innehåller större mängder extraktivämnen, aska och kisel än eukalyptus. Om inte hänsyn tas till kisel leder den högre halten till att mängden klasonlignin överskattas. Genom att använda en fullständig massbalans visades att sockerrörs-bagass och -strå innehåller lägre halter av lignin (18,0% för bagass och 13,9% för strå) än vad tidigare rapporterats för dessa råmaterial, och definitivt en mycket lägre halt lignin än vad som förekommer i eukalyptus (27,4%). Andelen hemicellulosa i sockerrörs bagass och (28,7%) och strå (29,8%) var mycket högre än i eukalyptus (20,3%).

För att mer detaljerat undersöka strukturen hos xylan extraherades xylanet ur holocellulosa med dimetylsulfoxid. Holocellulosan hade erhållits genom delignifiering med antingen perättiksyra eller natriumklorit. De isolerade xylanes struktur bekräftades med FTIR och 1H NMR. I eukalyptus identifierades O-acetyl-(4-O-metylglukurono)xylan (MGX). Molförhållandet av xylosenheter till 4-O-metylglukuronsyra var 10:1,1 och acetyleringsgraden var 0,39. Alla 4-O-metylglukuronsyra grupper var bundna till position O-2 i xylosenheterna, som hade en acetylgrupp på position O-3. Acetylgrupperna var fördelade på position O-3 (64%), O-2 (26%) och O-2,3 (10%). MGX hade en molekylvikt (Mw) på ca 42 kDa.

I bagass och strå identifierades arabinoxylan (AX). Molförhållande av xylosenheter till arabinosyl substitutioner var 10:0,5 för bagass och 10:0,6 för strå. Acetyleringsgraden var 0,29 för bagass och 0,08 för strå. I AX var arabinosenheterna främst bundna till position O-3. I xylan från bagass hittades acetylgrupper på positionerna O-3 (60%), O-2 (13%) och O-2,3 (27%). I strå var acetylgrupperna fördelade på O-3 (67%) och O-2 (33%). AX hade en molekylvikt (Mw) på ca 38 kDa för bagass och 30 kDa för strå.

Skillnaderna i de identifierade xylanstrukturerna från de olika biomassor spelade en betydande roll för den hydrotermiska förbehandlingen som ofta används som ett första steg vid produktion av 2:a generationens bioetanol. De olika halterna uronsyra- och acetylgrupper gjorde att det ursprungliga pH värdet i processvätskan varierade vilket, sin tur påverkade den kemiska omvandlingen av biomassan på olika sätt. Det var främst hemicellulosor som frigjordes och förändrades under den hydrotermiska förbehandlingen, vilket följdes av att en betydande mängd pseudo-lignin strukturer bildades. Dessutom bildades pseudo-strukturer av extraktivämnen för eukalyptus. Under den studerade förbehandlingen var massförlusten högst för sockerrörsstrå.

Page 8: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

Page 9: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

List of appended papers

Paper I

Danila Morais de Carvalho, Olena Sevastyanova, Lais Souza Penna, Brunela Pereira da Silva, Mikael E. Lindström and Jorge Luiz Colodette (2015). Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments, Industrial Crops and Products, 73, 118-126.

Paper II

Danila Morais de Carvalho, Antonio Martinez Abad, Jorge Luiz Colodette, Mikael E. Lindström, Francisco Vilaplana and Olena Sevastyanova (2015). Comparative characterization of acetylated heteroxylan from eucalyptus, sugarcane bagasse and sugarcane straw (Manuscript).

The results of this work were also presented at the following scientific meetings:

1. Isolation and characterization of acetylated xylan from sugarcane bagasse.

Danila Morais de Carvalho, Antonio Martinez Abad, Francisco Vilaplana, Mikael E. Lindström, Jorge Luiz Colodette, Olena Sevastyanova. Cost Action FP1105 (WoodCellNet) workshop, 2015, San Sebastian, Spain (Poster presentation).

2. Chemical characterization and evaluation of various pretreatments methods to the bioconversion of eucalyptus into bioethanol. Danila Morais de Carvalho, Olena Sevastyanova, Mikael E. Lindström, Jorge Luiz Colodette. 7th International Colloquium on Eucalyptus Pulp (ICEP), 2015, Vitória, Brazil (Poster presentation).

3. Chemical transformations in eucalyptus, sugarcane bagasse and sugarcane straw during hydrothermal, acid and alkaline pretreatments. Danila Morais de Carvalho, Olena Sevastyanova, Lais Souza Penna, Brunela Pereira da Silva, Mikael E. Lindström, Jorge Luiz Colodette. 18th International Symposium on Wood, Fibre and Pulping Chemistry (ISWFPC), 2015, Vienna, Austria (Oral presentation).

4. Comparative study on the structure of acetylated xylans from eucalyptus and

sugarcane bagasse and straw. Danila Morais de Carvalho, Francisco Vilaplana, Antonio Martinez Abad, Jorge Luiz Colodette, Mikael E. Lindström, Olena Sevastyanova. 18th International Symposium on Wood, Fibre and Pulping Chemistry (ISWFPC), 2015, Vienna, Austria (Poster presentation).

Page 10: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

List of Abbreviations

1H NMR Proton nuclear magnetic resonance spectroscopy Ara or Araf Arabinose or arabinofuranose ATR Attenuated total reflectance AX Arabinoxylan D Polydispersity index D2O Deuterium oxide or heavy water DA Degree of acetylation DMSO Dimethyl sulfoxide EDTA Ethylenediamine tetracetic acid FTIR Fourier transform infrared spectrometry G (lignin) Guaiacyl lignin GalA Galacturonic acid Gal or Galp Galactose or galactopyranose GC-MS Gas chromatography-mass spectrometry Glc or Glcp Glucose or glucopyranose H (lignin) p-hydroxyphenyl lignin HDO Heavy water HMF Hydroxymethyl furfural HPLC High-performance liquid chromatography IC Ion chromatography LiBr/DMSO Solution of lithium bromide in dimethyl sulfoxide Man or Manp Mannose or mannopyranose MeGlcA 4-O-methylglucuronic acid Mw Molecular weight MGX O-acetyl-(4-O-methylglucurono)xylan Mn Molecular number NaClO2 Sodium chlorite NaOH Sodium hydroxide NaClO2/DMSO Delignification with NaClO2 followed by xylan isolation with DMSO PAA Peracetic acid PAA/DMSO Delignification with PAA followed by xylan isolation with DMSO PMAAs Permethylated alditol acetates Rha or Rhaf Rhamnose or rhamnofuranose S (lignin) Syringyl lignin SEC Size-exclusion chromatography SEM Scanning electron microscopy S/G ratio Syringyl/guaiacyl ratio of lignin UV (spectroscopy) Ultraviolet (spectroscopy) Xyl or Xylp Xylopyranose  

 

 

Page 11: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

List of Technical Terms 

Bagasse (sugarcane) Lignocellulosic biomass remained after juice removal from sugarcane stalks.

Pseudo-extractives Structures formed mainly from degradation products from xylan during acidic and alkaline pretreatments and quantified together with extractives due to similar solubility in neutral organic solvents.

Pseudo-lignin Structures formed mainly from degradation products from xylan during acidic pretreatments and quantified together with Klason lignin.

Straw (sugarcane) The term straw for sugarcane describes a different tissue in the plant from that usually used for other lignocellulosic biomasses, such as corn, rice or wheat. Sugarcane straw is the lignocellulosic biomass formed by sugarcane leaves and stalk tips.

Page 12: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

Contents

1.  Introduction ...................................................................................................... 1 

1.1  Objectives ............................................................................................................................ 7 

2.  Experimental .................................................................................................... 8 

2.1  Working plan ....................................................................................................................... 8 

2.2  Raw materials and chemicals ............................................................................................ 9 

2.3  Isolation of acetylated xylan samples .............................................................................. 9 

2.3.1 PAA delignification .......................................................................................................................... 9 

2.3.2 NaClO2 delignification ................................................................................................................... 10 

2.3.3 DMSO extraction ........................................................................................................................... 10 

2.4  Hydrothermal pretreatment ............................................................................................. 10 

2.5  Chemical characterization of biomasses ....................................................................... 11 

2.5.1 Ash, silica and total extractives contents ................................................................................... 11 

2.5.2 Lignin and sugar content .............................................................................................................. 11 

2.5.3 Mass balance calculation for biomasses ................................................................................... 12 

2.6  Chemical and structural characterization of xylan samples ........................................ 12 

2.6.1 Delignification yields and xylan isolation steps ......................................................................... 12 

2.6.2 Chemical composition of xylan samples .................................................................................... 12 

2.6.3 Linkage analysis ............................................................................................................................ 12 

2.6.4 Size-exclusion chromatography (SEC) ...................................................................................... 13 

2.6.5 Acetyl content and degree of acetylation ................................................................................... 13 

2.6.6 1H nuclear magnetic resonance spectroscopy (1H NMR) ........................................................ 14 

2.6.7 Fourier transform infrared spectrometry (FTIR) ........................................................................ 14 

2.6.8 Scanning electron microscopy (SEM) ........................................................................................ 14 

3.  Results and Discussion ................................................................................ 15 

3.1  Chemical characterization of biomasses (Paper I) ....................................................... 15 

3.1.1 Eucalyptus ...................................................................................................................................... 15 

3.1.2 Sugarcane bagasse and straw .................................................................................................... 16 

3.1.3 The influence of silica content on Klason lignin quantification ................................................ 17 

3.1.4 Complete mass balance: from extractives-free sawdust to whole biomass ......................... 18 

3.2  Chemical and structural characterization of acetylated xylan (Paper II) .................... 20 

3.2.1  Preparation of holocellulose samples ................................................................................. 20 

3.2.2  Extraction of xylan .................................................................................................................. 25 

3.2.3  Chemical and structural characterization of xylan samples ............................................. 27 

Page 13: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

  

3.2.3.1 Structure and composition of xylan .................................................................................. 27 

3.2.3.2 Molecular weight of xylan samples .................................................................................... 30 

3.2.3.3 Acetyl groups in xylan ......................................................................................................... 31 

3.2.3.4 Linkage analysis after acid hydrolysis of xylan samples ................................................ 32 

3.2.3.5 Characterization of xylan structure by 1H NMR method ................................................. 34 

3.2.3.6 Empirical structure of xylan from eucalyptus, bagasse and straw ................................ 37 

3.3  Role of xylan during the hydrothermal pretreatment (Paper I) .................................... 39 

4.  Conclusions .................................................................................................... 44 

5.  Appendix ......................................................................................................... 45 

6.  Acknowledgments ......................................................................................... 46 

7.  References ...................................................................................................... 47 

Page 14: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and
Page 15: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

1  

1. Introduction

The development of new technologies for the production of more advanced materials,

fuels and chemicals from renewable resources, such as wood, agricultural crops and

residues, has increased substantially throughout the world over the past several years

(Alekhina et al., 2014; Egüés et al., 2014; Fall et al., 2014; Cardoso et al., 2013; Lundberg et

al., 2013; Zhang et al., 2013; Çetinkol et al., 2012; Zhang et al., 2012; Prakash et al., 2011).

Over the next few years, it is expected that plant biomasses will be used strategically as

renewable resources in various novel and integrated industries. According to Ragauskas et

al. (2006), political support for investments in these new industries is as important as the

development of methods to increase efficiency and sustainability in chemical conversion

processes.

Sugarcane is one of Brazil’s main agricultural crops. Juice (rich in sucrose) is extracted

from the sugarcane and used to produce sugar, technical ethanol and, to a lesser extent,

beverages and candies. During the 2014/15 harvest in Brazil, an estimated 659 million tons

of sugarcane was cultivated over 9.1 million ha of land, with an average productivity of 72

tons/ha (Conab, 2014). In addition to food and fuel production, a large amount of

lignocellulosic residues are inevitably generated by the sugarcane industry - mainly bagasse

(sugarcane stalks remaining after juice extraction) and straw (sugarcane leaves and stalk

tips) (Figure 1). After being processed, approximately 140 kg of bagasse and 140 kg of straw

is generated (on a dry weight basis) from each ton of sugarcane (Oliveira et al., 2013).

Based on the above estimates, this means that approximately 92 million tons of bagasse

and 92 million tons of straw were generated during the 2014/15 harvest.

Eucalyptus is an important hardwood specie and is cultivated around the world.

Indeed, it is the most cultivated wood specie in Brazil, where it is used for diverse industrial

purposes (Gonzáles-García et al., 2012).

The large number of lignocellulosic biomasses, both from the main culture and its

residues, opens up new possibilities for the biofuel and the advanced materials industries.

However, a correct assessment of their chemical composition is crucial. In lignocellulosic

biomasses, the main components are ash, extractives, cellulose, hemicelluloses and lignin

(Figure 2).

Page 16: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

2  

Figure 1. Schematic representation of a sugarcane plant and the main lignocellulosic residues generated from it: bagasse and straw.

The ash components present in lignocellulosic biomasses are all inorganic compounds

that are usually absorbed directly from the soil. Calcium, potassium, magnesium,

manganese, iron and copper are the main inorganic compounds found in biomasses. In

addition, for some specific biomasses, such as grass plants, the silica components have

important physiological functions as a growth promoter and as self-protection against

herbivory. Silica might also replace carbon-based support in the intercellular spaces of

grass stalks (McNaughton et al., 1985).

Extractives are a generic name for a large group of organic components, normally of

relatively low molecular weight, that assumes different functions in the plant, such as

colour, smell, chemical protection, nutritive reserve and taste, among others.

Cellulose, hemicelluloses and lignin, which are all cell wall components, are the main

components from lignocellulosic biomasses for chemical conversion purposes.

Cellulose is formed by a linear chain of β-(1→4)-D-glucopyranose units. Although the

cellulose differs in various biomasses in terms of their degree of polymerization and

percentage of crystalline and amorphous parts, from a chemical point of view it is quite

similar in all higher plants.

The hemicelluloses are polysaccharide compounds which chain contains different

sugars: D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, D-glucuronic acid, 4-O-

methyl-α-D-glucuronic acid, D-galacturonic acid, traces of L-rhamnose, L-fucose and some

O-methyled neutral sugars. Acetyl groups can also be found (Bian et al., 2010). The main

Page 17: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

3  

hemicellulose in grasses, such as sugarcane, and in hardwood, such as eucalyptus, is xylan,

which is formed by a backbone of β-(1→4)-D-xylopyranose units, with the possibility of

substitution in C-2 and/or C-3, in addition to acetyl groups. Normally, the substitutions in

xylans are arabinofuranose (Araf) and 4-O-methylglucuronic acid (MeGlcA) in grasses and

hardwood, respectively. Other substitutions in xylan have also been detected in some cases,

but more rarely (Magaton et al., 2008; Ebringerová et al., 2005; Evtuguin et al., 2003).

Figure 2. Chemical components in lignocellulosic biomasses.

The exact structure of lignin is still under debate, but, in general, lignin is formed by p-

hydroxyphenyl (H) (non-methylated phenolic ring), guaiacyl (G) (methyl in position 3 in

phenolic ring) and syringyl (S) (methyl in positions 3 and 5 in phenolic ring) units. One

positive effect of a higher S/G lignin ratio is that it prevents the formation of condensed

structures of lignin during chemical processing (Brandt et al., 2013; Santos et al., 2011).

Also, a higher S/G ratio has proven to be beneficial during the various pretreatments used

for the chemical conversion of biomasses.

The chemical composition and percentage of each component present in biomasses

varies significantly between plants (eucalyptus vs sugarcane), between parts of the same

plant (leaves vs stalks) and even between parts of the same tissue (sapwood vs heartwood).

Page 18: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

4  

Sugarcane bagasse typically contains 5-7% extractives, 1-3% ash, 39-45% cellulose, 23-

27% hemicelluloses and 19-32% lignin (Canilha et al., 2011; Rabelo et al., 2011; Rocha et

al., 2011; da Silva et al., 2010). In straw, the typical chemical composition is: 5-17%

extractives, 2-12% ash, 33-45% cellulose, 18-30% hemicelluloses and 17-41% lignin (Santos

et al., 2014; Costa et al., 2013, da Silva et al, 2010; Saad et al., 2008). The main xylan found

in bagasse and straw is the arabinoxylan (AX), with substitutions of arabinose and slightly

acetylation in the backbone of xylose (Ebringerová et al., 2005). Lignin in bagasse and

straw differs from those in hardwood due the presence of H lignin in addition to G and S

(Brandt et al., 2013).

In general, eucalyptus from tropical areas contains small amounts of extractives (2-5%)

and ash (0.1-0.2%), which results in more than 90% of its chemical composition being

formed by cellulose (46-49%), hemicelluloses (18-32%) and lignin (29-33%) (Pereira et al.,

2013; Zanuncio et al., 2013). The xylan in eucalyptus has branches of methylglucurono

acids in addition to acetyl groups in the backbone of xylose (Magaton et al., 2008;

Ebringerová et al., 2005; Evtuguin et al., 2003). In eucalyptus, the lignin is formed by G

and S lignin units (Brandt et al., 2013).

The use of lignocellulosic biomasses in the production of biofuels and advanced

materials requires conversion processes during which the biomass is first chemically

treated to remove undesirable chemical components and decrease its recalcitrance in the

pretreatments stages. Diluted acid pretreatment is considered the most promising process

for the treatment of biomass, especially when the goal is the release of sugars for enzymatic

hydrolysis (Pu et al., 2013; Yang and Wyman, 2008; Chandra et al., 2007). During diluted

acid pretreatment, chemical transformations in the biomass occur due to a combined

action of acid pH, pressure, residence time (1 min to 1 h) and temperature (150-200ºC) (Pu

et al., 2013; Saha et al., 2005), and a combination of high temperature and short residence

time or low temperature and long residence time is usually used (Alvira et al., 2010).

Sulfuric acid is typically used in acid pretreatments. Hydrothermal pretreatment, which is

also called autohydrolysis or hot water pretreatment, is a variation of the diluted acid

treatment in which the only acid source is the organic acids from xylans. This process is

milder than acid pretreatment, during which an external acid source is provided. Chemical

reactions during hydrothermal pretreatment are catalyzed by the hydronium ion that is

released by water, as well as by the acetyl and uronic acid groups released from xylan

(Vegas et al., 2008; Garrote et al., 2007). From a chemical point of view, the reactions that

occur during hydrothermal pretreatment are similar to those that occur in dilute acid

pretreatment, but they proceed to a lesser extent. Although milder than acid pretreatment,

the hydrothermal process has been considered to be a feasible pretreatment process for

Page 19: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

5  

lignocellulosic biomasses, as it promotes adequate chemical transformations in biomass,

with low-cost reactor construction and low operational costs for both the consumption of

chemicals and maintenance (due to acid corrosion). Moreover, it is an environmentally

friendly process (Alvira et al., 2010; Garrote et al., 2007).

The main effects of hydrothermal pretreatment are the increase in cellulose

accessibility, which is achieved through the removal of hemicelluloses, and the swelling of

the entire structure. In addition, degradation products from xylan can be formed and

modified during the pretreatment, thereby generating condensed structures that are

usually referred to as pseudo-lignin (Hu et al., 2012; Sannigrahi et al., 2011; Alvira et al.,

2010; Lora and Wayman et al., 1978). The formation of pseudo-lignin from polysaccharides

degradation has also been demonstrated recently, especially at a combination of high

temperature, long residence time and high acid concentration (Sannigrahi et al., 2011). The

presence of pseudo-lignin in pretreated biomasses inhibits the enzymes in enzymatic

hydrolysis, for which milder hydrothermal conditions are recommended (Hu et al., 2012).

In addition to avoiding pseudo-lignin formation, milder hydrothermal conditions also

decrease the risk of generating degradation products from xylan, such as furfural and

hydroxymethyl furfural (HMF), which are generated primarily in high severity conditions

and which inhibit fermentative yeasts (Pu et al., 2013; Saha et al., 2005).

The hemicelluloses play a crucial role during the hydrothermal process because of:

1) they are present in lignocellulosic biomasses in large amounts;

2) they are the chemical components that are removed from the biomass most

substantially during hydrothermal pretreatment;

3) they contain organic acids that are released during pretreatment and that catalyze

the chemical reactions during the hydrothermal process (since no additional

chemical is provided); and

4) they are involved in the formation of inhibitors (pseudo-lignin, furfural and HMF).

In addition to their importance during the pretreatment process, hemicelluloses have a

promising future themselves. Over the coming years, it is anticipated that there will be a

decrease in the use of petroleum-based products, with renewable sources replacing fossil

sources. The use of polysaccharides, including hemicelluloses, are considered versatile

alternatives for the production of more environmentally friendly advanced materials, fuels

and chemicals, and even foodstuffs (Svärd et al., 2015; Zhang et al., 2013; Ebringerová et

al., 2005).

Page 20: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

6  

Assuming that different biomasses contain hemicelluloses that are chemically different

from one another (i.e., different acid groups content, side groups, chain size, etc.), it is

important to assess the chemical structure of these hemicelluloses correctly, considering

their sugar composition, as well as their content of acetyl and uronic acid groups. This can

provide useful guidance for researchers when determining the appropriate conditions for

biomass pretreatments, especially the hydrothermal process.

The biggest problem regarding the chemical characterization of biomasses is probably

the use of different methodologies (and, therefore, different reporting methods) for the

same biomass. There is, thus, an obvious need for the standardization of the methodologies

employed for both the analysis and the reporting of results (Canilha et al., 2012). A more

accurate protocol for the assessment of the chemical composition of biomasses could also

provide a better evaluation of the chemical transformation of the biomasses during the

pretreatments, by presenting the results of chemical composition using the same basis for

both the raw materials and the pretreated biomasses. In addition, a more detailed

evaluation of the chemical and structural features of hemicelluloses could provide useful

information for researchers on their more feasible industrial uses.

The main challenge, especially in the study of hemicelluloses, is to isolate the

hemicelluloses in large quantities and intact (Evtuguin et al., 2003). For structural studies,

the isolation is usually performed in holocellulose produced from extractive-free sawdust,

for which the mixture ethanol:toluene 1:2 (v/v) is generally used (Sun et al., 2004; Shalatov

et al., 1999). Holocellulose can be obtained through different delignification processes,

although the most frequently used processes use peracetic acid (PAA) (Marques et al.,

2010; Magaton, 2008; Evtuguin et al., 2003) and sodium chlorite (Bian et al., 2010;

Magaton, 2008; Evtuguin et al., 2003; Shatalov et al., 1999; Hägglund et al, 1956).

Dimethyl sulfoxide (DMSO) is typically used to isolate acetylated hemicelluloses from

holocellulose, which has the advantage of preserving the acetyl ester compounds and

glycosidic linkages, which is desirable for structural studies (Peng et al., 2012). However,

DMSO is also suitable for isolating xylose and non-xylan polysaccharides (Hägglund et al,

1956). In xylan isolated by DMSO, no significant difference in the position of acetyl groups

in the eucalyptus xylan backbone occurred during the delignification process, regardless of

whether PAA or sodium chlorite was used (Evtuguin et al., 2003), which indicates that both

chemicals are feasible for delignification.

The growing interest in the use of renewable resources for the production of biofuels

and advanced materials, together with the importance of hemicelluloses in the conversion

processes of biomasses, were the chief motivations for this thesis.

Page 21: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

7  

1.1 Objectives

The main goals of this study were:

1) to propose a more accurate characterization protocol for the assessment of the

chemical composition of eucalyptus, sugarcane bagasse and sugarcane straw

biomasses, taking into consideration each biomass constituent, including the

extractives and silica contents;

2) to determine the chemical structure of xylan extracted from eucalyptus, sugarcane

bagasse and sugarcane straw; and

3) to assess the effect of the different chemical compositions of the biomasses, and

especially the effects of xylan structure, on hydrothermal pretreatment.

It is hoped that the knowledge achieved in the present study can contribute to an

improvement in chemical conversion technologies and to the development of advanced

materials from lignocellulosic biomasses.

Page 22: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

8  

2. Experimental

2.1 Working plan

Figure 3 depicts the working plan. The chemical composition of eucalyptus, bagasse

and straw (ash, extractives, lignin and carbohydrates) were investigated using classical

methodologies. A new approach for the reporting of chemical composition, using the

complete mass balance, was adopted (Carvalho et al., 2015). Xylan samples were obtained

from eucalyptus, bagasse and straw and chemically and structurally characterized using the

following methodologies: carbohydrates, methylation linkage analysis, size-exclusion

chromatography (SEC), Fourier transform infrared spectrometry (FTIR), 1H nuclear

magnetic resonance spectroscopy (1H NMR) and scanning electron microscopy (SEM).

Hydrothermal pretreatment was performed on the biomasses, and the chemical

composition of the pretreated eucalyptus, bagasse and straw were investigated using

complete mass balance approach that combine the classical methodologies and the actual

yield.

Figure 3. Working plan for chemical characterization of untreated and pretreated biomasses (Paper I) and chemical and structural characterization of acetylated xylan samples (Paper II).

Page 23: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

9  

2.2 Raw materials and chemicals

The raw materials used were eucalyptus, sugarcane bagasse and sugarcane straw. Chips

of a 7-year old clonal hybrid of eucalyptus (Eucalyptus urophylla x Eucalyptus grandis)

were supplied by a pulp mill whose eucalyptus plantation is located in Brazil. Small pieces

(10 mm diameter) of 5-month old sugarcane bagasse (stalks after juice removal) and straw

(leaves and tips) from the cultivar RB867515 were supplied by Ridesa Experimental Station

(Viçosa, Minas Gerais state, Brazil). The materials were dried and then stored in airtight

plastic bags at room temperature prior to use. All chemicals used were of analytical grades.

2.3 Isolation of acetylated xylan samples

The biomasses were converted into sawdust and submitted to extractives removal using

ethanol/toluene 1:2 (v/v) for 12 h in a Soxhlet extractor (Sun et al., 2004; Shalatov et al.,

1999). The moisture of the extractives-free sawdust was determined according to TAPPI T

264 cm-07.

2.3.1 PAA delignification

An EDTA pretreatment was performed on the bagasse and straw prior to PAA

delignification in order to remove metal ions that can cause decomposition of PAA.

Approximately 500 mL of 0.2% (w/v) EDTA was added to the extractives-free sawdust of

bagasse and straw in an erlenmeyer flask and shaken at 90ºC for 1 h (Brienzo et al., 2009).

The suspension was filtered through a porous glass filter P2 (porosity 100), washed with

distillated water and used in the delignification. For the delignification, 500 mL of 10%

PAA at pH 3.5 (adjusted with sodium hydroxide solution) was added to 10 g of extractives-

free sawdust of bagasse and straw (pretreated with EDTA) and of eucalyptus in a

erlenmeyer flask, covered with an inverted erlenmeyer flask and then shaken at 85ºC for

30 minutes with constant stirring in a well-ventilated fume hood. A reaction time of 40

minutes was also tested during the PAA process. After PAA delignification, the suspension

was cooled in an ice bath and diluted twice with water. The delignified material was

filtered, washed with 5 L of warm distilled water and with 50 mL of acetone/ethanol 1:1

(v/v) (adapted from Evtuguin et al., 2003). The holocellulose was dried at room

temperature (24ºC) and stored in airtight containers.

Page 24: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

10  

2.3.2 NaClO2 delignification

A sample of 10 g of extractives-free sawdust was treated with 530 mL of buffered

sodium chlorite solution: 388 mL water, 15 mL acetic acid 100%, 72 mL sodium acetate

30% (w/v) and 55 mL sodium chlorite 30% (w/v). NaClO2 delignification was performed in

erlenmeyer flask, covered with an inverted erlenmeyer flask, at 75ºC for 30 minutes, with

constant stirring in a well-ventilated fume hood. The addition of chemical reagents in three

steps, with 30 min intervals between additions, was also tested during the NaClO2 process.

After NaClO2 delignification, the suspension was filtered through a polystyrene membrane

(porosity 60 µm), washed with 5 L of distilled water and, soon after, with 100 mL of

acetone (adapted from Magaton, 2008). The holocellulose was dried at room temperature

(24ºC) and stored in airtight containers.

2.3.3 DMSO extraction

130 mL of DMSO was added to 6 g of holocellulose (PAA-holocellulose or NaClO2-

holocellulose) in a plastic (polyethylene) bottle and shaken at 24ºC for 24 hours under

nitrogen atmosphere (adapted from Hägglund et al., 1956). The solution was filtered

through a polystyrene membrane (porosity 60 µm) with ~20 mL of distilled water. The

supernatant was added to 600 mL of ethanol at pH 3.5 (adjusted with formic acid)

(adapted from Magaton et al., 2008) in a plastic (polyethylene) bottle and the complete

xylan precipitation occurred after 12 hours at 4ºC. The xylan samples were isolated by

centrifugation (10 min at 45000 rpm) and then washed 5 times with methanol (adapted

from Evtuguin et al., 2003). The xylan samples were dried in a desiccator at room

temperature (24ºC) and then in a vacuum drier (5 h, 50ºC).

2.4 Hydrothermal pretreatment

Samples of eucalyptus, bagasse and straw (100 g each) were subjected to hydrothermal

pretreatment (with water). The liquor:biomass ratio used was 2:1 for eucalyptus and 7:1 for

bagasse and straw (on a dry weight basis). Hydrothermal pretreatment was performed in a

Regmed reactor (2 L capacity) with constant agitation for 90 min until the set temperature

(175ºC) was reached, and an additional 15 min for the pretreatment itself. Afterwards, the

reactor was cooled and the pretreated biomass was washed with an excess of water and

centrifuged at 800 rpm for 4 minutes. The pretreated biomass was dried for 24 h at 23 ± 1

Page 25: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

11  

ºC and 50 ± 2% relative humidity and then stored at room temperature in airtight

containers.

2.5 Chemical characterization of biomasses

2.5.1 Ash, silica and total extractives contents

The biomasses were ground into 40/60 mesh sawdust using a Wiley mill bench model,

dried (23 ± 1 ºC and 50 ± 2% relative humidity) and then used for chemical analysis. The

moisture was determined according to TAPPI T 264 cm-07.

The ash content of the biomasses was measured according to TAPPI 211 om-02. The

silica content in the ash was measured according to TAPPI 244 cm-11 using hydrochloric

acid.

The total extractives content was measured according to TAPPI T 264 cm-07 using a

sequential treatment with 1:2 ethanol/toluene (5 h), 95% ethanol (4 h) and hot water (1 h).

The total extractives content was determined gravimetrically based on the dry matter loss

during analysis.

2.5.2 Lignin and sugar content

The lignin content was determined as a sum of acid insoluble lignin (Klason lignin) and

acid soluble lignin. The Klason lignin was determined according to Gomide and Demuner,

(1986). The acid soluble lignin was determined by UV-spectroscopy at 215 and 280 nm

wavelengths (Goldschimid, 1971).

Neutral sugars were analyzed in acid hydrolysate from the Klason lignin analysis

according to Wallis et al. (1996) by ion chromatography (IC). The neutral sugar content

was reported as anhydrosugar.

For uronic acid determination, 0.3 mL of acid hydrolysate from the Klason lignin

analysis was treated with 0.3 mL of sodium chlorite/boric acid solution and then

hydrolyzed with sulfuric acid. The 5-formyl-2-furoic acid generated was determined by UV

spectroscopy at a 450 nm wavelength (Scott, 1979).

Acetyl groups content was determined in 300 mg of extractives-free biomass after

hydrolysis with oxalic acid at 120ºC for 80 minutes (Solar et al., 1987) by high performance

liquid chromatography (HPLC).

Page 26: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

12  

2.5.3 Mass balance calculation for biomasses

A complete mass balance calculation was developed in order to report the chemical

composition of the biomasses correctly. This new approach takes in into consideration the

silica co-precipitation in the Klason lignin (acid-insoluble lignin) analysis, as well as the

extractives content influence on the total mass balance. The detailed procedure can be

found in Carvalho et al. 2015 (Paper I).

The chemical composition of the pretreated biomasses was obtained by combining the

complete mass balance and the actual yield after pretreatment (see Carvalho et al., 2015).

2.6 Chemical and structural characterization of xylan samples

2.6.1 Delignification yields and xylan isolation steps

The delignification yield (PAA and NaClO2) was measured gravimetrically based on the

extractives-free biomass (on a dry basis) and the DMSO extraction yield was measured

gravimetrically based on the PAA-holocellulose or NaClO2-holocellulose (on a dry basis).

The xylan yield (estimated as xylose content) after the delignification step was

calculated taking into consideration the amount of xylose in the extractives-free biomasses

and in the holocellulose, combined with the delignification yield.

The xylan yield (estimated as xylose content) after DMSO extraction was estimated

based on the xylose content in the extractives-free biomasses and in xylan samples,

combined with the DMSO isolation yield.

2.6.2 Chemical composition of xylan samples

The sugar content (neutral sugars) of the xylan samples was determined by sulfuric acid

(72%) hydrolysis and subsequent high-performance anion exchange chromatography with

pulsed amperometric detection (HPAEC-PAD), in triplicate.

The content of uronic acids (glucuronic and galacturonic acid) was determined by

methanolysis according to Appeldoorn et al. (2010) and Bertaud et al. (2002).

2.6.3 Linkage analysis

Xylan samples were activated and reduced according to Kim and Carpita (1992). Then

the samples were further swelled according to Ciucianu and Kerek (1984) and hydrolyzed,

Page 27: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

13  

reduced and acetylated according to Albersheim et al. (1967). The obtained permethylated

alditol acetates (PMAAs) were separated and analyzed by gas chromatography. The mass

spectra of the fragments obtained from the permethylated alditol acetates were compared

to those of the reference polysaccharide derivatives and to available data (Carpita and Shea,

1989). For eucalyptus samples the reduction of uronic acids groups was performed before

activation. The quantification was based on the carbohydrate composition and effective

carbon response of each compound, as detected by GC-MS.

2.6.4 Size-exclusion chromatography (SEC)

2 mg of the samples were dissolved in 0.5% LiBr/DMSO at 60ºC overnight. The

solution was filtered and the molar mass distributions of the xylan extracts from

eucalyptus, sugarcane bagasse and straw were analyzed by size-exclusion chromatography

coupled to a refractive index detector. Pullulan standards of known molar masses were

used for calibration.

2.6.5 Acetyl content and degree of acetylation

9 mg of the xylan samples were hydrolyzed with NaOH at 70ºC overnight. The acetyl

groups content was determined from extracts using high-performance liquid

chromatography (HPLC) with UV detection. The degree of acetylation (DA) was

determined according to Eq. 1 (Xu et al., 2010) from the acetyl content in the xylan

samples.

132 %

100 1 %

(1)

where: DA is the degree of acetylation, % acetyl is the acetyl content determined by

analysis, Macetyl is the acetyl groups molecular weight (43 g mol-1) and 132 g mol-1 is xylose

molecular weight.

Page 28: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

14  

2.6.6 1H nuclear magnetic resonance spectroscopy (1H NMR)

The xylan samples were dissolved in D2O and treated with xylanase in order to improve

the dissolution. The 1H nuclear magnetic resonance (NMR) spectra (400 Hz) were recorded

at room temperature on a Bruker Advance 400 Hz instrument by using the standard

Bruker pulse program. The software MestReNova was used for the spectra evaluation.

2.6.7 Fourier transform infrared spectrometry (FTIR)

The holocellulose and xylan samples were studied by Fourier transform infrared

spectrometry (FTIR). The spectra (wavelength 4000-600 cm-1) were recorded by a Perkin-

Elmer Spectrum 2000 FTIR spectrometer (Waltham, MA, USA) equipped with an ATR

system, Spectac MKII Golden Gate (Creecstone Ridge, GA, USA). The spectra were

obtained from dry samples, which were subjected to 16 scans at a resolution of 4 cm-1 and

an interval of 1 cm-1 at room temperature. The software Origin 9.1 was used for the spectra

evaluation.

2.6.8 Scanning electron microscopy (SEM)

Scanning electron microscopy (SEM) images were obtained from holocellulose samples

by using a JEOL JSM-5400 scanning microscope (JEOL Ltd., Japan).

Page 29: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

15  

3. Results and Discussion

3.1 Chemical characterization of biomasses (Paper I)

3.1.1 Eucalyptus

The chemical composition of eucalyptus, based on the complete mass balance, is set out

in Figure 4. The results observed for ash and extractives confirmed those found in the

literature: ash in the range of 0.1-0.3% and extractives in the range of 2.1-5% (using the

same experimental methodology) (Pereira, et al., 2013; Zanuncio, et al., 2013; Alves et al.,

2010). Together, ash and extractives accounted for 2.5% of dry eucalyptus, a relatively low

value that has little influence on the mass balance.

Figure 4. Chemical composition of eucalyptus taking into consideration the complete mass balance.

Lignin (27.4%) and sugars (70.1%) accounted for the other 97.5% of chemical

components in eucalyptus. In percentage, the glucose was the main chemical component in

eucalyptus, representing almost 50% of dry eucalyptus and more than 70% of the total

sugars content. The significant content of xylose, uronic acids and acetyl in the sugars

content confirmed that xylan is the main hemicellulose in eucalyptus (Evtuguin et al.,

2003; Shatalov et al., 1999).

Page 30: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

16  

3.1.2 Sugarcane bagasse and straw

Not surprisingly, high ash and extractives contents were observed in bagasse (Figure 5),

similar to that reported in the literature (Andrade and Colodette, 2014; Alves et al., 2010),

and significant higher than the values observed in eucalyptus wood. In addition, results

indicated that silica accounted for 62% of the total ash content, in accordance with the

results obtained by McNaughton et al. (1985), which suggested that the silica acts as a

growth promotor in grasses and, moreover, may replace the carbon-based support in the

intercellular spaces of grass stalks. Ash and extractives together accounted for 17.3% of dry

bagasse.

Figure 5. Chemical composition of bagasse taking into consideration the complete mass balance.

The other 82.7% of the components present in bagasse corresponded to 18.0% lignin

and 64.7% sugars. The results demonstrated that the cell wall in bagasse was less lignified

than in eucalyptus, but with presence of G and H lignin units, which can increase the

possibility of condensation reactions during chemical processes (Brandt et al., 2013).

Glucose in bagasse accounted for only 36% of dry bagasse and 56% of the total sugars

content. As is the case in eucalyptus, the results confirmed that xylan is the main

hemicellulose in bagasse (Brienzo et al., 2009). However, the amount of xylan present in

bagasse was almost twice the amount present in eucalyptus.

Although chemically different from bagasse, the chemical composition of straw was

certainly more similar to that of bagasse than to eucalyptus. Discrepancies in the chemical

Page 31: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

17  

composition between the two parts of the same plant are most likely due the different

physiological function of each tissue. For example, the high silica content in grasses, which

has been reported as functioning as self-protection against herbivory (McNaughton et al.,

1985), differs from the physiological function of silica in stalks. The silica represented 73%

of the total ash content in straw, and both ash and silica were found in significantly higher

quantities in straw than in bagasse (Figure 6). Ash and extractives together accounted for

20.1% of dry straw.

In the other 79.9% of the straw components, the total lignin accounted for only 13.9%

of dry straw, with a probable presence of S, G and H lignin units (Brandt et al., 2013).

The total sugars content accounted for 66% in straw (on a dry basis), of which 55% was

glucose (36.3% on a dry straw basis).

Figure 6. Chemical composition of straw taking into consideration the complete mass balance.

3.1.3 The influence of silica content on Klason lignin quantification

Results presented in Figures 4, 5 and 6 indicated a higher content of silica in bagasse

and, especially, in straw, than in eucalyptus. The large amounts of silica present in bagasse

and straw are not soluble in acid and, as a result, can lead to the overestimation of Klason

lignin by co-precipitating with acid insoluble lignin and the results of this process are

presented in Figure 7.

For both bagasse and straw, the correction of the overestimation in Klason lignin was

very important. The Klason lignin contents of bagasse and straw were 19.5% and 14.0%,

Page 32: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

18  

respectively, which values were substantially lower than those found in the literature

(Costa et al., 2013; Pitarelo, 2007), although in that case the silica content was not removed

from the Klason lignin.

This correction is also recommended for other biomasses, especially those rich in silica

content, such as grass plants. In addition, recognizing the presence of silica in the acid-

insoluble residue is important for estimating the correct mass balance. In eucalyptus, the

overestimation in Klason lignin due to silica co-precipitation was negligible. The Klason

lignin content of eucalyptus was 24.0%, which was similar to that found in the literature

(Zanuncio et al., 2013; Santos et al., 2011).

 Figure 7. The influence of silica content on Klason lignin quantification. n.d. non-determined, value under the limit of detection.  

3.1.4 Complete mass balance: from extractives-free sawdust to whole biomass

The content of ash and extractives are usually obtained directly from experimental

data, unlike the content of carbohydrates and lignin, which are determined from

extractives-free sawdust. The results revealed a substantially higher content of ash and

extractives in the chemical composition of bagasse (17.3%) and straw (20.1%) than for

eucalyptus (2.5%) (Figure 8). As a result, the interpretation error due to assessing the

chemical composition based on extractives-free sawdust is very small for eucalyptus, unlike

that for bagasse and straw.

Page 33: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

19  

 

Figure 8. General chemical profile of eucalyptus, bagasse and straw.

Table 1 sets out the results of the chemical composition, determined according to the

approach described in the Experimental section.

Table 1. Results of chemical composition determined on extractives-free sawdust before and after (boxes) the accounting for losses of sugars

% Eucalyptus Bagasse Straw Silicaa n.d. 1.7 6.6 Klason ligninb 24.0 (0.1) 19.5 (0.1) 14.0 (0.3) Acid-soluble lignin 4.0 (0.02) 1.9 (0.06) 2.2 (0.08) Glucose 49.4 (0.7) 41.8 (0.8) 41.4 (1.2) Xylose 12.0 (0.2) 24.8 (0.2) 26.0 (0.2) Galactose 1.2 (0.1) 0.9 (0.1) 0.9 (0.06) Mannose 0.9 (0.05) 0.9 (0.1) 0.3 (0.1) Arabinose 0.3 (0.1) 2.3 (0.2) 3.9 (0.05) Uronic acids 4.0 (0.05) 1.5 (0.05) 1.3 (0.02) Acetyl groups 1.9 (0.04) 3.0 (0.02) 1.7 (0.01)

Totalc 97.7 98.3 98.2 Standard deviations (…) aDetermined in sawdust with extractives and converted to extractives-free sawdust. n.d. non-determined, value under the limit of detection. bSilica co-precipitation deducted. cSum of the average of components in extractives-free sawdust (silicaa, lignin and sugars).

For all biomasses, the sum of the sugars (after redistribution of losses of sugars) and

lignin content in the extractives-free sawdust was higher than that for the carbohydrates

and lignin in the whole biomass (blue bars in Figure 8). Accounting for the content of

51.1 12.4 1.2 0.9 0.3

42.8 25.4 0.9 1.0 2.3

42.4 26.6 1.0 0.3 4.0

100.0 100.0 100.0

Page 34: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

20  

extractives and ash thus the correct values for each constituent in eucalyptus, bagasse and

straw are set out in Figures 4, 5 and 6.

Chemical characterization of biomasses before chemical processing is widely used by

researchers as a way to obtain information that is useful for evaluating biomass features,

defining parameters for chemical processing and anticipating the biomass's behavior and

yield during chemical processing (Carvalho et al., 2014; Pereira et al., 2013; Ramos e Paula

et al., 2011; Santos et al., 2011). The use of the complete mass balance can help to achieve a

more accurate chemical evaluation of biomasses, even after chemical processing.

3.2 Chemical and structural characterization of acetylated xylan (Paper II)

3.2.1 Preparation of holocellulose samples

Especially in the case of bagasse and straw, a substantial higher amount of xylan was

observed, with a different chemical structure and different number and type of side groups

and acetyl groups content. A more detailed study of the xylan from these biomasses was

performed in order to identify their different chemical and structural features.

Two delignification methods - PAA and NaClO2 - were employed prior to the extraction

of xylan using DMSO. Isolating xylan in a high yield and without affecting its structure is a

challenge (Evtuguin et al., 2003) due to the interlinkages between various polymers in the

cell wall. In the present study, the biomasses were delignified prior to the DMSO extraction

in order to remove the lignin and, therefore, to obtain more pure xylan samples. Two

delignification conditions were used for each process: PAA for 30 or 40 minutes and

NaClO2 with one or three additions of chemical reagents. The FTIR spectra for the

holocellulose samples produced through the delignification processes are set out in Figure

9.

Slight differences were observed in the FTIR spectra of holocelluloses obtained under

different delignification conditions and delignification processes. The presence of

acetylated xylan in the holocellulose samples was confirmed by absorption at 1734 cm-1 in

both the PAA-holocellulose samples and the NaClO2-holocellulose samples (Bian et al.,

2010). In addition, results indicated that, even when using the PAA-delignification process

for 40 min and the NaClO2-delignification process with three additions of chemical

reagents, the holocellulose samples contained small amounts of lignin, which was

evidenced by the presence of a slight band at 1510 cm-1 due to the aromatic skeletal

vibration (Sun et al., 2004).

Page 35: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

21  

Figure 9. FTIR spectra of holocellulose samples delignified by PAA process (A) during 30 min for eucalyptus (spectrum a), bagasse (spectrum c) and straw (spectrum e) and during 40 min for eucalyptus (spectrum b), bagasse (spectrum d) and straw (spectrum f), and FTIR spectra of holocellulose samples delignified by NaClO2 process (B) with one addition of chemical reagents for eucalyptus (spectrum g), bagasse (spectrum i) and straw (spectrum k) and with three additions of chemical reagents for eucalyptus (spectrum h), bagasse (spectrum j) and straw (spectrum l).

The holocellulose samples obtained from eucalyptus using the PAA-delignification

process exhibited the lowest Klason lignin content among all of the biomasses. In addition,

a reduction in the Klason lignin content was observed in the holocellulose obtained from

eucalyptus due to the reaction time during the PAA-delignification process and the

additions of chemical reagents in the NaClO2-delignification process (Figure 10).

The increasing of the reaction time during the PAA-delignification process did not

improve delignification in holocelluloses obtained from bagasse and straw. This was in

contrast to the effect of adding chemical reagents three times instead of only once for the

same biomasses during the NaClO2-delignification process. In general, the PAA-

delignification process was more effective for lignin removal than the NaClO2-

delignification methods used.

A B

Page 36: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

22  

Figure 10. Klason lignin content in holocellulose samples from eucalyptus (A), bagasse (B) and straw (C) obtained by PAA (30 or 40 minutes) and NaClO2 (one and three additions of chemical reagents). Klason lignin was not corrected due to silica co-precipitation.

The delignification processes changed the morphology of the raw materials, as shown

in Figures 11, 12 and 13, with the eucalyptus showing the fewest changes. Rezende et al.

(2011) observed that delignification increased the fragility of and holes in the cell wall

structure of sugarcane bagasse. In the present study, similar results were observed for all

biomasses. The organization of the fibres was more open in the holocellulose samples than

in the biomass raw materials, but no difference was observed in holocellulose produced by

different methods from the same biomass. These results suggest that the delignification

processes (PAA or NaClO2) and the different conditions employed during the

delignification processes had similar effects on the fibre surface. Fibres (indicated by arrow

F) were the only structural element observed in the SEM images for eucalyptus (Figure 11).

In addition to fibres, the pith (indicated by arrow P) has also been observed as a

morphological feature in bagasse (Cruz et al., 2013; Driemeier et al., 2011; Rezende et al.,

2011) (Figure 12). Pith is a cell formed, basically, by polysaccharides. Fibres and pith are

probably present in both the bagasse raw materials and the holocellulose samples obtained

from bagasse, although in the present study fibres were not observed in the SEM images for

A B

C

Page 37: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

23  

certain holocellulose samples. This was most likely due the intense surface changes that

occurred during the delignification process, which resulted in the pith completely covering

the fibres in the images. During the delignification process, the lignin from both the lamella

and the lignified cells was removed, which can indirectly increase the area of the pith due to

cell wall disruption.

 

   Figure 11. SEM images of eucalyptus raw material (A), eucalyptus PAA-holocellulose (30 min) (B), eucalyptus PAA-holocellulose (40 min) (C), eucalyptus NaClO2-holocellulose (one addition of chemical reagents) (D) and eucalyptus NaClO2-holocellulose (three additions of chemical reagents) (E).

A  B C

F

D E F 

F

Page 38: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

24  

   

Figure 12. SEM images of bagasse raw material (A), bagasse PAA-holocellulose (30 min) (B), bagasse PAA-holocellulose (40 min) (C), bagasse NaClO2-holocellulose (one addition of chemical reagents) (D) and bagasse NaClO2-holocellulose (three additions of chemical reagents) (E).

Figure 13 shows changes in the fibre surface of straw due to delignification. Compared

to the raw material, the holocellulose samples showed a more open structure. In the raw

material, only fibres were observed in the SEM images, whereas in the holocellulose

samples obtained from straw piths were also observed, most likely due to lignin removal

from the lamella and the adjacent lignified cells. The SEM images provided evidence that

the delignification processes, in addition to causing changes in the chemical composition

(mostly lignin removal), also changed the fibre surface of the eucalyptus, bagasse and

straw.

For bagasse and straw, even milder delignification conditions resulted in a more open

structure, and the use of more severe delignification conditions had no additional effect on

the surface features.

 

A  B  CP 

F F 

P

D  E

P

Page 39: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

25  

   

   Figure 13. SEM images of straw raw material (A), straw PAA-holocellulose (30 min) (B), straw PAA-holocellulose (40 min) (C), straw NaClO2-holocellulose (one addition of chemical reagents) and (D) straw NaClO2-holocellulose (three additions of chemical reagents) (E).

3.2.2 Extraction of xylan

Xylan samples were extracted from the corresponding holocelluloses using DMSO. For

eucalyptus and bagasse, the holocellulose yield from the NaClO2 process was higher than

from the PAA process (Table 2). For straw, the PAA process resulted in slightly higher yield

values than the NaClO2 process. In addition, results indicated that the delignification yield

decreased with increases in reaction time (PAA-delignification process) and additions of

chemical reagents (NaClO2-delignification process) by up to 7% and 9%, respectively,

which suggests that it is likely that, under more severe conditions, carbohydrates (together

with lignin) were removed during delignification.

The main goal of the present study was to prepare xylan samples with the least

chemical modification possible. Despite the presence of small amounts of lignin in the

holocellulose samples (indicated by FTIR spectra in Figure 9 and Klason lignin analysis in

Figure 10), milder conditions for the PAA (30 min) and NaClO2 (one addition of chemical

reagents) delignification processes were used for the holocellulose preparation in order to

minimize the loss of xylan during delignification (bold values in Table 2).

A  B C

F

F F

D E 

PF 

F

Page 40: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

26  

Table 2. Delignification yield (in %) based on extractives-free biomasses (dry basis)

Biomass PAA delignification NaClO2 delignification

30 min 40 min 1 addition of

chemical 3 additions of

chemicals Eucalyptus 71.0 65.4 85.0 77.9 Bagasse 75.2 71.5 84.6 75.6 Straw 74.3 69.7 72.3 64.4

The xylan isolation yield was measured gravimetrically and calculated based on the

weight of the holocellulose used in the isolation process (on a dry basis). The PAA/DMSO

process was more efficient for xylan isolation, resulting in a significantly higher isolation

yield for the PAA/DMSO process than for the NaClO2/DMSO process, irrespective of the

biomass (Table 3). The present results confirmed those found in the literature for

eucalyptus, in which a higher xylan yield was also observed for the PAA/DMSO process

than for the NaClO2/DMSO process (Evtuguin et al, 2003).

Table 3. Xylan isolation yield (in %) based on holocellulose (dry basis) Biomass PAA/DMSO NaClO2/DMSO

Eucalyptus 6.93 0.23 Bagasse 5.70 0.85 Straw 7.69 1.53

The xylan yields (estimated as xylose content) after delignification and DMSO

extraction are set out in Table 4. During the delignification step, the main chemical

component removed was the lignin, although a certain amount of xylan was also removed.

A large amount of xylose was lost from the starting materials during the xylan isolation

steps, irrespective of the holocellulose (PAA or NaClO2) and biomass (eucalyptus, bagasse

or straw). A significantly higher xylan yield was obtained when using the PAA/DMSO

process. For NaClO2-holocelluloses samples a substantial presence of lignin was observed

(Figure 10).

Page 41: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

27  

Table 4. Xylan yield (in %) after delignification and xylan isolation step

Biomass Delignification step Xylan isolation step PAA NaClO2 PAA/DMSO NaClO2/DMSO

Eucalyptus 80.4 100.0 29.1 0.2 Bagasse 58.0 68.4 10.2 1.1 Straw 81.8 81.1 12.6 1.7

3.2.3 Chemical and structural characterization of xylan samples

3.2.3.1 Structure and composition of xylan

The structure of the xylan samples isolated through the PAA/DMSO and

NaClO2/DMSO processes was confirmed by FTIR analysis (Figure 14). In all spectra, a

typical signal for xylan was observed: a sharp band at 1039 cm-1, which is due to the C-O, C-

C stretching or C-OH bending in the sugar units (Chaikumpollert et al., 2004). In addition,

the bands between 1175 and 1000 cm-1, also typical of xylans, were observed (Sun et al.,

2004). The dominance of β-glycosidic linkages between the xylose units were evidenced by

the presence of a sharp band at 897 cm-1 (Gupta et al., 1987).

Figure 14. FTIR spectra of xylan samples of eucalyptus PAA/DMSO (a), eucalyptus NaClO2/DMSO (b), bagasse PAA/DMSO (c), bagasse NaClO2/DMSO (d), straw PAA/DMSO (e) and straw NaClO2/DMSO (f).

Page 42: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

28  

The hydroxyl stretching vibrations of xylans (3350-3330 cm-1), as well as the C-H

stretching vibrations caused by the water involved in the hydrogen bonding (2920 cm-1)

(Sun et al., 2004), were observed in the spectra. The band at 1241 cm-1, which is due to the

C-O stretching, and at 1370 cm-1, which is due to the C-CH3 stretching, were also detected

(Xu et al., 2010). The absorption at 1628 cm-1 corresponded principally to the water

absorbed by xylans (Kačuráková et al., 1998). A low amount of lignin was observed in the

xylan spectra, evidenced by the presence of a slight band at 1510 cm-1 due to the aromatic

skeletal vibration (Sun et al., 2004).

The isolation of the acetylated xylan samples from the biomasses was confirmed by

FTIR analysis. The presence of acetyl groups in the xylan samples was confirmed by the

absorption at 1734 cm-1, which is due to the C=O stretching (Bian et al., 2010).

The band at 1160 cm-1, observed especially in bagasse and straw, evidenced the

presence of arabinose substitution in the xylan samples (Egüés et al., 2014; Brienzo et al.,

2009). This was also confirmed by sugar analysis and linkage analysis (Figure 15 and Table

7, respectively).

The absence of bands around 1720 cm-1, which appear due to ketone carbonyls

stretching that can be generated from xylans through oxidation, suggested that the

glycosidic linkages and hydroxyl groups of xylans were not attacked or oxidized during the

isolation processes (Magaton et al., 2008; Sun and Tomkinson, 2002). Appendix A

presents a detailed interpretation of the main band seen in Figure 14.

The changes in the composition of the biomasses due to the various treatments were

monitored by sugar analysis and the data therefrom is set out in Figure 15. During the

delignification processes, the main chemical component removed was the lignin. A similar

sugar composition was observed between PAA-holocellulose and NaClO2-holocellulose for

all of the biomasses, with only slight differences due to the varying delignification

conditions. The glucose content in the holocellulose samples was marginally greater (0.22%

- 3.5%) with the PAA-40 min and NaClO2-3 chemical reagents additions processes than

with PAA-30 min and NaClO2-1 chemical reagents addition processes, respectively. A

longer reaction time in PAA-delignification and higher chemical charge in NaClO2-

delignification both resulted in the loss of xylan together with lignin during the

delignification process. Thus, the use of milder conditions in the delignification step

probably contributed to a decrease in the loss of xylan from raw materials.

Page 43: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

29  

Figure 15. Sugar composition of eucalyptus (A), bagasse (B) and straw (C) for extractives-free biomass, PAA-holocellulose (30 and 40 minutes), NaClO2-holocellulose (1 and 3 additions of chemical reagents) and xylan samples isolated by PAA/DMSO and NaClO2/DMSO. The delignification processes used for xylan preparation are underlined.  

Xylose was the second most abundant sugar present in both the raw materials and the

holocellulose samples. In bagasse and straw (extractives-free biomasses), the xylose

contents were 2.2 and 2.4 times higher than in eucalyptus, respectively. Especially in

Page 44: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

30  

bagasse and straw, arabinose was observed to be an important sugar in xylans, which was

also confirmed in the FTIR spectra (band at 1160 cm-1) (Figure 14). In extractives-free

biomasses and holocellulose samples, the glucose, xylose and arabinose yielded more than

92% of the total sugars.

The PAA/DMSO process produced the purest xylan samples, with 91.0%, 81.4% and

80.0% xylose for eucalyptus, bagasse and straw, respectively, while the NaClO2/DMSO

process resulted in hemicelluloses samples with a higher glucose content.

Magaton et al. (2008) found a similar sugar composition of xylan from eucalyptus

isolated by the PAA/DMSO process.

3.2.3.2 Molecular weight of xylan samples

The xylan samples for each biomass had different molecular weights (Table 5) and

weight distributions (Table 16). In general, the molecular weight distribution for the xylan

samples followed monomodal size distributions. Only the xylan sample extracted from

eucalyptus with NaClO2/DMSO showed a broader and multimodal distribution (Figure 16),

which could be linked to the presence of a heterogeneous population of polysaccharides, as

suggested by the monosaccharide composition (Figure 15) and linkage analysis (Table 7).

Table 5. SEC results

Samples Extraction process –Mn, kDa –Mw, kDa D

Eucalyptus PAA/DMSO 30.8 (0.3) 42.2 (0.3) 1.4

NaClO2/DMSO 9.7 (0.3) 55.2 (2.4) 5.7

Bagasse PAA/DMSO 25.2 (0.0) 37.6 (0.3) 1.5

NaClO2/DMSO 23.7 (0.5) 40.8 (2.9) 1.7

Straw PAA/DMSO 17.9 (0.5) 29.5 (0.5) 1.7

NaClO2/DMSO 18.2 (1.1) 34.2 (3.2) 1.9 Standard deviation (…)

For PAA/DMSO xylan samples from eucalyptus, the molecular weight value was 42

kDa, a value lower than that observed for NaClO2/DMSO xylan samples (55 kDa). The

polydispersity indexes for eucalyptus were 1.4 and 5.7 for PAA/DMSO xylan samples and

NaClO2/DMSO xylan samples, respectively. These results reinforced the observation that

the NaClO2/DMSO extraction process did not succeed in isolating relevant xylan fractions

from eucalyptus, but, rather, it isolated a mixture of shorter polysaccharide chains with a

high polydispersity index. In the present study, the molecular weight value for PAA/DMSO

Page 45: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

31  

xylan samples was slightly higher than the value of 36 kDa reported for the Eucalyptus

globulus (Evtuguin et al., 2003).

The average molar mass values for sugarcane bagasse and straw were in the range of

41-30 kDa, which were similar to the values previously obtained for sugarcane bagasse

xylans (Peng et al., 2009; Sun et al., 2004) and for straw xylans from other grasses (e.g.

wheat straw) (Persson et al., 2009). The polydispersity indexes of the bagasse and straw

xylan samples were in the range of 1.5-1.9, which was lower than the values previously

obtained for sugarcane bagasse xylans (Peng et al., 2009; Sun et al., 2004).

Figure 16. Molecular weight distribution of xylan from eucalyptus, bagasse and straw.  

3.2.3.3 Acetyl groups in xylan

Each biomass presented a different degree of acetylation. The PAA/DMSO process

resulted in the isolation of xylan samples with the highest acetyl content and degree of

acetylation for all biomasses (Table 6), with eucalyptus xylan having the highest degree of

acetylation. In NaClO2/DMSO xylan samples, bagasse had the highest degree of

acetylation. Straw had the lowest degree of acetylation, irrespective of the xylan isolation

process used, and only a slight difference was observed between the two methods. Based on

the chemical characterization of the starting biomasses, approximately 9.1%, 8.9% and

4.7% of the acetyl groups were observed in hemicelluloses for eucalyptus, bagasse and

straw raw materials, respectively (Figures 4-6).

In the present study, the acetyl content was lower than that observed by Evtuguin et al.

(2003) for Eucalyptus globulus (19.6%), but there was a similar degree of acetylation

between the eucalyptus xylan isolated by the PAA/DMSO process and the xylan samples

from beech and birch studied by Teleman et al. (2002). Magaton et al. (2008) observed a

Page 46: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

32  

substantially higher degree of acetylation for Eucalyptus urophylla × Eucalyptus grandis

(0.55) than was observed in the present study for eucalyptus.

Acetyl groups play an important role during the chemical processing of biomasses, and

knowledge of the differences in the degree of acetylation of xylan in various biomasses can

help to optimize chemical conversion processes.

Table 6. Acetyl content and degree of acetylation in xylans

Sample Acetyl content (%) DAa

PAA/DMSO NaClO2/DMSO PAA/DMSO NaClO2/DMSO Eucalyptus 11.3 (0.17) 3.3 (0.07) 0.39 (0.01) 0.10 (0.00) Bagasse 8.7 (0.37) 5.4 (0.22) 0.29 (0.01) 0.17 (0.01) Straw 2.4 (0.45) 1.5 (0.00) 0.08 (0.01) 0.05 (0.00)

Standard deviation (…) aDegree of acetylation.

3.2.3.4 Linkage analysis after acid hydrolysis of xylan samples

Xylan has been reported as being the main hemicellulose in both hardwood and grass

plants, but the exact structure and pattern of the branching differs for different plants

(Ebringerová et al., 2005). Many studies had shown that in eucalyptus the empirical

structure of the xylan is the O-acetyl-(4-O-methylglucurono) xylan, with branches of 4-O-

methylglucurono acids at position 2 and acetyl groups at positions 2 and/or 3 (Magaton et

al., 2008; Evtuguin et al., 2003). In addition, residues of glucan and ramnoarabinogalactan

can be found chemically linked to the 4-O-methylglucuronic acids, as described by

Evtuguin et al. (2003). In grasses, such as sugarcane, the arabinoxylan (AX) has been

identified as the main hemicellulose. The backbone is formed by β-(1→4)-D-xylopyranose,

with possibile substitutions of α-L-arabinofuranose at positions 2 and/or 3. Arabinoxylan

can also be slightly acetylated (Ebringerová et al., 2005).

Results of the linkage analysis revealed Xylp as the main unit in the backbone of xylan

in eucalyptus, bagasse and straw based on the substantially higher molar proportion of 4-

Xylp (1 →4)-linked units (Table 7). In addition, an evident presence other polysaccharides

in the NaClO2/DMSO xylan samples was observed in all biomasses, in consistency with the

sugar composition results. In bagasse and straw, these other polysaccharides most likely

came from arabinan and arabinogalactan, in addition to glucans and cellulose. In

eucalyptus, the presence of these other polysaccharides is most likely due the presence of

cellulose and other additional pectins, such as rhamnogalacturonan.

Page 47: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

33  

In xylan samples from eucalyptus, the branches of terminal MeGlcA (GlcpA-(1→), in

addition to 4-O-methylglucuronic acid (→2)-GlcpA-(1→) units, occurred preferentially in

position O-2 of the xylose. The molar ratio between the xylose units and MeGlcA branches

was 10:1.1. The number of branches in the xylose chain (2,4-Xylp, 3,4-Xylp and 2,3,4-

Xylp) accounted for a larger molar amount than MeGlcA units, most likely due to

incomplete MeGlcA quantification. The presence of substituted glucuronic acid moieties

has been reported before in PAA-extracted eucalyptus xylans (Pinto et al., 2005; Evtuguin

et al., 2003). In this study, the results suggested the substitution of MeGlcA with mainly

terminal galactosyl units, which are consistent with the results for PAA (Table 7). Branches

in 3,4-Xylp and 2,3,4- Xylp were observed in small amounts and might arise from the

incomplete saponification of the acetyl groups during the methylation process (Pinto et al.,

2005).

Magaton et al. (2008) suggested that the chemical linkage between glucose and

galactose to the xylan chain via uronic acids could have been the reason for the presence of

glucose and galactose in the xylan samples from eucalyptus. Evtuguin et al. (2003)

supported those findings, obtaining remarkable amounts of glucose, arabinose and

rhamnose in the xylan isolated from eucalyptus through the PAA/DMSO process. They also

suggested that these sugars most likely came from short polysaccharide fragments of

different origins, chemically linked to the backbone of the xylans and not simply adsorbed

during the xylan isolation process. Based on the linkage analysis results obtained by the

present study for eucalyptus, the linkage of xylan to glucose and pectins was not proved.

In xylan samples from bagasse and straw, a substantially higher molar proportion was

observed for 2,4-Xylp and 3,4-Xylp than for 2,3,4-Xylp, which confirmed the observations

of Ebringerová et al. (2005). However, this was in contrast to the observations made by

Heikkinen et al. (2013), who detected relatively abundant double substitutions in xylan

from wheat. The chemical structure of xylan samples from bagasse and straw were similar

to each other. Xylan from straw was substituted slightly more by arabinosyl units (10 xylose

units: 0.6 arabinosyl units) than was xylose from bagasse (10 xylose units: 0.5 arabinosyl

units).  In xylan extracted from bagasse and straw through the PAA/DMSO process, the

molar ratio between terminal residues (t-Araf) and branched xylose units (2,4-Xylp, 3,4-

Xylp and 2,3,4-Xylp) were 0.94 and 1.00, respectively. This indicated that no

undermethylation occurred during the analysis. On the other hand, for xylans isolated by

the NaClO2/DMSO process, the molar ratios between terminal residues and branched

xylose units for bagasse and straw, were only 0.65 and 0.69, respectively. For these

samples lower total xylose content was also obtained (Figure 15), most likely due to the

Page 48: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

34  

presence of other types of polysaccharides. As a result, the NaClO2/DMSO process was not

efficient for xylan preparation, resulting in a xylan which exhibited different chemical

behavior, such as having a higher resistance towards methylation.

Table 7. Linkage analysis

Linkage Structural units deduced

Relative abundance (% mol) Eucalyptus Bagasse Straw

PAA NaClO2 PAA NaClO2 PAA NaClO2 t-Araf Araf-(1 → <0,1 0,8 (0,0)1 4,6 (0,1) 3,6 (0,3) 5,3 (0,4) 6,0 (0,7) 2-Araf → 2) Araf-(1 → <0,1 n.d n.d 0,2 (0,2) 0,5 (0,1) 0,8 (0,0) 3-Arap → 3) Arap-(1 → n.d n.d n.d 0,1 (0,0) <0,1 0,3 (0,1) 5-Araf → 5) Araf-(1 → <0,1 0,4 (0,1) 0,2 (0,0) 0,3 (0,1) 0,5 (0,3) 0,7 (0,3)

2,5-Araf → 2,5) Araf-(1 → <0,1 1,1 (0,6) n.d <0,1 <0,1 <0,1 Total Ara1 0,2 (0,0) 2,4 (0,8) 4,8 (0,1) 4,1 (0,5) 6,4 (0,9) 7,6 (1,0)

t-Xylp Xylp-(1 → 1,6 (0,2)* 2,0 (0,1) 2,5 (0,2) 2,8 (0,2) 2,5 (0,4) 2,5 (0,5) 2-Xylp → 2) Xylp-(1 → n.d n.d n.d 0,2 (0,1) 0,1 (0,1) 0,4 (0,1) 4-Xylp → 4)-Xylp-(1 → 74,4 (2,3) 30,9 (3,5) 81,8 (0,7) 66,3 (2,1) 75,3 (2,4) 56,6 (0,3)

2,4-Xylp → 2,4)-Xylp-(1 → 9,5 (1,0) 3,2 (0,2) 1,2 (0,1) 1,1 (0,1) 1,0 (0,2) 1,3 (0,0) 3,4-Xylp → 3,4)-Xylp-(1 → 0,6 (0,1) 0,8 (0,0) 3,6 (0,1) 4,3 (0,3) 4,2 (0,8) 7,2 (0,7)

2,3,4-Xylp → 2,3,4) Xylp-(1 → 0,3 (0,1) 1,2 (0,5) <0,1 <0,1 <0,1 0,2 (0,0) Total Xyl1 86,4 (3,6) 38,1 (4,3) 89,1 (1,2) 74,9 (2,8) 83,4 (3,9) 68,5 (1,7)

t-Glcp Glcp(1 → n.d n.d 0,2 (0,0) 0,8 (0,3) 0,2 (0,0) 0,3 (0,0) 3-Glcp → 3)- Glcp A-(1 → 0,3 (0,2) 2,0 (0,5) 2,6 (0,0) 6,7 (0,7) 3,4 (1,2) 5,0 (0,8) 4-Glcp → 4) Glcp-(1 → 0,4 (0,1) 29,4 (7,4) 2,2 (0,0) 9,9 (1,9) 4,2 (0,0) 15,3 (0,6)

4,6-Glcp → 4,6)-Glcp-(1 → <0,1 2,6 (0,2) n.d n.d n.d n.d 3,4-Glcp → 3,4)-Glcp-(1 → n.d 1,6 (0,3) n.d n.d n.d n.d

Total Glc1 0,7 (0,3) 34,6 (9,4) 5,0 (0,1) 17,3 (2,8) 7,9 (1,2) 20,6 (1,5) 4-Manp → 4) Manp-(1 → 0,1 (0,0) 8,4 (0,1) n.d. n.d. n.d. n.d.

4,6-Manp → 4,6) Manp-(1 → n.d. 0,4 (0,1) n.d. n.d. n.d. n.d. Total Man1 0,1 (0,0) 8,8 (0,2) <0,1 0,3 (0,0) <0,1 <0,1

t-Galp Galp-(1 → 1,8 (0,2) 1,3 (0,9) 0,5 (0,2) 1,3 (0,3) 0,8 (0,0) 1,6 (0,1) 6-Galp → 6) Galp-(1 → n.d n.d <0,1 0,1 (0,1) 0,2 (0,1) 0,1 (0,0) 3-Galp → 3) Galp-(1 → n.d n.d <0,1 0,5 (0,1) 0,3 (0,2) 0,1 (0,0)

3,4-Galp → 3,4) Galp-(1 → n.d 0,6 (0,1) n.d n.d n.d n.d 2,3-Galp → 2,3) Galp-(1 → n.d 0,8 (0,3) n.d n.d n.d n.d 2,4-Galp → 2,4) Galp-(1 → n.d 1,3 (0,2) n.d n.d n.d n.d 3,6-Galp → 3,6) Galp-(1 → 0,2 (0,0) 1,6 (0,1) <0,1 0,2 (0,1) <0,1 0,1 (0,1) 4,6-Galp → 4,6) Galp-(1 → 0,1 (0,0) 2,7 (0,4) 0,1 (0,0) 0,7 (0,3) 0,5 (0,2) 0,6 (0,0)

Total Gal1 2,2 (0,3) 8,2 (2,0) 0,9 (0,1) 2,8 (1,0) 1,8 (0,6) 2,6 (0,3) 3-Rhaf → 3) Rhaf-(1 → 0,6 (0,1) n.d. n.d. n.d. n.d. n.d.

2,4-Rhaf → 2,4) Rhaf-(1 → n.d. 1,6 (1,1) n.d. n.d. n.d. n.d. Total Rha1 0,6 (0,1) 1,6 (1,1) n.d. <0,1 n.d <0,1

2-GalpA → 2) GalpA-(1 → 1,4 (0,5) 1,1 (0,2) n.e. n.e. n.e. n.e. 4-GalpA → 4) GalpA-(1 → 1,2 (0,2) 2,4 (1,9) n.e. n.e. n.e. n.e.

Total GalA1 2,6 (0,6) 2,9 (2,0) 0,2 (0,0) 0,2 (0,0) 0,5 (0,0) 0,2 (0,0) t-GlcpA GlcpA(1 → 6,3 (1,1) 3,0( 0,5) n.e. n.e. n.e. n.e. 2-GlcpA → 2) GlcpA-(1 → 0,8 (0,1) 0,4 (0,1) n.e. n.e. n.e. n.e.

Total GlcA1 7,2 (0,2) 3,4 (0,6) <0,1 0,5 (0,0) <0,1 0,2 (0,0) Standard deviation (…) 1Monosaccharide composition as calculated by acid methanolysis n.d: not detected n.e: not evaluated

3.2.3.5 Characterization of xylan structure by 1H NMR method

The structure of the acetylated xylan, including the position of the acetyl groups in the

xylan molecules, was investigated using the 1H NMR method (Figure 17). PAA/DMSO xylan

extracted from eucalyptus, bagasse and straw, were chosen for this study. In the spectra,

the hydrogen from the acetyl groups (CH3-CO-) (δH 2.01-2.11), the D2O (HDO) (δH 4.71)

and the solvent impurities (δH 1.94, 2.00, 2.16, 2.47, 2.62, 2.82, 3.07 and 3.25) were also

assigned, in addition to the main signals, in accordance with data found in the literature

(Sun et al., 2011; Marques et al., 2010; Magaton et al., 2008; Evtuguin et al., 2003;

Hoffmann et al., 1992; Izydorczyk and Biliaderis, 1992; Cavagna et al., 1984).

Page 49: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

35  

The anomeric hydrogens in the region between δH 4.4-5.5 were identified as following

patterns in the xylan chain: a non-acetylated xylose unit in the backbone isolated from

other acetylated xylose units; a non-acetylated xylose unit neighboring an acetylated xylose

unit; a xylose unit acetylated in oxygen 3; a xylose unit acetylated in oxygen 2; and a xylose

unit di-acetylated in oxygens 2 and 3. For eucalyptus, in addition to assigning the positions

of the acetyl groups, the branches of 4-O-methylglucuronic acid in the acetylated xylan

(Xyl-3Ac-2MeGlcA), the 4-O-methylglucuronic acid (MeGlcA) and the 4-O-

methylglucuronic acid linked to the galactosyl unit (MeGlcA-2Gal) were also assigned. For

bagasse and straw, arabinose linked to oxygen 3 in monosubstituted xylan (δH 5.39) and

arabinose linked to oxygen 3 (δH 5.29) and 2 (δH 5.23) in disubstituted xylan (Izydorczyk

and Biliaderis, 1992) were assigned (Table 8).

The 1H NMR spectrum for xylan from eucalyptus is set out in Figure 17A. Some signals

of anomeric protons related to acetyl groups in the xylose units and the position of the 4-O-

methylglucuronic acid units, which appear in the region between δH 4.6-4.9, were not

completely identified due to an overlap with the solvent signal (HDO). This was mainly the

case for the proton chemical shift at H-1 and H-2 in the xylose unit. The other proton

chemical shifts in the same xylose unit (H-3, H-4 and H-5) suggested the presence of acetyl

groups in O-2, O-3 and O-2,3, in addition to O-3 of xylose substituted by MeGlcA. In the

xylan samples from eucalyptus, the 4-O-methylglucuronic acid attached via α-(1→2)

linkage to xylose, which was observed in the results of the linkage analysis, was confirmed

in the 1H NMR spectra by the presence of an anomeric proton at δH 5.20 and of a singlet at

δH 3.38 (Teleman et al., 2000; Cavagna et al., 1984). 4-O-methylglucuronic acid can be

present in deacetylated xylose units (Shatalov et al., 1999) or in acetylated xylose units

(Xyl-3Ac-2MeGlcA) (Magaton et al., 2008; Evtuguin et al., 2003). In the present study, the

integration of the proton at H-3 (δH 4.99) from the structural element Xyl-3Ac-2GlcA and

the proton H-1 (δH 5.20) from the 4-O-methylglucuronic acid resulted in a ratio of 1:1. This

proved that all 4-O-methylglucuronic acid units are present in acetylated xylose. This

observation is consistent with those found by Magaton et al. (2008) for the same

eucalyptus hybrid and by Evtuguin et al. (2003) for Eucalyptus globulus.

 

Page 50: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

36  

Figure 17. 1H NMR spectrum of acetylated xylan from eucalyptus (A), bagasse (B) and straw (C) extracted by PAA/DMSO process. Designation of the structural fragments is presented in Table 8. *solvent impurities.

The 1H NMR spectra for xylan from sugarcane bagasse and straw are set out in Figure

17B and 17C, respectively. Acetyl groups in xylan from bagasse were assigned at positions

O-2, O-3 and O-2,3. In xylan from straw, acetyl groups were assigned at positions O-2 and

O-3 only. In xylan samples from both bagasse and straw, the terminal arabinose attached

Page 51: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

37  

via α-(1→) linkage to xylose units at positions O-2 and O-3, as observed earlier in the

linkage analysis, was confirmed in the 1H NMR spectra. The 1H NMR spectra also

suggested the presence of disubstituted xylose (Xyl-2,3Ara) units in the xylan samples from

bagasse and straw, but it was not confirmed by linkage analysis in representative molar

abundance.

Table 8. Proton NMR chemical shifts (δH, ppm) for structural units of acetylated xylan extracted by PAA/DMSO process from eucalyptus, bagasse and straw.

Biomass Structural units H1 H2 H3 H4 H5

ax eq

Eucalyptus

Xyl (isol.) 4.49 3.30 3.56 3.79 3.42 n.d. Xyl (Xyl-Ac) 4.37 3.19 3.54 3.69 n.d. n.d. Xyl-3Ac 4.60 3.47 4.98 3.94 3.47 n.d. Xyl-2Ac n.d. n.d. 3.79 3.85 3.45 n.d. Xyl-2,3Ac n.d. n.d. 5.09 4.03 3.54 n.d. Xyl-3Ac-2MeGlcA n.d. 3.69 4.99 3.97 3.47 n.d. MeGlcA 5.20 3.56 3.82 3.17 n.d. n.d. MeGlcA-2Gal 5.45 3.76 3.82 3.19 n.d. n.d.

Bagasse

Xyl (isol.) 4.46 3.30 3.55 3.79 3.37 n.d. Xyl (Xyl-Ac) 4.42 3.22 3.54 3.71 3.36 n.d. Xyl-3Ac 4.58 3.47 4.92 3.91 3.47 4.15 Xyl-2Ac 4.64 n.d. 3.79 3.85 3.43 4.15 Xyl-2,3Ac 4.84 4.82 5.19 4.05 3.51 4.20 Xyl-3Ara 5.39 4.18 3.91 4.18 3.75 3.77 Xyl-2,3Ara 5.29 4.18 3.91 4.18 3.75 3.77 Xyl-2,3Ara 5.23 4.16 3.94 4.14 3.75 3.77

Straw

Xyl (isol.) 4.50 3.30 3.58 3.72 3.39 4.09 Xyl (Xyl-Ac) 4.38 3.20 3.54 3.70 3.35 n.d. Xyl-3Ac 4.52 3.46 4.91 3.92 3.46 n.d. Xyl-2Ac 4.61 4.63 3.81 3.84 3.46 4.19 Xyl-2,3Ac n.d. n.d. n.d. n.d. n.d. n.d. Xyl-3Ara 5.32 4.20 3.92 4.20 3.74 3.76 Xyl-2,3Ara 5.29 4.20 3.92 4.20 3.74 3.76 Xyl-2,3Ara 5.26 4.19 3.93 4.11 3.74 3.76

n.d.non determined or inexistent. The following designations used were: Xyl (isol.) → non-acetylated Xylp in the backbone isolated from other acetylated Xylp units; Xyl (Xyl-Ac) → non-acetylated Xylp linked with neighboring acetylated Xylp; Xyl-3Ac - 3-O-acetylated Xylp; Xyl-2Ac → 2-O-acetylated Xylp; Xyl-2,3Ac → 2,3-di-O-acetylated Xylp; Xyl-3Ac-2MeGlcA → MeGlcA 2-O-linked and 3-O-acetylated Xylp; MeGlcA → MeGlcA unit; MeGlcA-2Gal → Galp 2-O-linked MeGlcA; Xyl-3Ara – terminal arabinose linked to O-3 of monosubstituted xylose; Ara Xyl-2,3Ara – terminal arabinose linked to O-3 in disubstituted xylose; and Xyl-2,3 - terminal arabinose linked to O-2 in disubstituted xylose.

 

3.2.3.6 Empirical structure of xylan from eucalyptus, bagasse and straw

Based on a combination of the experimental results for degree of acetylation (Table 6),

methylation linkage analysis (Table 7) and 1H NMR spectroscopy (Table 8 and Figure 17), a

designation for the structural fragments in xylans extracted from eucalyptus, bagasse and

straw (Table 9) and the empirical structures of xylan (Figure 18) were obtained.

Page 52: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

38  

In xylan extracted from eucalyptus, a molar ratio between the xylose units and the

branches of 4-O-methylglucuronic acid units of 10:1.1 was revealed by methylation linkage

analysis. A degree of acetylation of 0.39 acetyl groups/xylose units resulted in the followed

distribution of acetyl groups: 36% at Xyl-3Ac, 26% at Xyl-2Ac and 10% at Xyl-2,3Ac. In

addition, 28% of the acetyl groups were located at position O-3 of xylose substituted at O-2

by 4-O-methylglucuronic acid (Xyl-3Ac-2MeGlcA). All 4-O-methylglucuronic acids were

linked to the acetylated xylose unit, as determined by 1H NMR spectroscopy. In addition,

the presence of 4-O-methylglucuronic acid linked to terminal galactosyl unit, in low molar

abundance, was also shown by 1H NMR spectroscopy and confirmed by linkage analysis.

The assignment for the position of acetyl groups in the xylan was obtained by the

integration of the H-3 proton chemical shift in the 1H NMR spectrum, since for H-1 and H-

2 some signals were overlapped by the solvent signal (HDO).

Table 9. Empirical structure of xylan from eucalyptus, bagasse and straw

Structural fragments and short designation Relative abundance (per 100 Xylp units) Eucalyptus Bagasse Straw

→4)-β-D-Xylp-(1 → (Xyl) 63 70 86 →4)[3-O-Ac]-β-D-Xylp-(1 → (Xyl-3Ac) 14 17 5 →4)[2-O-Ac]-β-D-Xylp-(1 → (Xyl-2Ac) 10 4 3 →4)[3-O-Ac] [2-O-Ac]-β-D-Xylp-(1 → (Xyl-2,3Ac) 2 4 - →4)[4-O-Me-α-D-GlcpA(1→2)] [3-O-Ac] -β-D-Xylp-(1 → (Xyl-3Ac-2MeGlcA) 11 - - -4- O-Me-α-D-GlcpA-(1 → (MeGlcA) 7* - - → 2)-4- O-Me-α-D-GlcpA-(1 → (MeGlcA-2Gal) 1* - - →4)[α-L-Arabf(1→3)]-β-D-Xylp-(1 → (Xyl-3Ara) - 4 5 →4) [α-L-Arabf(1→2)]-β-D-Xylp-(1 → (Xyl-2Ara) - 1 1 α-L-Araf-(1 → (Ara) - 5 6

*Value for MeGlcA units underestimated by methanolysis.

In xylan extracted from sugarcane bagasse, a molar ratio between the xylose units and

the arabinosyl substitutions of 10:0.5 was revealed by methylation linkage analysis. A

significantly greater quantity of arabinose was observed by methylation linkage analysis at

position O-3 than at position O-2, in addition to a negligible molar quantity of arabinose in

positions O-2 and O-3 in the same xylose unit (Xyl-2,3Ara). A degree of acetylation of 0.29

acetyl groups/xylose units resulted in the following distribution of acetyl groups: 60% at

Xyl-3Ac, 13% at Xyl-2Ac and 27% at Xyl-2,3Ac.

In xylan extracted from sugarcane straw, a molar ratio between the xylose units and the

arabinosyl substitutions of 10:0.6 was revealed by methylation linkage analysis, with

greater quantity of arabinose at position O-3 than at position O-2 and a negligible molar

quantity of arabinose in positions O-2 and O-3 in the same xylose unit (Xyl-2,3Ara). A

degree of acetylation of 0.08 acetyl groups/xylose units resulted in the following

distribution of acetyl groups: 67% at Xyl-3Ac and 33% at Xyl-2Ac.

Page 53: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

39  

 Figure 18. Empirical structure of xylan from eucalyptus (A), bagasse (B) and straw (C).  

3.3 Role of xylan during the hydrothermal pretreatment (Paper I)

During hydrothermal pretreatment, the only chemical used is water, and the hydrolysis

is catalyzed by organic acids released from the biomass xylan itself (Pu et al.., 2013; Vegas

et al., 2008; Garrote et al., 1999). Hydrothermal pretreatment, which is performed in mild

acid conditions, leads to hemicellulose hydrolysis and removal of the hemicellulose from

the biomass, thereby increasing cellulose accessibility (Alvira et al., 2010).

The pH levels that were observed after hydrothermal pretreatment are set out in Table

10. The values obtained for eucalyptus, bagasse and straw were consistent with the content

of acetyl acid and uronic acid found in xylan from these biomasses (see Figures 4-6 and

Table 6).

Page 54: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

40  

Table 10. Final pH after hydrothermal pretreatment Eucalyptus Bagasse Straw

pH 3.4 (0.07) 4.5 (0.02) 5.3 (0.01) Standard deviations (…)

The total content of sugars (glucose, xylose, galactose, mannose and arabinose) in the

biomasses after hydrothermal pretreatment was 62.2%, 68.0% and 68.8% (Table 11) for

eucalyptus, bagasse and straw, respectively. The C6 sugars (glucose, galactose and

mannose), which are converted to bioethanol more efficiently by using traditional yeasts

(Baeyens et al., 2015), corresponded to 55.4%, 43.0% and 41.3% for eucalyptus, bagasse

and straw, respectively. These results indicate that eucalyptus should present greater

advantages for bioethanol production if the content of sugars is completely accessible.

However, the glucose, especially from cellulose, is not easily accessible due to the cellulose

recalcitrance. The recalcitrance has been described as a protection mechanism, of

lignocellulosic biomass, that hinder the degradation of cellulose by enzymes and, thus,

creates a challenge for enzymatic hydrolysis (Foston and Ragauskas, 2012; Zhao et al.

2012; Pu et al., 2013; Chandra et al., 2007). This necessitates the use of various

pretreatment processes in order to improve cellulose accessibility.

Table 11. Total chemical composition of the pretreated biomasses (%)*

Biomasses Ash Pseudo-extractives**

Klason Lignin

Soluble Lignin Glucose Xylose Galactose Mannose Arabinose

Eucalyptus 0.2 12.4 22.1 3.1 54.0 6.9 0.5 0.9 -

Bagasse 1.0 5.6 24.4 1.1 42.6 24.3 0.2 0.2 0.7

Straw 5.2 3.8 21.2 1.0 40.4 25.5 0.3 0.6 2.1

*Calculated from average of chemical components. **Structures which were removed by extraction with toluene, ethanol and hot water according to TAPPI T 264 cm-07 method (see experimental).

When performed at a lower pH, the hydrothermal pretreatment for eucalyptus resulted

in the removal of fewer chemical components (i.e., resulting in the highest yield) (Figure

19). The inverse correlation between pretreatment pH and yield suggested that bagasse

and, especially, straw were more suited to hydrothermal pretreatment than eucalyptus.

A significant level of hemicellulose removal (xylose, galactose, mannose and arabinose)

was observed during hydrothermal pretreatment, irrespective of the biomass.

Hemicellulose removal of up to 63%, 25% and 23 % was observed in eucalyptus, bagasse

and straw, respectively. The higher level of hemicellulose removal in eucalyptus was most

likely due to a lower pH level during the pretreatment, resulting from the larger content of

Page 55: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

41  

acetyl groups in eucalyptus xylan (compared to the bagasse or straw xylans). Glucose was

slightly removed through the hydrothermal pretreatment.

In addition to chemical transformations in the polysaccharides, the results indicated an

increase in the relative percentages of extractives (in eucalyptus) and lignin (in bagasse and

straw) after hydrothermal pretreatment.

The quantity of extractives increased 4.9 times for eucalyptus, which indicated that

other chemical components were most likely transformed during the hydrothermal

pretreatment into structures that had similar solubility to extractives. The structures

formed during the hydrothermal pretreatment, named “pseudo-extractives”, were

quantified together with extractives in accordance with the standard method (see

Experimental 2.5.1). In eucalyptus, the significant level of hemicellulose removal,

combined with the formation of pseudo-extractives, suggests that the degradation products

from xylan reacted with fragments of lignin or themselves to form pseudo-extractives. In

addition, the amount of hemicellulose in eucalyptus removed through the hydrothermal

pretreatment (12.8 g) was higher than the total loss of mass during the pretreatment (8.5

g), which further strengthens the hypothesis that degradation products from xylan

contribute to the formation of pseudo-extractives. Some formation of pseudo-extractives

could also occur in the sugarcane bagasse and straw.

The total amount of lignin in the pretreated eucalyptus decreased 15.7% compared to

the amount of lignin in the raw material, and it is reasonable to assume the possible

presence of lignin fragments, together with hemicellulose fragments, in the pseudo-

extractives structures. The total amount of lignin in the pretreated bagasse and straw

increased by up to 1.2 and 1.3 times, respectively, compared to the amount of lignin in their

respective raw materials. In addition, the results indicated a significant increase in Klason

lignin during the pretreatment process (see Table 11). This phenomenon has been

observed previously, and was described to the formation of pseudo-lignin (Hu et al., 2012;

Sannigrahi et al., 2011; Li et al., 2007; Li et al., 2005). The present results expand current

knowledge and show that in grass plants that are subjected to acid hydrolysis, pseudo-

lignin is also generated, even in mild conditions. A recent study demonstrated that pseudo-

lignin was generated to a larger extent from polysaccharide degradation than from lignin

during acid pretreatments of the biomass, especially under high severity conditions

(temperature, reaction time and acid concentration) (Sannigrahi et al., 2011). A practical

implication of the presence of pseudo-lignin in pretreated biomasses is the inhibition of

enzymes during enzymatic hydrolysis of biomasses (Hu et al., 2012). To avoid this

phenomenon, milder pretreatment conditions are recommended.

Page 56: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

42  

Figure 19. Chemical composition of pretreated eucalyptus, bagasse and straw (obtained by the combination of mass balance and actual yield for each biomass).

The different chemical compositions of xylan in the various biomasses proved to be

very important during hydrothermal pretreatment. The results showed that the xylan has

at least three important roles during hydrothermal pretreatment:

1) Catalyst: the reactions that occurred during the hydrothermal pretreatment were

promoted by the acid groups (uronic acids and acetyl groups) that were released from the

biomasses. The eucalyptus, in addition to having a larger number of uronic groups and

acetyl groups in the xylan (Figures 4-6), also showed a higher degree of acetylation (Table

6) in the xylan than did the bagasse and straw. This was consistent with the pH levels after

pretreatment (Table 10);

2) Matter removal: during the hydrothermal pretreatment, the xylan was removed

more extensively than any other chemical component in the biomasses, which improved

cellulose accessibility without a significant loss of glucose; and

3) Formation of modified structures: degradation products from xylan (furan type

structures), which formed during the pretreatment process, reacted to form pseudo-

extractives (in eucalyptus) and pseudo-lignin (in bagasse and straw).

In summary, the comparative study of the structure of xylans from various biomasses

contributes to the current knowledge of the structural features of xylan in different

biomasses, such as O-acetyl-4-O-methylglucuronoxylan in eucalyptus and arabinoxylan in

Page 57: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

43  

sugarcane bagasse and straw, and provides a better understanding of the role of these

polysaccharides during chemical pretreatments, especially hydrothermal pretreatment.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 58: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

44  

4. Conclusions

The suggested novel approach, based on the complete mass balance, proved to be a

useful tool for the comparison of the chemical composition of various biomasses.

The calculations, which took into consideration the content of ash and extractives,

allowed for a more accurate assessment of the chemical composition of bagasse and

straw, which both contain large amounts of those chemical components. It was

shown that sugarcane bagasse and straw contain larger quantities of ash (2.3% and

7.9%, respectively) and extractives (15.0% and 12.2%, respectively) than eucalyptus

(0.16% ash and 2.3% extractives).

The large quantity of silica in sugarcane bagasse and straw leads to an

overestimation of the Klason lignin content, which needs to be corrected. Based on

the corrected values, it was shown that bagasse and straw had a smaller total

content of lignin (18.0% and 13.9%, respectively) than previously reported, and

certainly a smaller amount than that found in eucalyptus (27.4%).

Xylan from eucalyptus, sugarcane bagasse and sugarcane straw differ from each

other in terms of their structure. In eucalyptus, the xylan was the O-acetyl-4-O-

methylglucuronoxylan with a molar ratio of xylose units to 4-O-methylglucuronic

acid branches of 10:1.1, degree of acetylation of 0.39 and molecular weight of 42

kDa. Galactosyl unit linked to 4-O-methylglucuronic acid in eucalyptus xylan was

also observed. In sugarcane bagasse and straw, the xylan was the arabinoxylan. In

bagasse, the xylan had a molar ratio of xylose units to arabinosyl substitutions of

10:0.5, degree of acetylation of 0.29 and molecular weight of 38 kDa, while in straw,

the xylan had a molar ratio of xylose units to arabinosyl substitutions of 10:0.6,

degree of acetylation of 0.08 and molecular weight of 30 kDa. Arabinose units in

xylan from bagasse and straw were observed in positions O-2 and O-3.

It was shown that, during hydrothermal pretreatment, the structure of the xylan

(i.e., the number of acetyl groups) affected the process conditions (pH of the liquor)

and may have contributed to the formation of a significant amount of pseudo-

extractives in eucalyptus and pseudo-lignin in bagasse and straw.

Page 59: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

45  

5. Appendix

Appendix A: FTIR interpretation Wavenumber (cm-1) Functional groups Interpretation

3400 – 3200 -OH stretching H bond hydroxyl groups stretching 2970 – 2860 C-Hn stretching Symmetric vibration 1765 – 1715 C=O stretchin Ketone and ester carbonyl groups

1628 Water absorption 1560-1510 C=O stretchin Ketone and carbonyl

1510 Lignin 1472 C-H or OH Deformation

1470-1430 0-CH3 Methoxyl -O-CH3 1467, 1414 C-H, OH and CH2 C-H, OH and CH2 bending

1402 CH bending 1381 C-H Deformation 1370 C-CH3 1270 C-O-C 1252 C-H or OH Deformation 1241 C-O stretching 1232 C-O-C stretching Aryl-alkyl ether

1170, 1082 C-O-C stretching vibration Pyranose ring skeletal 1175 Arabinose chain 1169 CH3-O-C CH3 stretchin, deformation and stretching vibration 1160 Arabinose residues 1108 C-OH OH association 1060 C-OH C-O stretching and C-O 1051 C-O Stretching 1043 C-O-(H) COH bending modes 1039 Xylan 990 Arabinosyl units

950 - 700 C-H deformation C-H deformation 900 - 700 C-H Aromatic hydrogen

897 ß-glucosidic linkages Signal typical of acetylated xylan and signals typical of lignin.

Sources: Egües et al. (2014), Bian et al. (2010), Xu et al. (2010), Brienzo et al. (2009), Magaton et al. (2008), Yang et al. (2007), Chaikumpollert et al. (2004), Sun et al. (2004), Fang et al. (2002), Kačuráková et al. (1998) and Gupta et al. (1987).  

Page 60: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

46  

6. Acknowledgments

To God, the GREATER LOVE, that keeps me and leads me. Thanks also for make this

beautiful journey possible.

To Professor Mikael Lindström, my supervisor, and the Dr. Olena Sevastyanova, my co-

supervisor, for all the help, patience and supervision gently offered during this entire

project. Your dedication, knowledge and commitment certainly are the reasons for the

existence of this thesis. Thank you!

To Antonio and Francisco, for the friendship and the productive cooperation. Thanks

for help me to make this project possible.

To my advisor in Brazil (UFV) the Professor Jorge Luiz Colodette, for the guidance,

understanding and teaching and all the contribution you offered that are helping to become

the professional I want to be.

To Capes and CNPq foundations, for the scholarship in Brazil and Sweden (Sandwich

program), respectively.

To my parents, José Helvécio and Mariínha and my brother Diego, for the

unconditional love, for all the support and for understand my absence. To my other

relatives, for all motivation and confidence and for share with me my fears and

achievements.

To my colleagues at the Fiber and Polymer Technology Department and Wallenberg

Wood Science Center and all the amazing people that I have met during the last two years,

especially to Verónica, the most “chévere” friend and to Rafa, the most amazing gift the

Northern lands could give me.

To my other friends from LCP (Viçosa), Coronel Fabriciano, Stockholm or even other

places around the world, for all the encouragement and friendship.

For all of you my sincere gratitude,

THANKS!

Page 61: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

47  

7. References

Albersheim, P., Nevins, D.J., English, P.D., Karr, A., 1967. A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydrate Research, 5(3), 340-345.

Alekhina, M., Mikkonen, K.S., Alén, R; Tenkanen, M., Sixta, H., 2014. Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films. Carbohydrate Polymers 100, 89-96.

Alves, E.F., Bose, S.K., Francis, R.C., Colodette, J.L., Iakovlev, M., Van Heiningen, A., 2010. Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydr. Polym. 82, 1097-1101.

Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851-4861.

Andrade, M.F., Colodette, J.L., 2014. Dissolving pulp production from sugarcane bagasse. Ind. Crop. Prod. 52, 58-64.

Annamalai, K., Sweeten, J.M., Ramalingam, S.C., 1987. Estimation of gross heating value of biomass fuels. American Society of Agricultural Engineers 30(4), 1205-1208.

Appeldoorn, M.M., Kabel, M.A., Van Eylen, D., Gruppen, H., Schols, H.A., 2010. Characterization of oligomeric xylan structures from corn fiber resistant to pretreatment and simultaneous saccharification and fermentation. Journal of Agricultural and Food Chemistry 58(21), 11294-11301.

Baeyens, J., Kang, Q., Appels, L., Dewil, R., Lv, Y., Tan, T., 2015. Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Sci. 47, 60-88.

Bertaud, F., Sundberg A., Holmbom, B., 2002. Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydrate Polymers 48(3), 319-324.

Bian J., Peng, F., Xu, F., Sun, R-C., Kennedy, J. F., 2010. Fractional isolation and structural characterization of hemicelluloses from Caragana korshinskii. Carbyhydrates Polymers 80, 753-760.

Brienzo, M., Siqueira, A.F., Milagres, A.M.F., 2009. Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochemical Engineering Journal 46, 199-204.

Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T., 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550-583.

Brienzo, M., Siqueira, A.F., Milagres, A.M.F., 2009. Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochemical Engineering Journal 46, 199-204.

Canilha, L., Chandel, A.K., Milessi, T.S.D.S., Antunes, F.A.F., Freitas, W.L.D.C., Felipe, M.D.G.A., da Silva, S.S., 2012. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation, J. Biomed. Biotechnol. doi:10.1155/2012/989572.

Canilha, L., Santos, V.T.O., Rocha, G.J.M., Silva, J.B.A.e, Giulietti, M., Silva, S.S., Felipe, M.G.A., Ferraz, A., Milagres, A.M.F., Carvalho, W., 2011. A study on the pretreatment

Page 62: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

48  

of a sugarcane bagasse sample with dilute sulfuric acid. J. Ind. Microbiol. Biotechnol. 38, 1467-1475.

Cardoso, W.S., Tardin, F.D., Tavares, G.P., Queiroz, P.V., Mota, S.S., Kasuya, M.C.M., Queiroz, J.H.de, 2013. Use of sorghun straw (Sorghum bicolor) for second generation ethanol production: pretreatment and enzymatic hydrolysis. Quim. Nova, 36 (5), 623-627.

Carpita, N.C.; Shea, E.M., 1989. Linkage structure of carbohydrates by gas chromatography–mass spectrometry (GC–MS) of partially methylated alditol acetates. In: Biermann C.J., McGinnis, G.D. (Eds.), Analysis of carbohydrates by GLC and MS. CRC Press, Inc: Boca Raton, 157–216.

Carvalho, D. M.d., Sevastyanova, O., Penna, L.S., Silva, B.P., Lindström, M.E., Colodette, J.L., 2015. Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind. Crop. Prod. 73, 118-126.

Carvalho, D.M., Silva, M.R., Colodette, J.L., 2014. Efeito da qualidade da madeira no desempenho da polpação kraft (Wood quality effect on kraft pulping performance). Ciência Florestal 24(3), 677-684.

Cavagna, F., Deger, H., Puls, J., 1984. 2D-N.M.R. analysis of the structure of an aldotriouronic acid obtained from birch wood. Carbohydrates Research 129, 1-8.

Çetinkol, Ö.P, Smith-Moritz, A.M., Cheng, G., Lao, J., George, A., Hong, K., Henry, R., Simmons, B.A., Heazlewood, J.L., Holmes, B.M., 2012. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks. PLoS ONE 7 (12), e52820. doi:10.1371/journal.pone.0052820.

Chaikumpollert, O., Methacanon, P., Suchiva, K., 2004. Structural elucidation of hemicelluloses from Vetiver grass. Carbohydrate Polymers 57, 191-196.

Chandra, R.P., Bura, R, Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N., 2007. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem Eng. Biotechnol. 108, 67-93

Ciucanu, I., Kerek, F., 1984. A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research 131(2), 209-217.

Conab. Companhia nacional de abastecimento, 2014 [cited 2014 http://www.conab.gov.br/OlalaCMS/uploads/arquivos/14_08_28_08_52_35_boletim_cana_portugues_-_2o_lev_-_2014-15.pdf].

Costa, S.M., Mazzola, P.G., Silva, J.C.A.R., Pahl, R., Pessoa Jr., A., Costa, S.A., 2013. Use of sugar cane straw as a source of cellulose for textile fiber production,” Industrial Crops and Products 42, 189-194.

Cruz, G., Monteiro, P.A.S., Braz, C.E.M., Seleghin Jr., P., Polikarpov, I., Crnkovic, P.M., 2013. Thermal and morphological evaluation of chemically pretreated sugarcane bagasse. World Academy of Science, Engineering and Technology 7, 1345-1350.

da Silva, A.S., Inoue, H., Endo, T., Yano, S., Bon, E.P.S., 2010. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101 (19), 7402-7409.

Delcour, J.A., Van Win, H., Grobet, P.J., 1999. Distribution and structural variation of arabinoxylan in common wheat mill streams. J. Agric. Food Chem., 47, 271-275.

Driemeier, C., Oliveira, M.O., Mendes, F.M., Gómes, E.O., 2011. Characterization of sugarcane bagasse powders. Powder Technology 214, 111-116.

Page 63: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

49  

Ebringerová, A., Hromádková, Z., Heinze, T., 2005. Hemicellulose. Adv. Polym. Sci. 186, 1-67.

Egüés, I. Stepan, A.M., Eceiza, A., Toriz, G., Gatenholm, P., Labidi, J., 2014. Corncob arabinoxylan for new materials. Carbohydrate Polymers 102, 12-20.

Erol, M., Haykiri-Acma, H., Küçükbayrak, S., 2010. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy 35, 170-173.

Evtuguin, D.V., Tomás, J.L., Silva, A.M.S., Pascoal Neto, C., 2003. Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydrate Research 338, 597-604.

Fall, A.B., Burman, A., Wågberg, L., 2014. Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nordic Pulp & Paper Research Journal 29 (1), 176-184.

Fang, J.M., Fowler, P., Tomkinson, J., Hill, C.A.S., 2002. Preparation and characterization of methylated hemicelluloses from wheat straw. Carbohydrate Polymers 47, 285-293.

Foston, M., Ragauskas, A.J., 2012. Biomass characterization: recent progress in understanding biomass recalcitrance. Ind. Biotechnol. 8,191-208.

García, R., Pizarro, C., Lavín, A.G., Bueno, J.L., 2013. Biomass proximate analysis using thermogravimetry. Bioresource Technology 139, 1-4.

Garrote, G., Domínguez, H., Parajó, J.C., 1999. Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J. Chem. Technol. Biotechnol. 74, 1101-1109.

Goldschimid, O., 1971. Ultravioleta spectra. In: Sarkanen, K.V., Ludwig, C.H. (Eds.), Lignins: ocurrence, formation, structure and reactions. John Wiley and sons,New York, 241-298.

Gonzáles-García, S., Moreira, M. T., Feijoo, G., Murphy, R. J., 2012. Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). Biomass and Bioenergy 39, 378-388.

Gomide, J.L., Demuner, B.J., 1986. Determinação do teor de lignina em madeira: método Klason modificado. O Papel 47 (8), 36-38.

Gupta, S., Madan, R.N., Bansal, M.C., 1987. Chemical composition of Pinus caribaea hemicellulose. Tappi J. 70(8), 113-114.

Heikkinen, S.L., et al., 2013. Specific enzymatic tailoring of wheat arabinoxylan reveals the role of substitution on xylan film properties. Carbohydrate Polymers 92(1), 733-740.

Hu, F., Jung, S., Ragauskas, A., 2012. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 117, 7-12.

Hägglund, E., Lindberg, B., McPherson, J., 1956. Dimethylsulfoxide, a solvent for hemicelluloses. Acta Chemica Scandinavica 10, 1160-1164.

Hoffmann, R.A., Kamerling, J.P., Vliegenthart, F.G., 1992. Structural features of a water-soluble arabinoxylan from the endosperm of wheat. Carbohydrate Research 226, 303-311.

Izydorczyk, M.S., Biliaderis, C.G., 1992. Effect of molecular size on physical properties of wheat arabinoxylan. J. Agrlc. Food Chem. 40, 561-568.

Kačuráková, M., Belton, P.S., Wilson, R.H., Hirsch, J., Ebringerová, A., 1998. Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides. J. Sci. Food Agric. 77, 38-44.

Page 64: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

50  

Kim, J.B., Carpita, N.C., 1992. Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles. Plant Physiology 98(2), 646-653.

Li, J., Henriksson, G., Gellerstedt, G., 2005. Carbohydrate reactions during high-temperature steam treatment of aspen wood. Applied Biochemistry and Biotechnology 125, 175-188.

Li, J., Henriksson, G., Gellerstedt, G., 2007. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour.Technol. 98, 3061-3068.

Lora, J.H., Wayman, M., 1978. Delignification of hardwoods by autohydrolysis and extraction. Tappi J., 61 (6), 47-50.

Lundberg, V., Axelsson, E., Mahmoudkhani, M., Berntsson, T., 2013. Converting a kraft pulp mill into a multi-product biorefinery - Part 1: Energy aspects. Nordic Pulp & Paper Research Journal 28 (4), 480-488.

Luz, S.M., Gonçalves, A.R., Del'Arco Jr., A.P., Leão, A.L., Ferrão, P.M.C., Rocha, G.J.M., 2010. Thermal properties of polypropylene composites reinforced with different vegetable fibers. Advanced Materials Research 123–125, 1199–1202.

Magaton, A.daS., 2008. Comportamento e caracterização de xilanas durante a polpação kraft de eucalipto. Federal University of Minas Gerais, pp. 259 (PhD thesis).

Magaton, A.da.S., Piló-Veloso, D., Colodette, J.L., 2008. Characterization of O-acetyl-(4-O-methylglucurono)xylans from Eucalyptus urograndis. Quim. Nova 31(5), 1085-1088.

Marques, G., Gutiérres, A., del Río, J.C., Evtuguin, D.V., 2010. Acetylated heteroxylan from Agave sisalana and its behavior in alkaline pulping and TCF/ECF bleaching. Carbohydrates Polymers 81, 517-523.

McNaughton. S.J., Tarrants, J.L., McNaughton, M.M., Davis, R.H., 1985. Silica as a defense against herbivory and growth promotor in African grasses. Ecology 66(2), 528-535.

Moriana, R., Zhang, Y., Mischnick, P., Li, J., Ek, M. 2014. Thermal degradation behavior of kinetic analysis of spruce glucomannans and its methylated derivatives. Carbohydrates Polymers 106, 60-70.

Oliveira, F.M.V., Pinheiro, I.O., Souto-Maior, A.M., Martin, C., Golçalves, A.R., Rocha, G.J.M., 2013. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technology 130, 168-173.

Peng, F., Peng, P., Xu, F., Sun, R-C., 2012. Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances 30, 879-903.

Peng, F., Ren, J-L., Xu, F., Bian, J., Peng, P., Sun, R-C., 2009. Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J. Agric. Food Chem. 57, 6305-6317.

Pereira, B.L.C., Carneiro, A.deC.O., Carvalho, A.M.M.L., Colodette, J.L., Oliveira, A.C., Fontes, M.P.F., 2013. Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8 (3), 4574-4592.

Persson, T., Ren, J.L., Joelsson, E., Jönsson, A-S., 2009. Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresource Technology 100, 3906-3913.

Page 65: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

51  

Pinto, P.C., D.V. Evtuguin, and C.P. Neto, 2005. Structure of hardwood glucuronoxylans: Modifications and impact on pulp retention during wood kraft pulping. Carbohydrate Polymers 60(4), 489-497.

Pitarelo, A.P., 2007. Avaliaçãao da susceptibilidade do bagaço e da palha de cana-de-açúcar à bioconversão via pré-tratamento a vapor e hidrólise enzimática (Evaluation of susceptibility of sugarcane bagasse and straw on the bioconversion by steamexplosion and enzymatic hydrolysis). Federal Univesity of Paraná, Paraná, Brazil, pp. 125 (M.S. thesis).

Prakash, G., Varma, A.J., Prabhune, A., Shouche, Y., Rao, M., 2011. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology 102, 3304-3308.

Pu, Y., Hu, F., Huang, F., Davison, B.H., Ragauskas, A.J., 2013. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol. Biofuels 6, 15.

Rabelo, S.C., Carrere, H., Maciel Filho, R., Costa, A.C., 2011. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresource Technology 102 (17), 7887-7895.

Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney J., Eckert, C.A., Frederick, W.J.Jr., Hallet, J.P., Leak, D.J., Liotta, C.L., 2006. The path towards for biofuels and biomaterials. Science 311, 484-489.

Ramos e Paula, L.E., Trugilho, P.F., Napoli, A., Bianchi, M.L., 2011. Characterization of residues from plant biomass use in energy generation. Cerne 17(2), 237-246.

Rezende, C.A., Lima, M.A.de, Maziero, P., Azevedo, E.R.de, Garcia, W., Polikarpov, I., 2011. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels 4(54), 1-18.

Rocha, G.J.M., Martin, C., Soares, I.B., Souto Maior, A.M., Baudel, H.M., Abreu C.A.M.de, 2011. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass and Bioenergy 35 (1), 663-670.

Saad, M.B.W., Oliveira, L.R.M., Cândido, R.G., Quintana, G., Rocha, G.J.M., Gonçalves, A.R., 2008. Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzyme and Microbial Technology 43 (2), 220-225.

Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V., 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol. Prog., 21, 816-822.

Sannigrahi, P., Kim, D.H., Jung, S., Ragauskas, A.J., 2011. Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci. 4, 1306-1310.

Santos, F.A., Queiroz, J.H.de, Colodette, J.L., Manfredi, M., Queiroz, M.E.L.R., Caldas, C.S., Soares, F.E.F., 2014. Otimização do pré-tratamento hidrotérmico da palha de cana-de- açúcar visando a produção de etanol celulósico. Quím. Nova 37 (1), 56-62.

Santos, R.B., Capanema, E.A., Balakshin, M.Y., Chang, H-M., Jameel, H., 2011. Effect of hardwoods characteristics on kraft pulping process: Emphasis on lignin structure. BioResources 6(4), 3623-3637.

Scott, R.W., 1979. Calorimetric determination of hexenuronic acid in plant materials. Anal. Chem. 51 (7), 936-941.

Page 66: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

52  

Shatalov, A.A., Evtuguin, D.V., Pascoal Neto, C., 1999. (2-O-α-D-Galactopyranosyl-4-O-methyl-α-D-glucurono)-D-xylan from Eucalyptus globulus Labill. Carbohydrate Research 320, 93-99.

Solar, R., Kacik, F., Melcer, I., 1987. Simple semimicro method for determination of O-acetyl groups in wood and related materials. Nord. Pulp Pap. Res. J. 4, 139-141.

Sun, J.X., Sun, X.F., Sun, R.C., Su, Y.Q., 2004. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers 56, 195-204.

Sun, R.C., Tomkinson, J., 2002. Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydrates Polymers 50, 263-271.

Sun, Y., Cui, S.W., Gu, X., Zhang, J., 2011. Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohydrate Polymers 85, 615-621.

Svärd, A., Brännvall, E., Edlund, U., 2015. Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Carbohydrate Polymers 133, 179-186.

Teleman, A., Tenkanen, M., Jacobs, A., Dahlman, O., 2002. Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydrates Research 337, 373-377.

TAPPI, 2011. Technical Association of the Pulp and Paper Industry. Standard Test Methods. Atlanta, GA, 2011.

Vegas, R., Kabel, M., Schols, H.A., Alonso, J.L., Parajó, J.C., 2008. Hydrothermal processing of rice husks: effects of severity on product distribution. J. Chem. Technol. Biotechnol. 83, 965-972.

Wallis, A.F.A., Wearne, R.H., Wright, P.J., 1996. Chemical analysis of polysaccharides in plantation eucalyptus wood and pulps. Appita J. 49 (4), 258-262.

Xu, C., Leppänen, A-S., Eklund, P., Holmlund, P., Sjöholm, R., Sundberg, K., Willför, S., 2010. Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydrate Research 345, 810-816.

Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781-1788.

Yang, B., Wyman, C.E., 2008. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2, 26-40.

Zanuncio, A.J.V., Colodette, J.L., Gomes, F.J.B., Carneiro, A.deC.O., Vital, B.R., 2013. Composição química da madeira de eucalipto com diferentes níveis de desbaste (Chemical composition of eucalipt wood with different levels of thinning). Ciência Florestal 23 (4), 755-760.

Zhang, J., Geng, A., Yao, C., Lu, Y., Li, Q., 2012. Xylitol production from D-xylose andhorticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technology 105, 134-141.

Zhang, Y., Li, J., Lindström, M.E., Stepan, A., Gatenholm, P., 2013. Spruce glucomannan: Preparation, structural characteristics and basic film forming ability. Nordic Pulp & Paper Research Journal 28 (3), 323-330.

Page 67: Study on the structure and properties of xylan extracted ...862284/FULLTEXT01.pdf · Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and

53  

Zhao, X., Zhang, L., Liu, D., 2012. Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod. Biorefin. 6, 561-579.