structural dynamics of linear elastic single-degree...

100
SDOF Dynamics 3 - 1 Instructional Material Complementing FEMA 451, Design Examples Structural Dynamics of Linear Elastic Single-Degree-of-Freedom (SDOF) Systems

Upload: trinhtuyen

Post on 04-Aug-2018

224 views

Category:

Documents


3 download

TRANSCRIPT

SDOF Dynamics 3 - 1Instructional Material Complementing FEMA 451, Design Examples

Structural Dynamics ofLinear Elastic Single-Degree-of-Freedom

(SDOF) Systems

SDOF Dynamics 3 - 2Instructional Material Complementing FEMA 451, Design Examples

Structural Dynamics

• Equations of motion for SDOF structures

• Structural frequency and period of vibration

• Behavior under dynamic load

• Dynamic magnification and resonance

• Effect of damping on behavior

• Linear elastic response spectra

SDOF Dynamics 3 - 3Instructional Material Complementing FEMA 451, Design Examples

Importance in Relation to ASCE 7-05• Ground motion maps provide ground

accelerations in terms of response spectrumcoordinates.

• Equivalent lateral force procedure gives base shear in terms of design spectrum and period of vibration.

• Response spectrum is based on 5% critical damping in system.

• Modal superposition analysis uses design response spectrum as basic ground motion input.

SDOF Dynamics 3 - 4Instructional Material Complementing FEMA 451, Design Examples

Idealized SDOF Structure

Mass

Stiffness

Damping

F t u t( ), ( )

t

F(t)

t

u(t)

SDOF Dynamics 3 - 5Instructional Material Complementing FEMA 451, Design Examples

F t( )f tI ( )

f tD ( )0 5. ( )f tS0 5. ( )f tS

F t f t f t f tI D S( ) ( ) ( ) ( )− − − = 0

f t f t f t F tI D S( ) ( ) ( ) ( )+ + =

Equation of Dynamic Equilibrium

SDOF Dynamics 3 - 6Instructional Material Complementing FEMA 451, Design Examples

-40

0

40

0.00 0.20 0.40 0.60 0.80 1.00

-0.50

0.00

0.50

0.00 0.20 0.40 0.60 0.80 1.00

-15.00

0.00

15.00

0.00 0.20 0.40 0.60 0.80 1.00

-400.00

0.00

400.00

0.00 0.20 0.40 0.60 0.80 1.00

Acceleration, in/sec2

Velocity, in/sec

Displacement, in

Applied Force, kips

Observed Response of Linear SDOF

Time, sec

SDOF Dynamics 3 - 7Instructional Material Complementing FEMA 451, Design Examples

Observed Response of Linear SDOF(Development of Equilibrium Equation)

-30.00

-15.00

0.00

15.00

30.00

-0.60 -0.30 0.00 0.30 0.60

Displacement, inches

-4.00

-2.00

0.00

2.00

4.00

-20.00 -10.00 0.00 10.00 20.00

Velocity, In/sec

-50.00

-25.00

0.00

25.00

50.00

-500 -250 0 250 500

Acceleration, in/sec2

Spring Force, kips Damping Force, Kips Inertial Force, kips

Slope = k= 50 kip/in

Slope = c= 0.254 kip-sec/in

Slope = m= 0.130 kip-sec2/in

f t k u tS ( ) ( )= f t c u tD ( ) &( )= f t m u tI ( ) &&( )=

SDOF Dynamics 3 - 8Instructional Material Complementing FEMA 451, Design Examples

F t( )f tI ( )

f tD ( )0 5. ( )f tS0 5. ( )f tS

m u t c u t k u t F t&&( ) & ( ) ( ) ( )+ + =

Equation of Dynamic Equilibrium

f t f t f t F tI D S( ) ( ) ( ) ( )+ + =

SDOF Dynamics 3 - 9Instructional Material Complementing FEMA 451, Design Examples

Mass

• Includes all dead weight of structure• May include some live load• Has units of force/acceleration

Inte

rnal

For

ce

Acceleration

1.0M

Properties of Structural Mass

SDOF Dynamics 3 - 10Instructional Material Complementing FEMA 451, Design Examples

Damping

• In absence of dampers, is called inherent damping• Usually represented by linear viscous dashpot• Has units of force/velocity

Dam

ping

For

ce

Velocity

1.0C

Properties of Structural Damping

SDOF Dynamics 3 - 11Instructional Material Complementing FEMA 451, Design Examples

Damping

Dam

ping

For

ce

Displacement

Properties of Structural Damping (2)

Damping vs displacement response iselliptical for linear viscous damper.

AREA =ENERGYDISSIPATED

SDOF Dynamics 3 - 12Instructional Material Complementing FEMA 451, Design Examples

• Includes all structural members• May include some “seismically nonstructural” members• Requires careful mathematical modelling• Has units of force/displacement

Sprin

g Fo

rce

Displacement

1.0K

Properties of Structural StiffnessS

tiffn

ess

SDOF Dynamics 3 - 13Instructional Material Complementing FEMA 451, Design Examples

• Is almost always nonlinear in real seismic response• Nonlinearity is implicitly handled by codes• Explicit modelling of nonlinear effects is possible

Sprin

g Fo

rce

Displacement

Properties of Structural Stiffness (2)S

tiffn

ess

AREA =ENERGYDISSIPATED

SDOF Dynamics 3 - 14Instructional Material Complementing FEMA 451, Design Examples

Undamped Free Vibration

)cos()sin()( 00 tututu ωω

ω+=

&

m u t k u t&&( ) ( )+ = 0Equation of motion:

0u&Initial conditions:

ω0uA&

= B u= 0Solution: ω =km

Assume: u t A t B t( ) sin( ) cos( )= +ω ω

0u

SDOF Dynamics 3 - 15Instructional Material Complementing FEMA 451, Design Examples

ω =km

f =ωπ2

Tf

= =1 2π

ω

Period of Vibration(sec/cycle)

Cyclic Frequency(cycles/sec, Hertz)

Circular Frequency (radians/sec)

Undamped Free Vibration (2)

-3-2-10123

0.0 0.5 1.0 1.5 2.0

Time, seconds

Dis

plac

emen

t, in

ches

T = 0.5 sec

u0

&u01.0

SDOF Dynamics 3 - 16Instructional Material Complementing FEMA 451, Design Examples

Approximate Periods of Vibration(ASCE 7-05)

xnta hCT =

NTa

1.0=

Ct = 0.028, x = 0.8 for steel moment framesCt = 0.016, x = 0.9 for concrete moment framesCt = 0.030, x = 0.75 for eccentrically braced framesCt = 0.020, x = 0.75 for all other systems

Note: This applies ONLY to building structures!

For moment frames < 12 stories in height, minimumstory height of 10 feet. N = number of stories.

SDOF Dynamics 3 - 17Instructional Material Complementing FEMA 451, Design Examples

Empirical Data for Determinationof Approximate Period for Steel Moment Frames

8.0028.0 na hT =

SDOF Dynamics 3 - 18Instructional Material Complementing FEMA 451, Design Examples

Periods of Vibration of Common Structures

20-story moment resisting frame T = 1.9 sec10-story moment resisting frame T = 1.1 sec1-story moment resisting frame T = 0.15 sec

20-story braced frame T = 1.3 sec10-story braced frame T = 0.8 sec1-story braced frame T = 0.1 sec

Gravity dam T = 0.2 secSuspension bridge T = 20 sec

SDOF Dynamics 3 - 19Instructional Material Complementing FEMA 451, Design Examples

SD1 Cu> 0.40g 1.4

0.30g 1.40.20g 1.50.15g 1.6< 0.1g 1.7

computedua TCTT ≤=

Adjustment Factor on Approximate Period(Table 12.8-1 of ASCE 7-05)

Applicable ONLY if Tcomputed comes from a “properlysubstantiated analysis.”

SDOF Dynamics 3 - 20Instructional Material Complementing FEMA 451, Design Examples

If you do not have a “more accurate” period (from a computer analysis), you must use T = Ta.

If you have a more accurate period from a computeranalysis (call this Tc), then:

if Tc > CuTa use T = CuTa

if Ta < Tc < TuCa use T = Tc

if Tc < Ta use T = Ta

Which Period of Vibration to Usein ELF Analysis?

SDOF Dynamics 3 - 21Instructional Material Complementing FEMA 451, Design Examples

Damped Free Vibration

u t e u t u u ttD

DD( ) cos( )

&sin( )= +

+⎡

⎣⎢

⎦⎥

−ξω ω ξωω

ω00 0

m u t c u t k u t&&( ) &( ) ( )+ + = 0Equation of motion:

u u0 0&Initial conditions:

Solution:

Assume: u t e st( ) =

ξω

= =c

mccc2 ω ω ξD = −1 2

SDOF Dynamics 3 - 22Instructional Material Complementing FEMA 451, Design Examples

ξω

= =c

mccc2

Damping in Structures

cc is the critical damping constant.

Time, sec

Displacement, in

ξ is expressed as a ratio (0.0 < ξ < 1.0) in computations.

Sometimes ξ is expressed as a% (0 < ξ < 100%).

Response of Critically Damped System, ξ=1.0 or 100% critical

SDOF Dynamics 3 - 23Instructional Material Complementing FEMA 451, Design Examples

-30.00

-15.00

0.00

15.00

30.00

-0.60 -0.30 0.00 0.30 0.60

Displacement, inches

-4.00

-2.00

0.00

2.00

4.00

-20.00 -10.00 0.00 10.00 20.00

Velocity, In/sec

-50.00

-25.00

0.00

25.00

50.00

-500 -250 0 250 500

Acceleration, in/sec2

Spring Force, kips Damping Force, Kips Inertial Force, kips

True damping in structures is NOT viscous. However, for lowdamping values, viscous damping allows for linear equations and vastly simplifies the solution.

Damping in Structures

SDOF Dynamics 3 - 24Instructional Material Complementing FEMA 451, Design Examples

Damped Free Vibration (2)

-3-2-10123

0.0 0.5 1.0 1.5 2.0

Time, seconds

Dis

plac

emen

t, in

ches

0% Damping10% Damping20% Damping

SDOF Dynamics 3 - 25Instructional Material Complementing FEMA 451, Design Examples

Damping in Structures (2)Welded steel frame ξ = 0.010Bolted steel frame ξ = 0.020

Uncracked prestressed concrete ξ = 0.015Uncracked reinforced concrete ξ = 0.020Cracked reinforced concrete ξ = 0.035

Glued plywood shear wall ξ = 0.100Nailed plywood shear wall ξ = 0.150

Damaged steel structure ξ = 0.050Damaged concrete structure ξ = 0.075

Structure with added damping ξ = 0.250

SDOF Dynamics 3 - 26Instructional Material Complementing FEMA 451, Design Examples

Inherent damping

Added damping

ξ is a structural (material) propertyindependent of mass and stiffness

critical%0.7to5.0=Inherentξ

ξ is a structural property dependent onmass and stiffness anddamping constant C of device

critical%30to10=Addedξ

Damping in Structures (3)

C

SDOF Dynamics 3 - 27Instructional Material Complementing FEMA 451, Design Examples

ln uu

1

22

21

=−

πξξ

ξπ

≅−u uu

1 2

22

For alldamping values

For very lowdamping values

Measuring Damping from Free Vibration Test

-1

-0.5

0

0.5

1

0.00 0.50 1.00 1.50 2.00 2.50 3.00Time, Seconds

Ampl

itude

u e t0

−ξω

u1

u2 u3

SDOF Dynamics 3 - 28Instructional Material Complementing FEMA 451, Design Examples

Undamped Harmonic Loading

)sin()()( 0 tptuktum ω=+&&Equation of motion:

-150-100

-500

50100150

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time, Seconds

Forc

e, K

ips

po=100 kips= 0.25 sec

= frequency of the forcing function

ωπ2

=T

ω

T

SDOF Dynamics 3 - 29Instructional Material Complementing FEMA 451, Design Examples

Solution:

Particular solution:

Complimentary solution:

u t C t( ) s in ( )= ω

u t A t B t( ) sin( ) cos( )= +ω ω

⎟⎠⎞

⎜⎝⎛ −

−= )sin()sin(

)/(11)( 2

0 ttkptu ω

ωωω

ωω

Undamped Harmonic Loading (2)

m u t k u t p t&&( ) ( ) s in ( )+ = 0 ωEquation of motion:

Assume system is initially at rest:

SDOF Dynamics 3 - 30Instructional Material Complementing FEMA 451, Design Examples

Define β ωω

=

( )u t pk

t t( ) sin( ) sin( )=−

−02

11 β

ω β ω

Static displacementSteady state

response(at loading frequency)

Transient response(at structure’s frequency)

Loading frequency

Structure’s natural frequency

Undamped Harmonic Loading

Dynamic magnifier

SDOF Dynamics 3 - 31Instructional Material Complementing FEMA 451, Design Examples

-10-505

10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-10-505

10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-10-505

10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time, seconds

spac

ee

t,-200-100

0100200

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

ω π= 2 rad / secω π= 4 rad / sec uS = 5 0. .inβ = 0 5.

Loading (kips)

Steady stateresponse (in.)

Transientresponse (in.)

Total response(in.)

SDOF Dynamics 3 - 32Instructional Material Complementing FEMA 451, Design Examples

Steady stateresponse (in.)

Transientresponse (in.)

Total response(in.)

Loading (kips)

ω π= 4 rad / secω π≈ 4 rad / sec uS = 5 0. .inβ = 0 99.

-500

-250

0

250

500

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-150-100

-500

50100150

0.00 0 .25 0 .50 0 .75 1.00 1 .25 1 .50 1 .75 2 .00

-500

-250

0

250

500

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-80

-40

0

40

80

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time, seconds

p,

SDOF Dynamics 3 - 33Instructional Material Complementing FEMA 451, Design Examples

-80

-40

0

40

80

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time, seconds

Dis

plac

emen

t, in

.

2π uS

Undamped Resonant Response Curve

Linear envelope

SDOF Dynamics 3 - 34Instructional Material Complementing FEMA 451, Design Examples

Steady stateresponse (in.)

Transientresponse (in.)

Total response (in.)

Loading (kips)

ω π= 4 rad / secω π≈ 4 rad / sec uS = 5 0. .inβ = 1 01.

-150-100

-500

50100150

0 .00 0.25 0 .50 0 .75 1 .00 1.25 1 .50 1 .75 2.00

-500

-250

0

250

500

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-500

-250

0

250

500

0 .0 0 0 .25 0 .50 0 .75 1 .00 1 .25 1 .50 1 .75 2 .00

-80

-40

0

40

80

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

T im e, seconds

p,

SDOF Dynamics 3 - 35Instructional Material Complementing FEMA 451, Design Examples

Steady state response (in.)

Transient response (in.)

Total response (in.)

Loading (kips)

ω π=8 rad / secω π= 4 rad / sec uS = 5 0. .inβ = 2 0.

-150-100

-500

50100150

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-6

-3

0

3

6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-6

-3

0

3

6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

-6

-3

0

3

6

0.00 0.25 0.50 0 .75 1 .00 1 .25 1.50 1.75 2.00

T im e, seconds

p,

SDOF Dynamics 3 - 36Instructional Material Complementing FEMA 451, Design Examples

-12.00

-8.00

-4.00

0.00

4.00

8.00

12.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Frequency Ratio β

Mag

nific

atio

n Fa

ctor

1/(1

- β2 ) In phase

180 degrees out of phase

Resonance

Response Ratio: Steady State to Static(Signs Retained)

SDOF Dynamics 3 - 37Instructional Material Complementing FEMA 451, Design Examples

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Frequency Ratio β

Mag

nific

atio

n Fa

ctor

1/(1

- β2 )

Response Ratio: Steady State to Static(Absolute Values)

Resonance

Slowlyloaded

1.00

Rapidlyloaded

SDOF Dynamics 3 - 38Instructional Material Complementing FEMA 451, Design Examples

Damped Harmonic Loading

m u t cu t k u t p t&&( ) &( ) ( ) sin( )+ + = 0 ωEquation of motion:

-150-100-50

050

100150

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time, Seconds

Forc

e, K

ips

po=100 kips

sec25.02==

ωπT

SDOF Dynamics 3 - 39Instructional Material Complementing FEMA 451, Design Examples

Solution:

Assume system is initially at rest

Particular solution:

Complimentary solution:

u t C t D t( ) sin( ) cos( )= +ω ω

[ ]u t e A t B ttD D( ) sin( ) cos( )= +−ξω ω ω

Damped Harmonic LoadingEquation of motion:

m u t cu t k u t p t&&( ) &( ) ( ) sin( )+ + = 0 ω

ω ω ξD = −1 2

ξω

=c

m2

[ ]u t e A t B ttD D( ) sin( ) cos( )= +− ξω ω ω

+ +C t D tsin( ) cos( )ω ω

SDOF Dynamics 3 - 40Instructional Material Complementing FEMA 451, Design Examples

Transient response at structure’s frequency(eventually damps out)

Steady state response,at loading frequency

D pk

o=−

− +2

1 22 2 2

ξββ ξβ( ) ( )

Damped Harmonic Loading

C pk

o=−

− +1

1 2

2

2 2 2

ββ ξβ( ) ( )

)cos()sin( tDtC ωω +

+[ ]u t e A t B ttD D( ) sin( ) cos( )= +− ξω ω ω

SDOF Dynamics 3 - 41Instructional Material Complementing FEMA 451, Design Examples

-50

-40

-30

-20

-10

0

10

20

30

40

50

0.00 1.00 2.00 3.00 4.00 5.00

Time, Seconds

Dis

plac

emen

t Am

plitu

de, I

nche

sBETA=1 (Resonance)Beta=0.5Beta=2.0

Damped Harmonic Loading (5% Damping)

SDOF Dynamics 3 - 42Instructional Material Complementing FEMA 451, Design Examples

Staticδξ21

-50

-40

-30

-20

-10

0

10

20

30

40

50

0.00 1.00 2.00 3.00 4.00 5.00

Time, Seconds

Dis

plac

emen

t Am

plitu

de, I

nche

sDamped Harmonic Loading (5% Damping)

SDOF Dynamics 3 - 43Instructional Material Complementing FEMA 451, Design Examples

Harmonic Loading at ResonanceEffects of Damping

-200

-150

-100

-50

0

50

100

150

200

0.00 1.00 2.00 3.00 4.00 5.00

Time, Seconds

Dis

plac

emen

t Am

plitu

de, I

nche

s

0% Damping %5 Damping

SDOF Dynamics 3 - 44Instructional Material Complementing FEMA 451, Design Examples

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Frequency Ratio, β

Dyn

amic

Res

pons

e A

mpl

ifier

0.0% Damping5.0 % Damping10.0% Damping25.0 % Damping

RD =− +

11 22 2 2( ) ( )β ξβ

Resonance

Slowlyloaded Rapidly

loaded

SDOF Dynamics 3 - 45Instructional Material Complementing FEMA 451, Design Examples

Summary Regarding Viscous Dampingin Harmonically Loaded Systems

• For systems loaded at a frequency near their natural frequency, the dynamic response exceeds the static response. This is referred to as dynamic amplification.

• An undamped system, loaded at resonance, will have an unbounded increase in displacement over time.

SDOF Dynamics 3 - 46Instructional Material Complementing FEMA 451, Design Examples

Summary Regarding Viscous Dampingin Harmonically Loaded Systems

• Damping is an effective means for dissipating energy in the system. Unlike strain energy, which is recoverable, dissipated energy is not recoverable.

• A damped system, loaded at resonance, will have a limited displacement over time with the limit being (1/2ξ) times the static displacement.

• Damping is most effective for systems loaded at or near resonance.

SDOF Dynamics 3 - 47Instructional Material Complementing FEMA 451, Design Examples

LOADING YIELDING

UNLOADING UNLOADED

F F

F

u

F

u

u u

EnergyStored

EnergyDissipated

EnergyRecovered

TotalEnergyDissipated

CONCEPT of ENERGY STOREDand Energy DISSIPATED

12

1

3

2

4

3

SDOF Dynamics 3 - 48Instructional Material Complementing FEMA 451, Design Examples

Time, T

F(t)

General Dynamic Loading

SDOF Dynamics 3 - 49Instructional Material Complementing FEMA 451, Design Examples

General Dynamic Loading Solution Techniques

• Fourier transform

• Duhamel integration

• Piecewise exact

• Newmark techniques

All techniques are carried out numerically.

SDOF Dynamics 3 - 50Instructional Material Complementing FEMA 451, Design Examples

dt

( ) odFF Fdt

τ τ= +

dF

dt

τ

Piecewise Exact Method

Fo

SDOF Dynamics 3 - 51Instructional Material Complementing FEMA 451, Design Examples

Initial conditions 00, =ou 00, =ou&

Determine “exact” solution for 1st time step

)(1 τuu = )(1 τuu && = )(1 τuu &&&& =

)(1, τuuo = )(1,0 τuu && =Establish new initial conditions

Obtain exact solution for next time step

)(2 τuu = )(2 τuu && = )(2 τuu &&&& =

LOOP

Piecewise Exact Method

SDOF Dynamics 3 - 52Instructional Material Complementing FEMA 451, Design Examples

Piecewise Exact Method

Advantages:

• Exact if load increment is linear• Very computationally efficient

Disadvantages:

• Not generally applicable for inelastic behavior

Note: NONLIN uses the piecewise exact method forresponse spectrum calculations.

SDOF Dynamics 3 - 53Instructional Material Complementing FEMA 451, Design Examples

Newmark Techniques

• Proposed by Nathan Newmark• General method that encompasses a family of different

integration schemes• Derived by:

– Development of incremental equations of motion– Assuming acceleration response over short time step

SDOF Dynamics 3 - 54Instructional Material Complementing FEMA 451, Design Examples

Newmark MethodAdvantages:

• Works for inelastic response

Disadvantages:

• Potential numerical error

Note: NONLIN uses the Newmark method forgeneral response history calculations

SDOF Dynamics 3 - 55Instructional Material Complementing FEMA 451, Design Examples

-0.40

-0.20

0.00

0.20

0.40

0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME, SECONDS

GR

OU

ND

AC

C, g

Development of Effective Earthquake Force

SDOF Dynamics 3 - 56Instructional Material Complementing FEMA 451, Design Examples

Earthquake Ground Motion, 1940 El Centro

Many ground motions now are available via the Internet.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60

Time (sec)

Gro

und

Acce

lera

tion

(g's

)

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60

Time (sec)

Gro

und

Velo

city

(cm

/sec

)

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60

Time (sec)

Gro

und

Disp

lace

men

t (cm

)

SDOF Dynamics 3 - 57Instructional Material Complementing FEMA 451, Design Examples

m u t u t c u t k u tg r r r[&& ( ) && ( )] & ( ) ( )+ + + = 0

mu t c u t k u t mu tr r r g&& ( ) & ( ) ( ) && ( )+ + = −

Development of Effective Earthquake Force

-0.40

-0.20

0.00

0.20

0.40

0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME, SECONDS

GR

OU

ND

AC

C, g

Ground Acceleration Response History

gu&& tu&&ru&&

SDOF Dynamics 3 - 58Instructional Material Complementing FEMA 451, Design Examples

)()()()( tumtuktuctum grrr &&&&& −=++

)()()()( tutumktu

mctu grrr &&&&& −=++

ξω2=mc 2ω=

mk

Divide through by m:

Make substitutions:

“Simplified” form of Equation of Motion:

)()()(2)( 2 tutututu grrr &&&&& −=++ ωξωSimplified form:

SDOF Dynamics 3 - 59Instructional Material Complementing FEMA 451, Design Examples

)()()(2)( 2 tutututu grrr &&&&& −=++ ωξω

Ground motion acceleration history

Structural frequency

Damping ratio

For a given ground motion, the response history ur(t) is function of the structure’s frequency ω and damping ratio ξ.

SDOF Dynamics 3 - 60Instructional Material Complementing FEMA 451, Design Examples

Change in ground motion or structural parameters ξand ω requires re-calculation of structural response

Response to Ground Motion (1940 El Centro)

-6

-4

-2

0

2

4

6

0 10 20 30 40 50 60

Time (sec)

Stru

ctur

al D

ispl

acem

ent (

in)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60

Time (sec)

Gro

und

Acce

lera

tion

(g's)

Excitation applied to structure with given ξ and ω

Peak displacement

Computed response

SOLVER

SDOF Dynamics 3 - 61Instructional Material Complementing FEMA 451, Design Examples

0

4

8

12

16

0 2 4 6 8 10

PERIOD, Seconds

DIS

PLA

CEM

ENT,

inch

es

The Elastic Displacement Response SpectrumAn elastic displacement response spectrum is a plotof the peak computed relative displacement, ur, for anelastic structure with a constant damping ξ, a varyingfundamental frequency ω (or period T = 2π/ ω), respondingto a given ground motion.

5% damped response spectrum for structureresponding to 1940 El Centro ground motion

SDOF Dynamics 3 - 62Instructional Material Complementing FEMA 451, Design Examples

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

Dis

plac

emen

t, In

ches

ξ = 0.05T = 0.10 secUmax= 0.0543 in.

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50 2.00

Period, Seconds

Dis

plac

emen

t, In

ches

Computation of Response Spectrum for El Centro Ground Motion

Elastic response spectrum

Computed response

SDOF Dynamics 3 - 63Instructional Material Complementing FEMA 451, Design Examples

ξ = 0.05T = 0.20 secUmax = 0.254 in.

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

Dis

plac

emen

t, In

ches

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50 2.00

Period, Seconds

Dis

plac

emen

t, In

ches

Computation of Response Spectrumfor El Centro Ground Motion

Elastic response spectrum

Computed response

SDOF Dynamics 3 - 64Instructional Material Complementing FEMA 451, Design Examples

ξ = 0.05T = 0.30 secUmax = 0.622 in.

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

Dis

plac

emen

t, In

ches

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50 2.00

Period, Seconds

Dis

plac

emen

t, In

ches

Computation of Response Spectrumfor El Centro Ground Motion

Elastic response spectrum

Computed response

SDOF Dynamics 3 - 65Instructional Material Complementing FEMA 451, Design Examples

ξ = 0.05T = 0.40 secUmax = 0.956 in.

-1.20

-0.90

-0.60

-0.30

0.00

0.30

0.60

0.90

1.20

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

Dis

plac

emen

t, In

ches

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50 2.00

Period, Seconds

Dis

plac

emen

t, In

ches

Computation of Response Spectrumfor El Centro Ground Motion

Elastic response spectrum

Computed response

SDOF Dynamics 3 - 66Instructional Material Complementing FEMA 451, Design Examples

ξ = 0.05T = 0.50 secUmax = 2.02 in.

-2.40

-1.80

-1.20

-0.60

0.00

0.60

1.20

1.80

2.40

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

Dis

plac

emen

t, In

ches

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50 2.00

Period, Seconds

Dis

plac

emen

t, In

ches

Computation of Response Spectrumfor El Centro Ground Motion

Elastic response spectrum

Computed response

SDOF Dynamics 3 - 67Instructional Material Complementing FEMA 451, Design Examples

ξ = 0.05T = 0.60 secUmax= -3.00 in.

Computation of Response Spectrumfor El Centro Ground Motion

-3.20-2.40-1.60-0.800.000.801.602.403.20

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

Dis

plac

emen

t, In

ches

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50 2.00

Period, Seconds

Dis

plac

emen

t, In

ches

Elastic response spectrum

Computed response

SDOF Dynamics 3 - 68Instructional Material Complementing FEMA 451, Design Examples

Complete 5% Damped Elastic DisplacementResponse Spectrum for El Centro

Ground Motion

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0Period, Seconds

Dis

plac

emen

t, In

ches

SDOF Dynamics 3 - 69Instructional Material Complementing FEMA 451, Design Examples

Development of PseudovelocityResponse Spectrum

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.0 1.0 2.0 3.0 4.0Period, Seconds

Pseu

dove

loci

ty, i

n/se

c

DTPSV ω≡)(

5% damping

SDOF Dynamics 3 - 70Instructional Material Complementing FEMA 451, Design Examples

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0.0 1.0 2.0 3.0 4.0Period, Seconds

Pseu

doac

cele

ratio

n, in

/sec

2

DTPSA 2)( ω≡

Development of PseudoaccelerationResponse Spectrum

5% damping

SDOF Dynamics 3 - 71Instructional Material Complementing FEMA 451, Design Examples

The pseudoacceleration response spectrum represents the total acceleration of the system, not the relative acceleration. It is nearly identical to the true total acceleration response spectrum for lightly damped structures.

Note About the Pseudoacceleration Response Spectrum

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0.0 1.0 2.0 3.0 4.0Period, Seconds

Pseu

doac

cele

ratio

n, in

/sec

2

5% damping

Peak groundacceleration

SDOF Dynamics 3 - 72Instructional Material Complementing FEMA 451, Design Examples

m u t u t c u t k u tg r r r[&& ( ) && ( )] & ( ) ( )+ + + = 0

mu t c u t k u t mu tr r r g&& ( ) & ( ) ( ) && ( )+ + = −

PSA is TOTAL Acceleration!

-0.40

-0.20

0.00

0.20

0.40

0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME, SECONDS

GR

OU

ND

AC

C, g

Ground Acceleration Response History

gu&& tu&&ru&&

SDOF Dynamics 3 - 73Instructional Material Complementing FEMA 451, Design Examples

Difference Between Pseudo-Accelerationand Total Acceleration

(System with 5% Damping)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.1 1 10Period (sec)

Acce

lera

tion

(in/s

ec2 )

Total Acceleration Pseudo-Acceleration

SDOF Dynamics 3 - 74Instructional Material Complementing FEMA 451, Design Examples

Difference Between Pseudovelocityand Relative Velocity

(System with 5% Damping)

0

5

10

15

20

25

30

35

40

0.1 1 10Period (sec)

Velo

city

(in/

sec)

Relative Velocity Pseudo-Velocity

SDOF Dynamics 3 - 75Instructional Material Complementing FEMA 451, Design Examples

Displacement Response Spectrafor Different Damping Values

0.00

5.00

10.00

15.00

20.00

25.00

0.0 1.0 2.0 3.0 4.0 5.0Period, Seconds

Dis

plac

emen

t, In

ches

0%5%10%20%

Damping

SDOF Dynamics 3 - 76Instructional Material Complementing FEMA 451, Design Examples

Pseudoacceleration Response Spectrafor Different Damping Values

0.00

1.00

2.00

3.00

4.00

0.0 1.0 2.0 3.0 4.0 5.0Period, Seconds

Pseu

doac

cele

ratio

n, g

0%5%10%20%

Damping

Peak groundacceleration

SDOF Dynamics 3 - 77Instructional Material Complementing FEMA 451, Design Examples

Damping Is Effective in Reducing the Response for (Almost) Any Given Period

of Vibration

• An earthquake record can be considered to be the combination of a large number of harmonic components.

• Any SDOF structure will be in near resonance with oneof these harmonic components.

• Damping is most effective at or near resonance.

• Hence, a response spectrum will show reductions due todamping at all period ranges (except T = 0).

SDOF Dynamics 3 - 78Instructional Material Complementing FEMA 451, Design Examples

Damping Is Effective in Reducing the Response for Any Given Period of

Vibration

Time (sec)

Am

plitu

de

• Example of an artificially generated wave to resemble a real time ground motion accelerogram.

• Generated wave obtained by combining five different harmonic signals, each having equal amplitude of 1.0.

-4.00-2.000.002.004.00

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0

`

SDOF Dynamics 3 - 79Instructional Material Complementing FEMA 451, Design Examples

The Artificial Wave Is the Sum of Five Harmonics

T = 5.0 s

T = 4.0 s

T = 3.0 s

Time (sec)

Am

plitu

de

-1-0.5

00.5

1

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0

`

-1-0.5

00.5

1

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0

`

-1-0.5

00.5

1

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0

`

SDOF Dynamics 3 - 80Instructional Material Complementing FEMA 451, Design Examples

T = 2.0 s

T = 1.0 s

Time (sec)

Am

plitu

de

Summation

-1-0.5

00.5

1

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0

`

-1-0.5

00.5

1

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0

`

-4.00-2.000.002.004.00

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0

`

The Artificial Wave Is the Sum of Five Harmonics

SDOF Dynamics 3 - 81Instructional Material Complementing FEMA 451, Design Examples

FFT curve for the combined wave

Frequency (Hz)

Four

ier a

mpl

itude

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Frequency Ratio, β

Dyn

amic

Res

pons

e A

mpl

ifier

0.0% Damping5.0 % Damping10.0% Damping25.0 % Damping

Damping Reduces the Responseat Each Resonant Frequency

SDOF Dynamics 3 - 82Instructional Material Complementing FEMA 451, Design Examples

Use of an Elastic Response SpectrumExample StructureK = 500 k/inW = 2,000 kM = 2000/386.4 = 5.18 k-sec2/inω = (K/M)0.5 =9.82 rad/secT = 2π/ω = 0.64 sec5% critical damping

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Period, Seconds

Dis

plac

emen

t, In

ches

At T = 0.64 sec, displacement = 3.03 in.

SDOF Dynamics 3 - 83Instructional Material Complementing FEMA 451, Design Examples

Use of an Elastic Response SpectrumExample StructureK = 500 k/inW = 2,000 kM = 2000/386.4 = 5.18 k-sec2/inω = (K/M)0.5 =9.82 rad/secT = 2π/ω = 0.64 sec5% critical damping

At T = 0.64 sec, pseudoacceleration = 301 in./sec2

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Period, Seconds

Pseu

doac

cele

ratio

n, in

/sec

2

Base shear = M x PSA = 5.18(301) = 1559 kips

SDOF Dynamics 3 - 84Instructional Material Complementing FEMA 451, Design Examples

Response Spectrum, ADRS Space

0.00

0.20

0.40

0.60

0.80

1.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Displacement, inches

Pseu

doac

cele

ratio

n, g

Diagonal lines representperiod values, T

T = 0.64s

SDOF Dynamics 3 - 85Instructional Material Complementing FEMA 451, Design Examples

0.1

1

10

100

0.1 1 10 100 1000

Circular Frequency ω, Radiand per Second

PSEU

DO

VELO

CIT

Y, in

/sec

1.0

D=10.0

0.01

.01

0.1

0.1 0.001

1.0

Line of increasingdisplacement

Line of constantdisplacement

Four-Way Log Plot of Response Spectrum

ωPSVD =

Circular Frequency ω(radians/sec)

SDOF Dynamics 3 - 86Instructional Material Complementing FEMA 451, Design Examples

0.1

1

10

100

0.1 1 10 100 1000

Circular Frequency ω, Radiand per Second

PSEU

DO

VELO

CIT

Y, in

/sec

100

PSA=1000

10000

100

100000

10 1000

10000Line of increasingacceleration

Line of constantacceleration

Four-Way Log Plot of Response Spectrum

PSA PSV= ω

Circular Frequency ω(radians/sec)

SDOF Dynamics 3 - 87Instructional Material Complementing FEMA 451, Design Examples

0.1

1

10

100

0.1 1 10 100 1000

Circular Frequency ω, Radiand per Second

PSEU

DO

VELO

CIT

Y, in

/sec

Four-Way Log Plot of Response Spectrum

10000

1000

100

10

10.1

ACCELERATIO

N, in/se

c2

100

10

1.0

0.1

0.01

0.001

DISPLACEMENT, in

Circular Frequency ω(radians/sec)

SDOF Dynamics 3 - 88Instructional Material Complementing FEMA 451, Design Examples

0.10

1.00

10.00

100.00

0.01 0.10 1.00 10.00

PERIOD, Seconds

PSEU

DO

VELO

CIT

Y, in

/sec

1.0

10.0

0.1

0.01

Acceleration, g

0.001

10.0

0.101.0

0.01

0.001

Displac

emen

t, in.

Four-Way Log Plot of Response SpectrumPlotted vs Period

SDOF Dynamics 3 - 89Instructional Material Complementing FEMA 451, Design Examples

Development of an ElasticResponse Spectrum

0.10

1.00

10.00

100.00

0.01 0.10 1.00 10.00

PERIOD, Seconds

PSEU

DO

VELO

CIT

Y, in

/sec

1.0

10.0

0.1

0.01

Acceleration, g

0.001

10.0

0.10

1.0

0.01

0.001

Displac

emen

t, in.

Problems with Current Spectrum:

It is for a single earthquake; otherearthquakes will have differentCharacteristics.

For a given earthquake,small variations in structural frequency (period) can producesignificantly different results.

SDOF Dynamics 3 - 90Instructional Material Complementing FEMA 451, Design Examples

0.1

1

10

100

0.01 0.1 1 10Period, Seconds

Pseu

do V

eloc

ity, I

n/Se

c

0% Damping5% Damping10% Damping20* Damping

1.0

10.0

0.1

0.01

Acceleration, g

0.001

10.0

0.10

1.0

0.01

0.001

Displac

emen

t, in.

For a given earthquake,small variations in structural frequency (period) can producesignificantly different results.

1940 El Centro, 0.35 g, N-S

SDOF Dynamics 3 - 91Instructional Material Complementing FEMA 451, Design Examples

0.1

1.0

10.0

100.0

0.01 0.10 1.00 10.00Period, seconds

Pseu

so V

eloc

ity, i

n/se

c

El CentroLoma PrietaNorth RidgeSan FernandoAverage

5% Damped Spectra for Four California EarthquakesScaled to 0.40 g (PGA)

Different earthquakeswill have different spectra.

SDOF Dynamics 3 - 92Instructional Material Complementing FEMA 451, Design Examples

Smoothed Elastic Response Spectra(Elastic DESIGN Response Spectra)

• Newmark-Hall spectrum

• ASCE 7 spectrum

SDOF Dynamics 3 - 93Instructional Material Complementing FEMA 451, Design Examples

0.1

1

10

100

0.01 0.1 1 10 100Period (sec)

Disp

lace

men

t (in

)

0% Damping5% Damping10% Damping

Newmark-Hall Elastic Spectrum

Observations

gu&&max

gu&max

gumax

gvv &&&& max→

gvv max→

at short T

at long T

0→v

0→v&&

SDOF Dynamics 3 - 94Instructional Material Complementing FEMA 451, Design Examples

Very Stiff Structure (T < 0.01 sec)

Total accelerationZero

Ground accelerationRelative displacement

SDOF Dynamics 3 - 95Instructional Material Complementing FEMA 451, Design Examples

Very Flexible Structure (T > 10 sec)

Relative displacement Total acceleration

Ground displacement Zero

SDOF Dynamics 3 - 96Instructional Material Complementing FEMA 451, Design Examples

0.1

1

10

100

0.01 0.1 1 10Period, Seconds

Pseu

do V

eloc

ity, I

n/Se

c

0% Damping5% Damping10% Damping20* Damping

1.0

10.0

0.1

0.01

Acceleration, g

0.001

10.0

0.10

1.0

0.01

0.001

Displac

emen

t, in.

1940 El Centro, 0.35 g, N-S

0.35g

12.7 in/s

4.25 in.

Ground Maxima

SDOF Dynamics 3 - 97Instructional Material Complementing FEMA 451, Design Examples

Damping One Sigma (84.1%) Median (50%)% Critical aa av ad aa av ad

.05 5.10 3.84 3.04 3.68 2.59 2.011 4.38 3.38 2.73 3.21 2.31 1.822 3.66 2.92 2.42 2.74 2.03 1.633 3.24 2.64 2.24 2.46 1.86 1.525 2.71 2.30 2.01 2.12 1.65 1.397 2.36 2.08 1.85 1.89 1.51 1.2910 1.99 1.84 1.69 1.64 1.37 1.2020 1.26 1.37 1.38 1.17 1.08 1.01

Newmark’s Spectrum Amplification Factorsfor Horizontal Elastic Response

SDOF Dynamics 3 - 98Instructional Material Complementing FEMA 451, Design Examples

Newmark-Hall Elastic Spectrum

1

3

2 4

65

1) Draw the lines corresponding to max ggg

vvv ,, &&&

2) Draw line from Tb to Tc

Ta Tb Tc Td Te Tf

gAv&&maxα

3) Draw line from Tc to Td

gVv&maxα

4) Draw line from Td to Te

gDvmaxα

5) Draw connecting line from Ta to Tb

6) Draw connecting line from Te to Tf

SDOF Dynamics 3 - 99Instructional Material Complementing FEMA 451, Design Examples

ASCE 7Uses a Smoothed Design Acceleration Spectrum

“Long period”acceleration

TS T = 1.0Period, T

Spec

tral

Res

pons

e A

ccel

erat

ion,

Sa SDS

SD13

2

1

“Short period”acceleration

1

3

2

S = 0.6 ST

T+0.4 SaDS

0DS

S = Sa DS

S = ST

aD1

Note exceptions at larger periods

TL

4 D1SLa 2TS =T

4

SDOF Dynamics 3 - 100Instructional Material Complementing FEMA 451, Design Examples

The ASCE 7 Response Spectrum

is a uniform hazard spectrum based onprobabilistic and deterministic seismichazard analysis.