structural dynamics main cw 423.docx

Upload: carmine-russo

Post on 01-Jun-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    1/44

    Structural Dynamics(CEGEM071/CEGEG071)

    Student: Carmine Russo 14103106Main Coursework Design of a tuned-mass absorber

    IntroductionIn general, if te beams CD,

    !" and #$ %ere not rigid te

    s&stem %ould a'e t%el'e

    degrees of freedom (t%o

    eac node)* In te +resent

    case beams are rigid tus,

    te s&stem as nine degrees

    of freedom, but b& neglecting

    te columns aial

    deformations ( E A )

    te& become tree D*.*"*

    /e coose as lagrangian

    coordinates te oriontal

    dis+lacements of CD, !" and #$*

    Collecting tese 'ariables in te

    'ector, %e a'e:

    u=

    {

    u1

    u2

    u3

    }=

    {

    uCDuEF

    uGH

    }In order to %rite te euilibriumeuations, %e a'e to 2nd testiness of eac element for eac

    dis+lacement*

    In tis case, %e can use te direct

    metod b& sol'ing te dierential

    euation of te elastic beam:

    IV=0

    ' ' '=C1

    ' '=C1 s+C2

    '=1

    2C

    1s

    2+C2 s+C3

    =

    1

    6C

    1s

    3+1

    2C

    2s

    2+C3 s+C4

    /it0 s LAC

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 1 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    2/44

    /it te boundar& conditions:

    (A )=0 ; (A )' =0 ; ( C)

    ' =0; (C)=u

    /e get te constants of integration:

    C1=12

    LAC3

    u ; C2=

    6

    LAC2

    u ; C3=0 ; C

    4=0 ;

    "inall&:

    T( s )=E I '' '=

    12E I

    LAC3

    u M(s )=E I ' '=

    6E I

    LAC3

    (2 sLAC) u

    Since teres no lateral load a++lied to te columns, te sear force is constant along

    teir lengt*

    It is con'enient to indicate %it kte uantit&:

    k=12EILAC

    3 =7 103[

    kNm]

    7en, te generic e+ression of te sear force become:

    T=k u

    /ere 8k re+resent te stiness of te column sub9ected to a oriontal

    dis+lacement*

    art 1-a) Stiness and mass matri

    /e can assemble te stiness matri, columnb& column, sim+l& im+osing one deformation

    at time, %ile ;ee+ing te oter one eual to

    ero, and 2nding te euilibrium forces*

    Displacement u1 :

    In tis case, %e a'e te mass m of te

    beam CD sub9ected to te dis+lacement u1 .

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    3/44

    (k+k+k+k) u1=4 k u

    1

    FEF=TECTDF=(k+k) u 1=2 k u1

    FGH=0

    /e can summarie tese relations as:

    {FCDFEFFGH}=( 4 k

    2 k0) u1

    Displacement u2 :

    In tis case, %e consider te mass m of te

    beam !" sub9ected to te dis+lacement u2 *

    7e total forces for eac mass are:

    FCD=TCETDF= (kk) u2=2 k u2

    FEF=TCE+TDF+TEG+TFH=4 k u2

    FGH=TEGTFH=(kk) u2=2 k u2

    /e can summarie tese relations as:

    {FCDFEFFGH}=(2 k

    4 k

    2 k) u2

    Displacement u3 :

    In tis case, %e consider te mass m of te beam #$ sub9ected to te

    dis+lacement u3 *

    7e total forces for eac mass are:

    FCD=0

    FEF=TEGTFH=2 k u3

    FGH=TEG+TFH=(k+k) u2=2 k u3

    /e can summarie tese relations as:

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 3 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    4/44

    {FCDFEFFGH}=( 0

    2 k2 k) u3

    7us, te static euilibrium is re+resented b&

    te euations:

    {FCDFEFFGH}

    =[K] u=

    [ 4 k 2 k 02 k 4 k 2k

    0 2 k 2 k]

    {u1u

    2

    u3}

    !e sti"ness matri# ($%ateral Sti"ness

    Matri#&):

    [K]=[ 4 k 2 k 02 k 4 k 2 k0 2 k 2 k]=2 k[

    2 1 01 2 1

    0 1 1]=[ 28000 14000 014000 28000 14000

    0 14000 14000][ kNm]!e mass matri#:

    [M]=[m 0 00 m 00 0 m ]=[

    9000 0 0

    0 9000 0

    0 0 9000] [ kg ]

    !e ener'etic approac!

    Instead of follo%ing te euilibrium a++roac, %e can 2nd te euation b&calculating te total energ& of te s&stem:

    inetic !nergy

    T=1

    2 mu12

    +1

    2 mu22

    +1

    2 mu32

    7e mass matri can be found sim+l& b& calculating te >acobian:

    [M]=[ 2T

    u i uj]=

    [

    2T

    u12

    2T

    u1

    u2

    2

    T

    u1 u

    3

    2T

    u2 u

    1

    2T

    u22

    2

    T

    u2

    u3

    2T

    u3 u1

    2T

    u3 u2

    2

    T

    u32

    ]=[m 0 00 m 00 0 m]

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 4 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    5/44

    "otential !nergyIn tis eercise te +otential elastic energ& is gi'en b& te oriontaldis+lacements of te beams, terefore b& using te stinesses alread&calculated abo'e, %e can directl& %rite te e+ression of tis energ& %itoutcalculate te integrals* Sim+l& remembering tat te +otential energ& of asingle s+ring is:

    Vs!i"g=1

    2k # $

    2

    /e 9ust a'e to sum te +otential energies of eac deformed element:

    V= 12

    k ui2=

    1

    2[kACu12+kBDu12+kCE (u1u2 )2+kDF(u1u2 )2+kFH(u2u3 )2+kEG(u2u3 )2 ]=

    1

    2k[u12+u12+(u1u2 )2+ (u1u2 )2+(u2u3 )2+(u2u3 )2 ]=

    1

    2 k[2 u1

    2

    +2 (u1u2 )2

    +2 (u2u3 )2

    ]=

    1

    2k[4 u12+4 u22+2 u324 u1 u24 u2 u3 ]=k[2 u12+2 u22+u322 u1 u22 u2 u3]

    7e stiness matri can be found sim+l& b& calculating te >acobian:

    [K]= 2

    Vu i uj

    =

    [

    2V

    u12

    2

    V

    u1 u2

    2

    V

    u1 u3

    2

    Vu

    2 u

    1

    2

    Vu

    2

    2 2

    Vu

    2 u

    3

    2V

    u3

    u1

    2

    V

    u3

    u2

    2

    V

    u32 ]

    =

    [ 4 k 2 k 02 k 4 k 2k

    0 2 k 2 k]!actl& te same results obtained %it te euilibrium metod?

    !e euations o motion:

    In case of undam+ed free 'ibrations, te euations of motion are:

    [M](u( %))+ [K](u( %))=(0 )

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page # of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    6/44

    [m 0 00 m 00 0 m](

    u1( %)

    u2( %)

    u3 ( %)

    )+[ 4 k 2 k 02 k 4 k 2 k0 2 k 2 k](u

    1 (%)

    u2 (%)

    u3 (%)

    )=(000)

    art 1-b)

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    7/44

    {1 }={112}

    #etting te 'alue:

    & 1(K , M ,1 )= {

    1

    1

    2

    }

    T

    [ 2.8 10

    7 1.4 107 01.4 107 2.8 107 1.4 107

    0 1.4 107 1.4 107

    ]{1

    1

    2

    }{112}

    T

    [9 103

    0 0

    0 9 103

    0

    0 0 9 103]{112}

    =

    518.519[ !( )2

    s2 ]

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    8/44

    "or te second trial

    'ector:& 2(K , M ,2)=

    2

    {2 }T [M]{2 }

    ([K]22 [M]){2 }={47.61995.238

    79.365}

    Clearl&, since te second gradient is closer to ero tan te 2rst one, if te guess of

    te mode sa+e is correct (i*e* %e made a coice close to te 2rst eecti'e mode),

    {2 } re+resent a better a++roimation of te eecti'e eigen'ector*

    7e estimate natural freuenc& is:

    &(*=& 2(K , M ,2)=333.333 [ !( )2

    s2 ]=18.257 [ !()s]

    In general, a good coice for te trial eigen'ector is te 'ector of static

    dis+lacements, %it forces +ro+ortional to te %eigt of eac mass ,1+* In tis

    eercise te mass are eual, terefore %at +la&s a ;e& role in te 2rst mode is te

    geometr& of te s&stem (i*e* te +osition of te masses and te stiness of

    columns)*

    -n iteratie met!o to minimie aylei'! 2uotient usin' t!e Con3u'ate

    Graient -l'orit!m

    "rom te +ro+ert& so%n abo'e, te Ra&leig uotient is a 'alue bet%een te

    minimum eigen'alue and te maimum eigen'alue of te s&stem:

    +1

    &(K , M ,! ) +"

    7erefore it can be used in min-ma teoremto get eact 'alues of all eigen'alues

    anal&ticall& (for eam+le %it a formulation based on 5agrange multi+liers) or,

    basing on a 'ariational a++roac, is used in eigen'alue algoritmsto obtain an

    a++roimation from an& trial eigen'ector: s+eci2call&, tis is te basis for te

    metod called 8Ra&leig uotient iteration*

    In +articular, since te +roblem as;s to 2nd te 2rst eigen'alue, %e a'e to sol'e a

    +roblem of minimum* 7e basic idea of Ra&leig uotient minimiation is to

    construct a seuence {! }!=1,2,3 suc tat:

    &(K , M ,!+1 ) &(K , M ,! ); !=0,1,2

    7e o+e is tat te seuence {&(K , M ,! ) } con'erges to +1 and b& conseuence

    te 'ector seuence {! } to%ards te corres+onding eigen'ector* sing a+erturbation a++roac, de2ning:

    {!+1

    }= {!}+-!{! }/ere ! re+resent te 8searc% )irection and te +arameter -! is determined

    suc tat te Ra&leig uotient of te ne% iterate !+1 becomes minimal:

    &(K , M ,!+1 )=mi"-

    [&(K , M ,!+-!! ) ]

    /e can %rite te Ra&leig uotient of te linear combination {! }+-!{!} of t%o

    (linearl& inde+endent) 'ectors {! } and {! } :

    1,+*+ Meiro,itc%- !lement of ,i.ration analysis- Mc/raw ill 16- pp 11514

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page of 34

    http://en.wikipedia.org/wiki/Min-max_theoremhttp://en.wikipedia.org/wiki/Eigenvalue_algorithmhttp://en.wikipedia.org/wiki/Rayleigh_quotient_iterationhttp://en.wikipedia.org/wiki/Eigenvalue_algorithmhttp://en.wikipedia.org/wiki/Rayleigh_quotient_iterationhttp://en.wikipedia.org/wiki/Min-max_theorem
  • 8/9/2019 Structural Dynamics Main CW 423.docx

    9/44

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    10/44

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    11/44

    2 [( B!+-! C! )(D!+2-!E!+-!2F!)(A!+2 -! B!+-!2 C! )(E !+-!F!)]

    (D!+2 -!E!+-!2F! )

    2 =0

    Sim+lif&ing:

    2 [-!2 (C!E!B!F! )+-!(C!D!F!A ! )+ (B !D !A!E ! ) ](-!

    2F!+2 -!E !+D! )

    2 =0

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    12/44

    Com+ared %it te +re'ious 'alue of natural, te +ercentage error is

    &(* 1

    1

    100=4.012

    art 1-c) odal 0 , te

    total mecanical energ& of te s&stem (T+V) %ill gro%, %ile {+ }

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    13/44

    {+ }={+1+2+3

    }={ 308.0972.419 1035.051 10

    3}[ !( )2s2 ]sing te $eig' function in

    atlab, te natural freuencies

    are:

    '"=+=('

    1

    '2

    '3

    )=(17.553

    49.182

    71.069)[!()s]

    7e +eriods are:

    T=2 8

    '"=(

    T1

    T2

    T3

    )=(0.3580.1280.088) [ s ]

    7e freuencies:

    4=1

    T=(

    41

    42

    43

    )=(2.7947.82711.311) [H9 ]Ei'enectors:Qo% tat %e a'e determined te natural freuencies, %e +roceed to e'aluate te

    mode sa+es*/en =1 , 2 or 3 , at least one of te scalar euations described b&

    {[K]'i2 [M]}( )=0 is not inde+endent of te oter* /e can retain one of te t%oconditions (for instance te 2rst one), and add a condition on te norm of te 2rst

    eigen'ector*

    Moe s!ape 1

    [

    4 k+1

    m 2 k 02 k 4 k+

    1m 2 k

    0 2 k 2 k+1 m

    ](

    11

    21

    31

    )=

    (

    0

    0

    0

    )/it te condition:112 +212 +312 =1/e a'e:

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 13 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    14/44

    { (4 k+

    1m )112 k21=0

    2 k11+( 4 k+1 m )212 k31=0

    11

    2 +21

    2 +31

    2 =1

    {

    11=

    2k

    (4 k+1 m )

    21

    31=[(4 k+1 m)

    24 k2

    2 k(4 k+1 m)]21

    21=

    { 1

    [ 2 k

    ( 4 k+1 m )]+1+

    [(4 k+1m )

    2

    4 k2

    2 k( 4 k+1 m )]2

    }0.5

    7e 2rst eigen'ector is:

    (

    11

    21

    31)=(0.327990.591010.73698)

    Moe s!ape

    4 k+2 m 2 k 02 k 4 k+

    2m 2 k

    0 2 k 2 k+2

    m(12

    22

    32)=(

    0

    0

    0)/it te condition:

    122 +22

    2 +322 =1

    /e a'e:

    {(4 k+2 m )122 k22=02 k

    22+( 2 k+2 m )32=0

    122 +22

    2 +322 =1

    {

    12=

    2 k

    ( 4 k+2 m )

    22

    32= 2 k(2 k+2 m)22

    22={

    1

    [ 2 k( 4 k+2 m ) ]2

    +1+[ 2 k(2 k+2 m ) ]2 }

    0.5

    7e second eigen'ector is:

    (

    12

    22

    32

    )=

    (

    0.73698

    0.32799

    0.59101

    ) Moe s!ape 84 k+

    3m 2 k 0

    2 k 4 k+3

    m 2 k

    0 2 k 2 k+3

    m(132333

    )=(000)/it te condition:

    132 +23

    2 +332 =1

    /e a'e:

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 14 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    15/44

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    16/44

    02=

    2

    T [M]2=(122232

    )T

    [m 0 00 m 00 0 m ](122232

    )=[ (12 )2+(22 )2+(32 )2 ] m=16570.498 [ kg ]

    03=

    3

    T [M]3=

    (

    13

    23

    33

    )

    T

    [

    m 0 0

    0 m 0

    0 0 m

    ](

    13

    23

    33

    )=[(13 )2+ (23 )2+ (33)2 ]m=16570.498 [ kg ]

    Qo% %e can calculate te normal moes(i*e* modes normalied %it te res+ect of

    te mass matri)

    g ?2 sin (? %)

    /it ?=2 8@ * /e can ignore te sign of te ecitation because of it is armonic

    and +eriodic*

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    18/44

    /ere . and / can be found considering tat te s&stem is dam+ed at 3 of

    te critical dam+ing %en oscillating at its 2rst and tird natural mode freuenc&*

    Dia'onaliation 9y aylei'! Dampin'

    In order to do tat 2rst, %e ma;e a modal transformation u(%)= [< ] (%) b& using temass normali8e) s%ape matri9, and %e get:

    [M] [ < ] ( %)+( .[M]+/ [K])[ < ] ( %)+ [K] [< ] (%)=m ! Fg (? , %)

    7en, %e +re-multi+l& b& [ < ]T

    and %e get:

    [ < ]T [M] [ < ]A( %)+ [ < ]T( .[M]+/ [K])[ < ] A( %)+ [< ]

    T [K] [< ] A(%)= [< ]T

    m(111)Fg (? , %)

    sing te ortogonalit& +ro+ert& of mode sa+e matri, te euation become:

    (%)+

    [.+/

    1

    20 0

    0 .+/22 0

    0 0 .+/3

    2] (%)+

    [

    1

    20 0

    0 22 0

    0 0 3

    2] (%)=

    m

    (

    g ?2

    sin (? %)

    2>g ?2

    sin (? %)

    3>g ?

    2sin (? %))

    7e generic armonic res+onse is:

    i (%)=>i sin (? %)= {>i 7i ? %}7us, %e a'e:

    { (?2+i 2 i ? i+i

    2

    )>i7 i ? %}={i>g ?2 7i ? %}

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 1 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    20/44

    7is euation must be satis2ed for all 'alues of t, so %e matc te terms contained%itin te brac;ets* 7is leads to:

    >i= i>g ?

    2

    (i2+i 2 i ? i?2)

    7e uantit& at te denominator is te d&namic stiness* 7e term i2

    is te

    circular freuenc& suared, but also re+resents te stiness +er unit of mass of te

    eui'alent SD." s&stem= %e can e+ress tis uantit& in a more con'enient form,factoriing it:

    >i=i>g(?i)

    2

    (1!i2+i 2 i !i )=i>g !i

    2Di(!i , i )

    Di ( !i , i ) is te Com+le "reuenc& Res+onse (te uantit& at te denominator iste d&namic stiness):

    Di ( !i , i )= 1

    (1!i2+i 2i !i )

    ; ! i=?

    'i

    Since Di ( !i , i ) is a com+le number, %e can re+resent in modulus and +ase:

    Di ( ! i , i )=|Di(! i , i )|7ii(!i , i)

    /ere:

    |Di(!i ,i )|= 1

    [(1!i2 )2+4 i2 !i2 ]1 /2(M(g"i4i(%i1" F(%1!)

    i (

    !i,

    i )= tan1

    (2 i !i

    1!i2

    )((s7 A"g37 )

    "inall&, te stead& state res+onse is te immaginar& +art of te imaginar& number:

    ( %)={i>g ?2

    i2

    Di ( !i , i ) 7i ? %}= {i>g?

    2

    i2 |Di ( !i, i )|7

    [ii( !i ,i)]7

    i ? %}= {i>g?

    2

    'i2 |Di ( !i, i)|7

    i [ ? % i( !i ,i)]}=i>g!i2|Di(!i ,i )|sin [? %i(!i , i ) ]

    ( %)=>g(

    1 !12

    |D1 ( !1 , 1 )|sin [? %

    1(!1 ,1)]2!

    2

    2|D2 ( !2 , 2 )|sin [? %2(!2 ,2 ) ]

    3!

    3

    2|D3 (! 3 , 3 )|sin [? %3(!3 , 3 ) ])!e total solution:

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    21/44

    sing te initial condition %e can 2nd no% te constants Es , E% for eac modal

    coordinate A i( %) *

    "irst, %e calculate te e+ression of 'elocit&:

    i (%)=ii 7i i%[Es cos ()i %)+E%sin ( )i%) ]+)i 7i i%[E s sin ( )i %)+E %cos ()i %) ]+

    +i>g ?3

    i2 |D

    (!

    i

    , i )|

    cos

    [? %

    i (!

    i

    , i)]

    sing te initial conditions (%=0 )=[ < ]T [M]u( %=0)=0 and (%=0 )=[ < ]

    T [M] u( %=0)= 0

    { Es+i>g ?

    2

    i2 |D (!i , i )|sin [ i ( !i, i )]=0

    i iE s+)iE%+i>g?

    2

    i2

    ?|D (!i , i )|cos [i(!i ,i ) ]=0

    :7 g7%:

    { E s=0i>g?

    2

    i2 |D (! i , i )|sin [i ( !i ,i ) ]

    E%= 1

    )i{i>g?2

    i2

    ?|D (! i , i )|cos [i(!i , i ) ]+0+i iEs}If %e consider omogeneous u(%=0)=00=0 and u(%=0)=0 0=0

    Es=i>g !i2|D ( !i , i )|sin [i(!i ,i ) ]

    E%=i>g?

    2

    )i i|D ( !i , i)|{!i cos [ i ( !i , i)]+i sin [i(!i , i ) ] }

    Conolution inte'ral (Du!amel)

    7e solution for eac modal coordinate can also be found b& calculating te

    con'olution bet%een te generic res+onse of te underdam+ed s&stem to te single

    im+ulse (Dirac delta) at time , and te eecti'e force a++lied at tat instant:

    Ai (%)=0

    %i>g?

    2sin (? )

    'i)7i 'i(%)

    sin [ 'i)(%)] )

    7is e+ression of dis+lacements for eac normal coordinate could a++ear sim+ler

    tan te anal&tic solution, but is 9ust more com+act* In fact, te con'olution integral

    olds inside a com+lete base of te 'ector s+ace of solutions*

    A1 (%)=

    1>g?2

    '1 )

    0

    %

    sin (? )71 '1(%)sin ['1 )(%)])

    2( %)=

    2>g?2

    2 )

    0

    %

    sin (? )72 2 (% ) sin [2 )( %)])

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 21 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    22/44

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    23/44

    (

    ;onimensional isplacemento t!e 6rst

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    24/44

    7e mass tat +artici+ates to te 2rst mode is

    m(ss1=24680.15 [kg ]

    J1*4 of te total mass*

    Qo% b& calculating te base total moment, %e can

    2nd te eui'alent ele'ation of tis mass:

    M(s7="i mi=m(ss744

    [ < ] [M](

    1

    2

    3

    )[< ] [M] (11

    1)=m(ss 744H744

    /ereH

    744 is a $mo)al e:ecti,eele,ation'+

    Its intuiti'e tat b& locating te

    absorber on te to+ of te building,

    te action (tat is a force) transmitted

    b& te absorber to te structure ( and

    'ice 'ersa) as a bigger le'el arm, and

    tis gi'e to te absorber more

    ca+acit& of control of 'ibrations*

    art E-b) Sim+li2ed model of te frame*B& using te modal decom+osition, %e can a++roimate te s&stem at te 2rst

    mode:

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 24 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    25/44

    u(%)= [< ] (%)=(7 and >D are determined from te linear euations:

    [K7+KD?

    2M7 KD

    KD KD?2MD

    ](>7

    >D )=(F

    0>g ?

    2

    0

    )

    (>7>D )={ (KD?

    2MD)F0>g ?

    2

    (K7+KD?2M7) (KD?

    2MD)KD

    2

    KDF0>g?2

    (K7+KD?2M7) (KD?

    2MD)KD

    2

    7e denominators are eual and re+resent te determinant of te s&stem ofcoeGcients* 7is uantit& is identical to te caracteristic euation for teundam+ed s&stem*

    7e ob9ecti'e of te absorber is to reduce te 'alue of >7 %en ? matces te

    natural freuenc& K7AM7A of te eui'alent s&stem* 7e numerator for >7'anises at ?=KDMD and te denominator is nonero at tat freuenc&* It follo%stat if %e select te u++er s&stem suc tat:

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 30 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    31/44

    KD

    MD=

    K7

    M7

    7en te mass M7 %ill not oscillates %en ?=K7M7=1 (2rst eigen'alue ofte original s&stem)* 7e corres+onding am+litude for te u++er mass is

    >D=

    (F

    0

    >g

    ?2

    KD ), %ic resembles te static deformation of KD resulting from

    a com+ressi'e force F0>g?2

    * 7e e+lanation is tat because M7 is not

    mo'ing, te forces acting on it must euilibrate at e'er& instant, %ic is satis2ed

    (%en >7=0 ) if:

    KD>D+F0>g?2

    sin (? %)=0

    7us, %e a'e:

    >D=

    (F

    0>g ?

    2

    KD

    )sin (? %)

    Basicall&, if te natural freuenc& of te absorber matces te natural freuenc& ofte 8eui'alent s&stem, and if te armonic motion of te ground as a freuenc&

    close to 1 , te s+ring force te 'ibration absorber a++lies to te original s&stem

    balances te ecitation force, so te original s&stem does not mo'e*

    7e abilit& of te 'ibration absorber to uiet >7 de+ends onl& on te ratio (KDMD )but not on te actual

    sie ofM

    D and K

    D

    * "or tat reason, itmigt seem tat teu++er s&stem can beetremel& ligt%eigt*$o%e'er, t%o factorscan ma;e te sie of

    MD signi2cant: small

    MD leads to small

    KD , in %ic case

    te am+litude >D %ill

    be 'er& large (if te'ibration am+litude ofte absorber is 'er&ecessi'e, ten te s+ring is li;el& to fail)* 7e oter consideration limiting te

    smallness of MD and KD +ertains to situations %ere te ecitation freuenc&

    migt drift around te nominal 'alue 1 *

    If %e coose for instance KD=0.1K7 and MD=0.1M7 , %e can +lot te

    am+litudes as function of ? *

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    32/44

    KD

    MD=

    K7

    M7=

    1

    2

    In order to nullif& >7 at te original natural freuenc&, te natural freuencies of

    te ne% E degree of freedom s&stem obtained b& sol'ing:

    (K7+KD?2M7) (KD?

    2MD )KD

    2 =0

    D , attains a minimum negati'e

    'alue in te 'icinit& of 1 and ten increase negati'el&* "urter increase of ?

    to%ard te second natural freuenc& '2

    causes bot am+litudes to a++roac

    in2nit&, but >7 is +ositi'e %ile >D is negati'e* assing te resonance results

    in a 180 J +ase sift for bot am+litudes as it did for te fundamental resonance*

    Increasing te freuenc& be&ond '2

    causes bot am+litudes to decrease in

    magnitude because te inertial eect, %ic is +ro+ortional to te suare of tefreuenc&, becomes te dominant eect*

    Canging te mass ratio, %e can see o% te ga+ bet%een te t%o freuenciesbecome %ider*

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 32 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    33/44

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    34/44

    1 0.73 1=14.995[!()s] 41= 1

    2 8=2.386 [H9 ]

    21.37 1=20.546 [ !()s] 42= 2

    2 8=3.270 [H9 ]

    /e can see also tat 42

    is also %ell se+arated from te 42 of te original

    structure*

    MD=0 M71657.05 [ kg ]

    KD=0 K7 510531.82 [Nm]

    art E-d)

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    35/44

    k=5105318.2[Nm]

    -9sor9er:

    0=0.1

    MD=0 M7 1657.05 [ kg ]

    KD=0 K7 510531.82 [Nm]

    /e get te follo%ing diagrams:

    =or CD= 1

    1000

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 3# of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    36/44

    It is clear from te diagram tat %en te 'alue of te das+ot constant is too small,te eect of te absorber is detrimental since %e a'e in te 2rst natural freuenc&tat te maimum am+litude of dis+lacements of te frame is greater tan temaimum am+litude of te frame %itout absorber*

    =or CD=1000

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 36 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    37/44

    5oo;ing at tese diagrams, tere is a clear relation bet%een te 7D dam+ing

    ratioand te d&namic am+li2cations*/en tere is a 'er& ig dam+ing ratio

    te dam+er constraints te relati'e motions, resulting in te 7D and te

    structure %or;ing as one mass (m+MD ) and stiness k

    *

    .n te oter and, if tere is a 'er& lo% dam+ing ratio large d&namic

    am+li2cations %ill occur near te t%o undam+ed resonance freuencies* "or te

    small 'alue of te dam+ing, at te 2rst natural freuenc& 1 te s&stem as a

    small dis+lacement (not ero), results because tere is a dam+ing force tat is

    90 J out of +ase from te inertial resistance and elastic force, %icessentiall& cancel eac oter*

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    38/44

    7e scri+t is a loo+ tat +lot te corres+onding maimum absolute 'alue of te

    dis+lacements for eac 'alue of CD * /e can see easil& tat te best 'alue of

    te das+ot coeGcient for te absorber can be 2nd 2nd %ere te maimum

    dis+lacement is minimum:

    7e o+timum 'alue is near CD=12000[N sm] (tat is 0.688C7 )"or tat 'alue of te das+ot constant, te diagram of te stead& state armonic

    res+onse and te ste+ res+onse are:

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 3 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    39/44

    Broc;Esuggested tat te o+timum-dam+ing ratio could be gi'en b& te em+iric

    formula:

    E>*!* Broc;, < note on te dam+ed 'ibration absorber* >ournal of

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    40/44

    1 %1= 38 0(1+0 )3It sould be noted tat freuentl& in scienti2c literature te o+timum dam+ing

    ratio is also gi'en as:

    1 %2= 38 0(1+0 )In our case, %e get:

    1 %1

    =0.168

    1 %2

    =0.185

    CD 1=2 1%1

    0km=9764.2[N sm]CD2=2 1 %

    2

    0 km=10740.6 [N sm]Bot 'alues are not far from %at %e found %it numeric iteration*

    In our case, te 'alue tat %e found is more similar to te a++roimation3:

    1%= 12 0(1+0 )CD=21%0km=12402.18 [N sm]In +resence of dam+ing te am+litudes are com+le, tis introduce a +ase

    angle in te resulting dis+lacements: te res+onse of te tuned mass is J0 out

    of +ase %it te res+onse of te +rimar& mass* 7is dierence in +ase

    +roduces te energ& dissi+ation contributed b& te dam+er inertia force*

    /en te ecitation freuenc& is lo%, te stiness of te s&stem controls te

    res+onse: as conseuence, te dis+lacements are in +ase %it te ecitation*

    /en te ecitation a++roaces te natural freuenc&, te res+onse of te

    s&stem is controlled to a large etent b& te dam+ing in te s&stem* "inall&, as

    ? becomes large, te res+onse of te s&stem is largel& controlled b& te mass

    (te inertia) of te s&stem*

    Coosing te correct 'alue of mass ratio and dam+ing factor, leads to im+ro'edbea'ior (e*g* in te form of am+litude reduction o'er a %ider range of

    freuencies): if te t%o natural freuencies of te eui'alent E D." s&stem are

    close enoug, te eect of te dam+ing of te absorber etents for all te range

    in-bet%een*

    3Tren;, S* U $Vgsberg, >* (E00N)* Structural D&namics, Qote 3* 7uned ass Dam+ers* De+artmentof ecanical !ngineering 7ecnical ni'ersit& of Denmar;*

    C5 Ci'il, !n'ironmental and #eomatic !ngineering

    Structural Dynamics 2014 Main Coursework Carmine Russo 14103106page 40 of 34

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    41/44

    art 1>9) Con3u'ate Graient -l'orit!m ? Matla9Coe********************* #L ************************ ivilviromet'l ', 3eom'tic %ieeri% ***************** M'i orse4or! *********************************** 'rt 1 ********************************** 6'7lei% 8pproim'tio *********************** o9%'te 3r',iet 8l%oritm ***********************************************************cle'rcle'r 'll

    clc,isp(/=======================================/),isp(/ 3M01&3301 /),isp(/

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    42/44

    ,isp(/ress eter to se te stiffess m'tri of oit 1'/);M=ipt(/@sert te M'ss m'tri AMC /); M'ss M'tri of te s7stem.ifisempt7(M)==1 ,isp(/M'ss m'tri AMC/) M=AE000 0 0; 0 E000 0; 0 0 E000C; @ A!%Ce,M,=siFe();m=,(1);fi=oes(m1); @iti'liFe te 'l%oritm:ifm G tis is 9st ' prit o scree co,itio,isp(/@iti'l ei%evector:/);fie,v0=*fi;0=M*fi;,isp(/Hirst 6'7lei% Iotiet:/);6=(v0/*fi)&(0/*fi) Hirst 6'7lei% Iotiet3r',6'70=2*(v0-6*0); 'lcl'te te iiti'l %r',iet=orm(3r',6'70); Borm of te iiti'l %r',ietoose ' oFero (', positive) v'le 's co,itio to stop te c7cle:,isp(/BOJ:ress eter to se te ,ef'lt/);,isp(/)-*8**+*(8"2)*D)&(*8">);tri0=("2)->**D+12*8*;tri1=2*(">)-E***D+2*("2)*+2*8*(D"2)-2*8**;I=((tri1+sNrt((tri1"2)-*(tri0)">))&2)"(1&>);)*p+(1&(>*8))*(I+(tri0&I)));sol1=-(&(*8))-

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    43/44

  • 8/9/2019 Structural Dynamics Main CW 423.docx

    44/44

    - X* 7* "eng and D* R* >* .%en, Con9ugate gradient metods for sol'ing te smallesteigen+air of large s&mmetric eigen'alue +roblems, Internat* >* Qumer* etods !ng*,3J (1JJ6), ++* EE0JEEEJ*