story ic

Upload: brendan-crowley

Post on 10-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 story ic

    1/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    EECS 240Analog Integrated Circuits

    Lecture 2: CMOS Technology andPassive Devices

    Ali M. Niknejad,Bernhard E. Boser,S.Gambini 2011

    Department of Electrical Engineering and Computer Sciences

  • 7/22/2019 story ic

    2/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    CMOS Technology

    Why look at it (again)?

    Key issues:1. Perspective

    Device dimensions

    Device performance metrics, e.g.:

    Current efficiency

    Speed

    Gain

    Noise

    2. Short-channel characteristics Square-law model

    Models for circuit simulation

    Design

  • 7/22/2019 story ic

    3/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Todays Lecture

    CMOS cross-section

    Passive devices Resistors

    Capacitors

    Next time: MOS transistor

  • 7/22/2019 story ic

    4/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    CMOS Process

    Cadence GPDK 90nm

    Minimum channel length: 0.09m

    1 level of polysilicon

    7 levels of metal (Cu)

    1.2V supply

    Other choices

    Shorter channel length (45/32 nm / 1.1V) Bipolar, SiGe HBT

    SOI

  • 7/22/2019 story ic

    5/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Supply Voltage

    0

    1.375

    2.750

    4.125

    5.500

    1 0.8 0.5 0.35 0.25 0.18 0.12 0.08 0.06

    SupplyVoltag

    e[V]

    Feature Size [m]

  • 7/22/2019 story ic

    6/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    CMOS Cross Section

  • 7/22/2019 story ic

    7/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Dimensions

    Drawing is not to scale!

  • 7/22/2019 story ic

    8/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Devices

    Active NMOS, PMOS

    NPN, PNP

    Diodes

    Passive Resistors

    Capacitors Inductors

  • 7/22/2019 story ic

    9/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Resistors

    No provisions in standard CMOS

    Resistors are bad for digital circuits

    Minimized in standard CMOS

    Sheet resistance of available layers:

    Example: 100k poly resistor

    1m wide by 20,000m long

    Layer Sheet resistance

    AluminumPolysiliconN+/P+ diffusionN-well

    60 m/

    5 /

    5 /

    1 k/

  • 7/22/2019 story ic

    10/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Process Options

    Available for many processes

    Add features to baseline process

    E.g. Capacitor option (MIM, 2 level poly, channel implant)

    Low VTH devices

    High voltage devices (3.3V)

    EEPROM

    Silicide stop option

  • 7/22/2019 story ic

    11/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Silicide Technology

    Implants used to lower resistance of source/drainand polysilicon.

    Titanium Silicide (TiSi2) is widely used salicide

    (self-aligned silicide), has low resistivity (13-17

    m-cm) with melting point of 1540C. Another

    widely used silicide is CoSi2.

    Platinum Silicide (PtSi) is a highly reliable

    contact metallization between the silicon substrateand the metal layers (Al).

  • 7/22/2019 story ic

    12/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Silicide Block Option

    For moderate resistor values (up to 100K), unsalicidedpoly by far the best option when available

    Non-silicided layers have significantly larger sheetresistance

    Resistor nonidealities:

    Temperature coefficient: R = f(T)

    Voltage coefficient: R = f(V)

    Layer R/ [/] TC [ppm/oC]

    @ T = 25o

    C

    VC [ppm/V] BC [ppm/V]

    N+ polyP+ polyN+ diffusionP+ diffusionN-well

    10018050

    1001000

    -800200

    15001600

    -1500

    5050

    500500

    20,000

    5050

    -500-500

    30,000

  • 7/22/2019 story ic

    13/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Resistor ExampleGoal: R = 100 k, TC = 1/R x dR/dT = 0

    Solution: combination of N+ and P+ poly resistors in series

  • 7/22/2019 story ic

    14/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Voltage Coefcient

    Example:

    Diffusion resistor

    Applied voltage modulates depletionwidth

    (cross-section of conductivechannel)

    Well acts as a shield

  • 7/22/2019 story ic

    15/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Resistor Matching

    Types of mismatch

    Systematic (e.g. contacts)

    Run-to-run variations

    Random variations between devices

    Absolute resistor value

    E.g. filter time constant, bias current (BG reference)

    ~ 15 percent variations (or more)

    Resistor ratios

    E.g. opamp feedback network

    Insensitive to absolute resistor value

    unit-element approach rejects systematic variations(large area for non-integer ratios)

    Process gradients

    0.1 1 percent matching possible with careful layout

  • 7/22/2019 story ic

    16/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Resistor Layout

    Example: R1 : R2 = 1 : 2 gradient

    R1

    0.5 * R2 - R

    0.5 * R2 + R

    Dummy

    Dummy

  • 7/22/2019 story ic

    17/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Resistor Layout (cont.)

    Serpentine layout for large values:

    Better layout (mitigates offset due to thermoelectric effects):

    See Hastings, The art of analog layout, Prentice Hall, 2001.

  • 7/22/2019 story ic

    18/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    MOSFETs as Resistors

    Triode region (square law):

    Small signal resistance:

    Voltage coefficient:

  • 7/22/2019 story ic

    19/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    MOS Resistors

    Example: R = 1 M Large R-values realizable in small area

    Very large voltage coefficient

    Applications:

    MOSFET-C filters: (linearization)Ref: Tsividis et al, Continuous-Time MOSFET-C Filters in VLSI, JSSC, pp. 15-30, Feb. 1986.

    Biasing: (>1G)

    Ref: Geen et al, Single-Chip Surface-

    Micromachined Integrated Gyroscope with 50o/hour Root Allen Variance, ISSCC, pp. 426-7,Feb. 2002.

    Mostly for low-frequency application

  • 7/22/2019 story ic

    20/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Resistor Summary

    No or limited support in standard CMOS

    Costly: large area (compared to FETs)

    Nonidealities:

    Large run-to-run variations

    Temperature coefficient

    Voltage coefficients (nonlinear)

    Avoid them when you can

    Especially in critical areas, e.g.

    Amplifier feedback networks

    Electronic filters

    A/D converters

    We will get back to this point

  • 7/22/2019 story ic

    21/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Capacitor Applications

    Large value

    Bypass capacitors

    Frequency compensation

    High accuracy, linearity

    Feedback & sampling networks

    Filters

  • 7/22/2019 story ic

    22/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Capacitor Options

    Type C [aF/m2] VC [ppm/V] TC [ppm/oC]

    Gate ~20000 Huge Big

    Poly-poly (option) 1000 10 25

    Metal-metal (Finger) 1000-2000 20 30

    Metal-substrate 30

    Metal-poly 50

    Poly-substrate 120

    Junction capacitors ~ 1000 Big Big

  • 7/22/2019 story ic

    23/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    MOS Capacitor

    High capacitance in inversion:

    Linear region

    Strong inversion

    SPICE:

  • 7/22/2019 story ic

    24/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    MOS Capacitor

    High non-linearity,

    temperature coefficient

    Gate leakage for thin-ox devices

    Useful only for non-criticalapplications, e.g.

    (Miller) compensation capacitor

    Bypass capacitor (supply, bias)

    Sometimes depletion devices

    available which have better

    linearity (NMOS in N-well)

  • 7/22/2019 story ic

    25/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Poly-Poly Capacitor

    Applications:

    Feedback networks

    Filters (SC and continuous time)

    Charge redistribution DACs & ADCs

    Cross-section

    Bottom- and top-plate parasitics

    Shields

  • 7/22/2019 story ic

    26/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Capacitor Layout

    Unit elements

    Shields:

    Etching

    Fringing fields Common-centroid

    Wiring and interconnect parasitics

    Ref.: Y. Tsividis, Mixed Analog-Digital VLSI Designand Technology, McGraw-Hill, 1996.

  • 7/22/2019 story ic

    27/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Metal Capacitors

    Available in all processes

    (with at least 2 levels of metalization)

    Large bottom plate parasitic

    Often loads amplifier

    increased load adds power dissipation

  • 7/22/2019 story ic

    28/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    MIM Capacitors

    Many processes have add-on options such

    as a MIM capacitor.

    This is simply a metal-insulator-metal(MIM) structure situated in the oxide

    layers. The insulator is a very thin layer

    (~25 nm), resulting in high density and

    relatively low back-plate parasitics.

  • 7/22/2019 story ic

    29/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Custom MOM

    Metal-Oxide-Metal capacitor. Free with modern CMOS.

    Use lateral flux (~Lmin) and multiple metal layers to realizehigh capacitance values

    Matching limited by layer thickness variations

  • 7/22/2019 story ic

    30/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    MOM Capacitor Cross

    Use a wall of metal and

    vias to realize high

    density.

    Use as many layers aspossible. Use fewer

    layers to minimize back-

    plate parasitics.

    Reasonably good

    matching and accuracy.

  • 7/22/2019 story ic

    31/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Commercial BiCMOS Process

    www.ibm.com/chips/techlib/techlib.nsf/techdocs/FE154539B8C4C01687256CD9007346D7/$file/180-nmCMOS3-24-04.pdf

  • 7/22/2019 story ic

    32/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Typical 180nm CMOS

    Leff < L

    High volage IO

    devices High voltage

    device has

    thick oxide

    www.ibm.com/chips/techlib/techlib.nsf/techdocs/FE154539B8C4C01687256CD9007346D7/$file/180-nmCMOS3-24-04.pdf

  • 7/22/2019 story ic

    33/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Triple Well Option

    Many modern process have a triple well (deepwell) option that allows NFETs to be isolated

    from the substrate. Older notation: twin-well. This provides better immunity from digital noise

    in a mixed signal circuit.

    p-sub

    n-well

    deep n-well

    p-well

  • 7/22/2019 story ic

    34/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Isolation Options

    www.ibm.com/chips/techlib/techlib.nsf/techdocs/FE154539B8C4C01687256CD9007346D7/$file/180-nmCMOS3-24-04.pdf

  • 7/22/2019 story ic

    35/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Bipolar Devices

    www.ibm.com/chips/techlib/techlib.nsf/techdocs/FE154539B8C4C01687256CD9007346D7/$file/180-nmCMOS3-24-04.pdf

  • 7/22/2019 story ic

    36/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Passives

    www.ibm.com/chips/techlib/techlib.nsf/techdocs/FE154539B8C4C01687256CD9007346D7/$file/180-nmCMOS3-24-04.pdf

  • 7/22/2019 story ic

    37/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Distributed Eects

    Can model IC resistors as

    distributed RC circuits.

    Transmission line

    analysis yields theequivalent 2-port

    parameters.

    Inductance negligible for

    small IC structures up to

    ~10GHz.

  • 7/22/2019 story ic

    38/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Eective Resistance

    Rsh = 100 /, Cx=3.4510-5 F/m2

    10k resistor drops to 5k at 1 GHz ! (W=5) High frequency resistance depends on W. Need

    distributed model for accurate freq response.

  • 7/22/2019 story ic

    39/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Capacitor Q

    Current density in capacitor plates drops

    due to vertical displacement current. Must analyze the distributed RC circuit

  • 7/22/2019 story ic

    40/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Capacitor Impedance

    For a capacitor contacted at one side, we

    can show that

    We can simplify this for small structures

  • 7/22/2019 story ic

    41/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Double Contact Strucutre

    Instead of doing distributed analysis, we can guess the

    current distribution as linear and quickly calculate theeffective resistance.

    For a double contact case, the resistance drops by 4 times.

  • 7/22/2019 story ic

    42/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Once in the domain of RF circuits, now inductors

    are finding applications in wideband design (e.g.

    shunt peaking).

    By proper design, the bandwidth of the RC circuit

    can be boosted by 85% (20% peaking).

    On-Chip Inductors

  • 7/22/2019 story ic

    43/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Spiral Inductors

    These inductors are small (0.1-10 nH) and are used widely

    in RF circuits. Use top metal for high Q and high self resonance

    frequencies. Very good matching and accuracy.

    l d

  • 7/22/2019 story ic

    44/44

    EECS 240 Lecture 2: CMOS - passive devices 2011 A. M. Niknejad,B. Boser,S.Gambini

    Multi-Layer Inductors

    By taking advantage of multiple metal layers andmutual coupling, we can realize very largeinductors (~ 100 nH).

    Top view 3D view (not to scale)