stellar-mass metallicity relation at high redshifts stellar-mass metallicity relation at...

23
Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA Kyoto University K. Yabe, F. Iwamuro, S. Yuma, M. Akiyama, N. Tamura, FMOS team et al. 2011 年 11 年 2 年 年 年年年 Near Field Cosmology!? Extra-galactic Archaeology! 1

Upload: halie-haslam

Post on 01-Apr-2015

220 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Stellar-mass Metallicity Relation at High Redshifts

Stellar-mass Metallicity Relation at z~1. 4

Kouji OHTA  ( Kyoto University )K. Yabe, F. Iwamuro, S. Yuma, M. Akiyama, N. Tamura, FMOS team et al. 2011 年 11 月 2 日

於 修善寺

Near Field Cosmology!?Extra-galactic Archaeology!

1

Page 2: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Tracing chemical evolution

Galactic disk stars Twarog (1980)

Galaxy surveys

Chemical evolutionÞEvolution of galaxies and MW Galaxy

But the metallicity here isfor rather bright/massive galaxies…

Lilly et al. 2003, ApJ 597, 730 (CFRS)

2

Page 3: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Mass-metallicity relation~53,000 SF galaxies at z~0.1(SDSS)      Tremonti et al.      ApJ 613, 898 (2004)

Need to establish relations atvarious redshifts =>Chemical evolution of galaxies/MW

Even at a fixed stellar mass,There is a significant scatter around the relation=> Physical origin is unknown yet

Related to nature of GRB hosts,Origin of long GRBs 3

Page 4: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Evolution of mass-metallicity relation

Mannucci et al. 2009, MN 398, 1915

z~0.7: 56 SF galaxies Savaglio et al. 2005, ApJ 635, 260

z~2.2: 90 SF galaxies with Stacking analysis Erb et al. 2006, ApJ 644, 813

z~3: ~20 SF galaxies Maiolino et al. 2008, AA 488, 463

4

Page 5: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Why M-Z relation at z~1.4?

Hopkins & Beacom , 2006, ApJ 651, 204

What is the M-Z relation close to/just after the peak epoch of cosmic SF history? => a major step in chemical evolution?

How’s the scatter? => larger scatter in higher redshifts?

What is the origin of the scatter? => key parameter to understand the evoliution of M-Z relation (&chemical evolution of galaxies)

Cosmic SF history

We need a large sample of SF galaxies at z=1-2!

5

Page 6: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Fibre Multi-Object Spectrograph (FMOS) on Subaru Telescope

• 0.9-1.8um R~700, (R~3000 in HR mode)

• 400 fibres in 30’ FoV

6

Page 7: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Sample

• K(AB) < 23.9 mag in SXDS/UDS• Stellar mass > 10^9.5 Msun• 1.2 < z_ph < 1.6 FMOS can cover Hβ -- Hα 、 [NII]6584• Expected Hα flux > 1.0x10^-16 erg/s/cm^2 calculated from SFR(UV) & E(B-V)nebular from UV slope• Randomly selected ~300 targets

7

Page 8: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Example of spectraTypical exp time ~ 3 h Hα   detection: 71 galaxies

SN >3 for [NII]6584

3>SN >1.5 for [NII]6584

SN <1.5 for [NII]6584

Metallicity <= N2 method ([NII]/Hα ) By Pettini & Pagel (2004) 8

Page 9: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

AGN rejection

Stacked spectrum w/o AGNs

X-ray sources are discarded(Lx < 10^43 erg/s)

9

Page 10: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Mass-metallicity relation at z~1.4SN < 1.5 for [NII]6584

10

Page 11: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

• MZ relation locates between z~0.1 (Tremonti+) and z~2 (Erb+) (after correcting for the metallicity calibration & stellar mass (IMF))

• Agree with recent simulation Galaxy mass dependent outflow model (vzw)

Dave et al. MN 416, 1354 (2011)

11

Page 12: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Scatter of the MZ relation• Try to constrain the scatter• Deviation from the MZ relation (after removing the obs error)• Smaller in massive side• Comparable to z~0.1• But strictly speaking they are lower limits=> Larger scatter at z~1.4

● z~0.1

12

Page 13: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

What makes the scatter?2nd parameter problem at high-z

SFR dependence? SFR>85 Msun/yr 85 >SFR>53 Msun/yr 53 > SFR Msun/yrSFR – stellar mass relation!

At a fixed mass binRelative SFR dependence!★   higher SFR

☆ lower SFR

Higher SFR => lower metallicity 13

SFR from Hα

Page 14: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

SFR from UV (extinction corrected)

• Same trend

SFR dependence? SFR>80 Msun/yr 80 >SFR>40 Msun/yr 40 > SFR Msun/yrSFR – stellar mass relation!

At a fixed mass binRelative SFR dependence!★   higher SFR

☆ lower SFR

Higher SFR => lower metallicity 14

Page 15: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Similar trend at z~0.1

• From SDSS galaxies• SFR-mass relation• At a fixed mass, larger SF

comes lower part Mannucci et al. 2010, MN 408, 2115

But see Yates et al. 2011

15

Page 16: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Fundamental Metallicity Relation (FMR)Mannucci et al. 2010, MN 408, 2115

NB:No calibration correction

No clear FMRslight offset for the average metallicity 16

Page 17: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Another 2nd parameter: size?

Half light radius r50 >5.3 kpc 5.3 > r50>4.38 kpc 4.38 > r50

At a fixed mass bin★   larger r50

☆ smaller r50

Larger galaxy => lower metallicity similar trend at z~0.1 (Ellison et al. 2008)

17

Page 18: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Cosmological evolution of M-Z relation

(Calibration, stellar mass corrected)

Smooth evolution from z~3 to 0.1w/o changing shape,except for massive partat z~0.1 (saturation?)

18

Page 19: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Metallicity evolution at Mstellar = 10^10 Msun

- - - : simulation Dave et al. 2011 vzw 19

Page 20: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Metallicity evolution against cosmic age

● ?

Ando, KO, et al. 2007, PASJ 59, 717

LBGs at z~5 calibration: Heckman et al. 1998corrected for 0.3 dex for R23(?)

Rapid growth

20

Page 21: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

Summary

• With FMOS/Subaru• Establishing M-Z relation of SF galaxies at z~1.4• Smooth evolution from z~3 to ~0 w/o changing shape of M-Z so much

• Larger scatter at higher redshift?• Larger SFR => lower metallicity?• Larger size => lower metallicity?

• More data are necessary to be definitive• Test for sample selection is also important• Further studies with a larger sample are desirable!!

21

Page 22: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

22

Page 23: Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S

A possible physical cause for the trend

• Infall of pristine gas / merge of a metal poor galaxy• dilutes the gas to lower metallicity,• activates SF, • expands/enlarges galaxy size

• Really?

23