status report on the lar optical link

15
1 Status report on the LAr optical link 1. Introduction and a short review. 2. The ASIC development. 3. Optical interface. 4. Conclusions and thoughts Jingbo Ye SMU

Upload: huy

Post on 29-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Status report on the LAr optical link. Introduction and a short review. The ASIC development. Optical interface. Conclusions and thoughts. Jingbo Ye SMU. Introduction and a short review. Optical link for 100 Gbps per front-end board:. Front-end. Back-end. clk. data. 10G fiber. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Status report on the LAr optical link

1

Status report on the LAr optical link

1. Introduction and a short review.

2. The ASIC development.

3. Optical interface.

4. Conclusions and thoughts

Jingbo YeSMU

Page 2: Status report on the LAr optical link

Introduction and a short review

Optical link for 100 Gbps per front-end board:

J. Ye, SMU Physics Lar Week Munich April 2011 2

Interface to ADC, data formatting and encoding.

dataclk

Serializers (LOCsx)

dataclk

OTx (LDD + VCSELs)

10G copper

10G fiber

Front-end

dataclk

SerDes embedded FPGA

ORx (COTS)

10G copper

10G fiber

Back-end

Front-end components are ASICs and custom assembly. VCSEL, fiber, ORx identification, and the back-end development benefit from the Versatile Link common project. ASICs are based on 0.25 µm SOS CMOS.

Page 3: Status report on the LAr optical link

Introduction and a short review

ASIC prototype at 5 Gbps – LOCs1:

J. Ye, SMU Physics Lar Week Munich April 2011 3

Ring oscillator based PLL provides clocks around 2.5 GHz 16:1 CMOS multiplexer has a tree architecture 5 Gbps serial data output through a differential CML driver Submitted for fabrication in Aug 2009 and delivered in Nov 2009

Page 4: Status report on the LAr optical link

Introduction and a short review

ASIC prototype at 5 Gbps – LOCs1:

J. Ye, SMU Physics

Lar Week Munich April 2011 4

Diff. amplitude (V)

1.16 ±0.03

Rise time (ps)52.0 ±0.9

Fall time (ps)51.9 ±

1.0

Total Jitter @ BER 10-12 (ps)

61.6 ± 6.9

Random Jitter (ps) 2.6 ±0.6

Total DJ (ps)33.4 ±6.7

DJ: Periodic (ps) 3.0 ± 2.3

DJ: ISI (ps) 3.0 ± 2.3

DJ: Duty cycle (ps)

15.2 ± 3.8

5 Gbps

Page 5: Status report on the LAr optical link

Introduction and a short review

ASIC prototype at 5 GHz – LCPLL:

J. Ye, SMU Physics

Lar Week Munich April 2011 5

Measurement results:• Tuning range: 4.7 to 5 GHz. Simulation: 3.79 to 5.01 GHz. • Power consumption: 121 mW at 4.9 GHz. Compare: ring

oscillator based PLL, 173 mW at 2.5 GHz• Random jitter: 1 - 2.5 ps (RMS)• Deterministic jitter: < 17 ps (pk-pk)

Page 6: Status report on the LAr optical link

ASIC development

J. Ye, SMU Physics Lar Week Munich April 2011 6

Steps from LOCs1 of 5 Gbps to LOCsx, the 10 Gbps version: Initially thought that we would move

from LOCs1 to LOCs6. Difficulties were found in the 5 GHz

clock fan-out over the whole chip of the size of about 2 mm × 6 mm. This is limited by the GC process (0.5 µm trace) we have evaluated to be rad-tol, and are used in the LOCs1 development.

A faster PC process (still 0.25 µm, but also 0.25 µm trace) will come out April 2011, and 0.18 µm later part of 2011. Either may get us back to the LOCs6 concept if we so choose at that time.

We now propose to step back to LOCs2: two serializing units with one LC PLL clock in a chip.

We will then need to move the switch for the redundancy channel into the interface chip, in front of the LOCs2 chip.

16:1 Serializer

16:1 Serializer

5 GHz LC PLL

Data

Clock

Data

10 Gbps

10 Gbps

LOCs2

Page 7: Status report on the LAr optical link

ASIC development

J. Ye, SMU Physics Lar Week Munich, April 2010 7

We are working on the fast (CML) parts in this design. They are the shapes in orange: the clock buffer, the LC VCO, the first stage Div2, the last stage 2:1 MUX, and the CML driver.

We also realized that with the GC process, we may only push up to 8 Gbps (ss corner, 85C). We will rely on the new PC process and the 180 nm feature size to get us to 10 Gbps.

New irradiation tests will be needed on the new processes.

Page 8: Status report on the LAr optical link

layout Areaparasitic capacitance

SpeedInner nodes Outer nodes

Plain 38.8x46.5(100%)

27.4fF27.3fF

51.2fF51.8fF

>5.5 (TT@27)5.2G (SS@55)4.9G (SS@85)

Classic common Centroid

41.85x49.45(115%)

41fF+3.1fF38fF+2.5fF

67fF66fF

3.7G(SS@85)5.2G(TT@27)

Common centroid Resistor

38.8x50.8(109%)

27.2+2.427.4+2.4

52.0fF52.3fF

>5.5 (TT@27)5.0G (SS@55)4.7G (SS@85)

New common centroid

38.8x56.6(122%)

33.4+1.931.7+2.2

60.4fF62.7fF

4.7G(SS@27)4.3G(SS@27)4.1G(SS@27)>5.5G(TT@27)

ASIC development The clock buffer: common centroid layout.

J. Ye, SMU Physics Lar Week Munich April 2011 8

Page 9: Status report on the LAr optical link

ASIC development

GC process v.s. PC (true 0.25 µm), preliminary.

J. Ye, SMU Physics Lar Week Munich April 2011 9

Metal trace: 0.9 µm 0.4 µm space between trace: 0.8 µm 0.4 µm Via: 0.6 µm 0.4 µm Contact: 0.6 µm 0.4 µm. PC process reduce the layout area by ~40% (ex. clock buffer) PC process Improve 10-15% in CML buffer but only 3% in a CMOS inverter.

PC: 27.5 × 48.3 µm2

GC: 38.8 × 57.4 µm2

Page 10: Status report on the LAr optical link

ASIC development

The CML divider (by 2):

J. Ye, SMU Physics Lar Week Munich April 2011 10

Page 11: Status report on the LAr optical link

ASIC development

The CML output driver: At TT corner and 8 Gbps,

DJ < 20 ps

J. Ye, SMU Physics Lar Week Munich April 2011 11

27 C 55 C 85 C

Page 12: Status report on the LAr optical link

ASIC developments

J. Ye, SMU Physics Lar Week Munich April 2011 12

55 C27 C 85 C

SS

FF

Eye at 8 Gbps

Page 13: Status report on the LAr optical link

ASIC next steps

We are still working on the CML 2:1 multiplexer.

We need to fine tune the LC VCO. After that an overall and optimized CML

circuits layout will be carried out. Follow that will be the CMOS circuits part

and overall timing adjustment. So far all the design is based on the GC

process. We will need to decide on whether we prototype the GC design, or move to the PC design.

J. Ye, SMU Physics Lar Week Munich April 2011 13

Page 14: Status report on the LAr optical link

Optical interface and the back-end

The form factor of this optical interface is not decided. Many factors need to be considered:

System reliability. Possible failure modes. Real state on the FEB front panel. Ease of installation.

Experience in the Versatile Link project is very valuable. The development of OTx (LDD identification or ASIC

design, mechanical packaging) has started (BNL, SMU). Support has been requested in the new DOE generic detector development program.

The VCSEL and fiber have been identified in the Versatile Link project.

The link back-end has been developed in the Versatile Link project, or at least a similar design can be adapted.

J. Ye, SMU Physics Lar Week Munich April 2011 14

Page 15: Status report on the LAr optical link

Conclusions and thoughts

J. Ye, SMU Physics Lar Week Munich April 2011 15

The LOC ASIC development is progressing as planned. A lot of details are not reported here. We would like to call for a review after we have the post layout simulation results on all the CML circuits.

We benefit from developments in the Versatile Link project in the optical link system spec development, the optical interface (the optical transmitter and receiver, the fiber and connector) development, as well as the back-end FPGA evaluation,.

We would like to start system level discussions with the link’s up- and down-stream electronics, or on a higher level, the discussion about the design and demo of the FEB2 and the ROD2.