statistical data assimilation for parameter estimation in the … · 2014. 4. 24. · estimation in...

39
Coastal Ocean Modeling Data Assimilation Numerical Results References Statistical Data Assimilation for Parameter Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil and Environmental Engineering Princeton University April 4, 2014 Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 1 / 38

Upload: others

Post on 27-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Statistical Data Assimilation for Parameter

Estimation in the Advanced Circulation Model

Talea L. Mayo

Postdoctoral Research AssociateCivil and Environmental Engineering

Princeton University

April 4, 2014

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 1 / 38

Page 2: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Outline

1 Coastal Ocean Modeling

2 Data Assimilation

3 Numerical Results

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 2 / 38

Page 3: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Outline

1 Coastal Ocean Modeling

2 Data Assimilation

3 Numerical Results

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 3 / 38

Page 4: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Coastal Ocean Modeling

model coastal ocean undermoderate conditions:

prediction of tidestime history of elevation,velocity, temperature, salinityecological forecastscoastal navigationtransport of contaminants

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 4 / 38

Page 5: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Coastal Ocean Modeling

model extreme events such ashurricane storm surge andcoastal inundation

Hurricane Ike, 2008

Hurricane Katrina, 2005

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 5 / 38

Page 6: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Coastal Ocean Modeling

accuracy dependent on many factors:

approximate physicsnumerical discretizationuncertain boundary/initial conditions

inaccurate model parameters

∂H

∂t+

∂x(Qx ) +

∂y(Qy ) = 0

∂Qx

∂t+

∂UQx

∂x+

∂VQx

∂y− fQy = −gH

∂[ζ + Ps/gρ0 − αη]

∂x+

τsx

ρ0−

τbx

ρ0+ Mx − Dx − Bx

∂Qy

∂t+

∂UQy

∂x+

∂VQy

∂y− fQx = −gH

∂[ζ + Ps/gρ0 − αη]

∂y+

τsy

ρ0−

τby

ρ0+ My − Dy − By

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 6 / 38

Page 7: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Bottom Stress

τbxi

ρ0= cf |u|

Qxi

H

bottom stress terms in momentum equations

significant source of uncertaintycritical to accurately modeling free surface circulationcan be defined using linear or quadratic drag law (shown)

cf standard friction coefficient

often given uniform value due to lack of information about seabedcan be used as a tuning parameter (Signell et al., 2000)

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 7 / 38

Page 8: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Bottom Friction

Manning’s n coefficient ofroughness

spatially dependent

highly variable

surface roughnessvegetationsilting and scouring

cannot be measureddirectly, no exact methodfor selection

values typically obtainedfrom land cover databases

cf =g n

2

H1/3

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 8 / 38

Page 9: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Bottom Friction

use measured data to reduceuncertainties in model

invert water elevation datausing parameter estimation

traditional methods can becomputationally intensive

assimilate water elevation datausing state estimation

does not provide informationabout uncertain modelparameters

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 9 / 38

Page 10: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Outline

1 Coastal Ocean Modeling

2 Data Assimilation

3 Numerical Results

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 10 / 38

Page 11: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Kalman Filtering

statistical data assimilation method

determine the best estimate of state by combining model outputwith observed data

quantify uncertainty in the state estimate

can be performed sequentially, on-line

nonintrusive and can be implemented in two steps

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 11 / 38

Page 12: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Kalman Filtering: Forecast

given initial state, xak−1, and associated error covariance, Pa

k−1

can use the numerical forecast model to estimate the state and errorcovariance at a later time tk :

xfk = Mkx

ak−1

Pfk = (xt

k − xfk)(x

tk − xf

k)T

= Mk(xtk−1 − xa

k−1)(xtk−1 − xa

k−1)TMT

k + η2k

+2Mk(xtk−1 − xa

k−1)ηk

= MkPak−1M

Tk + Qk

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 12 / 38

Page 13: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Kalman Filtering: Analysis

use observation operator to determine residual between forecastedstate and data:

dk = yk − Hkxfk

update model forecast by adding residual weighted by Kalman gainmatrix:

xak = xf

k + Kkdk

Pak = (I − KkHk)P

fk

Kalman gain matrix minimizes analysis error covariance:

Kk = PfkH

Tk (HPf

kHTk + Rk)

−1.

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 13 / 38

Page 14: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

State Estimation

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 14 / 38

Page 15: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Parameter Estimation

State estimation:

xfk = Mk(x

ak−1,w)

yk = Hkxfk

xak = xf

k + Kkdk

Parameter estimation:

wfk = Iwa

k−1 + ǫw

ywk = Hk ◦Mk(x

ak−1,w

fk)

wak = wf

k + Kwk dw

k

traditionally statistical dataassimilation methods are used forstate estimation (Butler et al.,2012; Altaf et al., 2013)

methods can be used for parameterestimation by reformulating theoperators Mk and Hk

the evolution of the modelparameters considered a static

process, Mwk = I

composition of Mk and Hk

projects parameter intoobservation space,

Hwk = Hk ◦Mk

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 15 / 38

Page 16: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Parameter Estimation

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 16 / 38

Page 17: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Outline

1 Coastal Ocean Modeling

2 Data Assimilation

3 Numerical Results

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 17 / 38

Page 18: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

x 105

3.18

3.2

3.22

3.24

3.26

3.28

3.3x 10

6

nodeselementsstationsstation 1station 21open ocean

2,113 nodes, 3,397 elements

bathymetry varies from 0.354 - 17.244 m

17 small islands within the bay

21 observation stations

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 18 / 38

Page 19: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Parameter Estimation Methodology: OSSEs

use three low dimensional parameterizations to define various “true”fields of Manning’s n coefficients

constantpiecewise constantrealization of a stochastic process

systematically choose true parameters and generate synthetic waterelevation data

using synthetic data, estimate the true parameters from variousincorrect initial guesses

determine accuracy of the parameter estimation based on estimatedwater elevations

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 19 / 38

Page 20: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Field of Constant Manning’s n Coefficients

0 10 20 30 40 50 60 70 80 90 100−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time (h)

elev

atio

n (m

)

model tides by forcing ADCIRC with M2 tidal constituent

let field of constant Manning’s n coefficients range from 0.005-0.2

divide coefficients into five classes based on mean tidal amplitude atstation 1

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 20 / 38

Page 21: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Field of Constant Manning’s n Coefficients

for each experiment, define true parameter as value from each class

let various initial guesses of parameter be values from the fourremaining classes

assimilate synthetic water elevation data every hour over a 5 daysimulation period

consider the parameter estimation successful if the final estimate

lies within the correct class

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 21 / 38

Page 22: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: 0.01

0 20 40 60 80 100 1200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

assimilation #

Man

ning

’s n

est

imat

e

0.020.030.060.14truth

initial guess 0.02 0.03 0.06 0.14Manning’s n

estimate of 0.01 0.009776 0.009903 0.009921 0.009479

Manning’s nrelative error 0.022383 0.009720 0.007877 0.052067

Elevation RMSE(SEIK filter) 0.003502 0.004191 0.007290 0.015166

Elevation RMSE(baseline) 0.016351 0.024598 0.033514 0.038380

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 22 / 38

Page 23: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: 0.02 and 0.03

estimate of 0.02 estimate of 0.03

0 20 40 60 80 100 1200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

assimilation #

Man

ning

’s n

est

imat

e

0.010.030.060.14truth

0 20 40 60 80 100 1200.02

0.04

0.06

0.08

0.1

0.12

0.14

assimilation #M

anni

ng’s

n e

stim

ate

0.010.020.060.14truth

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 23 / 38

Page 24: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: 0.06

estimate of 0.06

0 20 40 60 80 100 1200.02

0.04

0.06

0.08

0.1

0.12

0.14

assimilation #

Man

ning

’s n

est

imat

e

0.010.020.030.14truth

Truth Initial ParameterGuess Recovered

0.02 0.01 y0.02 0.03 y0.02 0.06 y0.02 0.14 y

0.03 0.01 y0.03 0.02 y0.03 0.06 y0.03 0.14 y

0.06 0.01 y0.06 0.02 y0.06 0.03 y0.06 0.14 y

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 24 / 38

Page 25: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: 0.14

0 20 40 60 80 100 1200.02

0.04

0.06

0.08

0.1

0.12

0.14

assimilation #

Man

ning

’s n

est

imat

e

0.010.020.030.06truth

initial guess 0.01 0.02 0.03 0.06Manning’s n

estimate of 0.14 0.051604 0.072078 0.087391 0.112387

Manning’s nrelative error 0.631399 0.485155 0.375777 0.197233

Elevation RMSE(SEIK filter) 0.013696 0.008704 0.006591 0.002847

Elevation RMSE(baseline) 0.038380 0.026017 0.018304 0.007729

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 25 / 38

Page 26: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Discussion: Constant Manning’s n Coefficients

able to recover parameter from all classes except class E

unable to recover class E from smallest initial guesses

relative error in estimate increases with the true value

ADCIRC not as sensitive to variations in larger coefficientssmaller updates to parameters by SEIK filtermore updates and/or better initial guess required to obtain estimatesin correct class

RMSEs of estimated water elevations always reduced with respect tobaseline case

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 26 / 38

Page 27: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Field of Piecewise Constant Manning’s n Coefficients

let true Manning’s n coefficient equal 0.005 in the deep water(green) and 0.1 in the shallow bay area (blue)

Galveston Bay

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

x 105

3.18

3.2

3.22

3.24

3.26

3.28

3.3x 10

6

nodeselementsstationsstation 1station 21open ocean

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 27 / 38

Page 28: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Field of Piecewise Constant Manning’s n Coefficients

choose various initial guesses

assimilate synthetic water elevation data every hour over a 30 daysimulation period

consider the parameter estimation successful if the estimated mean

tidal amplitude at station 21 is within 20% of the truth

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 28 / 38

Page 29: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: n0.005,0.1

fixed α, varying β fixed β, varying α

0 10 20 30 40 50 60 70 80 90 100−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (h)

elev

atio

n (m

)

0 10 20 30 40 50 60 70 80 90 100−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (h)

elev

atio

n (m

)

assume α = 0.005 is known

initial guesses:

n0.005,0.01

n0.005,0.02

n0.005,0.03

n0.005,0.06

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 29 / 38

Page 30: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: n0.005,0.1

0 100 200 300 400 500 600 700 8000.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

assimilation #

Man

ning

’s n

est

imat

e

0.005, 0.010.005, 0.020.005, 0.030.005, 0.06truth (beta)

initial guess n0.005,0.01 n0.005,0.02 n0.005,0.03 n0.005,0.06

estimate of β = 0.1 0.069189 0.082208 0.081744 0.093426Relative error (β) 0.308112 0.177918 0.182555 0.065742

RMSE (SEIK) 0.005968 0.003506 0.003380 0.001313RMSE (baseline) 0.036703 0.024333 0.016423 0.005416

Mean tidalamplitude (sta. 21) 0.100471 0.100696 0.100684 0.100858

Relative error 0.004738 0.002519 0.002635 0.000905

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 30 / 38

Page 31: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Discussion: Piecewise Constant Manning’s n Coefficients

able to accurately estimate parameters from all initial guesses

find that the model is more sensitive to β, value of the Mannings ncoefficient on the shallow side of the domain

less initial error in β = 0.1 produces more accurate final estimatefor Galveston Bay domain, variation in α has minimal effect on waterelevations

RMSEs of water elevations reduced by at least 75%

estimated mean tidal amplitudes within 20% of truth (Mayo et al.,2014)

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 31 / 38

Page 32: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Realization of a Stochastic Process

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

x 105

3.18

3.2

3.22

3.24

3.26

3.28

3.3x 10

6

0.5

0.55

0.6

0.65

0.7

0.75

choose true parameters to define fields of Manning’s n coefficientsthat are physical, ξ = −3,−2,−1, 1, 2, 3

estimate natural log of process, n(x) = expˆ

ω(x) + ξ1(θ)√

λ1f1(x)˜

let expectation equal value from class Cchoose true parameters ξ1 so that corresponding fields span theManning’s n coefficients in the remaining classes

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 32 / 38

Page 33: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Realization of a Stochastic Process

let initial guess equal the expectation of the process, i.e. ξ1 = 0

assimilate synthetic water elevation data every hour over a 53 daysimulation period

consider the parameter estimation successful if the estimated mean

tidal amplitude at station 21 is within 20% of the truth

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 33 / 38

Page 34: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: ξ = −3,−2,−1, 1, 2, 3

0 200 400 600 800 1000 1200 1400−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

assimilation #

Est

imat

e of

xi

−3

−2

−1

1

2

3

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 34 / 38

Page 35: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: ξ = −3, 3

estimates of model states:

estimate of ξ = −3 estimate of ξ = 3

0 200 400 600 800 1000 1200 1400−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

assimilation #

elev

atio

n (m

)

estimatetruth

0 200 400 600 800 1000 1200 1400−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

assimilation #

elev

atio

n (m

)

estimatetruth

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 35 / 38

Page 36: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Galveston Bay: ξ = −3,−2,−1, 1, 2, 3

true value of ξ -3 -2 -1 1 2 3Final estimate -1.685 -1.292 -0.689 0.682 1.330 2.233Absolute error 1.315 0.708 0.311 0.318 0.670 0.767RMSE of field (SEIK) 0.065 0.022 0.006 0.002 0.003 0.002RMSE of field (baseline) 0.097 0.043 0.015 0.008 0.013 0.016

RMSE (SEIK) 0.042 0.031 0.019 0.033 0.077 0.096RMSE (baseline) 0.077 0.062 0.038 0.056 0.118 0.165True mean tidalamplitude (sta. 21) 0.455 0.458 0.460 0.471 0.488 0.504Est. mean tidalamplitude (sta. 21) 0.460 0.460 0.461 0.466 0.470 0.481

Relative error 0.011* 0.006* 0.003* 0.011* 0.037* 0.047*

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 36 / 38

Page 37: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Discussion: Realization of a Stochastic Process

able to accurately estimate parameters from all initial guesses

more time required for estimation of spatially varying fieldnumerical instability before true parameters were attained

estimation of positive values more accurate than estimation ofnegative values

for true ξ negative, initial guess ξ = 0 is overestimate of statefor true ξ positive, initial guess ξ = 0 is underestimate of statefor consistent forcing, more difficult to remove fluid in system byincreasing magnitude of bottom stress than the converse

RMSEs of corresponding fields reduced between 33% and 97%

maximum global RMSE in water elevations is 0.096 m

estimated tidal amplitudes within 20% of truth

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 37 / 38

Page 38: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Thank you

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 38 / 38

Page 39: Statistical Data Assimilation for Parameter Estimation in the … · 2014. 4. 24. · Estimation in the Advanced Circulation Model Talea L. Mayo Postdoctoral Research Associate Civil

Coastal Ocean ModelingData AssimilationNumerical Results

References

Altaf, M., Butler, T., Luo, X., Dawson, C., Mayo, T., and Hoteit, I.(2013). Improving short range ensemble kalman storm surgeforecasting using robust adaptive inflation. Monthly Weather Review,141(2013):2705–2720.

Butler, T., Altaf, M. U., Dawson, C., Hoteit, I., Luo, X., and Mayo, T.(2012). Data assimilation within the advanced circulation (adcirc)modeling framework for hurricane storm surge forecasting. Monthly

Weather Review, 140:22152231.

Mayo, T., Butler, T., Dawson, C., and Hoteit, I. (2014). Dataassimilation within the advanced circulation (adcirc) modelingframework for the estimation of manning’s friction coefficient. Ocean

Modelling. accepted for publication.

Signell, R., List, J., and Farris, A. (2000). Bottom currents and sedimenttransport in long island sound: A modeling study. Journal of coastal

research, pages 551–566.

Talea L. Mayo Data Assimilation in Coastal Ocean Modeling 38 / 38