stationary random process and digital signal processing - theory

Upload: shivanshu-trivedi

Post on 06-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    1/62

    1 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    NOTES ON

    STATIONARY RANDOM PROCESS AND

    DIGITAL SIGNAL PROCESSING

    Prepared by Le Thai Hoa

    2004

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    2/62

    2 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    1. STATIONARY RANDOM PROCESS

    1.1. Basic concepts

    (1) Continuous random process:

    )}()}...(),(),({)( 321 t  xt  xt  xt  xt  x K k     , t   

    Where: { }: Ensemble of sample functions xk (t)

    k: Index of sample function (k=1,2,3…K)

    t: Time variable

    Random process {xk (t)} = Ensemble of sample function xk (t)

    (2) 

    The random process is called as the K-variate random process (multi-variate

    random process)

    Ensemble (sample records) of random signal

    (3)  For discrete sample function, discrete values of any sample random function are

    measured at certain time points t1, t2, t3, … t N  (N: number of sampling values of

    sample function)

    t

    t

    t t+ 

    x1(t)

    k th sample function

    1st sample function

    xk (t)

    Time shift  

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    3/62

    3 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    )}()}...(),(),()( 321  N k k k k k  t  xt  xt  xt  xt  x    : Discrete sample function

    1.2. Classification of random process

    (1) Classification of random process can be widely expressed as follows

    Classification of random processes

    1.3. Representation of random process:

    (1) Time-domain representation (as raw formats and sources)

    (2) Frequency-domain representation (due to Fourier Transform)(3) Time-frequency representation (due to Wavelet Transform)

    1.4. Characteristics of random process

    Basic statistical characteristics of two arbitrary random processes  )(t  xk   and

    )(t  yk   

    (1) 

    Mean value (Expectation): First-order statistical moment

    dt t  x N 

     Limt  x E t  k  N k  x )(1

    )]([)(   

    Random processor Stochastic field

    Stationary process

     Non-stationary processes

    Ergodic process

     Non-ergodic signals

    Gaussian process

     Non-Gaussian process

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    4/62

    4 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    dt t  y N 

     Limt  y E t  k  N k  y )(1

    )]([)(   

    (2) 

    Variance and covariance: Second-order moment

    )()]([]))()([()( 2222 t t  x E t t  x E t  k k  xk  x           : Variance

    )()]([]))()([()( 2222 t t  y E t t  y E t   yk  yk  y           : Variance

    )(*)()](*)([

    ))]()())(()([()(

    t t t  yt  x E 

    t t  yt t  x E t C 

     y xk k 

     yk  xk  xy

      

      

      : Covariance

    ))]()())(()([()(           t t  xt t  x E C   xk  xk  xx   : Covariance

    ))]()())(()([()(           t t  yt t  y E C   yk  yk  yy   : Covariance

     Note: Zero mean value process xk (t): 0)(   t  x   

    ]))([()( 22 t  x E t  k  x       : Variance

    ]))([()( 22 t  y E t  k  y       : Variance

    )()0( 2 t C   x xx      

    )()0( 2 t C   y yy      

    (3)  Mean square and root mean square

    )]([)( 2 t  x E t C  k  xx     : Mean square

    )]([)( 2 t  y E t C  k  yy     : Mean square

     Note: Zero mean value process xk (t): 0)(   t  x   

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    5/62

    5 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Variance )(2 t  x  = Mean Square Cxx(t)

    (4)  Correlations: Second-order moment

    )](*)([)(        t  xt  x E  R k k  xx   : Autocorrelation

    )](*)([)(        t  yt  y E  R k k  yy   : Autocorrelation

    )](*)([)(        t  yt  x E  R k k  xy   : Cross-correlation

      : arbitrary time (time shift or time lag)

     Note:  x xx xx  RC 2)()(          

     y yy yy  RC 2)()(          

     y x xy xy  RC           )()(  

    Zero mean random process: 0)(   t  x  , 0)(   t  y   

    )()(       xx xx  RC     

    )()(      yy yy

     RC     

    )()(       xy xy  RC     

    (5)  Correlation coefficients

    )(

    )(

    )(

    )()(

    2

     

      

     

        

     xx

     x xx

     xx

     xx xx

     R

     R

     R

    C      : Auto-correlation coefficient

    )()(

    )()()(

    2

     

      

     

        

     yy

     y yy

     yy

     yy

     yy R

     R

     R

    C      : Auto-correlation coefficient

    )(

    )(

    )(

    )()(

     

       

     

        

     xy

     y x xy

     xy

     xy

     xy R

     R

     R

    C      : Cross-correlation coefficient

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    6/62

    6 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

     x

     xx

     xx

     xx xx

     R

    C 2

    )(

    )(

    )()(

     

     

     

            

     y

     yy

     yy

     yy

     yy

     R

    C 2

    )(

    )(

    )()(

     

     

     

            

     y x

     xy

     xy

     xy

     xy

     R

      

     

     

        

    )(

    )(

    )()(    

     Note 1:

    i) )()(       xx xx  RC     

    ii) )0()(  xx xx C C       

    iii) )0()(  xx xx  R R      

    iv)2)0(  x xxC       and

    2)0(  y yyC       

    v) )0(*)0(|)(|2

     yy xx xy C C C       

    vi)222|)(|  y x xyC           

    vii) )0(*)0(|)(|2

     yy xx xy  R R R      

    viii) )()(       xx xx  R R    and )()(       yy yy  R R    

    )()(       yx xy  R R    

     Note 2: 0   

    i)2)0(  x xxC        : Variance

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    7/62

    7 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    ii)2)0(  y yyC        : Variance

    iii)22 )]([)0(  x xx t  x E  R       : Mean square

    iv)22

    )]([)0(  y yy t  y E  R       : Mean square

    (6) Power spectral density (PSD) function in frequency-domain

    1.5. Power spectral density (PSD)

    PSD function can be computed by following methods: i) Via correlation function (by

    definition), ii) Via Fourier transform and iii) Via filter-squaring-averaging computation

    (1) Spectra via correlation (by Fourier Transform of correlation)

    By definition of spectral density through the Fourier Transform:

            d e R f S   f  j xx xx2*)()(  

      : Auto-spectral density function

            d e R f S   f  j yy yy2*)()(  

      : Auto-spectral density function

            d e R f S   f  j xy xy2*)()(  

      : Cross-spectral densityfunction

    Inverse Fourier Transform:

    df e f S  R f  j

     xx xx

      

     2

    *)()(

      : Auto-correlation

    df e f S  R  f  j yy yy    2*)()(

      : Auto-correlation

    df e f S  R  f  j xy xy    2*)()(

      : Cross-correlation

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    8/62

    8 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Sxx(f), Syy(f), Sxy(f): Two-sided spectra, f [-,]

    One-sided spectral densities

             d  f  Rd  f  R f S   xx xx xx 2cos*)(22cos*)()(0

     

     

    0

    2cos*)(2)(        d  f  f S  R  xx xx  

    Changing the two-sided spectral density Sxx(f) with f [-,] to the one-sided spectral

    density Gxx(f) with f [0,]

    )(2)(  f S  f G  xx xx    

    )(2)(  f S  f G  yy yy    

    )(2)(  f S  f G  xy xy    

    Thus,

         d  f  R f G  xx xx 2cos*)(4)(0

    ; f [0,]

    df  f  f G R  xx xx       2cos*)()(0

    ; f [0,]

    Real part and imaginary part of one-sided cross-spectral density:

    f Hz

    Spectra

    [-,0] [0,]

    Gxx(f)=2Sxx(f): One-sided

    Sxx(f): Two-sided

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    9/62

    9 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    )()(*)(2)( 2  f iQ f C d e R f G  xy xy f  j

     xy xy    

            

     

    )( f C  xy : Co-spectrum

    )( f Q xy : Quadratic spectrum

    Writing in standard form:

    )(|)(|)(

     f  j

     xy xy xye f G f G

         

    Where:

    )()(|)(| 22  f Q f C  f G xy xy xy

       

    )(

    )(tan)( 1

     f C 

     f Q f 

     xy

     xy

     xy

       

    )(cos|)(|)(  f  f G f C   xy xy xy      

    )(sin|)(|)(  f  f G f Q  xy xy xy      

    df  f  f iQ f  f C  R  xy xy xy ]2sin)(2cos)([)(0

           

     

    df  f C  R  xy xy  

    0

    )()0(  

    (2) 

    Spectra via Fourier transform

    Fourier Transform (Kinchint-Weiner’s pair):

    dt et  x f  X  ft  j

    k k   

    0

    2)()(      

    df e f  X  f  x ft  j

    k k   

    0

    2)()(      

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    10/62

    10 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Spectral density function:

    ]|)([|1

    2)( 2 f  X  E T 

     Lim f G k T  xx    

    ]|)([|12)( 2 f Y  E T 

     Lim f G k T  yy    

    )](*)([1

    2)(  f Y  f  X  E T 

     Lim f G k k T  xy    

    1.5.  Coherence

    Coherence plays the same role as the correlation coefficient. The correlation coefficient

    is expressed in time domain, whereas the coherence in frequency domain.

    (1) Correlation coefficient:

    )0(*)0(|)(| 2  yy xx xy  R R R      

      )]([*)]([|)](*)([|222

    t  y E t  x E t  yt  x E       

     y x yy xx xy C C C 222 *)0(*)0(|)(|          

      ]))([(*]))([(|)])((*))([(|222

     y x y x t  y E t  x E t  yt  x E             

    Thus,

     y x

     xy

     xyC 

          

    *)()(   : Correlation coefficient

    1)(0         xy  

    :0)(       xy  x(t), y(t) Uncorrelated;

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    11/62

    11 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    :1)(       xy  x(t), y(t) Correlated;

    (2) Coherence:

    )(*)(|)(| 2  f G f G f G  yy xx xy    

    )(*)(

    |)(|)(

    22

     f G f G

     f G f 

     yy xx

     xy

     xy      

    1)(02

     f  xy   

    (3)  Role of coherence function )(2

     f  xy  (constant-parameter linear systems) can be

    interpreted as fractional portion of the mean square value at the output y(t) that is

    contributed by the input x(t) at frequency value f. In contrast, the quantity

    )](1[2

     f  xy  is the portion of mean square value of output y(t) not be contributed by

    input x(t) at frequency f.

     Note: The role of coherence function )(2

     f  xy  is similar to the correlation

    coefficient function )(2      xy . In constant-parameter linear systems, the

    coherence has some following possibilities:

    1) 0)(2

     f  xy  : x(t) and y(t) uncorrelated (unrelated)

    2) 1)(2  f  xy  : x(t) and y(t) correlated (unrelated)

    3) 1)(02

     f  xy  : x(t) and y(t) some possible situations exist:

    a. Extra noise

     b. Non-linear system between input x(t) and output y(t)

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    12/62

    12 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    c. SIMO or MISO

    )(*)(

    )()()(

    2

    2

     f G f G

     f iQ f C  f 

     yy xx

     xy xy xy

     

     

    )(*)(

    )()(

    22

     f G f G

     f C  f 

     yy xx

     xy

     xy       : Coherence

    )( f C  xy : Co-spectrum (Real part of Cross-spectrum)

    )(),(  f G f G  yy xx : Auto-spectra

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    13/62

    13 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    2. DIGITAL SIGNALS AND CLASSIFICATION 

    2.1.  Digital signals

    (1) 

    The signals and data measurements are the similar concepts for almost cases in the

     physical measurements and experiments. The classification of signals is important

    to the digital signal processing (DSP) or data processing, especially, this closely

    relates to the digital filters and discrete signal analysis.

    2.2.  Classifications

    (1) Signals can be commonly classified in the engineering application by some follows

    categories: i) Continuous (analogue) and discrete signals (digital), ii) Deterministic

    and random signals

    Analogue and discrete signals

    Branches of deterministic signals

    Electric signals(by data acquisition)

    Analogue Signals(Continuous)

    Discrete Signals(Digital)

    Sampling andA/D conversion

    Data Analysis andPost-data processing

    Deterministic signals Periodic signals

     Nonperiodic signals

    Sinusoidal signals(2 cycle)

    Complex periodic signals(T cycle)

    Almost periodic signals

    Transient signals

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    14/62

    14 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Branches of random signals

     Notes and comments:

    i) Sinusoidal (harmonic) signals (2-periodic signals): )2()(    nt  xt  x    

    ii) Complex periodic signals (T-periodic signals): )()( nT t  xt  x    

    The complex periodic signals may be expanded by a Fourier series into the

    combination of harmonic components (sine and cosine functions) as follow:

    )2

    cos()( 00     

    t T 

     X t  x   (Original signals)

    1

    0 ]12sin12cos[2)( nnn t 

    T nbt 

    T na

    at  x        (Fourier series)

    iii)  Almost-periodic signals: can be expressed by the sum of sine functions that

    their frequencies are not periodic.

    iv)  Transient signals: can be defined as totally non-periodic signals (In other

    word, the transient signals can be considered as the deterministic signals but

    out of any kinds of periodic and almost-periodic signals).  Apart from

     periodic and almost-periodic signals, however, the spectrum of transient

    data only exists under form of continuous spectrum but the discrete spectrum

    does not exist .

    Random signals Stationary signals

     Nonstationary signals

    Ergodic signals

     Non-ergodic signals

    Specific classification ofnonstationary signals

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    15/62

    15 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    (2)  The characteristics of the random signals can be clarified by some following

    quantities:

    i)  Amplitude distribution: Mean value (expectation) or root mean square

    (standard deviation) [first moment]ii)  Correlation functions (auto- and cross-correlations) [joint or second moment]

    iii)  Power spectral density (PSD) [power contribution of each frequency

    components]

    (3) 

    For discrete signals, the above-mentioned quantities can be expressed by formulas:

     N 

    i i x

     x N  1

    ;

     N 

    i

    i

     x

     x N 

    rms1

    21

     

    )()(1

    )( 001

          

    t  xt  x N 

     Ri

     N 

    i

    i xx  

     N nk  j N 

    i xe x

     N  f S 

    /2

    1

    1)(    

    ; n=[1,N]

    (4) 

    Some hints on types of random processes

    i)  Stationary signals  are that their mean value and correlation of discrete

    signals do not vary on time.

    ii)   Non-stationary signals, by contrast, their mean value and correlation vary on

    time.

    )(),(

    )(

      

      

     xx xx

     x x

     Rt  R

     

    iii)  Weakly stationary signals  (or stationary in the wide sense) are that mean

    value and correlation (first and joint moments) are time invariant.

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    16/62

    16 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    )(),(

    )(

      

      

     xx xx

     x x

     Rt  R

     

    iv) 

    Strongly stationary signals  (or stationary in the strict sense) are that all

    moments and joint moments (not only first moment but also high-order

    moments) are time invariant.

    )(),(

    )(

      

      

     xx xx

     x x

     Rt  R

      (first moment and joint moment)

    )(),(

    )(

      

      

     xx xxi

     x xi

     Rt  R

    th

    th

     (ith

     moment and ith

     joint moment)

    v)   Ergodic signal  is stationary one (Mean value and correlation are time

    invariant), moreover, its mean value and correlation are constant with

    different samples of signal.

    )()()(

    )(

      

      

     xxk 

     xx

     x

     x

     R R  

     

    k: Index of k th sample of signal

    vi)   Non-ergodic signal  is stationary one (Mean value and correlation are time

    invariant), however, its mean value and correlation are differed with

    different samples of signal.

    )()()(

    )(

        

     xx

     xx

     x

     x

     R R    

    vii)  Gaussian signal (Normal distributed signal)  is ergodic stationary one with

    zero-mean and standard deviation    

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    17/62

    17 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    2)()(

    )(

    )()(

    0

       

     

     xx

     xx

     x

    C  R 

    viii)   Non-gaussian signal is ergodic stationary one with non zero-mean and

    standard deviation    

    2)(

    0)(

      

      

     xx

     x x

     

     Note 1:

     

    Single random process: Signal of one physical quantity (phenomenon) at one

     position

      Multi-random processes: Signals of many physical quantities at different

     positions

      Sampling: Signal of random process at any time ( time interval)

      Multi-dimensional process: are multi-variable function

      Multi-variate process: Vector of many signals

     

    Multi-variate and multi-dimensional process: Vector of many processes (signals)

    in which each individual signal is multi-variable function

      Ensemble: the collection of sample functions (any time interval) of one signal.

    Thus random signal is the collection of these sample function of one signal

     Note 2:

      Process (Field): Display and illustration of one physical quantity at one position

    (If measurement of the same physical quantity at one position differs from that

    at another position due to its distribution and redistribution)

      Sample: Display and illustration of a physical quantity at one position at any

    time interval

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    18/62

    18 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

      Record: Discrete display of a physical quantity at one position and one time

      Signal: Electric display (continuous or discrete) of a physical quantity at one

     position and one time

    Difference between ergodic and non-ergodic processes

    Ergodic stationary random process Non-ergodic stationary random process

    - Different initial phase angles

    - The same amplitude

    - The same frequency

    - Different initial phase angles

    - Different amplitude

    - The same frequency

    Summary on classifications and definition of random signals

     No. Items Definition Note

    1 Stationary Mean value and correlation not

    vary on time

    Time-invariant

    2 Stationary-Ergodic Mean value and correlation not

    vary on time and sampling

    Time-invariant

    Sampling-independant

    3 Stationary-

     Nonergodic

    Mean value and correlation not

    vary on time, but sampling

    Time-invariant

    Sampling-dependant

    4 Weak stationary Mean value and correlation

    (first-order moments) not vary on

    time

    Time-invariant of only

    first moments

    5 Strong stationary All first-order and high-order

    moments not vary on time

    Time-invariant of first

    and high-order

    moments

    6 Non-stationary Mean value and correlation vary

    on time

    Time-variant

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    19/62

    19 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    (5) The ensemble (collection of sampling records) of random signal can be divided by

    two categories: Individual sample records (one process) and Multiple sample

    records (many processes). The characteristics of individual and multiple sample

    records of one and many processes can be expressed by figure hereinafter:

    Characteristics of individual and multiple sample records of random signals

     Note 3:

     

    Coherence function: is the relation between the power auto-spectral density and

    the power cross-spectral density.

      Frequency response function (gain factors and phase factors): is also the linear

    relation between the power auto-spectral density and the power cross-spectral

    density.

    Individual Sample RecordsAnalysis

    Multiple Sample Records

    Mean Values andRoot Mean Square(RMS)

    Auto-Correlation FunctionAnalysis

    Auto-spectral DensityAnalysis

    Cross-Correlation FunctionAnalysis

    Cross-spectral DensityAnalysis

    Coherence FunctionAnalysis

    Joint Probability DensityFunctions

    Probability DensityFunctions

    One sample of one process Pairs of two samples of one process or many processes

    Frequency ResponseFunction (FRF)

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    20/62

    20 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    (6) Applications of statistical functions

    From correlation functions

    i)  Similarity between 2 signals or 1 signal at different positions and time delays

    ii) 

    Prediction of signals in noise, influence of noiseiii) Identification of propagation directions and velocities

    iv) Measurements of time delays

    From power spectral density (PSD) function

    i) 

    Power contribution of each frequency components

    ii)  Identifications of system properties and input signals from output ones

    iii) 

    Identification of noise and energy sources

    From coherence function

    i)  Accuracy of linear input/output systems

    ii) 

    Identification of propagation directions and velocities

    From frequency response function (FRF)

    i) 

    Identification of relationship between input and output signals

    2.3.  Relationships of input and output signals

    (1) The input and output signal systems can be commonly classified by: i) Single input

    and single output systems (SISO); ii) Single input and multi output systems

    (SIMO); iii) Multi input and single output systems (MISO); iv.Multi input and

    multi output systems (MIMO).

    (2) 

    In the practical applications, many signal channels are simultaneously measured at

    various positions or different time delays. For many cases of MIMO systems, many

    input and output signals can be correlated or uncorrelated measured simultaneously.

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    21/62

    21 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    SISO system

    Independent MIMO system

    Hxy(f)

    Frequency ResponseFunction (FRF)

    Input signalx(t)

    Output signaly(t)

    Signal noisen(t)

    Hxy,1(f)

    Input signalx1(t)

    Output signaly1(t)

    Hxy,2 (f)

    Input signalx2(t)

    Output signaly2(t)

    Hxy,k (f)

    Input signalxk(t)

    Output signalyk(t)

    ……………………..

    Channel No.1

    Channel No.2

    Channel No.k

    Signal noisen(t)

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    22/62

    22 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    3. DATA ACQUISITION, PROCESSING AND ANALYSIS

    3.1.  Introduction

    (1) 

    In order to understand and clarify the physical measurements, signal processing and

    analysis for the buffeting experiments and other specified measurements as well in

    the wind tunnel, it is important to understand the digital signal processing (DSP)

    and measurement procedures and instruments in wind tunnels.

    (2) This study hinges on some following points:

    1)  Instrumental systems their by function: data acquisition, A/D conversion, data

    qualification and analysis

    2) 

    A/D conversion and sampling theorem for eliminating the aliasing errors

    3)  Data analysis techniques

    3.2.  Data processing procedure

    (1) The digital signal processing procedure can be expressed by the following diagram:

    Signal processing procedures for measurement systems

    (3) Three following main steps of the digital signal processing procedure will be

    overviewed as follows:

    Data Acquisition Data Conversion Data Qualification Data Analysis

    Transducer

    Signal Conditioning

    Signal Calibration

    A/D Conversion

    Aliasing Errors

    Quantization Errors

    Classification

    Validation

    Editing

    Individual SampleRecords

    Multiple SampleRecords

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    23/62

    23 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    3.2.1.  Data acquisition

      Transducer: Device and sensor to transform from any physical phenomena

    (force, pressure and motions: displacement, velocity and acceleration) toelectric signals. Transducers commonly are employed two kinds of materials:

     piezoelectric and strain-sensitive materials.

    +) Piezoelectric materials: frm physical quantities to electric charge, such

    as naturally polarized crystals like quartz and artificially polarized

    ferroelectric ceramics like barium titanate.

    +) Strain-sensitive materials: from physical quantities to resistance, such

    as metallic like copper-nickel alloy and semiconductor likemonocrystalline silicon.

      Signal conditioning: Change from the electric signals (charge and resistance)

    to voltage.

    3.2.2.  Data conversion

      Analogue to digital converter (ADC): Transforms from continuous analogue

    signal to digital signal

      Aliasing errors: Eliminated by sampling theorem: sampling frequency (F) or

    sampling time interval (t)

     Note: ADC can be stored under two types of codes: binary and ASCII codes

      Binary code: By numbers 0 and 1 (8 bytes)

      ASCII code: By numbers from 0 to 9 (1byte). However, almost data of

    discrete signals (after ADC) has been stored under this ASCII code in

    application, because it is easily red by any applied programs such as Matlab

    and Fortran for data post-processing.

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    24/62

    24 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    3.2.3.  Data qualification

      Many imperfections of received signals with noise can be reduced by the

    digital or analogue filters.

     Data qualification consists of: classification, validation and editing.

    3.2.4.  Data analysis

      Individual sample records (Uni-variate process): Sample collection of

    measurement data of one physical phenomenon at one point in various time

    intervals.

      Multiple sample records (Multi-variate processes): Sample collection of many

    individual records of one physical phenomenon at numerous points or of some physical phenomena at one point in various time intervals.

    Fig. 2. Individual and multiple sample record analysis

    Individual sample record and uni-variate process

      Mean and root mean square (RMS) value computation:

      Auto-correlation function computation

      Auto-spectral density function computation

    Individual Sample RecordsAnalysis

    Multiple Sample Records

    Mean Values andRoot Mean Square(RMS)

    Auto-Correlation FunctionAnalysis

    Auto-spectral DensityAnalysis

    Cross-Correlation FunctionAnalysis

    Cross-spectral DensityAnalysis

    Coherence FunctionAnalysis

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    25/62

    25 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Multiple sample record and multi-variate processes

      Cross-correlation function computation

      Cross-spectral density function computation

     

    Coherence function computation

    3.3.  Data analysis procedures

    3.3.1. 

    Data sampling and data preparation

    Multi input and multi output system (MIMO) = Combination of independent single

    input and single output systems (SISO)

    n: Index of ensemble (sample record) or signal or random process

    Multi sample record (of multi signals) = Collection of number of individual sample

    records (of individual signal). Thus analysis of the multi sample record can be carried

    out by analysis of the individual sample record and analysis of the pairs of correlated

    two individual sample records.

    Discrete valued signal (or random process):

    n x   n=1,2,3… N (N: Number of samples)

    Equally spaced time interval (T: sampling time or sampling period) of samples in

    discrete signal:

    T nT T n *0    n=1,2,3… N

    Continuous Signal A/D ConversionData Sampling

    Discrete Signal Discrete Data Record

    FrequencyResponse Function

    Signal FilterInput signal ui (t)

    A/D ConversionData Sampling

    Output signal xn(t)

    Continuous Data Discrete Data

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    26/62

    26 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    T0: Initial time (T0 = 0) T nT n *  

    T: Sampling period

     NT: Total time length of discrete signal; T  N *  

    F: Sampling frequency (Hz);T 

    F 1

     

    F0: Fundamental sampling frequency; T  N F 

    *

    10    

    Thus, )*()( 0 T nT  xT  x x ni     n=1,2,3… N

     Noting that the Limit sampling frequency (the Nyquist frequency) for eliminating the

    Aliasing Errors

    T F  N 

    *2

    1  

    3.3.2.  Data standardization

    The purpose of data standardization is to transform the original data record n x  to

    new type of data record n x' (can be called the fluctuating data record ) that has the

    zero mean value.

    1) 

    Mean value and root mean square of sample record

     N 

    n

    n x

     N  x

    1

    1  n=1,2,3…N (Mean value)

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    27/62

    27 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

     N 

    n

    n x  x N 

    SQRT s1

    2 ]1

    1[   n=1,2,3…N (Root Mean Square

    value)

     Note: For the stationary ergodic data record   (time-invariant and sampling-

    independent), it is very convenient and common to transform the initial data

    record n x to the new zero-mean data record n x' .

    2)  Establishment of the fluctuating data record (Zero-mean data record)

    n x' : n=1,2,3…N xnT  x x x x nnn   )('   n=1,2,3…N

    Having: 0'  x   (Zero-mean value)

     N 

    n

    n x  x N  1

    2'

    2 '1

    1    (Mean Square value or Variance)

     N 

    n

    n x x x

     N SQRT s

    1

    2'' ]'

    1

    1[   

    (Root Mean Square or Standard Deviation)

    3) Fourier Transform (Discrete Fourier Transform-DFT):

    Fluctuating data record (Zero-mean data record) or standardized data record

    n x'   n=1,2,3…N

    Discrete Fourier Transform

     N 

    n

    k k T nF  jT n xF  X 

    1

    )]2exp(*)([1

    )(     

     

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    28/62

    28 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    X(Fk ): DFT at computational frequency k F   

    k: Index of discrete frequencies

    Fk : Computational frequency; )(  f k F k     

     Note:

    i) The frequency space )(  f  = The fundamental sampling frequency (F0)

     NT F  f 

    10    

    ii) Number of frequency space (K)

    0F 

    F F K  sc

       

    cF  : Cut-off frequency

    sF  : Starting frequency

    iii) Computational frequency Fk:

     NT 

    k F  f k F F 

    ssk    )( ; k=0,2,3…K-1

     NT 

    k F 

    k   ; k=0,2,3…K-1

     Note: Index of computational frequency starts from 0

    Frequency value starts from Fs (???)

    iv) DFT of x(t) at the computational frequency

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    29/62

    29 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

     N 

    n

    k  T n NT 

    k  jT n x

     NT 

    k  X F  X 

    1

    )]2exp(*)([1

    )()(     

    ;k=0,2,3…K-1

     N 

    nk 

     N nk  jT n x NT 

    k  X F  X 

    1 )]/2exp(*)([

    1

    )()(      ;k=0,2,3…K-1

    k=1:

     N 

    n

    s  N n jT n xF  X F  X 1

    1 )]/2exp(*)([1

    )()(     

     

    k=2:

     N 

    ns

     N n jT n x NT 

    F  X F  X 12 )]/22exp(*)([

    1

    )

    1

    ()(      

    k=3:

     N 

    n

    s N n jT n x

     NT F  X F  X 

    13 )]/32exp(*)([

    1)

    2()(    

      

     Note: +) In the DFT formula, factor (1/) appears (DFT standardization)

    +) In Matlab command, X=FFT(x) (without standardization)

    Inverse Discrete Fourier Transform:

     N 

     N nk  j NT 

    k  X 

     N nT  x

    1

    )]/2exp(*)([1

    )(     ; n=0,1,2…N

    DFTX(Fk )

    f(Hz)

    F1=Fs k=1

    X(F1)X(Fi)

    Fi=Fs+i/NTk=i

    F1=Fc k=K

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    30/62

    30 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    4) Auto-correlation function

    Auto-correlation function can be computed by i) Direct computation by definition and

    ii) Indirect computation via FFT. Note that the second method is more efficiency

     because of application of FFT algorithm, however, the first one is easier to compute but more time consuming.

    Method 1: Direct computation of auto-correlation function

    Fluctuating data record (Zero-mean data record) or standardized data record

    n x'   n=1,2,3…N

    Auto-correlation function of data record n x'  with delay s

       N 

    n

    snn xxss xs x

     N s R

    1)()( )]()([

    1)(   (Auto-correlation functions)

    t r s   *  

     

    r  N 

    n

    r nn xx ss xs xr  N 

    t r  R1

    )]()([1

    )*(  

    5) Auto-spectral density function

    Auto-spectral density function can be computed by i) Ensemble Averaging and ii)

    Frequency Averaging

    Method 1: Ensemble-averaging techniqueFluctuating data record (Zero-mean data record) or standardized data record

    n x'   n=1,2,3…N

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    31/62

    31 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Definition of mean power:  

     NT  N 

    n

    n xx dt t  x NT 

     x N 

    t  x E S 0

    21

    0

    22 )(11

    )]([  

    1

    0

    2

    |)(|1

    )(

     N 

    n

    n xx  f  X  NT  f S    : Two-sided spectral density

    )( f  X  : Fourier transform at frequency f

    1

    0

    ]/2exp[*1

    )( N 

    n

    n N nk  j x

     N  f  X      ; k=0,1,2…N-1

    1

    0

    2|)(|2

    )(2)( N 

    n

    k nk  xxk  xx  f  X  NT 

     f S  f G  : One-sided spectral density

    Computational procedures (Ensemble-averaging technique)

    1)  Data Sampling: N samples of process x(t) are picked out (Data record)

    n x , n=1,2,3…N

    2)  Data Standardization: Compute the mean value of data record (  x  ), then

    reconstruct the Fluctuating Data Record n x' with zero-mean value

    ( 0'  x  )

    t

    x(t)

    T 2T 3T 4T 5T 6T NT(N-1)T

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    32/62

    32 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    n x' , n=1,2,3…N

    3)  Data Blocking: Taper data record by each data blocks using Window

    functions

    4) 

    Fourier Transform: Compute the Fourier Transform at frequency f k ,

    k=1,2,3…N by using FFT technique

    )( k  f  X  , k=1,2,3…N

    5)  Scale Factor Adjustment of )( k  f  X  : Scale factor of )( k  f  X  due to the loss

     by tapering operation. (By Hanning tapering: Scale factor by 3/8 )

    6)  Spectral Density: Estimate the spectral density )( k  xx  f S  from each data

     blocks 

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    33/62

    33 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    4. CORRELATION FUNCTION

    4.1. Introduction

    (1) The correction functions evaluate the statistical independence between the signals

    (time-dependant) or stochastic processes (space-dependant). The cross correlation

     function  is a measure to tell us how much two processes or two signals are like each

    other, whereas the auto correlation function tell us how much a process or a signal at

    time t is like itself at time t+  (: time shift or time lag) or how much a process or a

    signal at location (x,y,z) is like itself at another location (x+x,y+y,z+z). In addition,

    to evaluate how much two processes or two signals are like each other, the correlation

    coefficient function also is given.

    4.2. The discrete correlation function

    The discrete correlation function of two processes or two signals x, y can be expressed

    as follow:

      1

    0

    )()()()( )]()([1

    ][)( N 

    n

    snn N snn xy ss ys x

     N 

     Lim y x E s R  

    E[] : Expected value or mean value

    For the number of samples is taken large enough, we have following approximations:

       N 

    n

    snn xxss xs x

     N s R

    1)()( )]()([

    1)(   (Auto-correlation functions)

       N 

    n

    snn xy ss ys x N 

    s R1

    )()( )]()([1)( (Cross-correlation

    functions)

    s : Spatial interval or time shift

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    34/62

    34 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    s: Spatial coordinates or time variable

     N: Number of samples

     Note: 1) Corresponding values of signals are sampled at same time.

    2) R xx(s)=R xx(-s) and R xy(s)=R xy(-s)

    3) Above approximate formulas are accuracy only if N 

    Computational procedure of correlation function:

    Step 1: Setting parameters

    +) Number of sample: N

    +) Time shift or spatial interval: s

    Step 2: Sampling

    +) Sampling signals x, y

    Step 3: Computing correlation function

    Step 4: Plotting Rxx, Rxy versus n [1,N]

    4.3. The discrete covariance function

    The discrete covariance function of two processes or two signals x, y can be expressed

    as follow:

    Span-wise

    s  

    s ss  

    s  

     xy xx  R R ,  

    is

    )( i xx s R   R xx, R xy vs. s

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    35/62

    35 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

     

    1

    0

    1

    0)()()()( ])([

    1)]([

    1][][)(

     N 

    n

     N 

    n

    sn N n N snn xy ss y N 

     Lims x N 

     Lim y E  x E s 

     

    For the number of samples is taken large enough, we have following approximations:

       N 

    n

     N 

    n

    snn xxss x

     N s x

     N s

    1 1)()( ])([

    1)]([

    1)(    (Auto-covariance functions)

       N 

    n

     N 

    n

    snn xyss y

     N s x

     N s

    1 1)()( )]([

    1)]([

    1)( 

      (Cross-covariance

    functions)

    s

    : Spatial interval or time shifts: Spatial coordinates or time variable

     N: Number of samples

    If x, y are the zero-mean processes or signals, these mean that E[x(s)]=0 and E[y(s)]=0,

    then the Root mean square (R.M.S) value must be replaced to the mean value (or

    Expected value):

    Auto-covariance function:

       N 

    n

     N 

    n

    snn xxss x

     N SQRT s x

     N SQRT s

    1 1

    )(2

    )(2 ]})([

    1{)]}([

    1{)(   

    Cross-covariance function:

       N 

    n

     N 

    n

    snn xyss y

     N SQRT s x

     N SQRT s

    1 1

    )(2

    )(2 ]})([

    1{)]}([

    1{)(   

    Computational procedure of covariance function:

    Step 1: Setting parameters

    +) Number of sample: N

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    36/62

    36 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    +) Time shift or spatial interval: s

    Step 2: Sampling

    +) Sampling signals x, y

    Step 3: Computing covariance functionStep 4: Plotting xx, xy versus n [1,N]

    4.4. The discrete correlation coefficient function

    The discrete correlation coefficient function of two processes or two signals x, y can be

    expressed as follow:

    )(

    )(

    )( s

    s R

    s  xx

     xx

     xx

          (Auto-correlation coefficient function)

    )(

    )()(

    s

    s Rs

     xy

     xy

     xy

     

         (Cross-correlation coefficient function)

     Note: ]1,1[)(   s   : 1    Full-correlated; 0    No correlated

    4.5. Examples

    Example 1: Correlation function

    0 50 100 150-1

    -0.5

    0

    0.5

    1

    Number of sample

    Initial signals x,y

    0 50 100 150-0.2

    -0.1

    0

    0.1

    0.2

    Number of sample

    Cross-correlation Rxy by definition

    0 100 200 300-0.2

    0

    0.2

    0.4

    0.6

    Number of sample

     Auto-correlation Rxx,Ryy by Xcorr(x)

    0 100 200 300-0.2

    -0.1

    0

    0.1

    0.2

    Number of sample

    Cross-correlation Rxy by Xcorr(x,y)

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    37/62

    37 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Example 2: Correlation of signal with noise

    0 1 2 3

    x 10-3

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    Time (s)

    Initial sinal+noise

    0 0.2 0.4 0.6 0.8-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    Time (s)

    Correlation functions of signal with noise

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    38/62

    38 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    5. FOURIER TRANSFORM

    5.1. Introduction

    (1) It is well known that the Fourier Series Transform and Fourier Spectral Transform

    have been widely applied for almost kinds of natural and physical phenomena.

    Applications and contributions of the Fourier Series and Fourier Transform concentrate

    on the problem of the Digital Signal Processing (D.S.P) in the data processing and

    analysis of measurements and the buffeting response prediction in which the spectral

    representation cant be required.

    (2) In summary, the Fourier Series and the Fourier Transform will be studied for such

     purposes as follows:

    1) Data processing and analysis of measurement processes in the Digital Signal

    Processing (D.S.P)

    2) Spectral representation in the buffeting response prediction

    (3) Data measurements can be expressed under the continuous or discrete processes.

    However, almost measured signals have been collected under the discrete signal for the

    data post-processing and analysis. The discretization of measured signals is well

    known as the sampling processes.

    (4) Some following DSP techniques will be studied hereinafter:

    1) The discrete Fourier series (DFS)

    2) The discrete Fourier transform (DFT)

    3) The fast Fourier transform (FFT)

    4) Amplitude spectrum and phase spectrum

    5) The discrete inverse Fourier transform (IFT)

    6) The sampling technique

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    39/62

    39 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    5.2. The Discrete Fourier Series

    The Fourier series purposes to decompose any periodic or non-periodic signals into

    combination of simple harmonic signals (sine and cosine functions). Post processingand analysis on simple harmonic functions seem to be much easy than the original

    signals. Mathematically, the Fourier series is known as the harmonic analysis.

     N: Number of samples

    T: Period (Time step of sampling) of a sample (s)

    F: Frequency of a sample (Hz),

    F 1

     

     NT: Fundamental period of series (s)

    Fo: Fundamental frequency of series (Hz) NT 

    Fo1

     

    Discrete Fourier series is expressed as the sum of harmonic functions as follow:

    )]sin()cos([2

    00

    1

    1

    0 T mnbT nmaa

     xm

     M 

    m

    mn        

     

     

    0  : Fundamental frequency of series (rad/s), NT F o

       

    220    

    m: Times of fundamental frequency (m=1: fundamental harmonic term with 0  ,

    m=2: 2nd  harmonic term with 2 0  , mth harmonic term with m 0    )

    M: Cutting-off number of frequency

    ao, am, bm: Fourier coefficients of series

    n: Pointer of samples

    )]/2sin()/2cos([2

    1

    1

    0  N mnb N nmaa

     xm

     M 

    m

    mn        

     

     

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    40/62

    40 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Discrete Fourier Coefficients:

    )/2cos(2 1

    0

     N nm x

     N 

    a N 

    n

    nm  

        ; 10    M m  

    )/2sin(2 1

    0

     N nm x N 

    b N 

    n

    nm  

        ; 11    M m  

    Computational procedure:

    Step 1: Setting parameters

    Initial signal

    -   Number of samples N

    -   Number of series M

    Step 2: Sampling

    Step 3: Calculating Fourier Coefficients

    am, bm 

    Step 4: Simulating Fourier series and Plotting Simulated signal vs. number of

    samples (n)

    5.3. The Discrete Fourier Transform

    x(t): time-dependant signal or stochastic process

    T: Sampling cycle (time interval for a sample)

    F: Sampling frequency (F=1/T: number samples per a second)

     N: Total samples

     NT: Total time for sampling or fundamental period of transform

    Fo: Fundamental frequency of transform NT 

    F 1

    0    

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    41/62

    41 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Discrete Fourier Transform: (to frequency domain)

     N 

    n

    T n j

    k k enT  x X 

    1

    ])([)(       

     N 

    n

    T n f  j

    k k enT  x f  X 

    1

    2 ])([2

    1)(    

       

    (Note: In origin, n=0 N-1)

    k: Number of discrete frequencies in range

    In Matlab: 0)(       k k k      [k=1-K]: equal spacing of frequency range

    0  : Fundamental frequency (rad/s), NT F o

        220    

     Note: n (pointer of samples) and k (pointer of frequency) have different

    meaning

    Computational procedure:

    Step 1: Setting parameters

    - T (cycle sampling), N (numbers of samples)

    - Freq. range: fs (starting freq.), fc (cut-off freq.)

    - Number of freq. interval: K   k  fs fc /)(      

    Step 2:

    Loop 1: Frequency

    For k=1 to K   )(        k k   

    Loop 2: Sampling

    For n=1 to N  

     N 

    n

    nT  jk 

    k  enT  x X 1

    )()()(       

    Step 3: Plotting X(k ) versus (k )

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    42/62

    42 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Putting NT F o

       

    220    into formulas:

     N 

    n

    nT  jk enT  xk  X 

    1

    0 ])([)(0    

     N 

    n

    nT  NT 

     jk 

    enT  xF k  X 1

    2

    0 ])([)2( 

       

     N 

    n

     N kn jenT  xkF  X 1

    /20 ])([)(

        

    Fourier Series (in time domain)

    k k k k t k bt k a

    at h

    1

    0 )]sin()cos([2

    )(       

    )}(Re{2

    k  H  N 

    ak    

    )}(Im{2

    k  H  N 

    bk     

     Note in processing using FFT:

    1) )/(2  NT      or )/(1  NT F    

    2) Maximum frequency: )2/(12/max T F F     

    3) Spectrum calculated at certain frequencies: 0, F, 2F, 3F… Fmax

    Leakage Effect: Amplitudes will distribute on adjacent closed frequencies. This effectsoccurs in cases that total sampling time NT does not coincide the integer multiple of

    the sampling cycle T. To prevent the ‘leakage effect’ by  Averaging Method or Window

    Functions

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    43/62

    43 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    5.4. The Fast Fourier Transform

    It is very well-known that the Fast Fourier Transform (FFT) algorithm has been

     powerfully used for solving the Discrete Fourier Transform. FFT is not a new

    transform itself due to using the same DFT formula, however, its FFT algorithm ismuch faster than the conventional DFT. In principle, the FFT algorithm eliminates the

    component repetition to make the faster computation.

    DFT formula:

    1

    0

    /20 ])([)(

     N 

    n

     N kn jenT  xkF  X 

       

     

    1

    0

     N 

    n

    kn

     N nk W  x X  ; k=[0,N-1];

     N  j

     N  eW /2   

     X k  contains N 2 components (N of xn and N of W  N )

     Note:     sincos  je j  = x + jy (Euler’s Formula)

    )/2sin()/2cos(/2  N kn j N kne  N kn j      

    0

    1

    12

    2

    1

    0

    2

     N  j

     N 

     N  j

     N 

    n

     N 

    n j

    e

    ee

     

      

     

    Sum can be expressed in the complex plane of 2=3600 (N=8 for example)

    Complex plane (N=8) Complex plane

    00 k=0

    450 k=1

    900 k=2

    1350 k=3

    1800 k=4

    2250 k=5

    2700 k=6

    3150 k=7

      je  

      08/02  je

    8/22  je

    8/52  je 8/72  je

    Re

    Im

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    44/62

    44 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Based on above-mentioned notes, we can easily obtain:

    ),(  N mrem N 

    m

     N  W W    ; m[0,N-1]; rem(m,N) is the remainder after dividing m

     by N

    m N  jm

     N  eW )/2(      ; m[0,N-1]

    ))(/2(),( miN  N  j N mrem N  eW 

          ; i=1,2,.. N 

    kn Max )( 

    For example, N=8, n=[0:7], k=[0:7],  max(kn)=49, components W are expressed by

    the complex plane

    Complex plane (N=8)

    Thus, among 49 components, 8 of these are unique.

    Then, suppose N is a multiple of 2, we decompose the samples into two vectors

    containing even- and odd-numbered samples as follows:

    12/

    0

    12/

    0

    212

    22

     N 

    n

     N 

    n

    kn

     N n

    kn

     N nk  W  xW  x X  ; k=[0:N-1]

    Due to:k 

     N 

     N  W W 2

    2/2/   , thus

    12/

    0

    12/

    02/122/2

     N 

    n

     N 

    n

    kn

     N n

    kn

     N nk W  xW  x X  ;

    168

    88

    08 W W W     

    178

    98

    18 W W W     

    198

    118

    38 W W W   

    208

    128

    48 W W W   

    218

    138

    58 W W W   

    228

    148

    68 W W W     

    238

    158

    78 W W W   

    188

    108

    28 W W W     

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    45/62

    45 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

     Number of components reduces to 2)2

    ( N 

    < 2 N  of original problem. Depending on N,

    efficiency of FFT algorithm is different. For example, if N=2K   then complex

    components in FFT is  N 

     N 

     N 

    2log22   (in comparison of N

    2

     components in DFT)

    5.5. The Discrete Inverse Fourier Transform

    The discrete inverse Fourier transform of X(f) can be expressed as follows

     N 

    n

     N kn jenT  xkF  X 01

    /20 ])([)(     ; k=[0:N-1]:

    1

    0

    /20 ])([

    1)(

     N 

     N kn jekF  X  N 

    nT  x     ; n=[0:N-1]: Inverse Transform

    5.6. Amplitude spectrum and phase spectrum

    The amplitude spectrum  is defined as the vector of DFT component amplitudes,

    whereas the phase spectrum is vector of DFT component phase angles in radian unit.

    5.7. The Discrete Sampling Theory

    The problem in the sampling technique is to require 2 necessary points:

    1) 

    Sampling values are required enough for the data processing and analysis.

    2)  Sampling the pick-up values from either continuous signals or discrete signals

    represents the original one. This means that from the sampling values can

    reconstruct the similar original signals.

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    46/62

    46 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    The sampling parameter: Sampling rate or sampling frequency Fs(Hz).

    The sampling theorem may be stated as follows: ‘ If continuous signals is sampled at a

    sampling rate or sampling frequency that is twice higher than their highest frequency

    component, then it is possible to recover and reconstruct the original signals fromsamples ’

    signalsampling F F  max,2  

    5.8. Examples

    Example 1: D.F.S

    Initial signal (impulse function) and signal due to Discrete Fourier Series at various

    number of series (M=1,3,5,10,10,50)

    0 10 20 30 40 50 60 70

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    number of samples

       N   u   m   b   e   r   o   f   s   e   r   i   e   s   M

      =   1

    0 10 20 30 40 50 60 70

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    number of samples

       N   u   m

       b   e   r   o   f   s   e   r   i   e   s   M

      =   3

    0 10 20 30 40 50 60 70

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    number of samples

       N   u   m

       b   e   r   o   f   s   e   r   i   e   s

       M

      =   5

    0 10 20 30 40 50 60 70-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    number of samples

       N   u   m

       b   e   r   o   f   s   e   r   i   e   s

       M

      =   1   0

    0 10 20 30 40 50 60 70-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    number of samples

       N   u   m

       b   e   r   o    f   s   e   r   i   e   s

       M

       =   2   0

    0 10 20 30 40 50 60 70-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    number of samples

       N   u   m

       b   e   r   o    f   s   e   r   i   e   s

       M

       =   5   0

    Initial SignalImpulse Function

    Signal fromD.F.S

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    47/62

    47 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Example 2: FFT vs. SPECTRUM

    Fourier Transform by FFT and Spectrum

     Note:

    Fourier Transform Spectrum

    dt et  x j X  xCFT  t  j   )()()(  

    1

    0

    )()( N 

    n

    nT  j

    ne x j X  x DFT       

    dt et  x j X  xCSPEC  t  j   )()()( 2  

    1

    0

    2)()( N 

    n

    nT  jne x j X  x DSPEC 

          

    Amplitude

     Noise

    f1=8Hz

    f1=33Hz

     No noise

    0 0.2 0.4 0.6 0.8-10

    0

    10

    20

    time [t]

    signal

    0 20 40 600

    2

    4

    6

    8

    frequency [Hz]

    spectra by using FFT

    0 0.2 0.4 0.6 0.8-10

    0

    10

    20

    time [t]

    signal

    0 20 40 600

    5

    10

    15

    20

    25

    frequency [Hz]

    spectrum by using spectrum

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    48/62

    48 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Example 3: DFT

    Results: +) Fast Fourier Transform (FFT) is not a new form of Fourier transform, the

    applied formula is exactly such an expression

     N 

    n

     N kn jenT  xkF  X 

    1

    /20 ])([)(

        , however,

    the modified algorithm is used for much faster computation of DFT

    +) Result by DFT’s defined formula is exactly same  to that by FFT’s Matlab

    command. Moreover, Magnitudes of DFT and FFT are absolute values (abs(H))

    +) Results by DFT and FFT are different  from that by Spectrum

     Notes: +) DFT definition

     N 

    n

     N kn jenT  xkF  X 

    1

    /20 ])([)(

        :

    H0=x*exp(-j*2*pi*k'*n/N);

    n: pointer of sample, k: pointer of frequency, k must be transposed (k’)

    H0=H0/N; H0 must be standardized by dividing by N (number of samples)

    0 0.2 0.4 0.6 0.80

    0.2

    0.4

    0.6

    0.8

    1

    Number of samples or time interval

       S   i  g  n  a   l

    0 20 40 60-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    Frequency Hz

    FFT command

    0 20 40 60-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    Frequency Hz

       D   F   T   M  a  g  n   i   t  u   d  e

    DFT by definition

    0 20 40 600

    2

    4

    6

    8

    Frequency Hz

    Spectrum command

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    49/62

    49 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Example 4: Amplitude and phase spectrum

    Example 5: Amplitude and phase spectrum

    0 0.2 0.4 0.6 0.80

    0.2

    0.4

    0.6

    0.8

    1

    Number of samples

       S   i  g  n  a   l

    0 20 40 60-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    Frequency(Hz)

       A  m  p   l   i   t  u   d  e

    Spectrum

    0 20 40 60-4

    -2

    0

    2

    4

    Frequency(Hz)

       P   h  a  s  e   (  r  a   d   )

    Phase spectrum

    0 20 40 600

    5

    10

    15

    20

    Frequency(Hz)

       P   h  a  s  e   (  r  a   d   )

    Phase spectrum

    fftshift H

    unwraAn le H

    0 50 100-0.5

    0

    0.5

    1

    1.5signal

    0 50 1000

    1

    2

    3

    4FFT

    0 50 100-4

    -2

    0

    2

    4phase spectrum

    0 50 1000

    50

    100

    150unwrapped p.s

    0 50 100-0.5

    0

    0.5

    1

    1.5signal

    0 50 1000

    1

    2

    3

    4swapped FFT

    0 50 100-4

    -2

    0

    2

    4p.s of swapped FFT

    0 50 1000

    50

    100

    150unwrapped p.s

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    50/62

    50 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    6. POWER SPECTRAL DENSITY FUNCTION

    6.1.  Introduction

    (1) The random signals can not be determined exactly. It means that the random

    signals always differ from each other at the different observations, moreover, the

    random signals contain the random parameters that can not be described by the means

    of analytical quantities and determinant-parameter methods, but they are only able to

     be described by the terms of statistical parameters that can differ from one random

    signal to another.

    (2) Thus the questions are that what terms of statistical parameters can be able to

    describe the characteristics of the random signals. It is well known that the two most-

    commonly-used means are:

    i)  amplitude distribution functions of random signal

    ii)   power spectral density of random signal (or equivalent as the correlation

    function)

    (3) In the term of amplitude distribution, the commonly-used statistical quantities are:

    i) mean value (expectation); ii) mean square (variance when zero-mean signals) or root

    mean square (standard deviation when zero-mean signals).

    (4) It is broadly said that the square of DFT magnitudes of any function x(t) is

    considered as power contribution of any frequency components in x(t) over the

    frequency domain.

    6.2. Characteristics of amplitude distribution

    The most-commonly-used statistical terms of the amplitude distribution characteristics

    are defined underneath:

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    51/62

    51 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    - Mean value (Expectation):

    1

    0

    1][

     N 

    i

    i x  x N 

     x E    

    - Mean square :

    1

    0

    222 1

    ][

     N 

    i

    i x

     x N 

     x E    

    - Root mean square : )1

    (][1

    0

    22

     N 

    i

    i x x

     N sqrt  x E    

    - Variance:

    21

    0

    1

    0

    22222 ]1

    []1

    [][])[(    

     N 

    i

    i

     N 

    i

    i x x x x

     N  x

     N  x E  x E         

    - Standard deviation: )][(]))[(( 222  x x x  x E sqrt  x E sqrt           

    Thus zero-mean random signals ( 0 x

      ) have the following deductions:

    Mean square = Variance

    Root mean square = Standard deviation

    Linear relationship of y and x as y=ax+b, we easily obtain: 222 x x

     x y

    a

    ba

      

      

     

    Some distribution probability functions of measurements are widely used as

    i)  uniform probability distribution:

    ii) 

    normal (Gaussian) probability distribution:

    6.3. The Power Spectral Density (PSD)

    As above-mentioned, the power of random signals is expressed by the square of DFT

    magnitudes of x(t) at any time t, whereas the power spectral density is expressed in the

    frequency domain . Some concepts of power have been used:

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    52/62

    52 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    The instantaneous power of signal x(t) at any time t can be defined as:

    2|)(| t  xPower    

    For the complex signals, we must use the mean power or expected power:

      2/

    2/

    22/

    2/

    22 )(1

    )(1

    )]([T 

    T  dt t  xT 

    dt t  xT 

     Limt  x E  power  Mean  

    (when T is long enough)

     

     NT  N 

    n

    n xx dt t  x NT 

     x N 

    t  x E S  power mean Discrete0

    21

    0

    22 )(11

    )]([  

    (Definition:This is only approximate estimation, that is why it is called as the

    spectral estimation)

    We have the discrete inverse Fourier transform:

    1

    0

    /20 ])([

    1)(

     N 

     N kn jekF  X  N 

    nT  x     

    Thus, the discrete mean power can be written as follows:

     

    1

    0

    21

    0

    /20

    1

    0

    2 ])(1

    [11  N 

    n

     N 

     N kn j N 

    n

    n xxekF  X 

     N  N  x

     N S       

     

    1

    0

    1

    0

    1

    0

    /)(2

    3

    1

    0

    21

    0

    /203

    1])([

    1  N 

     N 

    m

     N 

    n

     N nmk  j

    mk 

     N 

    n

     N 

     N kn j

     xx e X  X  N 

    ekF  X  N 

    S     

     

    1

    0

    2

    2

    1  N 

    k  xx X 

     N S   

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    53/62

    53 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    We have:

    1

    0

    21 N 

    k  xx  x N 

    S   

    As a result, the relationship between the mean power of signal in the time domain and

     power spectrum, or the mean power of signal can be presented in the term of the power

    spectrum. This expression has been well known as the Parseval’s Theorem.

     

    1

    0

    21

    0

    2 1 N 

     N 

    k  X 

     N  x  (Parseval’s Theorem)

    In DSP, it is defined the periodogram that has N components given by:

    21)( k  xx  X 

     N k P  

    ; k=[0,N-1]

    )()( k  N Pk P  xx xx    

    The power spectrum can be obtained:

     

    1

    0

    1

    0

    2 )(11 N 

     xx

     N 

    k  xxk P

     N  x

     N S   

     Note: In the same way that 2k 

     x  represents a measure of signal power at a point in

    the time domain, Pxx(k) represents the measure of signal power at the point in

    the frequency domain.

    Therefore, the vector Pxx=[Pxx(k)], k=[0:N-1] is considered as the measure of

    estimation of the power spectral density (PSD) of signal x(t).

    Some expressions in the Power Spectral Density (PSD) S of signal x(t)

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    54/62

    54 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Discrete PSD: 1)

    1

    0

    2

    2

    1  N 

    k  xx  X  N 

    S    (Frequency domain)

    Xk  is DFT amplitude of x(t) at frequency k

    2)

    1

    0

    21  N 

    k  xx x

     N S    (Time domain)

    xk  is discrete value of signal x(t) at time t

    3)  

    1

    0

    1

    0

    2 )(11  N 

     xx

     N 

    k  xxk P

     N  x

     N S    (Periodogram)

    21

    )( k  xx X 

     N k P  

    ; m=[0,N-1]

    Parseval’s Theorem:  

    1

    0

    21

    0

    2 1 N 

     N 

    k  X 

     N  x   (Parseval’s Equality)

    Continuous PSD: 1)  NT 

     xx dt t  x NT 

    S 0

    2 )(1

      (Frequency domain)

    2) T 

     xx xx df  f PS 

    2/1

    2/1

    )( or T 

     xx xx d PS 

    /

    /

    )(

     

     

        

    The relationship of the power spectrum to the auto-correlation: The discrete auto-

    correlation of vector x from sampled values of signal x(t) with extended period has

     been defined as follows:

    1

    0

    1)(

     N 

    n

    snn xx  x x N s R ; s=[0:N-1]

    By definition of the mean power, we have:

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    55/62

    55 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    1

    0

    21)0( N 

    n

     xxn xx  power  MeanS  x N 

     R 

    Discrete Fourier transform of the auto-correlation can be calculated by definition:

    1

    0

    1

    0

    /21)}({ N 

    s

     N 

    n

     N sk  j

    snn xx Re x x

     N s R DFT S     

    ; k=[0:N-1]

    1

    0

    /2 N 

    n

     N kn j

    nk e x X       ; k=[0:N-1] (Definition of DFT)

    )(1)}({ 2 k P X  N 

    s R DFT S   xxk  xx R   ; k=[0:N-1]

    In the conclusion, the periodogram of vector x with periodic extension is the DFT of

    the auto-correlation function of x, that means:

    )(1

    )}({2

    k P X 

     N 

    s R DFT S   xxk  xx R    

     Role of the auto-correlation function gives us information on how much

    dependence of given sample xn  on nearby samples xn+1 , xn+2 , and so on.

    The Cross Spectrum: involves two time-dependant signals (two time series). Suppose x

    and y are vectors of length N sampled from two signals x(t) and y(t).

    -  The cross-periodogram: k k  xyY  X 

     N k P '

    1)(  

    ; k=[0:N-1]

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    56/62

    56 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    -  Mean cross-power:

    1

    0

    1  N 

    n

    nn xy  y x N 

    S  

    1

    0

    1

    02

    )(1'1)0( N 

     N 

     xynn xy xy k P N 

    Y  X  N 

     RS  

     Role of the cross spectrum gives us information on how the cross

    correlation function is distributed over the frequency scale.

    Coherence function: The magnitude of the cross periodogram Pxy(k), that is )(k P xy , is

    the measure of the coherence of signals x(t) and y(t) at different frequencies.

    -  Coherence function: )()(

    )()(

    2

    2

     f P f P

     f P f Coh

     yy xx

     xy xy    

    6.4. Examples

    Example 1: FFT and SPECTRUM

    0 0.5 10

    0.2

    0.4

    0.6

    0.8

    1

    Impulse signal

    0 500

    0.1

    0.2

    0.3

    0.4

    0.5DFT

    0 500

    0.1

    0.2

    0.3

    0.4

    0.5

       A  m  p   l   i   t  u   d  e

    FFT

    0 0.5 10

    0.2

    0.4

    0.6

    0.8

    1

    Time (s)

    0 500

    2

    4

    6

    8x 10

    -5

    Frequency (Hz)

    X2

    0 500

    2

    4

    6

    8

    Frequency (Hz)

    Spectrum

       A  m  p   l   i   t  u   d  e

    The same

    Difference in shape?Different in value?

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    57/62

    57 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

     Note: 1) Using FFT command

    H=FFT(x);

    H=[H(1) 2*H(2:N/2)]/N; %Vector length limit and

    standardization2) Using DFT’s definition

    H=x*EXP(-j*2*pi*k'*n/N); %DFT by definition

    H=[H(1) 2*H(2:N/2)]/N;

    3) Using SPECTRUM command

    S=SPECTRUM(x);

    S=[S(1) 2*S(2:N/2)]; %Vector length limit

    4) Using spectrum’s definitionS=ABS(H).^2; %Square of absolute amplitude

    S=[S(1) 2*S(2:N/2)]/ (N^2); % Vector length limit and

    standardize

    Example 2:FFT and SPECTRUM of some types of functions

    Time intervalsFrequency intervals

    Sampling process(Step 2)

    FFT(Step 3)

    SPECTRUM(Step 4)

    Digital Signal orRandom Process

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    58/62

    58 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Example 3: Some built-in filter function (window functions) in FFT

    0 5-10

    0

    10normal signal

    0 50

    5

    10uniform signal

    0 5-2

    0

    2sine signal

    0 50

    0.5

    1impulse signal

    0 500

    0.2

    0.4FFT

    0 500

    2

    4

    0 500

    0.5

    1

    1.5

    0 500

    0.5

    1

    0 500

    20

    40spectrum

    0 500

    20

    40

    0 500

    100

    200

    0 500

    20

    40

    0 5-20

    -10

    0

    10

    20

    normal signal

    0 500

    2

    4

    6

    8

    10

    FFT

    0 500

    2

    4

    6

    8

    10

    FFT with boxcar 

    0 500

    1

    2

    3

    4

    5

    FFT with hamming

    0 500

    1

    2

    3

    4

    FFT with bartlett

    0 500

    1

    2

    3

    4

    FFT with hann

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    59/62

    59 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    7. COMPUTATION OF COHERENCE FUNCTION

    7.1.  Introduction

    (1) 

    Coherence function: Defined as the measure to evaluate the statistical

    independence  of two stochastic processes or two digital signals (but in the

    frequency-domain)

    (2)  Coherence function: Computed by using the cross-spectrum (two signals) and

    auto-spectrum (one signal) of two stochastic processes

    (3) 

    Correlation function: Similar to the coherence function, the correlation function

    also is the measure to evaluate the statistical independence of two stochastic

     processes or two digital signals (but in the time-domain)

    7.2. Cross spectrum and coherence function

    (1) 

    The computation of cross spectra has been used in the field of Digital Signal

    Processing (D.S.P) and Discrete Data Processing (D.D.P)

    (2) The Auto-spectrum represents the Fourier transform of the Auto correlation

    Stochastic process A

    or digital signal A

    Stochastic process B

    or digital signal B

    Correlation function (time domain)Coherence function (frequency domain )

    Inter-relation or inter-influence

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    60/62

    60 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    (3) The Cross-spectrum represents the Fourier transform of the Cross correlation

    (4) The Cross-spectrum is the complex valued function whose magnitude and phase

    are used in the signal processing to indicate the degree of correlation between twosignals

    (5) The magnitude of the cross spectrum indicates whether frequency components of

    one signal are associated with large or small amplitudes at the same frequency in

    the second signal.

    (6) The phase of the cross spectrum indicates whether the phase lag (tre) or lead (dan

    truoc) of one signal with respect to the second signal for a given frequency

    component.

    (7) The cross-spectrum is used to determine the coherence function between two

    signals

    (8) 

    Cross spectrum and coherence function can be determined by the MATLAB as

     powerful engineering program for Digital Signal Processing

    7.3. Computation of coherence function

    (1) Let x(t) and y(t) be two discrete data measurements of two signals, the problem is

    that to determine i) Cross spectrum and auto spectrum and ii) Coherence function

    (2) The Fourier transforms of discrete signals

    X(f)=F{x(t)}

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    61/62

    61 | Le Thai Hoa - Notes on Stationary Random Process and Digital Signal Processing  

    Y(f)=F{y(t)}

    (3) Auto spectrum of x(t) or y(t)

    Sxx(f)=X(f) X*(f)Syy(f)=Y(f) Y*(f)

    (4) 

    Cross spectrum of x(t) and y(t)

    Sxy(f)=X(f) Y*(f)

    Syx(f)=Y(f) X*(f)

    (5) 

    Coherence function

    )()(

    )()(

     f S  f S 

     f S  f Coh

     yy xx

     xy

     xy    (Complex Coherence Function)

    )()(

    |)(||)(|

    2

    2

     f S  f S 

     f S  f Coh

     yy xx

     xy

     xy     (Magnitude Squared Coherence Function)

     Note: Here two discrete signals are taken into account. In cases, many pairs of two

    discrete signals are counted, the summation must be used, called the average cross

    spectrum and the average coherence function. Complex cross spectrum and

    coherence function consists of two parts: i) magnitude and ii) phase

    (6) Some simplified formulas

    )()()()(

    21

    2

    21221

        

    uu

    uuuu

    S S S Coh    

    )()(

    )()(

    21

    2121

      

      

    uu

    uu

    uuS S 

    S Coh  

     

  • 8/17/2019 Stationary Random Process and Digital Signal Processing - Theory

    62/62

    )()(

    )()(

    ,0,

    ,

    ,  

      

     yuu

     yu

     yuS S 

    S Coh

      : The span-wise coherence

    Where: )(,     yuCo  is co-spectrum (real part) Fourier-transformed from

    correlation.

    7.4. Examples

    Example 1: FFT vs. SPECTRUM

    0 0.2 0.4 0.6 0.8-10

    0

    10

    20

    time [t]

    signal

    0 20 40 600

    2

    4

    6

    8

    frequency [Hz]

    spectra by using FFT

    0 0.2 0.4 0.6 0.8-10

    0

    10

    20

    time [t]

    signal

    0 20 40 600

    5

    10

    15

    20

    25

    frequency [Hz]

    spectrum by using spectrum

     

    0 0.2 0.4 0.6 0.8

    -10

    0

    10

    20

    Time[s]

    Input Signal

    0 20 40 60

    0

    2

    4

    6

    8

    Frequency [Hz]

    Spectrum with FFT

    1

    Input Signal