stabilised waste - cement barrier - soil interfaces 2 july 14 2009/07... · 2009. 7. 14. ·...

27
Stabilised Waste - Cement barrier - Soil interfaces Hans van der Sloot, Hans Meeussen, Paul Seignette, Josh Arnold, David Kosson ECN Netherlands ECN, Netherlands Vanderbilt University, Nashville

Upload: others

Post on 13-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Stabilised Waste - Cement barrier - Soil interfacesHans van der Sloot, Hans Meeussen, Paul Seignette, Josh Arnold, David Kosson

    ECN NetherlandsECN, NetherlandsVanderbilt University, Nashville

  • OVERVIEW

    bl d fi i iProblem definitionRelease of non-interacting species (3 layer model)Scale issues Illustration of detailed chemistryChemistry of individual layersInterface reactions (diffusion in 3 layer model)Interface reactions (diffusion in 3 layer model)Carbonation and uncertaintyConclusions

    214-7-2009

  • POSSIBLE CHANGES IN THE TANKPOSSIBLE CHANGES IN THE TANK CLOSURE SYSTEM AT LONG TERM

    TANK CLOSURE

    Waste

    Tank heel concentrate

    Concrete

    concentrate

    Soil

    Aging and deterioration of waste form

    314-7-2009

    Soilof waste form

  • LL WASTE VAULT W t SoilC

    O2 and CO2

    POSSIBLE CHANGES IN THE LOW LEVEL WASTE VAULT LONG TERM

    LL WASTE VAULT Waste SoilConcreteO2and CO2

    Aging and

    2

    Aging and deterioration of waste form

    Carbonation Oxidation

    CO2

    carbonation front

    CO2

    carbonation front

    CO2

    carbonation front oxidation front

    O2

    oxidation front

    O2

    414-7-2009

    Air void (partially water filled?)carbonation frontcarbonation frontcarbonation front oxidation frontoxidation front

  • Effect of Boundary Conditions Boundary ConditionsEffect of Boundary Conditions and Saturation on Release from a 3-layer System

    3-Layer 1-D diffusion model for

    Waste form – no flux at interior boundary (left side)Clay soil – zero concentration at external boundary (right side of clay soil)

    Initial Condition3 Layer, 1 D diffusion model for non-interacting, conservative species (e.g., Na)

    Waste Form Concrete Clay Soil

    Initial ConditionNa only in waste form at time zero at C/C0=1

    Cases1. Saturated

    (1) (2) (3)

    100 cm 20 cm 50 cm

    2. Unsaturated (tortuosity values assumed 2x for both waste form and concrete and 3.2x for soil; available porosity assumed 0.8x for waste form and concrete and 0.16 x for soil)

    Waste Form Concrete

    Clay Soil(compacted)

    Density (g/cm3) 1.7 2.4 1.8

    and 0.16 x for soil)

    3. Same as (1) but with concrete layer only and C/C0=1 at waste form-concrete interface and C/C0=0 at concrete-clay soil interface

    (g/cm3)

    Porosity 0.4 0.1 0.35

    Tortuosity (sat’d) 5 15 2

    4. Same as (1) but with waste form only and C/C0=0 at waste form boundary (waste form in infinite bath)

    514-7-2009

    (sat d)

  • Transport of non interacting species in 1 2 and 3 layer system (sat unsat)Transport of non-interacting species in 1-, 2-, and 3-layer system (sat – unsat)

    614-7-2009

  • Flux of non interacting species at the cement soil interfaceFlux of non-interacting species at the cement-soil interface

    714-7-2009

  • Scaling to smaller dimensions with same physical conditionsScaling to smaller dimensions with same physical conditionsNa+ release from a waste through a cementitious

    barrier into a clayey soil16

    10

    12

    14

    ol/l

    )

    4

    6

    8

    Na+

    (m

    o

    0

    2

    4

    0 0 02 0 04 0 06 0 08 0 1 0 120 0.02 0.04 0.06 0.08 0.1 0.12

    depth (m)Na+ t=0.05d Na+ t=0.4d Na+ t=4d Na+ t=18dNa+ t=144d Na+ t=243d Na+ t=576d Na+ t=1222d

    814-7-2009

    Steady state condition established within 2 years

  • K l f t th h titi b iK+ release from a waste through a cementitious barrier into a clayey soil

    0.45

    0.5

    0 25

    0.3

    0.35

    0.4

    mol

    /l)

    0.1

    0.15

    0.2

    0.25

    K+

    (m

    0

    0.05

    0 0.02 0.04 0.06 0.08 0.1 0.12

    depth (m)depth (m)K+ t=0.05d K+ t=0.4d K+ t=4d K+ t=18dK+ t=144d K+ t=243d K+ t=576d K+ t=1222d

    914-7-2009

    In spite of higher K level in barrier steady state condition established within 2 years

  • Illustration of the importance of more detailed chemistrydetailed chemistry

    Geochemical speciation modeling based on pH dependence test results taking mineral precipitation, clay interaction, sorption on g p p y pironoxides, incorporation in ettringite and interaction with particulate and dissolved organic matter into account.

    Sorption parameters for particulate and dissolved organic matter for U and Th based on the generic parameters derived by Milne t l 2003 f th Ni D d let al, 2003 for the Nica Donnan model.

    1014-7-2009

  • Standardisation:

    Characterisation leaching tests

    GRANULAR MATERIALS

    or pH DEPENDENCE TEST BATCH MODE

    Standardisation: CEN/TC292, ISO/TC190, CEN/TC345, CEN/TC351, SW846

    PERCOLATION LEACHING TEST CEN TS 14405 or EPA method 1314

    TEST: BATCH MODE ANC, CEN/TS 14429, or EPA method 1313or, COMPUTER CONTROLLED CEN/TS

    MONOLITHIC MATERIALS

    CO O C / S14997

    TANK LEACH TEST MONOLITH CEN/TS

    15863 and EPA method 1315 and COMPACTED

    GRANULAR LEACH TEST

    Same as granular + GRANULAR LEACH TEST

    (NEN 7347 and EPA method 1313).

    Chemical speciation aspects Time dependent aspects of release

    +

    1114-7-2009

    Chemical speciation aspects Time dependent aspects of release

  • LeachXS StructureLeachXS Structure

    In the modeling mineral dissolution, sorption on hydrated ironoxides, clay interaction, interaction

    1214-7-2009

    g , p y , y ,with particulate and dissolved organic matter and incorporation in ettringite solid solution.

  • Cement Stabilised Waste Mix

    [Th+4] as function of pH Partitioning liquid-solid, [Th+4] Th+4 fractionation in solution Th+4 fractionation in the solid phase

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    Con

    cent

    rati

    on (

    mol

    /l)

    1.0E-131.0E-12

    1.0E-11

    1.0E-101.0E-09

    1.0E-08

    1.0E-07

    1.0E-061.0E-05

    1.0E-04

    Con

    cent

    rati

    on (

    mol

    /l)

    20%

    40%

    60%

    80%

    100%

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    p

    20%

    40%

    60%

    80%

    100%

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    1.0E-091 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    [Th+4]

    1.0E-141 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Free DOC-bound POM-bound Thorianite

    0%1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Free DOC-bound

    0%1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    POM-bound Thorianite

    [UO2+] as function of pH

    1.0E-04

    /l)

    Partitioning liquid-solid, [UO2+]

    1.0E-05

    1.0E-04

    /l)

    UO2+ fractionation in solution

    100%

    )

    UO2+ fractionation in the solid phase

    100%

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on (

    mol

    /

    1.0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on (

    mol

    /

    0%

    20%

    40%

    60%

    80%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    0%

    20%

    40%

    60%

    80%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    [UO2+] Free DOC-bound POM-bound Carnotite Schoepite Free DOC-bound POM-bound Carnotite Schoepite

    [Cu+2] as function of pH

    1.0E-05

    1.0E-04

    on (

    mol

    /l)

    Partitioning liquid-solid, [Cu+2]

    1.0E-05

    1.0E-04

    ion

    (mol

    /l)

    Cu+2 fractionation in solution

    60%

    80%

    100%

    of t

    otal

    ti

    on (

    %)

    Cu+2 fractionation in the solid phase

    60%

    80%

    100%

    of t

    otal

    ti

    on (

    %)

    1.0E-07

    1.0E-06

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    o

    SWD_SR2 (P,1,1) [Cu+2]

    1.0E-08

    1.0E-07

    1.0E-06

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    Free DOC-bound POM-bound FeOxide Cu[OH]2[s]

    0%

    20%

    40%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    oco

    ncen

    trat

    Free DOC-bound

    0%

    20%

    40%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    oco

    ncen

    trat

    POM-bound FeOxide Cu[OH]2[s]

    1314-7-2009

    Information also relevant for stabilisation of contaminated soil

  • Granulated blast furnace slag – fly ash cement mortar

    [Th+4] as function of pH Partitioning liquid-solid [Th+4] Th+4 fractionation in solution Th+4 fractionation in the solid phase[Th+4] as function of pH

    1.0E-07

    1.0E-06

    1.0E-05

    Con

    cent

    rati

    on (

    mol

    /l)

    Partitioning liquid solid, [Th+4]

    1 0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    Con

    cent

    rati

    on (

    mol

    /l)

    Th+4 fractionation in solution

    20%

    40%

    60%

    80%

    100%

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    Th+4 fractionation in the solid phase

    20%

    40%

    60%

    80%

    100%

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    1.0E-081 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    [Th+4]

    1.0E-14

    1.0E 13

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    CFree DOC-bound POM-bound

    0%1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Free DOC-bound

    0%1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    POM-bound

    [UO2+] as function of pH

    1.0E-05

    l)

    Partitioning liquid-solid, [UO2+]

    1 0E 06

    1.0E-05

    /l)

    UO2+ fractionation in solution

    100%

    UO2+ fractionation in the solid phase

    100%

    1.0E-11

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on (

    mol

    /l

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on (

    mol

    /

    0%

    20%

    40%

    60%

    80%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    0%

    20%

    40%

    60%

    80%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    p

    [UO2+]Free DOC-bound POM-boundEttringite Tyuyamunite Uranophane

    p

    Free DOC-bound

    p

    POM-bound Ettringite Tyuyamunite Uranophane

    [Cu+2] as function of pH

    1.0E-06

    1.0E-05

    n (m

    ol/l

    )

    Partitioning liquid-solid, [Cu+2]

    1.0E-06

    1.0E-05

    n (m

    ol/l

    )

    Cu+2 fractionation in solution

    60%

    80%

    100%

    f to

    tal

    on (

    %)

    Cu+2 fractionation in the solid phase

    60%

    80%

    100%

    f to

    tal

    on (

    %)

    1.0E-09

    1.0E-08

    1.0E-07

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on

    HOL12 (P,1,1) [Cu+2]

    1.0E-09

    1.0E-08

    1.0E-07

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on

    Free DOC-bound POM-bound FeOxide Tenorite

    0%

    20%

    40%

    60%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    oco

    ncen

    trat

    io

    Free DOC-bound

    0%

    20%

    40%

    60%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    oco

    ncen

    trat

    io

    POM-bound FeOxide Tenorite

    1414-7-2009

    Cement mortars and concrete not inorganic: non-negligible organic matter content!

  • CLAYEY SOIL

    [Th+4] as function of pH Partitioning liquid-solid [Th+4] Th+4 fractionation in solution Th+4 fractionation in the solid phase[Th+4] as function of pH

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    Con

    cent

    rati

    on (

    mol

    /l)

    Partitioning liquid solid, [Th+4]

    1 0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    Con

    cent

    rati

    on (

    mol

    /l)

    Th+4 fractionation in solution

    20%

    40%

    60%

    80%

    100%

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    Th+4 fractionation in the solid phase

    20%

    40%

    60%

    80%

    100%

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    1.0E-101 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    [Th+4] - L/S=10 [Th+4]-L/S=0.2

    1.0E-14

    1.0E 13

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    CFree DOC-bound POM-bound

    0%1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Free DOC-bound

    0%1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    POM-bound

    [UO2+] as function of pH

    1 0E 04

    1.0E-03

    l)

    Partitioning liquid-solid, [UO2+]

    1 0E 06

    1.0E-05

    )

    UO2+ fractionation in solution

    90%

    100%

    UO2+ fractionation in the solid phase

    100%

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on (

    mol

    /l

    1.0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on (

    mol

    /l)

    0%

    10%20%

    30%

    40%50%

    60%

    70%

    80%90%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    0%

    20%

    40%

    60%

    80%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    of

    tota

    l co

    ncen

    trat

    ion

    (%)

    p

    [UO2+] [UO2+] - L/S=0.2

    pH

    Free DOC-bound POM-bound Clay

    p

    Free DOC-bound

    p

    POM-bound Clay

    [Cu+2] as function of pH

    1.0E-03

    1.0E-02

    1.0E-01

    1.0E+00

    ion

    (mol

    /l)

    Partitioning liquid-solid, [Cu+2]

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    n (m

    ol/l

    )

    Cu+2 fractionation in solution

    60%

    80%

    100%

    f to

    tal

    on (

    %)

    Cu+2 fractionation in the solid phase

    60%

    80%

    100%

    f to

    tal

    on (

    %)

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rat

    Zinc_Soil (P,1,2) [Cu+2] - L/S=10Zinc_Soil (C,1,1) [Cu+2] - L/S=0.2

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Con

    cent

    rati

    on

    Free DOC-bound POM-bound FeOxide Clay

    0%

    20%

    40%

    60%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    oco

    ncen

    trat

    io

    Free DOC-bound

    0%

    20%

    40%

    60%

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

    pH

    Frac

    tion

    oco

    ncen

    trat

    io

    POM-bound FeOxide Clay

    1514-7-2009

    Soil system dominated by dissolved and particulate organic matter interaction

  • PROFILE WASTE- CEMENTITIOUS BARRIER - SOIL

    I t ifi tiDiffusion Case Stabilised Waste - CEM II GBFS-FA - Soil OXIDISED/ CARBONATEDLayer overview

    Material Stabilised waste GBFS-FA-Mortar SoilLength 5 00 2 00 5 00 cm

    Input specification

    Length 5.00 2.00 5.00 cmPorosity frc 0.40 0.10 0.35Tortuosity 3.00 10.00 2.00Density 1.70 2.40 1.70 kg/dm³

    H 10 1 11 5 6 5pH 10.1 11.5 6.5

    pe 15 15 15

    In the modeling mineral dissolution, sorption on hydrated ironoxides, clay interaction, interaction with particulate and dissolved organic matter and incorporation in ettringite solid solutionsolution.

    Typically 44100 variables, 192565 expressions, 118 equations

    1614-7-2009

  • PROFILE WASTE- CEMENTITIOUS BARRIER - SOIL

    Distribution profile for Al+3 after 6 days Distribution profile for Ca+2 after 6 daysp y

    1.0E-03

    1.0E-02

    1.0E-01

    1.0E+00

    1.0E+01

    on (

    mol

    /l)

    Stabilised Waste Concrete Soil

    p y

    1.0E-02

    1.0E-01

    1.0E+00

    1.0E+01

    1.0E+02

    tion

    (m

    ol/l

    )

    Stabilised Waste Concrete Soil

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    Con

    cent

    rati

    o

    1.0E-06

    1.0E-05

    1.0E-04

    1.0E-03

    0.00 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11

    Con

    cent

    ra

    1.0E-090.00 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11

    depth (m)

    Free DOC-bound POM-bound Clay Ettringite AA_Gibbsite Albite[low] Kaolinite

    depth (m)Free DOC-boundPOM-bound ClayEttringite AA_2CaO_Fe2O3_SiO2_8H2O[s]AA_Calcite AA_Gypsum

    Distribution profile for Sr+2 after 6 days

    1.0E-01S bili d W C S il

    Distribution profile for Na+ after 6 days

    1.0E+02Stabilised Waste Concrete Soil

    1.0E-04

    1.0E-03

    1.0E-02

    rati

    on (

    mol

    /l)

    Stabilised Waste Concrete Soil

    1.0E-02

    1.0E-01

    1.0E+00

    1.0E+01

    trat

    ion

    (mol

    /l)

    Stabilised Waste Concrete Soil

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    0.00 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11

    Con

    cent

    r

    1.0E-06

    1.0E-05

    1.0E-04

    1.0E-03

    0.00 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11

    depth (m)

    Con

    cent

    1714-7-2009

    depth (m)

    Free DOC-bound POM-bound FeOxide Clay Ettringite BaSrSO4[50%Ba] Strontianite

    depth (m)

    Free DOC-bound POM-bound Clay Albite[low]

  • PROFILE WASTE- CEMENTITIOUS BARRIER - SOIL

    Distribution profile for Th+4 after 6 days

    1.0E-04

    1.0E-03

    Stabilised Waste Concrete Soil

    Distribution profile for UO2+ after 6 days

    1.0E-03

    1.0E-02

    Stabilised Waste Concrete Soil

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    entr

    atio

    n (m

    ol/l

    )

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    entr

    atio

    n (m

    ol/l

    )1.0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    0.00 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11

    Con

    ce

    1.0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-09

    0.00 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11

    Con

    ce

    depth (m)

    DOC-bound POM-bound Thorianite

    depth (m)

    Free DOC-bound POM-bound Carnotite

    Association with DOC important for release

    1814-7-2009

    p

  • Predominance diagrams

    Projected very long t

    Technetium

    term condition –carbonated and a doxidised

    Initial condition –alkaline and reducing

    1914-7-2009

  • Carbonation leads to alterations in the releaseCarbonation leads to alterations in the release behaviour as a result of the pH change that is brought about

    CarbonationCarbonationThe effect of carbonation on release is illustrated by

    CO2CO2CO2

    modeling, including an evaluation of uncertainty in the model prediction.

    CO2CO2CO2The data are placed in perspective to actually measured test data for > 70

    carbonation frontcarbonation frontcarbonation front different cement mortars (Portland as well as different types of blended cements)

    2014-7-2009

  • Stochastically varied input parameters for modeling of pH dependence leaching test data for cement mortars

    • Total available concentration (10%)

    • pH (0.1 unit)p ( )

    • Pe (2 units)

    • All reaction constants (15%)

    • Ionic strength (20%)

    • Gaussian distribution

    • 2000 simulations in the pH range 2-13

    2114-7-2009

    2000 simulations in the pH range 2 13

  • Solubility of Ca in cement mortars as function of pH

    With CarbonateWithout Carbonate100000000100000000

    10000000

    a] (µ

    g/l)

    10000000

    a] (µ

    g/l)

    1000000

    [Ca

    1000000

    [Ca

    1000002 4 6 8 10 12

    pH

    1000002 4 6 8 10 12

    pH

    2214-7-2009

  • Solubility of SO4 as S in cement mortars as function of pH

    Without Carbonate With Carbonate

    100000

    1000000

    100000

    1000000

    10000

    100000

    S] (µ

    g/l)

    10000

    100000

    [S] (

    µg/l)

    1000[S

    1000

    [

    1002 4 6 8 10 12

    pH

    1002 4 6 8 10 12

    pH

    2314-7-2009

    Ettringite

  • Solubility of Si in cement mortars as function of pH

    Without Carbonate With Carbonate

    1000000

    10000000

    1000000

    10000000

    10000

    100000

    [Si]

    (µg/

    l)

    10000

    100000

    [Si]

    (µg/

    l)

    100

    1000

    2 4 6 8 10 12100

    1000

    2 4 6 8 10 12 2 4 6 8 10 12pH

    2 4 6 8 10 12pH

    2414-7-2009

  • CONCLUSIONSCONCLUSIONS- Both physical and chemical changes in the waste form and cement barrier are of importance to properly assess release to thebarrier are of importance to properly assess release to the environmental.

    - For non-reacting species a steady state condition of release through the barrier develops within a few years for saturated conditions Forthe barrier develops within a few years for saturated conditions. For unsaturated conditions this takes in the order of a hundred years.

    - Carbonation and oxidation lead to important changes in release b h i f b A h l d i f i ibehaviour of substances. As these processes lead to moving fronts it is difficult to capture the release in a Kd describing contaminant behaviour of the entire waste form, the barrier or the soil.

    2514-7-2009

  • CONCLUSIONSCONCLUSIONS- Gaining insight in more detailed chemical interactions is of importance as mobilisation in the form of dissolved complexes mayimportance as mobilisation in the form of dissolved complexes may occur. Currently, organic matter interaction is not considered.

    - The binding potential of hydrated ironoxide (formed in situ upon oxidation of reduced Fe in both waste and barrier) for radionuclides ofoxidation of reduced Fe in both waste and barrier) for radionuclides of interest is important for retention within the containment under oxidised/carbonated conditions.

    U d Th i h d l li i d d f h- U and Th in the present model runs are preliminary and need further verification by measurement of actual release behaviour from size reduced stabilised waste. In case of U and Th, this is possible with stable isotopes For Tc this is obviously not possiblestable isotopes. For Tc this is obviously not possible.

    - Therefore, carrying out a pH dependence test on cement stabilised radioactive waste is highly recommended to provide better insight in

    2614-7-2009

    release controlling processes.

  • CONCLUSIONSCONCLUSIONS- More detailed chemical characterization provides the means to design for retention of contaminants in the waste or the design of adesign for retention of contaminants in the waste or the design of a chemical barrier in addition to physical containment.

    - Although calculation times with complex chemistry are long compared to Kd type calculations it is possible to model release under definedto Kd type calculations, it is possible to model release under defined conditions along the projected path as defined in a pe – pH diagram (resulting from carbonation and oxidation). More complete consideration of chemical processes also provides more robustconsideration of chemical processes also provides more robust understanding of non-linear process coupling and for improved design.

    - Optimization of calculation efficiency. Balance complex models with simplified models Preferably justified simplification based onsimplified models. Preferably justified simplification based on understanding the underlying processes.

    2714-7-2009