spire fourier-transform spectrometer basicsherschel.esac.esa.int/.../ivan_fts_dpw_feb2012.pdf ·...

41
PACS HSC DP workshop 20-24 Feb 2012 SPIRE Fourier-Transform Spectrometer Basics Ivan Valtchanov (HSC) with the help Ed Polehampton, Ros Hopwood, Nanyao Lu and the SPIRE ICC and the NHSC

Upload: others

Post on 10-Oct-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

SPIRE Fourier-Transform Spectrometer Basics

Ivan Valtchanov (HSC) with the help Ed Polehampton, Ros Hopwood, Nanyao Lu

and the SPIRE ICC and the NHSC

Page 2: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 2

Outline •  FTS basics and observations •  Point-source pipeline •  Mapping observations •  Tentative agenda for Thursday hands-on

session

Page 3: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 3

Intro

•  Please read the SPIRE Data Reduction Guide!

Page 4: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 4

SPIRE Spectrometer Fourier Transform Spectrometer (FTS): The entire spectral coverage of 194-671 µm (447-1545 GHz) is observed in one go!

(SMEC)

(194-313 µm)

(303-671 µm)

NOT USED! now at 4-5K

Page 5: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 5

Two Bolometer Detector Arrays

194 – 313 µm 1545 – 960 GHz

303 – 671 µm 990 – 447 GHz

Beam = 17”- 21” Beam = 29”- 42”

Page 6: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 6

SMEC movement (3.9 cm)

Page 7: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 7

Fourier Transform: Interferogram to Spectrum Interferogram I(x)

Source Spectrum B(σ)

Discrete Fourier Transform: B(σ) = ∑i I(xi) exp(-i2πσxi)

Page 8: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 8

Interferogram in real life

One HR scan

Page 9: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 9

Real World: Finite Interferogram

Fourier Transform

Multiplied by a top hat function

B(σ) ⊗ sin(πσ/Δσ)/(πσ/Δσ)

For unresolved lines: §  A sin[π(σ-σ0)/Δσ]/(π(σ-σ0)/Δσ); §  Flux = A Δσ; §  FWHM = 1.207 Δσ. (Δσ = spectrometer resolution element)

SINC profile

Page 10: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 10

Spectral resolution

The spectral resolution, Δσ, depends on the maximum SMEC scan length L: Δσ = 1/(2L), where L =12.8 cm for High Res.

FTS scanning

Page 11: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 11

Sparse  

Intermediate   Full  

2  beam  spacing  

1  beam  spacing  (4  jiggle  posi3ons)  

1/2  beam  spacing  (16  jiggle  posi3ons)  

FTS spatial sampling modes

Point  source  spectroscopy  (SOF1):  

Jiggle  Mapping  (SOF2):   Raster  Mapping  (SOF1  or  SOF2):  

2’ circle

Page 12: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 12

Observing Modes

Telescope pointing: Single Pointing

Raster

Spatial sampling using an internal jiggle mirror (BSM): Sparse (2 beam spacing)

Intermediate (1 beam spacing)

Full (1/2 beam spacing)

Spectral resolution: High Res (MR): 1.2 GHz; R= 1290 – 370; ΔV = 230 – 800 km/s; Suitable for, e.g., line fluxes.

Medium Res (MR): 7.2 GHz; R = 210 – 60.

Low Res (LR): 25 GHz; R = 62 – 18, Suitable for dust continuum.

High + Low (H+L): Both High and Low scans.

Spectral resolution, Δσ, depends on the maximum SMEC scan length L: Δσ = 1/(2L), where L =12.8 cm for High Res.

L

FTS scanning

Page 13: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 13

Page 14: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 14

SPIRE FTS Observations Each observation is divided into individual Building Blocks:

§  Observations of sparse sampling:

§  All other observations (i.e., intermediate or full spatial sampling or raster):

Initialization

Move BSM

PCAL flash

FTS scans Initialization

End

PCAL flash

+

LOOP OF 1, 4 or 16

At each of the multiple telescope pointings (if a raster map):

Move BSM FTS scans

+

+

+ End

Your data is taken here!

Pipeline data processing just loops through individual FTS scan BB’s.

Page 15: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 15

FTS pipeline flowchart SPIRE DRG Figure 6.31

Page 16: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 16

Level 1 products: •  unmodified interfergrams •  average spectrum (apodized) •  average spectrum (unapodized)

Interferograms (stored in Level 1)

Level 0.5 products: •  detector time lines •  scan mirror time line •  house keeping time lines

The FTS Pipeline – Overall Flow Chart SPIRE Common Pipeline

1. Modify Detector Timeline V(t)

2. Create Interferogram V(x)

3. Modify Interferogram V(x)

4. Fourier Transform V(x)->S(σ)

5. Modify Spectra S(σ) (extended source flux cal.)

6. Create Level-2 products

Spectral cube if a mapping obs, or a point-source spectrum for the central detectors (SSWD4/SLWC3)

Page 17: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 17

1st Level Deglitching

Clipping Correction

Time-domain Phase Correction

Bath Temperature Correction

V(t)

V(t)

V(t)

Pipeline Step 1: Modify Timelines

V(t)

V(t)

Level 0.5 Timelines

Modified Level 0.5 Timelines

Non-linearity Correction

V(t)

Bolometer Nonlinearity Table

Bolometer temp. drift corr. product

Detector/electronic time constants

V(t), Voltage as a function of time

Page 18: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 18

Create Interferograms Once time domain processing is complete, the detector signals and SMEC positions can be merged to create interferograms. The created “unmodified” interferograms are also stored in Level 1 in case users want to do their own interferogram-to-spectrum process.

V(t)

Pipeline Step 2: Create Interferograms

Level 0.5 Timelines

V(t)

Unmodified Interferograms V(x)

(Stored in Level 1)

SMEC Positions

x(t')

Pointing P(t'')

Page 19: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 19

Baseline Removal

2nd Level Deglitching

Phase Correction

(Default apodization)

V(x)

V(x)

V(x)

Pipeline Step 3: Modify Interferograms

V(x)

V(x)

(Level 1) Interferograms

Modified Interferogram Products (both unapodized and apodized)

Correct for asymmetry between the two optical paths in the interferometer

Norton Beer Order-1.5 function

Page 20: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 20

Fourier Transform

Apply the Fourier Transform to each interferogram to create a set of spectra for each spectrometer detector. The spectra are in units of V/GHz, not yet flux calibrated.

Pipeline Step 4: Fourier Transform

Spectra

Modified Interferograms

V(x)

Page 21: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 21

Signal in Spectral Domain

@80K @4-5K

Page 22: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 22

Instrument Background Emission

At about 4-5K, instrument emission is only significant at the long wavelength end of SLW (BB peak at 2898 µm.K / T ~ 580 µm – Wien’s law).

Instrument temperature varies with time: Blue: before instrument subtraction

Red: after instrument subtraction

Page 23: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 23

Telescope Emission Sketch of the telescope spectrum as if it is a point source

Your observations are most likely dominated by the telescope emission!

Telescope temperatures vary with time:

Page 24: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 24

Telescope Background Emission: A Typical Case

Telescope + Source

Source only

Telescope model is good to ~ 0.2%, or 1-2 Jy.

Page 25: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 25

Flux calibration Scheme Level-1 spectrum

Brightness in W/m2/Hz/sr assumes extended emission

f = Cpoint I Level-2 spectrum

Flux Density in Jy assumes point-like emission

Telescope RSRF Instrument model and RSRF important for SLW (T ~ 4-5 K)

Telescope model

Point source conversion factor (= Rtel/Rpoint)

I = [S - R instMinst] - Mtel Rtel

1

RSRFs are empirically derived by observing a source with a known spectrum and dividing by a model:

Rtel: Dark Sky (= the telescope) Rpoint: Uranus

25

Signal in Spectral domain

Page

Page 26: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 26

Telescope Background Removal

Vsrc + Vinst + Vtelescope

Pipeline Step 5: Modify Spectra Spectra

Level-1 Spectrum Product

Extended RSRF Extended Flux Calibration

Instrument RSRF + instrument temp. Instrument Background Removal

Telescope RSRF + Telescope temp.

Spectra are all in extended-source calibration at Level 1 (W m-2 Hz-1 sr-1)

RSRF = Relative spectral response function, or flux conversion factor.

Vsrc + Vtelescope

Ssrc + Stelescope

Ssrc

Page 27: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 27

Point Source Flux Conversion (based on Uranus)

Pipeline Step 6: Create Level-2 Products

Point-source spectrum in Jy for central detectors

(SSWD4/SLWC3)

Level 1 Spectra

S(σ) All Other Modes Sparse, Single

Pointing Mode

Spectral Cube Creation

Level 2 Spectral Cube I(σ)

Average spectra

Page 28: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 28

Flux Calibration Accuracy (point source)

•  Calibration Accuracy: –  4 - 6% compared to planet models.

•  Repeatability: –  1.5 - 4% for line flux; –  5 - 7 km/s for line velocity.

•  Cross comparisons with HIFI show up to 20% flux agreement for line fluxes. •  But, continuum flux suffers an additive term of 1-2 Jy uncertainty due to an imperfect telescope emission subtraction.

Page 29: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 29

Flux Calibration

Note: Model fluxes are much more accurate for planets than for asteriods

Page 30: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 30

Extended vs. Point Source Flux Calibration Semi-extended source True point source Fully extended source

Brig

htne

ss

Flux

Den

sity

Page 31: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 31

Beam Profile

Sharp changes in size where feedhorn modes cut in

HIFI beam size

Airy fit

Gauss 2D fit

SSW

SLW Gauss 1D fit

Gauss 1D (thick black line) are the only values given to users in the cal tree

You are good if you have a point source or truly extended source. Tricky if you are in between.

Page 32: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 32

FTS mapping observations

Page 33: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 33

FTS mapping pipeline

Page 34: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 34

SSW   SLW  

SLW  SSW  

1   2  3  4  

Jiggle Patterns

Intermediate  ~1  beam  spacing  

35”  beam  

16”  spacing  

Full  ~1/2  beam  spacing  

2’  FOV  from  HSpot  

19”  beam  

28”  spacing  

14”  spacing  8”  spacing  

35”  beam  

1  2    3  4    

16  15  14  13    

Page 35: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 35

Fully Sampled Positions on Sky

•  Fully sampled observation gives a random looking scatter on the sky

•  Some gaps due to dead detectors in SSW •  Only unvignetted detectors are shown

SSW separation of points ~8” SLW separation of points ~14”

Page 36: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 36

Naive Projection

Positions observed on sky (intermediate sampled 2x2 raster):

Grid with 19” squares (for SSW which has beam size ~17-20”)

19”

Naive Projection is the standard algorithm currently used in the pipeline

(the same as used by the SPIRE Photometer)

Page 37: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 37

Intermediate

Full

SLW SSW

35”

17.5”

19”

9.5”

Coverage

Page 38: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 38

In the final spectral cube:

“flux” = mean of all spectra within square “error” = standard error on the mean “coverage” = number of spectra within square

19”

19”

Each position may have many spectra (repeated scans were not averaged beforehand)

Different detectors can occur within the same grid square

Naive Projection

Empty grid squares are set to NaN

Page 39: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 39

Problems with Naive Projection

•  The Naive algorithm works well for the SPIRE Photometer –  high redundancy – each grid square contains data from many

detectors •  However, there is little (no!) redundancy in our spectrometer

jiggle pattern – often only one point per grid square –  then the error reflects the noise from one detector (std error over

repeated scans) –  However, in the few squares with multiple points (different

detectors), the error also reflects inhomogeneity in source distribution

•  Also, the algorithm does not perform well for recovering the flux of point sources or structure in the map

Page 40: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 40

Spectral map vs Photometer map Photometer 250 µm map contours

Very good continuum match, shown at 1120 GHz

NGC 7023

Page 41: SPIRE Fourier-Transform Spectrometer Basicsherschel.esac.esa.int/.../Ivan_FTS_DPW_Feb2012.pdf · Intro • Please read the SPIRE Data Reduction Guide! PACS HSC DP workshop 20-24 Feb

PACS

HSC DP workshop 20-24 Feb 2012

Page 41

Thursday plan (hands-on) •  Advanced topics, reprocessing

–  Tools for data exploration and analysis •  SDS Explorer •  SpectrumToolbox, line fitting, continuum removal, matching the

photometer points, noise estimation •  Cube analysis toolbox (maps), line maps

–  Optimised background subtraction (faint sources) –  Mapping extended sources, gridding methods

•  Round table, collecting information about each particular FTS project (observations, challenges etc)

•  Case-by-case discussion •  Hands-on •  Wrap up