spatial resolution of non- invasive beam profile monitorbased on optical diffraction radiation a.p....

31
SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr. Lenina 2, Tomsk, Russia e-mail: [email protected] Advanced Beam Dynamicsc Workshop Nanobeam - 2008 May 25-30, 2008, Budker INP, Novosibirsk, Russia

Upload: april-richard

Post on 17-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

SPATIAL RESOLUTION OF NON-INVASIVE BEAM PROFILE

MONITORBASED ON OPTICAL DIFFRACTION RADIATION

A.P. Potylitsyn

Tomsk Polytechnic University,

634050, pr. Lenina 2, Tomsk, Russia

e-mail: [email protected]

Advanced Beam Dynamicsc WorkshopNanobeam - 2008

May 25-30, 2008, Budker INP, Novosibirsk, Russia

Page 2: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

Diffraction radiation approach

Impact parameter, h, – the shortest distance between the target and the particle trajectory

2

h - observation wavelength

FDRBDR

e

h

Diffraction radiation (DR) appears when a charged particle moves in the vicinity of a medium

Page 3: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

Approach for the beam size measurements

e

0y

O D R

Assume a Gaussian beam profile

2y

2

xx

y

yx 2

aaexp

2

1,aG

2sina2

cosa4

cosh8

exp

sina2exp

4

R

dd

Wd

y02

x2x2

x2

2

2y

2

2y

2x

2

2x

20

2x

2

2x

2

2

xslitx

2

2sina2

cosa4

cosh8

exp

sina2exp

4

R

dd

Wd

y02

x2x2

x2

2

2y

2

2y

2x

2

2x

20

2

2

yslity

2

, y is the electron beam size and is its offset with respect to the slit center

xa

2x

2

yarctan

Page 4: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

y

-6 -4 -2 0 2 4 6

0

400

800

1200

1600 b

Imin

Imax

(m)0 5 10 15 20

I min

/ I m

ax

0.00

0.02

0.04

0.06

0.08c

300nm

500nm

700nm

0

200

400

600

800

-4-2

02

4

-4-2

02In

ten

sity

(ar

b. u

nit

s)

y

x

a Beam size effect

Projection

Projected vertical polarization component

2

2

xyyx

2

yy

x

x

ddd

),,(Wd),(S

= 2500

y=0

y=30m

x – x detector angular acceptance

x

Inte

nsi

ty (

arb

. u

nit

s)

Page 5: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

screen monitor

screen monito r

alignment laser

mirror chamber

target chamber

rotatable mirror

CCD

CCD

ICCD

beam line

to beam dump

bendingmagnet

Air Cherenkov counter

collimator

reflecting mirror

beam linealignment laserODR, OTR

lead shielding

reflecting mirror

PMT

polarizeroptical fi lter

mask chamber

bending magnetSR source

gamma rays

Page 6: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

y-10 -5 0 5 10

Inte

nsi

ty d

evid

ed b

y O

TR

0.0

0.2

0.4

0.6

0.8

1.0

OTR

ODR

Measurements of the ODR projected vertical polarization component with PMT

y-10 -5 0 5 10

Inte

nsi

ty d

evid

ed b

y O

TR

0.0

0.2

0.4

0.6

0.8

1.0 OTR

ODR

Experiment

Theory

Optical filter 55020nm

%58I

ImaxOTR

maxODR %62

I

ImaxOTR

maxODR

Page 7: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

Angular acceptance and beam size effect in ODR experiment

Beam size (MW2X, m)0 10 20 30 40 50

Bea

m s

ize

valu

e (

m)

0

10

20

30

40

50

MW2XMW3XODR

y

0.0 0.1 0.2 0.3 0.4

Bea

m s

ize

valu

e (

m)

0

5

10

15

20

25

30

MW2X

MW3X

Page 8: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

Optical transition radiation (OTR) beam size monitor

OTR monitor ODR monitor

Pre-wave zone2a

Page 9: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

We shall introduce Cartesian coordinates on the target, lens and detector using T, L, D indices and use dimensionless variables

2 2, , .T T L L D D

T T L L D D

x X x X x X

y Y y Y y Ya

2 22 21

2 2

2

,

,

exp exp4

aexp , R= , M is magnification

Dx D D

T T L LDy D D

T TT T T

T L T LT T T

D DL L

E x yconst dx dy dx dy

E x y

K x yx x yi x x y y i

y Rx y

x yi x y

M M

Model

Page 10: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

For a rectangular lens with aperture , m L m m L mx x x y y y

One may obtain

.,,,,

sinsin

4

expexp

mDTmDTx

DT

DTm

DT

DTm

DTD

DTL

y

yL

x

xL

yyyGxxxGM

yy

M

yyy

M

xx

M

xxx

M

yyiy

M

xxixdydx

m

m

m

m

For M=1 fields on the detector surface may be written:

2 21

2 2

2 2

( , )

( , )

exp , , , , .4

DT T

x D D TT TD

y D D T T T

T Tx T D m T D m

K x yE x y xconst dx dy

E x y y x y

x yi G x x x G y y y

R

Intensity on the detector surface

2 2D Dx yI const E E

2 2m mx y

Page 11: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

a) Normalized shape of OTR source image on the detector plane for lens aperture =100 (left curve) and = 50 (right curve) in wave zone (R = 1);

b) OTR source image in «pre-wave zone» (R = 0.001) for the same conditions and with the same normalizing factors;

c) OTR source image at the fixed lens diameter for different distances between the target and the lens (R = 0.01, = 250 - right curve; R = 0.1, = 25 - left).

OTR image from a single electron(point spread function, PSF)

mrmr

mrmr

Spatial resolution of OTR monitor is defined by the distribution maximum position

max0

3 3D

m

rr

max0 - lens acceptanceLR

a

Dimension variable: max

0

1

2 2Dr

maxDr

maxDr

Page 12: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

max max

max

,tx x x

h y y

• For optical diffraction radiation (ODR) there are 2 dimension parameters – wavelength and impact parameter h

• Which one is defined a spatial resolution?

• To obtain an intensity of ODR on detector surface one have to integrate ODR field on the target surface:

Page 13: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

A Very High Resolution Optical Transition Radiation Beam Profile Monitor // Ross M. et al. SLAC-PUB-9280 July 2002

10FWHM 5.8FWHM

Page 14: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam

A. H. Lumpkin, W. J. Berg, N. S. Sereno, D.W. Rule,* and C.-Y. YaoPHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10,

022802 (2007)

E = 7 GeV = 0.8 mh = 1.25 mm

1375 200x ym m

Page 15: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

0.2 0.15 0.1 0.05

1000

2000

3000

4000

5000

6000

7000

EyD2

m m, 100x y

m m, 50x y

m m, 25x y

y D

8Lens aperture

I

Lens aperture

PSF for ODR case (perpendicular to target edge)

h = 0.1

x = 0D

-h – ODR target edge image

arb.

uni

ts

Page 16: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

m m, 25x y

m m, 50x y

Points - lens aperture

Lens aperture

PSF for ODR case (parallel to target edge)

Dx0.15 0.1 0.05 0.05 0.1 0.15

1000

2000

3000

4000

5000Ey

D2

0.17dy

I , arb. units

Dx0.2 0.1 0.1 0.2

500

1000

1500

2000

2500

EyD2

0.14dy

I , arb. units

h = 0.1

h = 0.1

Page 17: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

0.2 0.1 0.1 0.2

0.2

0.4

0.6

0.8

1 2 2D Dx yI E E

2DxE

2DyE

Dx

y-PSF

x-PSF

0.05

0.06D

h

y

To simplify all calculations we shall use the approximation ,m mx y

PSF for both ODR polarized components

Page 18: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

2

0

2

2

1.5

1

0.5

0

0

0.5

1

1.5

2

2

0

2

2

0

2

2

1.5

1

0.5

0

0

0.2

0.4

2

0

2

Significant broadening of deep (for ) and peak (for ) is observed with increasing of impact parameter h

2DxE2D

yEDx

DyDx

Dy

0.5h 2DxE

2DyE

2D PSF for ODR case

Page 19: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

0.4 0.2 0.2 0.4xD

0.2

0.4

0.6

0.8

1Ey

D2

0.05h 0.1h

0.2h

, arb. units

FWHM

0.6 0.4 0.2 0.2 0.4 0.6xD

0.2

0.4

0.6

0.8

1Ex

D2 , arb. units

0.05h

0.1h

0.2h

Characteristics of y-PSF and x-PSF

Page 20: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

FWHMFWHM

FWHM

h

y

Almost linear dependence of FWHM and on impact parameter

Dependence on impact parameter

Page 21: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

0.750.50.25 0.25 0.5 0.75xD

2468

101214

EyD2 , arb. units

For small offset relative to optical axes distributions remain the same

PSF dependence on particle offset

0.750.50.25 0.25 0.5 0.75xD

0.5

1

1.5

2

2.5

ExD2, arb. units

Page 22: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

0.2 0.1 0.1 0.2

xD

0.2

0.4

0.6

0.8

1I

2DxE

2DyE

800

13700

100

50x

nm

h

800

13700

100

20x

nm

h

0.2 0.1 0.1 0.2xD

0.2

0.4

0.6

0.8

1I

2DxE

2DyE

“Smoothing” of PSF due to beam size

Page 23: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

100 200 300 400 500XD, m

0.2

0.4

0.6

0.8

1I

50 m

20 m

, arb. units

Dependence of smoothed PSF on beam size

Developed model E = 7 GeV = 0.8 h = 100 m

Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam

A. H. Lumpkin, W. J. Berg, N. S. Sereno, D.W. Rule,* and C.-Y. Yao//

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 022802 (2007)

Page 24: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

400 200 200 400

XD, m

0.2

0.4

0.6

0.8

1

ExD2

50 m

20 m

, arb. units

Smoothed x-PSF for different beam sizes

Page 25: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

600 400 200 200 400 600

xD

0.2

0.4

0.6

0.8

1

ExD2 , arb. units

50 m

20 m

80 m

Smoothed of deep for different

h = 100 m = const

Page 26: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

20 40 60 80 100 ,

0.2

0.4

0.6

0.8

R

Ratio as a tool for beam size measurements

max min

max min

x x

x x

I IR

I I

800

13700

100

nm

h

Page 27: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

600 400 200 200 400 600xD

0.2

0.4

0.6

0.8

1

ExD2

50h

100h

, arb. units

200h

Dependence of x-component image on impact parameter

50 const 800

13700

nm

Page 28: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

ODR imaging of a slit

Page 29: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

PSF – x, PSF-y for slit

Page 30: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

Conclusion• 1.The model developed allows to obtain 2D- and 1D-distributions

of an ODR intensity on detector as well as distributions of both polarized components for beam with finite transversal sizes.

• 2.The ODR distribution from single electron (point spread function, PSF) is defined by impact parameter h only (if h>> ).

• 3.Polorized components of PSF may provide higher spatial sensitivity in contrast with total PSF.

• 4.The deep shape of polarized ODR x-component depends on a transverse beam size along target edge.

• 5.Measurements of deep ”smoothing” allows to achieve a spatial resolution (i.e. for )

• 6.For impact parameter there may be lost ~ 60% of a total ODR intensity measuring ODR X-component only.

50 H m0.2x H 0.1 / 2h 10 x m

Page 31: SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, 634050, pr

Thanks for yourattention!