Прикладная Гидрогеология tomsk polytechnic university tomsk, russian...

53
Applied Hydrogeology Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Upload: jamison-smithers

Post on 14-Dec-2015

236 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Applied Hydrogeology

Прикладная Гидрогеология

Tomsk Polytechnic UniversityTomsk, Russian Federation

Spring Semester 2014

Yoram Eckstein, Ph.D.Fulbright Professor 2013/2014

Page 3: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Applied Hydrogeology

II. Hydrologic Cycle

Page 4: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Qualitative Hydrologic Cycle

Page 5: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Phase diagram of water

Page 6: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

The Hydrologic Equation

inflow = outflow ± change in storage

The principle of mass conservation

Qin = Qout ± ΔS non-steady state ortransient conditions

if ΔS = 0 steady state conditions

Page 7: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Fluxes in Global Hydrologic Cycle

Page 8: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Storage in Global Hydrologic Cycle (in %)

Page 9: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Inventory of the World's water reservoirs

RESERVOIRVOLUME (cubic

kilometres)PERCENTAGE OF

TOTAL

Oceans 1,370,000,000 97.25

Glaciers and Ice Sheets 29,000,000 2.05

Ground-water 9,565,000 0.685

Lakes 125,000 0.01

Rivers 1,700 0.0001

Atmosphere 13,000 0.001

Biosphere 600 0.00001

   

TOTAL 1,408,705,300 100

Page 10: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Inventory of the World's water reservoirs

Page 11: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Global values for the major fluxes between reservoirs.

RESERVOIRS PROCESSFLUX (cubic

kilometres per year)

OCEANS-ATMOSPHERE Evaporation 400,000

Precipitation 370,000

LAND MASSES - ATMOSPHERE

Evaporation 60,000

Precipitation 90,000

LAND MASSES - OCEANS

Runoff 30,000

 

Page 12: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Approximate residence time of water found in various reservoirs.

Res ervoir Approximate Res idence Time Oceans 2500 years Lakes 100 years Sha llow Ground-wate r 200 years Deep Ground-wate r 10,000 years Glacie rs 40 years Seasona l Snow Cover 0.4 year Soil Mois ture 0.2 year Atmosphere 8 days Rivers 16 days

Page 13: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Approximate residence time of water in the Caspian Sea.

Page 14: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Nubian Sandstone Aquifer -the largest reservoir of

“fossil” ground-

water

Page 15: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Nubian Sandstone Aquifer - the largest reservoir of “fossil” ground-water

Page 16: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Nubian Sandstone Aquifer -the largest reservoir of

“fossil” ground-

water

Page 17: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Nubian Sandstone Aquifer -the largest reservoir of

“fossil” ground-

water

Page 19: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Methods of

measurementsPan-Evaporation

Pan evaporation is a measurement that combines or integrates the effects of several climate elements: temperature, humidity, rain fall, drought dispersion, solar radiation, and wind. Evaporation is greatest on hot, windy, dry, sunny days; and is greatly reduced when clouds block the sun and when air is cool, calm, and humid. Pan evaporation measurements enable farmers and ranchers to understand how much water their crops will need.

Page 20: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Methods of

measurementsPan-Evaporation

An evaporation pan is used to hold water during observations for the determination of the quantity of evaporation at a given location. Such pans are of varying sizes and shapes, the most commonly used being circular or square. The best known of the pans are the "Class A" evaporation pan and the "Sunken Colorado Pan". In Europe, India and South Africa, a Symon's Pan (or sometimes Symon's Tank) is used. Often the evaporation pans are automated with water level sensors and a small weather station is located nearby.

Page 21: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Methods of

measurementsEvapo-Transpiration

Transpiration: The release of water from plant leaves

Evapotranspiration is the sum of evaporation from the land surface plus transpiration from plants. Precipitation is the source of all water.

Page 22: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Evapo-Transpiration

Weighing lysimeters

Page 23: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Evapo-Transpiration

Page 24: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation

Methods of measurements

Page 25: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation

Methods of measurements

Page 26: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Methods of measurementsdry precipitation

Page 27: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation over a river basin

cm/time

What is the total volume of water that fell over the basin during the specified time period?

Page 28: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation over a river drainage basin

cm/time

If the rain gauge network would be of uniform density i.e. each gauge would be representative of the same area, then a simple arithmetic average of point-rainfall data for each station would be sufficient to determine the effective uniform depth of precipitation over the drainage basin area.

Page 29: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation over a river drainage basin

Isohyetal method

Isohyets – interpolated contour lines

Page 30: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation over a river drainage basin

Isohyetal method

Effective uniform depth of precipitation = EUDP

𝑬𝑼𝑫𝑷=∑𝒊=𝟎

𝒏

(𝑰 𝒊 ∗ 𝑨𝒊 )

Page 31: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation over a river drainage basin

Construction of Thiessenpolygons

(1) triangulation

Page 32: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation over a river drainage basin

Construction of Thiessenpolygons

(2) bisecting the laterals of

each triangle

Page 33: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Precipitation over a river drainage basin

Construction of Thiessen polygons (3) Connecting the bisector into a

network of polygons

𝑬𝑼𝑫𝑷=∑𝒊=𝟏

𝒏

( 𝑰 𝒊∗ 𝑨𝒊 )

Page 35: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Watershed = drainage basin

Major drainage basin

Sub-basin (minor drainage basin)

Page 36: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Watershed = drainage basin

Page 37: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Stream gauging

𝑸=∑𝒊=𝟏

𝒏

𝒒𝒊

Page 38: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Effluent (or gaining) stream – typical in humid climate zones

Page 39: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Perennial (effluent) stream hydrograph

Page 40: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Influent (or losing) stream – typical in arid climate zones

Page 41: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Ephemeral (influent) stream hydrograph

Page 42: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Stream – gaining during rainy season (e.g., monsoon) and loosing during dry season

Page 43: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Intermittent stream hydrograph

Page 44: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Storm hydrograph components

Page 45: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Storm hydrograph components

Direct precipitation on the stream channel

Page 46: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Storm hydrograph components

Surface overland flow

Page 47: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Storm hydrograph components

Interflow and throughflow

Page 48: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Storm hydrograph components

Baseflow

Page 49: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Baseflow recession on stream hydrograph

Page 50: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Multi-year baseflow recession of one stream

ktoeQQ

Page 51: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Multi-year baseflow recession of one stream

3.21tQV o

tp Vtp – total potential ground-water dischargeQo – baseflow discharge rate at the

beginning of recessiont1 – time during which Qo0.1 Qo

Page 52: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Multi-year baseflow recession of one stream

3.21tQV o

tp Vtp – total potential ground-water dischargeQo – baseflow discharge rate at the

beginning of recessiont1 – time during which Qo0.1 Qo

The volume of potential baseflow, Vt, remaining at some time , t, after the beginning of baseflow recession may be estimated by:

110 tt

tpt

VV

Page 53: Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014

Multi-year baseflow recession of one stream

The difference between the remaining potential ground-water discharge at the end of a given baseflow recession and the total potential ground-water discharge at the beginning of the next recession represents the recharge that takes place between the two recessions.