solution of linear system theory and design 3ed for chi tsong chen

106
Linear System Theory and Design SA01010048 LING QING 1 2.1 Consider the memoryless system with characteristics shown in Fig 2.19, in which u denotes the input and y the output. Which of them is a linear system? Is it possible to introduce a new output so that the system in Fig 2.19(b) is linear? Figure 2.19 Translation: 考虑具有图 2.19 中表示的特性的无记忆系统。其中 u 表示输入,y 表示输出。 下面哪一个是线性系统?可以找到一个新的输出,使得图 2.19(b)中的系统是线性 的吗? Answer: The input-output relation in Fig 2.1(a) can be described as: u a y * = Here a is a constant. It is a memoryless system. Easy to testify that it is a linear system. The input-output relation in Fig 2.1(b) can be described as: b u a y + = * Here a and b are all constants. Testify whether it has the property of additivity. Let: b u a y + = 1 1 * b u a y + = 2 2 * then: b u u a y y * 2 ) ( * ) ( 2 1 2 1 + + = + So it does not has the property of additivity, therefore, is not a linear system. But we can introduce a new output so that it is linear. Let: b y z = u a z * = z is the new output introduced. Easy to testify that it is a linear system. The input-output relation in Fig 2.1(c) can be described as: u u a y * ) ( = a(u) is a function of input u. Choose two different input, get the outputs: 1 1 1 * u a y =

Upload: canlong28

Post on 26-Dec-2015

508 views

Category:

Documents


36 download

DESCRIPTION

Solution of Linear System Theory and Design

TRANSCRIPT

Page 1: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

1

2.1 Consider the memoryless system with characteristics shown in Fig 2.19, in which u denotes the input and y the output. Which of them is a linear system? Is it possible to introduce a new output so that the system in Fig 2.19(b) is linear?

Figure 2.19 Translation: 考虑具有图 2.19 中表示的特性的无记忆系统。其中 u 表示输入,y 表示输出。 下面哪一个是线性系统?可以找到一个新的输出,使得图 2.19(b)中的系统是线性

的吗? Answer: The input-output relation in Fig 2.1(a) can be described as:

uay *=

Here a is a constant. It is a memoryless system. Easy to testify that it is a linear system. The input-output relation in Fig 2.1(b) can be described as:

buay += *

Here a and b are all constants. Testify whether it has the property of additivity. Let:

buay += 11 *

buay += 22 *

then:

buuayy *2)(*)( 2121 ++=+

So it does not has the property of additivity, therefore, is not a linear system. But we can introduce a new output so that it is linear. Let:

byz −=

uaz *= z is the new output introduced. Easy to testify that it is a linear system. The input-output relation in Fig 2.1(c) can be described as:

uuay *)(=

a(u) is a function of input u. Choose two different input, get the outputs:

111 *uay =

Page 2: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

2

222 *uay =

Assure:

21 aa ≠

then:

221121 **)( uauayy +=+

So it does not has the property of additivity, therefore, is not a linear system. 2.2 The impulse response of an ideal lowpass filter is given by

)(2

)(2sin2)(

0

0

tttt

tg−−

=ωω

ω

for all t, where w and to are constants. Is the ideal lowpass filter causal? Is is possible to built the filter in the real world? Translation: 理想低通滤波器的冲激响应如式所示。对于所有的 t,w 和 to,都是常数。理

想低通滤波器是因果的吗?现实世界中有可能构造这种滤波器吗? Answer: Consider two different time: ts and tr, ts < tr, the value of g(ts-tr) denotes the output at

time ts, excited by the impulse input at time tr. It indicates that the system output at time ts is dependent on future input at time tr. In other words, the system is not causal. We know that all physical system should be causal, so it is impossible to built the filter in the real world.

2.3 Consider a system whose input u and output y are related by

>≤

==atfor

atfortutuPty a 0

)(:))(()(

where a is a fixed constant. The system is called a truncation operator, which chops off the input after time a. Is the system linear? Is it time-invariant? Is it causal? Translation: 考虑具有如式所示输入输出关系的系统,a 是一个确定的常数。这个系统称作 截断器。它截断时间 a 之后的输入。这个系统是线性的吗?它是定常的吗?是因果 的吗? Answer: Consider the input-output relation at any time t, t<=a: uy =

Easy to testify that it is linear. Consider the input-output relation at any time t, t>a:

0=y

Easy to testify that it is linear. So for any time, the system is linear. Consider whether it is time-invariable. Define the initial time of input to, system input is u(t), t>=to. Let to<a, so It decides the system output y(t), t>=to:

Page 3: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

3

≤≤

=totherforattfortu

ty0

)()( 0

Shift the initial time to to+T. Let to+T>a , then input is u(t-T), t>=to+T. System output:

0)(' =ty

Suppose that u(t) is not equal to 0, y’(t) is not equal to y(t-T). According to the definition, this system is not time-invariant.

For any time t, system output y(t) is decided by current input u(t) exclusively. So it is a causal system.

2.4 The input and output of an initially relaxed system can be denoted by y=Hu, where H is some mathematical operator. Show that if the system is causal, then

uHPPHuPyP aaaa ==

where Pa is the truncation operator defined in Problem 2.3. Is it true PaHu=HPau? Translation: 一个初始松弛系统的输入输出可以描述为:y=Hu,这里 H 是某种数学运算,

说明假如系统是因果性的,有如式所示的关系。这里 Pa 是题 2.3 中定义的截断函

数。PaHu=HPau 是正确的吗? Answer: Notice y=Hu, so:

HuPyP aa =

Define the initial time 0, since the system is causal, output y begins in time 0. If a<=0,then u=Hu. Add operation PaH in both left and right of the equation:

uHPPHuP aaa =

If a>0, we can divide u to 2 parts:

≤≤

=totherforatfortu

tp0

0)()(

>

=totherfor

atfortutq

0)(

)(

u(t)=p(t)+q(t). Pay attention that the system is casual, so the output excited by q(t) can’t affect that of p(t). It is to say, system output from 0 to a is decided only by p(t). Since PaHu chops off Hu after time a, easy to conclude PaHu=PaHp(t). Notice that p(t)=Pau, also we have:

uHPPHuP aaa =

It means under any condition, the following equation is correct:

uHPPHuPyP aaaa ==

PaHu=HPau is false. Consider a delay operator H, Hu(t)=u(t-2), and a=1, u(t) is a step input begins at time 0, then PaHu covers from 1 to 2, but HPau covers from 1 to 3.

Page 4: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

4

2.5 Consider a system with input u and output y. Three experiments are performed on the system using the inputs u1(t), u2(t) and u3(t) for t>=0. In each case, the initial state x(0) at time t=0 is the same. The corresponding outputs are denoted by y1,y2 and y3. Which of the following statements are correct if x(0)<>0?

1. If u3=u1+u2, then y3=y1+y2. 2. If u3=0.5(u1+u2), then y3=0.5(y1+y2). 3. If u3=u1-u2, then y3=y1-y2.

Translation: 考虑具有输入 u 输出 y 的系统。在此系统上进行三次实验,输入分别为 u1(t), u2(t) 和 u3(t),t>=0。每种情况下,零时刻的初态 x(0)都是相同的。相应的输出表

示为 y1,y2 和 y3。在 x(0)不等于零的情况下,下面哪种说法是正确的? Answer: A linear system has the superposition property:

0221102211

022011 ),()(),()(

)()(tttyty

tttututxtx

≥+→

≥++

αααα

αα

In case 1:

11 =α 12 =α

)0()0(2)()( 022011 xxtxtx ≠=+αα

So y3<>y1+y2. In case 2:

5.01 =α 5.02 =α

)0()()( 022011 xtxtx =+αα

So y3=0.5(y1+y2). In case 3:

11 =α 12 −=α

)0(0)()( 022011 xtxtx ≠=+αα

So y3<>y1-y2. 2.6 Consider a system whose input and output are related by

=−≠−−

=0)1(0

0)1()1(/)()(

2

tuiftuiftutu

ty

for all t. Show that the system satisfies the homogeneity property but not the additivity property. Translation: 考虑输入输出关系如式的系统,证明系统满足齐次性,但是不满足可加性. Answer: Suppose the system is initially relaxed, system input:

)()( tutp α=

a is any real constant. Then system output q(t):

Page 5: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

5

=−≠−−

=0)1(0

0)1()1(/)()(

2

tpiftpiftptp

tq

=−≠−−

=0)1(0

0)1()1(/)(2

tuiftuiftutuα

So it satisfies the homogeneity property. If the system satisfies the additivity property, consider system input m(t) and n(t),

m(0)=1, m(1)=2; n(0)=-1, n(1)=3. Then system outputs at time 1 are:

4)0(/)1()1( 2 == mmr

9)0(/)1()1( 2 −== nns

0)]0()0(/[)]1()1([)1( 2 =++= nmnmy

)1()1( sr +≠

So the system does not satisfy the additivity property. 2.7 Show that if the additivity property holds, then the homogeneity property holds for all rational numbers a . Thus if a system has “continuity” property, then additivity implies homogeneity. Translation: 说明系统如果具有可加性,那么对所有有理数 a 具有齐次性。因而对具有某种

连续性质的系统,可加性导致齐次性。 Answer: Any rational number a can be denoted by: nma /= Here m and n are both integer. Firstly, prove that if system input-output can be described

as following: yx →

then: mymx →

Easy to conclude it from additivity. Secondly, prove that if a system input-output can be described as following: yx →

then:

nynx // →

Suppose: unx →/ Using additivity:

nuxnxn →=)/(*

So: nuy =

nyu /=

Page 6: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

6

It is to say that:

nynx // →

Then:

nmynmx /*/* →

ayax →

It is the property of homogeneity. 2.8 Let g(t,T)=g(t+a,T+a) for all t,T and a. Show that g(t,T) depends only on t-T. Translation: 设对于所有的 t,T 和 a,g(t,T)=g(t+a,T+a)。说明 g(t,T)仅依赖于 t-T。 Answer: Define:

Ttx += Tty −=

So:

2

yxt +=

2yxT −

=

Then:

)2

,2

(),( yxyxgTtg −+=

)2

,2

( ayxayxg +−

++

=

)22

,22

( yxyxyxyxg +−+

−+−+

+=

)0,(yg=

So:

0)0,(),(=

∂∂

=∂

∂xyg

xTtg

It proves that g(t,T) depends only on t-T. 2.9 Consider a system with impulse response as shown in Fig2.20(a). What is the zero-state response excited by the input u(t) shown in Fig2.20(b)?

Fig2.20

Page 7: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

7

Translation: 考虑冲激响应如图 2.20(a)所示的系统,由如图 2.20(b)所示输入 u(t)激励的零状 态响应是什么? Answer: Write out the function of g(t) and u(t):

≤≤−≤≤

=212

10)(

tttt

tg

≤≤−≤≤

=211

101)(

tt

tu

then y(t) equals to the convolution integral:

∫ −=t

drrturgty0

)()()(

If 0=<t=<1, 0=<r=<1, 0<=t-r<=1:

∫=t

rdrty0

)(2

2t=

If 1<=t<=2:

)(ty ∫−

−=1

0

)()(t

drrturg ∫−

−+1

1

)()(t

drrturg ∫ −+t

drrturg1

)()(

)(1 ty= )(2 ty+ )(3 ty+

Calculate integral separately:

)(1 ty ∫−

−=1

0

)()(t

drrturg 10 ≤≤ r 21 ≤−≤ rt

∫−

−=1

0

t

rdr2

)1( 2−−=

t

)(2 ty ∫−

−=1

1

)()(t

drrturg 10 ≤≤ r 10 ≤−≤ rt

∫−

=1

1t

rdr2

)1(21 2−−=

t

)(3 ty ∫ −=t

drrturg1

)()( 21 ≤≤ r 10 ≤−≤ rt

∫ −=t

drr1

)2(2

1)1(22 −

−−=tt

)(ty )(1 ty= )(2 ty+ )(3 ty+ 2423 2 −+−= tt

Page 8: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

8

2.10 Consider a system described by

uuyyy −=−+••••

32

What are the transfer function and the impulse response of the system? Translation: 考虑如式所描述的系统,它的传递函数和冲激响应是什么? Answer: Applying the Laplace transform to system input-output equation, supposing that the

System is initial relaxed:

)()()(3)(2)(2 sYssYsYssYsYs −=−+

System transfer function:

3

132

1)()()( 2 +

=−+

−==

ssss

sYsUsG

Impulse response:

tes

LsGLtg 311 ]3

1[)]([)( −−− =+

==

2.11 Let y(t) be the unit-step response of a linear time-invariant system. Show that the impulse

response of the system equals dy(t)/dt. Translation: y(t)是线性定常系统的单位阶跃响应。说明系统的冲激响应等于 dy(t)/dt. Answer: Let m(t) be the impulse response, and system transfer function is G(s):

ssGsY 1*)()( =

)()( sGsM =

ssYsM *)()( =

So:

dttdytm /)()( =

2.12 Consider a two-input and two-output system described by

)()()()()()()()( 212111212111 tupNtupNtypDtypD +=+

)()()()()()()()( 222121222121 tupNtupNtypDtypD +=+

where Nij and Dij are polynomials of p:=d/dt. What is the transfer matrix of the system? Translation: 考虑如式描述的两输入两输出系统, Nij 和 Dij 是 p:=d/dt 的多项式。系统的

传递矩阵是什么? Answer: For any polynomial of p, N(p), its Laplace transform is N(s). Applying Laplace transform to the input-output equation:

)()()()()()()()( 212111212111 sUsNsUsNsYsDsYsD +=+

)()()()()()()()( 222121222121 sUsNsUsNsYsDsYsD +=+

Page 9: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

9

Write to the form of matrix:

)()(

)()()()(

2

1

2221

1211

sYsY

sDsDsDsD

=

)()(

)()()()(

2

1

2221

1211

sUsU

sNsNsNsN

)()(

2

1

sYsY

=1

2221

1211

)()()()( −

sDsDsDsD

)()(

)()()()(

2

1

2221

1211

sUsU

sNsNsNsN

So the transfer function matrix is:

)(sG =1

2221

1211

)()()()( −

sDsDsDsD

)()()()(

2221

1211

sNsNsNsN

By the premising that the matrix inverse:

1

2221

1211

)()()()( −

sDsDsDsD

exists. 2.11 Consider the feedback systems shows in Fig2.5. Show that the unit-step responses of the positive-feedback system are as shown in Fig2.21(a) for a=1 and in Fig2.21(b) for a=0.5. Show also that the unit-step responses of the negative-feedback system are as shown in Fig 2.21(c) and 2.21(d), respectively, for a=1 and a=0.5.

Fig 2.21 Translation: 考虑图 2.5 中所示反馈系统。说明正反馈系统的单位阶跃响应,当 a=1 时,如

图 2.21(a)所示。当 a=0.5 时,如图 2.21(b)所示。说明负反馈系统的单位阶跃响应

如图 2.21(c)和 2.21(b)所示,相应地,对 a=1 和 a=0.5。

Page 10: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

10

Answer: Firstly, consider the positive-feedback system. It’s impulse response is:

∑∞

=

−=1

)()(i

i itatg δ

Using convolution integral:

∑∞

=

−=1

)()(i

i itraty

When input is unit-step signal:

∑=

=n

i

iany1

)(

)()( nyty = 1+≤≤ ntn

Easy to draw the response curve, for a=1 and a=0.5, respectively, as Fig 2.21(a) and Fig 2.21(b) shown.

Secondly, consider the negative-feedback system. It’s impulse response is:

∑∞

=

−−−=1

)()()(i

i itatg δ

Using convolution integral:

∑∞

=

−−−=1

)()()(i

i itraty

When input is unit-step signal:

∑=

−−=n

i

iany1

)()(

)()( nyty = 1+≤≤ ntn

Easy to draw the response curve, for a=1 and a=0.5, respectively, as Fig 2.21(c) and Fig 2.21(d) shown.

2.14 Draw an op-amp circuit diagram for

uxx

+

−=

42

5042

[ ] uxy 2103 −=

2.15 Find state equations to describe the pendulum system in Fig 2.22. The systems are useful to

model one- or two-link robotic manipulators. If θ , 1θ and 2θ are very small, can you

consider the two systems as linear?

Page 11: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

11

Translation: 试找出图 2.22 所示单摆系统的状态方程。这个系统对研究一个或两个连接的机

器人操作臂很有用。假如角度都很小时,能否考虑系统为线性? Answer: For Fig2.22(a), the application of Newton’s law to the linear movements yields:

)cossin()cos(cos2

2

2

θθθθθθ•••

−−==− mlldtdmmgf

)sincos()sin(sin2

2

2

θθθθθθ•••

−==− mlldtdmfu

Assuming θ and •

θ to be small, we can use the approximation θsin =θ , θcos =1.

By retaining only the linear terms in θ and •

θ , we obtain mgf = and:

umll

g 1+−=

••

θθ

Select state variables as θ=1x , •

= θ2x and output θ=y

uml

xlg

x

+

=•

/11

0/10

[ ]xy 01=

For Fig2.22(b), the application of Newton’s law to the linear movements yields:

)cos(coscos 112

2

112211 θθθ ldtdmgmff =−−

)cossin( 12

11111 θθθθ•••

−−= lm

)sin(sinsin 112

2

11122 θθθ ldtdmff =−

)sincos( 12

11111 θθθθ•••

−= lm

)coscos(cos 22112

2

2222 θθθ lldtdmgmf +=−

)cossin( 12

11112 θθθθ•••

−−= lm )cossin( 22

22222 θθθθ•••

−−+ lm

)sinsin(sin 22112

2

222 θθθ lldtdmfu +=−

)sincos( 12

11112 θθθθ•••

−= lm )sincos( 22

22222 θθθθ•••

−+ lm

Page 12: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

12

Assuming 1θ , 2θ and 1

θ , 2

θ to be small, we can use the approximation 1sinθ = 1θ ,

2sinθ = 2θ , 1cosθ =1, 2cosθ =1. By retaining only the linear terms in 1θ , 2θ and

1

θ , 2

θ , we obtain gmf 22 = , gmmf )( 211 += and:

211

21

11

211

)(θθθ

lmgm

lmgmm

++

−=••

ulmlm

gmmlm

gmm

222

21

211

21

212

1)()(+

+−

+=

••

θθθ

Select state variables as 11 θ=x , 12

= θx , 23 θ=x , 24

= θx and output

=

2

1

2

1

θθ

yy

:

+−+

+−=

4

3

2

1

22212121

1121121

4

3

2

1

0/)(0/)(10000/0/)(0010

xxxx

lmgmmlmgmm

lmgmlmgmm

xxxx

+ u

lm

22/1000

=

01000001

2

1

yy

4

3

2

1

xxxx

2.17 The soft landing phase of a lunar module descending on the moon can be modeled as shown in Fig2.24. The thrust generated is assumed to be proportional to the derivation of m, where m is the mass of the module. Then the system can be described by

mgmkym −−=•••

Where g is the gravity constant on the lunar surface. Define state variables of the system as:

yx =1 , •

= yx2 , mx =3 , •

= my

Find a state-space equation to describe the system. Translation: 登月舱降落在月球时,软着陆阶段的模型如图 2.24 所示。产生的冲激力与 m

的微分成正比。系统可以描述如式所示形式。g 是月球表面的重力加速度常数。定

义状态变量如式所示,试图找出系统的状态空间方程描述。 Answer: The system is not linear, so we can linearize it. Suppose:

Page 13: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

13

+−= ygty 2/2

−••

+−= ygty

−••••

+−= ygy

+= mmm 0

−••

= mm

So:

)( 0

+ mm−••

+− )( yg =

−•

− mk gmm )( 0

+−

+−−−

gmgm0

−••

=ym0

−•

− mk gmgm−

−− 0

−••

=ym0

−•

− mk

Define state variables as:

−−

= yx1 ,

−•−

= yx 2 , −−

= mx3 ,

−•−

= my Then:

•−

•−

•−

3

2

1

x

x

x

=

000000010

3

2

1

x

x

x

+

1/0

0mk−

u

y = [ ]001

3

2

1

x

x

x

2.19 Find a state equation to describe the network shown in Fig2.26.Find also its transfer function. Translation: 试写出描述图 2.26 所示网络的状态方程,以及它的传递函数。 Answer: Select state variables as:

1x : Voltage of left capacitor

2x : Voltage of right capacitor

3x : Current of inductor

Applying Kirchhoff’s current law:

Page 14: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

14

3x = RxLx /)( 32

RxxCu 11+=•

32 xxCu +=•

2xy =

From the upper equations, we get:

CuCRxx //11 +−=•

ux +−= 1

CuCxx //32 +−=•

ux +−= 3

LRxLxx // 323 −=•

32 xx −=

2xy =

They can be combined in matrix form as:

3

2

1

x

x

x

=

−−

110100

001

3

2

1

xxx

+ u

011

[ ]

=

3

2

1

010xxx

y

Use MATLAB to compute transfer function. We type: A=[-1,0,0;0,0,-1;0,1,-1]; B=[1;1;0]; C=[0,1,0]; D=[0]; [N1,D1]=ss2tf(A,B,C,D,1)

Which yields: N1 = 0 1.0000 2.0000 1.0000

D1 = 1.0000 2.0000 2.0000 1.0000 So the transfer function is:

122

12)( 23

2^

+++++

=sss

sssG1

12 +++

=ss

s

Page 15: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

15

2.20 Find a state equation to describe the network shown in Fig2.2. Compute also its transfer matrix.

Translation: 试写出描述图 2.2 所示网络的状态方程,计算它的传递函数矩阵。 Answer: Select state variables as Fig 2.2 shown. Applying Kirchhoff’s current law:

1u = 323121111 xRxLxxxCR ++++••

22211

••

=+ xCuxC

223

= xCx

3231212311 )( xRxLxxuxRu ++++−=•

3231 xRxLy +=•

From the upper equations, we get:

12131 // CuCxx −=•

232 / Cxx =•

12111131112113 ///)(// LuRLuLxRRLxLxx +++−−−=•

2113121 uRuxRxxy ++−−−=

They can be combined in matrix form as:

3

2

1

x

x

x

=

+−−− 12111

2

1

/)(/100/100

LRRLLCC

3

2

1

xxx

+

2

1

11

1

1 /0/1

/100

uu

LR

C

L

[ ]

−−−=

3

2

1

111xxx

Ry + [ ]

2

121

uu

R

Applying Laplace Transform to upper equations:

)(/1/1

)( 1

^

21111

21^

susCsCRRsL

RsLsy++++

+=

)(/1/1)/1)((

2

^

21111

2121 susCsCRRsL

sCRRsL++++

+++

++++

+=

sCsCRRsLRsLsG

21111

21^

/1/1)(

++++

++sCsCRRsL

sCRRsL

21111

2121

/1/1)/1)((

Page 16: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Linear System Theory and Design SA01010048 LING QING

16

2.18 Find the transfer functions from u to 1y and from 1y to y of the hydraulic tank system

shown in Fig2.25. Does the transfer function from u to y equal the product of the two transfer functions? Is this also true for the system shown in Fig2.14?

Translation: 试写出图 2.25 所示水箱系统从u 到 1y 的传递函数和从 1y 到 y 的传递函数。从

u 到 y 的传递函数等于两个传递函数的乘积吗?这对图 2.14 所示系统也是正确的吗?

Answer: Write out the equation about u , 1y and y :

111 / Rxy =

222 / Rxy =

dtyudxA /)( 111 −=

dtyydxA /)( 122 −=

Applying Laplace transform:

)1/(1/ 11

^

1

^sRAuy +=

)1/(1/ 221

^^sRAyy +=

)1)(1/(1/ 2211

^^sRAsRAuy ++=

So:

=^^

/ uy )/(^

1

^uy )/( 1

^^yy

But it is not true for Fig2.14, because of the loading problem in the two tanks.

Page 17: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

3.1consider Fig3.1 ,what is the representation of the vector x with respect to the basis ( )21 iq ?

What is the representation of 1q with respect ro ( )22 qi ?图 3.1 中,向量 x 关于 ( )21 iq 的表

示是什么? 1q 关于 ( )22 qi 的表示有是什么?

If we draw from x two lines in parallel with 2i and 1q , they tutersect at 131 q and 23

8 i as

shown , thus the representation of x with respect to the basis ( )21 iq is ′

38

31

, this can

be verified from [ ]

=

=

=

38

31

1103

3831

31

22 iqx

To find the representation of 1q with respect to ( )22 qi ,we draw from 1q two lines in

parallel with 2q and 2i , they intersect at -2 2i and 223 q , thus the representation of 1q

with respect to ( )22 qi , is ′

232 , this can be verified from

[ ]

=

−=

=

23

22120

23

213

221 qiq

3.2 what are the 1-morm ,2-norm , and infinite-norm of the vectors [ ] [ ]′=′−= 111,132 21 xx , 问向量

[ ] [ ]′=′−= 111,132 21 xx 的 1-范数,2-范数和 −∞ 范数是什么?

1max3max

3)111(14)1)3(2(

31116132

2211

21222

222

12221

'121

12

3

1111

====

=++==+−+==

=++==++==

∞∞

=∑

iiii

ii

xxxxxx

xxxx

xxx

3.3 find two orthonormal vectors that span the same space as the two vectors in problem 3.2 ,求与题 3.2 中的两个向量

张成同一空间的两个标准正交向量. Schmidt orthonormalization praedure ,

Page 18: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ] [ ]

[ ]′===−=

′−==′−==

1113

1)(

132141132

2

22212

'122

1

1111

uu

qxqxqxu

uu

qxu

The two orthomormal vectors are

=

−=

111

31

13

2

141

21 qq

In fact , the vectors 1x and 2x are orthogonal because 01221 =′=′ xxxx so we can only

normalize the two vectors

==

−==

111

31

13

2

141

2

22

1

11 x

xq

xx

q

3.4 comsider an mn× matrix A with mn ≥ , if all colums of A are orthonormal , then

mIAA =′ , what can you say abort AA ′ ? 一个 mn× 阶矩阵A( mn ≥ ), 如果A的所有列都是

标准正交的,则 mIAA =′ 问 AA ′是怎么样?

Let [ ] [ ]mnijm aaaaA

×== 21 , if all colums of A are orthomormal , that is

∑=

=≠

==n

ililiii jiif

jiifaaaa

1

'

10

then

[ ]

[ ]

=≠≠≠

=

==

=′

=

=

=

=′

∑∑

=

×==

jiifjiif

aageneralin

aaaa

a

a

a

aaaAA

Iaaaaaa

aaaaaaaaa

a

a

a

AA

jl

m

iil

nnjl

m

iil

m

iii

m

mi

m

mmmm

m

mi

m

10

)(

100010001

1

11

'

'

'2

'1

''2

'

'2

'1

'

'12

'11

'1

''2

'

'

'2

'1

if A is a symmetric square matrix , that is to say , n=m jlil aa for every nli 2,1, =

then mIAA =′

Page 19: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

3.5 find the ranks and mullities of the following matrices 求下列矩阵的秩和化零度

−−=

−=

=

100022104321

011023114

100000010

321 AAA

134)(033)(123)(3)(3)(2)(

321

321

=−==−==−====

ANullityANullityANullityArankArankArank

3.6 Find bases of the range spaces of the matrices in problem 3.5 求题 3.5 中矩阵值域空间的基

the last two columns of 1A are linearly independent , so the set

100

,001

can be used as a

basis of the range space of 1A , all columns of 2A are linearly independent ,so the set

001

122

134

can be used as a basis of the range spare of 2A

let [ ]43213 aaaaA = ,where ia denotes of 3A 4321 aandaandaanda are

linearly independent , the third colums can be expressed as 213 2aaa +−= , so the set

{ }321 aaa can be used as a basis of the range space of 3A

3.7 consider the linear algebraic equation xx −

=

−−

101

213312

it has three equations and two

unknowns does a solution x exist in the equation ? is the solution unique ? does a solution exist if

[ ]′= 111y ?

线性代数方程 xx −

=

−−

101

213312

有三个方程两个未知数, 问方程是否有解?若有解是否

唯一?若 [ ]′= 111y 方程是否有解?

Page 20: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Let [ ],213312

21 aaA =

−−

−= clearly 1a and 2a are linearly independent , so rank(A)=2 ,

y is the sum of 1a and 2a ,that is rank([A y ])=2, rank(A)= rank([A y ]) so a solution x

exists in A x = y

Nullity(A)=2- rank(A)=0

The solution is unique [ ]′= 11x if [ ]′= 111y , then rank([A y ])=3≠ rank(A), that is

to say there doesn’t exist a solution in A x = y

3.8 find the general solution of

=

−−

123

100022104321

x how many parameters do you have ?

求方程

=

−−

123

100022104321

x 的同解,同解中用了几个参数?

Let

=

−−=

123

100022104321

yA we can readily obtain rank(A)= rank([A y ])=3 so

this y lies in the range space of A and [ ]′−= 101 ox p is a solution Nullity(A)=4-3=1 that

means the dimension of the null space of A is 1 , the number of parameters in the general solution

will be 1 , A basis of the null space of A is [ ]′−= on 121 thus the general solution of

A x = y can be expressed an

+

=+=

012

1

1001

ααnxx p for any real α

α is the only parameter 3.9 find the solution in example 3.3 that has the smallest Euclidean norm 求例 3 中具有最小欧氏

范数的解,

Page 21: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

the general solution in example 3.3 is

−−

−+=

+

−+

=

2

1

21

1

21

42

1020

01

11

004

0

ααααα

ααx for

any real 1α and 2α

the Euclidean norm of x is

16168453

)()()42(

212122

21

22

21

221

21

+−−++=

−+−+−++=

αααααα

αααααx

−=⇒

=

=⇒

=−+⇒=∂

=−+⇒=∂

1116114

118

114

1116114

082502

042302

2

1

122

211 x

x

x

α

α

ααα

ααα has the smallest Euclidean

norm , 3.10 find the solution in problem 3.8 that has the smallest Euclidean norm 求题 3.8 中欧氏范数

最小的解,

+

=

012

1

1001

αx for any real α

the Euclidean norm of x is

=⇒=⇒=−⇒=∂

+−=++−+−=

1616365

6102120

2261)2()1( 2222

xx

x

ααα

ααααα

has the

smallest Euclidean norm

3.11 consider the equation ]1[]2[]1[]0[]0[}{ 21 −+−++++= −− nubnubAubAubAxAnx nnn

where A is an nn× matrix and b is an 1×n column vector ,under what conditions on A and b will there

Page 22: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

exist ]1[],1[],[ −nuuou to meet the equation for any ]0[],[ xandnx ?

令 A 是 nn× 的矩阵, b 是 1×n 的列向量,问在 A 和b 满足什么条件时,存在 ]1[],1[],[ −nuuou ,对所有的

]0[],[ xandnx ,它们都满足方程 ]1[]2[]1[]0[]0[}{ 21 −+−++++= −− nubnubAubAubAxAnx nnn ,

write the equation in this form

−−

== −

]0[

]2[]1[

],[]0[}{ 1

u

nunu

bAbAbxAnx nn

where ],[ 1bAbAb n− is an nn× matrix and ]0[}{ xAnx n− is an 1×n column vector , from the equation we

can see , ]1[],1[],[ −nuuou exist to meet the equation for any ]0[],[ xandnx ,if and only if

nbAbAb n =− ],[ 1ρ under this condition , there will exist ]1[],1[],[ −nuuou to meet the equation for any

]0[],[ xandnx .

3.12 given

=

=

=

1321

100

1000020001200012

bbA what are the representations of A with respect to

the basis { }bAbAbAb 32 and the basis { }bAbAbAb 32 , respectively? 给定

=

=

=

1321

100

1000020001200012

bbA 请问 A 关于{ }bAbAbAb 32 和基{ }bAbAbAb 32 的表

示分别是什么?

=⋅=

=⋅=

=

1163224

,

1441

,

1210

232 bAAbAbAAbAbA

we have [ ] [ ]

==∴

+−+−=

710018010

200018000

718208

3232

324

bAbAbAbbAbAbAbA

bAbAbAbbA

thus the representation of A

Page 23: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

with respect to the basis { }bAbAbAb 32 is

=

710018010

200018000

A

bAbAbAbbA

bAbAbAbA

324

432

718208

148

128152

,

1245250

,

1122015

,

1674

+−+−=

=

=

=

=

[ ] [ ]

==∴

710018010

200018000

3232 bAbAbAbbAbAbAbA thus the representation of A with

respect to the basis { }bAbAbAb 32 is

=

710018010

200018000

A

3.13 find Jordan-form representations of the following matrices 写出下列矩阵的 jordan 型表示:

.20250

16200340

.200010101

.342

100010

,300020

1041

4321

−−=

−=

−−−=

= AAAA

the characteristic polynomial of 1A is )3)(2)(1()det( 11 −−−=−=∆ λλλλ AI thus the eigenvelues of 1A are

1 ,2 , 3 , they are all distinct . so the Jordan-form representation of 1A will be diagonal .

the eigenvectors associated with 3,2,1 === λλλ ,respectively can be any nonzero solution of

[ ]

[ ]

[ ]′=⇒=

′=⇒=

′=⇒=

1053

0142

001

3331

2221

1111

qqqA

qqqA

qqqA

thus the jordan-form representation of 1A with respect to

{ }321 qqq is

=

300020001

ˆ1A

the characteristic polynomial of 2A is

Page 24: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

223

22 )1)(1)(1(243()det()( AiiAI −++++=+++=−=∆ λλλλλλλλ has

eigenvalues jandj −−+−− 11,1 the eigenvectors associated with

jandj −−+−− 11,1 are , respectively

[ ] [ ] [ ]′−−′−−′− jjandjj 211211,111 the we have

QAQj

jAandjj

jjQ 21

2

100010001

ˆ

220111111

−=

−−+−

−=

−−−+−−=

the characteristic polynomial of 3A is )2()1()det()( 233 −−=−=∆ λλλλ AI theus the

eigenvalues of 3A are 1 ,1 and 2 , the eigenvalue 1 has multiplicity 2 , and nullity

213)(3)( 33 =−=−−=− IArankIA the 3A has two tinearly independent eigenvectors

associated with 1 , [ ] [ ]

[ ]′−=⇒=−

′=′=⇒=−

1010)(

0100010)(

333

213

qqIA

qqqIA thus we have

QAQAandQ 31

3

200010001

ˆ

100011101

−=

=

−−=

the characteristic polynomial of 4A is 344 )det()( λλλ =−=∆ AI clearly 4A has lnly one

distinct eigenvalue 0 with multiplicity 3 , Nullity( 4A -0I)=3-2=1 , thus 4A has only one

independent eigenvector associated with 0 , we can compute the generalized , eigenvectors

of 4A from equations below

[ ]

[ ]

[ ]′−=⇒=

′−=⇒=

′=⇒=

430

540

0010

3231

2121

111

vvvA

vvvA

vvA

, then the representation of 4A

with respect to the basis { }321 vvv is

−−==

= −

450340

001

000100010

ˆ4

14 QwhereQAQA

Page 25: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

3.14 consider the companion-form matrix

−−−−

=

010000100001

4321 αααα

A show that its

characterisic polynomial is given by 433

23

14)( αλαλαλαλλ ++++=∆

show also that if iλ is an eigenvalue of A or a solution of 0)( =∆ λ then

[ ]133 ′iii λλλ is an eigenvector of A associated with iλ

证明友矩阵 A 的特征多项式 433

23

14)( αλαλαλαλλ ++++=∆ 并且,如果 iλ 是 iλ 的一

个特征值, 0)( =∆ λ 的一个解, 那么向量 [ ]133 ′iii λλλ 是 A 关于 iλ 的一个特征向量

proof:

43223

14

432

31

4

432

1

4321

2

1det

10

det

1001det

100100

det)(

100010001

det)det()(

αλαλαλαλ

λαα

λλ

αλαλ

λλ

ααα

λλ

λαλ

λλ

λααααλ

λλ

++++=

+

++=

−−+

−−+=

−−

−+

=−=∆ AI

if iλ is an eigenvalue of A , that is to say , 0)( =∆ iλ then we have

=

=

−−−−

=

−−−−

111010000100001 2

3

2

3

4

243

22

31

2

34321

i

i

i

I

i

i

i

i

i

i

iii

i

i

i

λλλ

λ

λλλλ

λλ

αλαλαλα

λλλαααα

that is to say [ ]133 ′iii λλλ is an eigenvetor oa A associated with iλ

Page 26: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

3.15 show that the vandermonde determinant

11114321

24

23

22

21

34

33

32

31

λλλλλλλλλλλλ

equals

)(41 ijji λλ −Π ≤<≤ , thus we conclude that the matrix is nonsingular or equivalently , the

eigenvectors are linearly independent if all eigenvalues are distinct ,证明 vandermonde 行列式

11114321

24

23

22

21

34

33

32

31

λλλλλλλλλλλλ

为 )(41 ijji λλ −Π ≤<≤ , 因此如果所有的特征值都互不

相同则该矩阵非奇异, 或者等价地说, 所有特征向量线性无关, proof:

41

241423132412

23132414424142313313

1224142313

2414423133

141312

24142313

2414423133

141312

144133122

142413

2312

22

141312

144133122

142413

2312

22

4321

24

23

22

21

34

33

32

31

))()()()()(()])()()(())()()(()[(

)())(())((

))(())((det

))(())((0))(())((0

det

)()()()()()(

det

11110

)()()(0)()()(0

det

1111

det

≤<≤Π=−−−−−−=

−−−−−−−−−−−=

−⋅

−−−−−−−−

−=

−−−−−−−−−−−

−=

−−−−−−−−−

=

−−−−−−−−−

=

ji

λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ

λλλλλλλλλλλλλλλλλλλλ

λλλλλλλλλλλλλλλλλλλλλλλλ

λλλλλλλλλλλλλλλλλλλλλλλλ

λλλλλλλλλλλλλλλλλλλλλλλλ

λλλλλλλλλλλλ

let a, b, c and d be the eigenvalues of a matrix A , and they are distinct Assuming the matrix is singular , that is abcd=0 , let a=0 , then we have

))()((111

detdet

1111000

det

222

222

333222

333

bcbdcdbcddcbdcb

bcddcb

dcbdcb

dcbdcbdcb

−−−−=

⋅−=

=

and from vandermonde determinant

Page 27: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

))(())()()((

1111000

det

1111

det222

333

2222

3333

bdcdbcdabacbdcddcb

dcbdcb

dcbadcbadcba

−−=−−−−=

=

so we can see

−=

1111000

det

1111000

det222

333

222

333

dcbdcbdcb

dcbdcbdcb

,

that is to say dandcbabdcdbcd ,,,0))(( ⇒=−− are not distinet

this implies the assumption is not true , that is , the matrix is nonsingular let i

q be the

eigenvectors of A , 44332211

qaqAqaqAqaqAqaqA ====

( )

tindependenlinenrlyqqandq

so

dddddcbbbaaa

qqqq

qdqcqbqa

qdqcqbqa

qdqcqbqa

qqqq

iini

nii ⇒=≠=

=

=+++

=+++

=+++

=+++

×

×

×

000

0

1111

0

0

0

0

1

1

44

32

32

32

32

44332211

443

333

223

113

442

332

222

112

44332211

44332211

αα

αααα

αααα

αααα

αααα

αααα

3.16 show that the companion-form matrix in problem 3.14 is nonsingular if and only if

04 ≠α , under this assumption , show that its inverse equals

−−−−

=−

4

3

4

2

4

1

4

1

1100001000010

αα

αα

αα

α

A 证明题 3.14 中的友矩阵非奇异当且仅当

04 ≠α , 且矩阵的逆为

−−−−

=−

4

3

4

2

4

1

4

1

1100001000010

αα

αα

αα

α

A

proof: as we know , the chacteristic polynomial is

432

23

14)det()( αλαλαλαλλλ ++++=−=∆ AI so let 0=λ , we have

Page 28: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

44 )det()det()1()det( α==−= AAA

A is nonsingular if and only if

04 ≠α

−−−−

=∴

=

−−−−

−−−−

=

−−−−

−−−−

4

3

4

2

4

1

4

1

4

4

3

4

2

4

1

4

4321

4

4321

4

3

4

2

4

1

4

1100001000010

1000010000100001

1100001000010

010000100001

1000010000100001

010000100001

1100001000010

αα

αα

αα

α

αα

αα

αα

α

αααα

αααα

αα

αα

αα

α

A

I

I

3.17 consider

=λλλ

λλλ

000

2/2

tTtTT

A with 0≠λ and T>0 show that [ ]′100 is an

generalized eigenvector of grade 3 and the three columns of

=0000002/222

tTTT

Q λλλ

constitute a chain of generalized eigenvectors of length 3 , venty

=−

λλ

λ

001001

1 tAQQ

矩阵 A 中 0≠λ ,T>0 , 证明 [ ]′100 是 3 级广义特征向量, 并且矩阵 Q 的 3 列组成长度

是 3 的广义特征向量链,验证

=−

λλ

λ

001001

1 tAQQ

Proof : clearly A has only one distinct eigenvalue λ with multiplicity 3

Page 29: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

0100

000000000

100

00000

2/0

000000

00

100

)(

000

100

000000

00

100

)(

222

3

2222

2

=

=

=

=−

=

=

=−

TTTT

IA

TTIA

λλλλ

λ

λλλ

these two equation imply that [ ]′100 is a generalized eigenvctor of grade 3 ,

and

=

=

=−

=

=

=−

00

000000

2/0

0)(

0100

00000

2/0

100

)(

2222222

222

TTT

TTT

TT

IA

TT

TTT

IA

λλλ

λλλ

λλ

λ

λλ

λλλ

λ

that is the three columns of Q consititute a chain of generalized eigenvectors of length 3

=

=

=

=

=

λλ

λ

λλλ

λλλ

λλ

λλ

λλ

λλ

λ

λλλ

λλλλ

λλ

λλλ

λλλ

001001

000

2/2/3

001001

1000002/

001001

000

2/2/3

1000002/

000

2/

1

2

22223222

222232222

AQQ

TTTTT

TTT

Q

TTTTT

TTT

TTT

AQ

3.18 Find the characteristic polynomials and the minimal polynomials of the following matrices 求下列矩阵的特征多项式和最小多项式,

)(

000000000000

)(

000000000001

)(

000000010001

)(

000000010001

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

dcba

λλ

λλ

λλ

λλ

λλ

λλ

λλ

λλ

Page 30: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

)()()()()(

)()()()()(

)()()()()(

)()()()()()()(

144

14

213

413

312

412

23

1123

11

λλλλλλ

λλλλλλ

λλλλλλ

λλλλλλλλλλ

−=Ψ−=∆

−=Ψ−=∆

−=Ψ−=∆

−−=Ψ−−=∆

dcba

3.19 show that if λ is an eigenvalue of A with eigenvector x then )(λf is an eigenvalue

of )(Af with the same eigenvector x

证明如果λ是 A 的关于λ的特征向量,那么 )(λf 是 )(Af 的特征值, x 是 )(Af 关于

)(λf 的特征向量,

proof let A be an nn× matrix , use theorem 3.5 for any function )(xf we can define

1110)( −−+++= n

n xxxh βββ which equals )(xf on the spectrum of A

if λ is an eigenvalue of A , then we have )()( λλ hf = and

)()( AhAf =

xfxhxxx

xAAIxAhxAfxxAxxAxxAxAxxAf

nn

nn

kk

)()(

)()()(,,)(

1110

1110

3322

λλλβλββ

βββ

λλλλλλ

==+++=

+++==∴

====⇒

−−

−−

which implies that )(λf is an eigenvalue of )(Af with the same eigenvector x

3.20 show that an nn× matrix has the property 0=kA for mk ≥ if and only if A has

eigenvalues 0 with multiplicity n and index m of less , such a matrix is called a nilpotent matrix

证明 nn× 的矩阵在 0=kA 当且仅当A的 n 重 0特征值指数不大于m ,这样的矩阵被称为

归零矩阵, proof : if A has eigenvalues 0 with multiplicity n and index M or less then the Jordan-form

representation of A is

=

3

2

1

ˆ

JJ

JA where

mnma

nnJ

ii

l

ii

nn

i

ii

≤×

=

= ∑

=

×

1

010

10

from the nilpotent property , we have iki nkforJ ≥= 0 so if

Page 31: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

,iinmamk ×≥≥ liallJ k

i ,,2,10 == and 0ˆ

3

2

1

=

=k

k

k

JJ

JA

then )0)ˆ(0)((0 === AfifonlyandifAfAk

If ,0 mkforAk ≥= then ,0ˆ mkforAk ≥= where

=

3

2

1

ˆ

JJ

JA , nnJ

l

ii

nni

i

i

i

ii

=

= ∑

=

×

111

λλ

λ

So we have

liformnand

linnk

kk

J

ii

ki

ki

nki

ii

ki

ki

ik

i

,2,1,0

,2,10)!1)(1(

! 11

=≤=∴

==

−+−

=

+−−

λ

λλ

λλλ

which implies that A has only one distinct eigenvalue o with multiplicity n and index m or less ,

3.21 given

=

100100011

A , find AteandAA 10310 , 求A的函数 AteandAA 10310 , ,

the characteristic polynomial of A is 22 )1()det()( −=−=∆ λλλλ AI

let 2210)( λβλββλ ++=h on the spectrum of A , we have

2110

21010

010

2110)1()1(

1)1()1(

0)0()0(

ββ

βββ

β

+=⋅′=′

++==

==

hfhfhf

the we have 98,0 220 =−== βββ

=

+

−=

+−=

100100911

100100101

9100100011

8

98 210 AAA

the compute

Page 32: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

1021010

211031

0

2

1

0

21103

210103

0103103

=−==

⇒+=⋅++=

=

βββ

βββββ

βA

=

+

−=

+−=

100100

10211

100100011

102100100011

101

102101 2103 AAA

to compute Ate :

122

1

2 2

1

0

21

210

00

+−=−−=

=⇒

+=++=

=

tt

tt

t

t

etetee

tee

e

ββ

β

βββββ

β

−+−−

=

+−+

−−+

=

++=

t

t

tttt

tttt

At

ee

eteee

eeee

AAIAe

00110

11

100100111

)12(100100011

)22(100010001

2210 βββ

3.22 use two different methods to compute Ate for A1 and A4 in problem 3.13

用两种方法计算题 3.13 中A1和A4 的函数tAAt ee 2,

method 1 : the Jordan-form representation of A1 with respect to the basis

[ ] [ ] [ ]{ }′′′ 105014001 is { }3,2,1ˆ1 diagA =

−−=

=

=

==∴

t

t

ttttt

t

t

ttt

t

t

t

tAtA

ee

eeeee

ee

eeeCd

Cc

ee

eCb

QwhereQQeeCa

3

2

33

3

2

32

1

3

2

0000

)(5)(4

100010541

0000

54

100010541

000000

100010541

100010541

,11

Page 33: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

+−−+

++=

−=

=∴

−−==

=

120250161200

232/541

10010

2/1

450340001

450340

001

000100010

ˆ

22

2

1

4

44

4

tttttttt

ttt

QQee

QwhereQQeA

tAtA

tA

method 2: the characteristic polynomial of 1A is ).3)(2)(1()( −−−=∆ λλλλ let

2210)( λβλββλ ++=h on the spectrum of 1A , we have

)2(21

234

25

33

93)3()3(32)2()2(

)1()1(

323

322

330

22103

2102

10

ttt

ttt

ttt

t

t

t

eee

eee

eee

ehfehf

ehf

+−=

−++−=

+−=

⇒++==′++==++==

β

β

β

ββββββ

βββ

−−=

+−+

−+−+

+−+−

+−=

++=

t

t

ttttt

ttt

ttt

ttt

ttt

ttt

tA

ee

eeeee

eee

eeeeee

eeeeee

AAIe

3

2

32

32

32

32

32

32

212210

0000

)(5)(4

90004040121

)2(21

300020

1041)

234

25(

330003300033

1 βββ

the characteristic polynomial of 4A is 3)( λλ =∆ , let 2210)( λβλββλ ++=h on the

spectrum of 4A ,we have

22

1

0

2:)0()0(

:)0()0(1:)0()0(

β

ββ

=′′=′′

=′=′==

thfthf

hf

Page 34: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

thus

+−−+

++=

+

−−

++=

++=

120250161200

232/541

000000450

2/20250

162002340

22

2

2

241410

4

tttttttt

ttt

tI

AAIe tA βββ

Page 35: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

3.23 Show that functions of the same matrix ; that is )()()()( AfAgAgAf = consequently

we have AeAe AtAt = 证明同一矩阵的函数具有可交换性,即 )()()()( AfAgAgAf = 因

此有 AeAe AtAt = 成立

proof: let 1

110

1110

)(

)(−

−−

+++=

+++=n

n

nn

AAIAfAAIAg

ααα

βββ

( n is the order of A)

kik

k

nkii

n

nk

kik

k

ii

n

k

nnn

nin

n

ii

nin

n

ii

AA

AAAAIAgAf

)()(

)()()(

1

22

0

1

0

2211

1

11

1

0011000

−+−=

=−

=

=

−−−−

=

−−−

=

∑∑∑∑

∑∑

+=

+++++++=

βαβα

βαβαβαβαβαβα

)()()()()()(1

22

0

1

0AgAfAAAgAf k

ik

k

nkii

n

nk

kik

k

ii

n

k=+= −

+−=

=−

=

=∑∑∑∑ βαβα

let AteAgAAf == )(,)( then we have AeAe AtAt =

3.24 let

=

3

2

1

000000

λλ

λC , find a B such that CeB = show that of 0=iλ for some

I ,then B does not exist

let

=

3

2

1

000000

λλ

λC , find a B such that CeB = Is it true that ,for any nonsingular c ,there

exists a matrix B such that CeB = ?

=

3

2

1

000000

λλ

λC 证明若 0111 =⋅⋅ λλλ ,则不存在 B 使 CeB =

=

3

2

1

000000

λλ

λC ,是否对任意非奇异 C 都存在 B 使, CeB = ?

Let λλ λ == ef ln)( so BeBf B == ln)(

Page 36: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

==

3

2

1

ln000ln000ln

lnλ

λλ

CB where 3,2,1,01 => iλ , if 0=λ for some i ,

1lnλ does not exist

for

=

λλ

λ

000001

C we have

=

==λ

λλλ

λλλλ

ln000ln001ln

ln000ln00nlln

lnCB ,

where 0,0 ≤> λλ if then λln does mot exist , so B does mot exist , we can conclude

that , it is mot true that , for any nonsingular C THERE EXISTS a B such that cek =

3.25 let )()(

1)( AsIAdjs

AsI −∆

=− and let m(s) be the monic greatest common divisor of

all entries of Adj(Si-A) , Verify for the matrix 2A in problem 3.13 that the minimal polynomial

of A equals )()( sms∆

令, )()(

1)( AsIAdjs

AsI −∆

=− , 并且令 m(s)是 Adj(Si-A)的所有元素的第一最大公因子,

利用题 3.13 中 2A 验证 A 的最小多项式为 )()( sms∆

verification :

1)()1(00

0)2)(1(0)1(0)2)(1(

)(,200

010101

)2(\)1()()2()1()(

200010001

ˆ

200010101

2

2

33

−=

−−−

−−−−=−

−−

−=−

−−=−−=∆

=

−=

ssmsos

sssss

AsIAdjs

SS

AsI

ssssss

AA

j

we can easily obtain that )()()( smss ∆=j

3.26 Define [ ]122

11

01

)(1)( −−

−−− ++++∆

=− nnnn RsRsRsR

sAsI where

innn RandsssAsIs ααα ++++=−=∆ −− 2

21

12:)det()( are constant matrices theis

Page 37: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

definition is valid because the degree in s of the adjoint of (sI-A) is at most n-1 , verify

IARnARtr

IAAAIARRn

ARtr

IAAIARRARtr

IAIARRARtr

IRARtr

nnn

nnnn

nnnn

αα

ααααα

αααα

ααα

α

+=−=

++++=+=−

−=

++=+=−=

+=+=−=

=−=

−−−−

−−−−

11

122

11

1211

1

212

2121

3

11011

2

00

1

0)(1

)(

2)(

2)(

1)(

where tr stands for the trase of a matrix and is defined as the sum of all its diagonal entries this

process of computing ii Randα is called the leverrier algorithm

定义 ][)(

1:)( 122

11

01

−−−−− ++++

∆=− nn

nn RSRSRSRs

ASI 其中 )(s∆ 是 A 的特征多项

式 innnn RandsssAsIs ααα ++++=−=∆ −− 2

21

1:)det()( 是常数矩阵,这样定义

是有效的, 因为 SI-A 的伴随矩阵中 S 的阶次不超过 N-1 验证

IARnARtr

IAAAIARRn

ARtr

IAAIARRARtr

IAIARRARtr

IRARtr

nnn

nnnn

nnnn

αα

ααααα

αααα

ααα

α

+=−=

++++=+=−

−=

++=+=−=

+=+=−=

=−=

−−−−

−−−−

11

122

11

1211

1

212

2121

3

11011

2

00

1

0)(1

)(

2)(

2)(

1)(

其中矩阵的迹 tr 定义为其对角元素之和, 这种计算 iα 和 iR 的程式被称为 leverrier 算法.

verification:

implieswhichSI

SSSSIARSARRSARRSARRSR

RSRSRSRASI

nnnnn

nnnnnn

nnnn

)()(

)()()(

])[(

12

21

1

1212

121

010

122

11

0

∆=+++++=

+−+−+−+=

++++−

−−−

−−−−−

−−−−

αααα

Page 38: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

][)(

1:)( 122

11

01

−−−−− ++++

∆=− nn

nn RSRSRSRs

ASI ’

where nnnn ssss ααα ++++=∆ −− 2

21

1)(

3.27 use problem 3.26 to prove the cayley-hamilton theorem 利用题 3.26 证明 cayley-hamilton 定理 proof:

IARIARR

IARRIARR

IR

nn

nnn

αα

αα

=−=−

=−=−

=

−−−

1

121

212

101

0

multiplying ith equation by 1+−inA yields ( ni 2,1= )

IARARAAR

ARARAARARA

ARA

nn

nnn

nnn

nnn

nn

αα

α

α

=−=−

=−

=−

=

−−−

−−−

−−

1

122

1

221

12

2

1101

10

then we can see 012

2101

10

12

21

1

=−−++−++=

+++++

−−−−

−−−

nnnnnn

nnnnn

ARRAARRARARAIAAAA

ααααthat is

0)( =∆ A

3.28 use problem 3.26 to show

[ ]IssAssAsAs

AsI

nnnnnn )()()(

)(1

)(

12

113

2122

11

1

−−−−−−

++++++++++∆

=

ααααα

利用题 3.26 证明上式, Proof:

Page 39: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ]IssAssAsAs

IAAASAAA

SIAASIASs

RSRSRSRs

ASI

nnnnnn

nnnn

nnnn

nnn

nnnn

)()()()(

1])(

)()([)(

1

][)(

1:)(

12

113

2122

11

122

11

433

12

321

221

1

122

11

01

−−−−−−

−−−−

−−−−

−−−

−−−−−

++++++++++∆

=

+++++++++

++++++∆

=

++++∆

=−

ααααα

αααααα

ααα

another : let 10 =α

[ ]IssAssAsAs

IAAASAAASIAASIAS

ASASs

ASs

SRs

RSRSRSRs

ASI

nnnnnn

nnnn

nnnn

nnn

n

i

Ini

N

i

Ini

n

ii

n

i

Lli

n

i

inini

nnnn

)()()()(

1])(

)()()(

1)(

1)(

1

][)(

1:)(

12

113

2122

11

122

11

433

12

321

221

1

1

0

11

0

01

1 1

0

1

0

11

122

11

01

−−−−−−

−−−−

−−−−

−−−

=

−−−

=

−−

=

=−

=

−−−−

−−−−−

++++++++++∆

=

+++++++++

++++++

+++∆

=

∆=

∆=

++++∆

=−

∑∑

∑ ∑∑

ααααα

αααααα

ααα

αα

α

3.29 let all eigenvalues of A be distinct and let iq be a right eigenvector of A associated with

iλ that is iIi qqA λ= define [ ]nqqqQ 21= and define

== −

np

pp

QP

2

1

1 :; ,

where ip is the ith row of P , show that ip is a left eigenvector of A associated with iλ , that

is iii pAp λ= 如果 A 的所有特征值互不相同 , iq 是关于 iλ 的一个右特征向量 ,即

iIi qqA λ= ,定义 [ ]nqqqQ 21= 并且

== −

np

pp

QP

2

1

1 :;

其中 ip 是 P 的第 I 行, 证明 ip 是 A 的关于 iλ 的一个左特征向量,即 iii pAp λ=

Page 40: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Proof: all eigenvalues of A are distinct , and iq is a right eigenvector of A associated with iλ ,

and [ ]nqqqQ 21= so we know that 11

3

2

1

ˆ −− ==

= PAPAQQA

λλ

λ

PAPA ˆ=∴ That is

=

=

nnnnn

n p

pp

Ap

ApAp

p

pp

A

p

pp

λ

λλ

λλ

λ

22

11

2

1

2

1

2

12

1

: so iii pAp λ= , that is , ip is a

left eigenvector of A associated with iλ

3.30 show that if all eigenvalues of A are distinct , then 1)( −− ASI can be expressed as

∑ −=− −

iii

pqs

ASIλ

1)( 1 where iq and ip are right and left eigenvectors of A associated

with iλ 证 明 若 A 的 所 有 特 征 值 互 不 相 同 , 则 1)( −− ASI 可 以 表 示 为

∑ −=− −

iii

pqs

ASIλ

1)( 1其中 iq 和 ip 是 A 的关于 iλ 的右特征值和左特征值,

Proof: if all eigenvalues of A are distinct , let iq be a right eigenvector of A associated with iλ ,

then [ ]nqqqQ 21= is nonsingular , and

=−

np

pp

Q

2

1

1: where is a left eigenvector of

A associated with iλ ,

∑ ∑

∑∑

=−−

=

−−

=−−

=

−−

iiiiii

iiiiii

iiiii

iii

pqpqss

pqpqss

Apqpqss

ASIpqs

))((1

)(1)(1

)(1

λλ

λλλ

λ

That is ∑ −=− −

iii

pqs

ASIλ

1)( 1

Page 41: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

3.31 find the M to meet the lyapunov equation in (3.59) with

==

−−

=33

322

10CBA what are the eigenvalues of the lyapunov equation ? is the

lyapunov equation singular ? is the solution unique ? 已知A,B,C,求M 使之满足(3.59) 的 lyapunov 方程的特征值, 该方程是否奇异>解是否唯一?

=⇒=

=+

30

1213

MCM

CMBAM

3)det()()1)(1()det()( +=−=∆++−+=−=∆ λλλλλλλ BIjjAI BA

The eigenvalues of the Lyapunov equation are

jjjj −=+−−=+=++−= 231)231 21 ηη

The lyapunov equation is nonsingular M satisfying the equation

3.32 repeat problem 3.31 for

=

==

−−

=3

333

121

1021 CCBA with two

different C ,用本题给出的 A, B, C, 重复题 3.31 的问题,

αα

αanyforMCM

solutionNoCM

CMBAM

=⇒=

−−

⇒=

−−

=+

31111

1111

2

1

1)()1()( 2 −=∆+=∆ λλλλ BA

the eigenvalues of the lyapunov equation are 01121 =+−==ηη the lyapunov equation is

singular because it has zero eigenvalue if C lies in the range space of the lyapunov equation , then solution exist and are not unique , 3.33 check to see if the following matrices are positive definite or senidefinite 确定下列矩阵

是否正定或者正半定,

332313

322212

312111

201000100

202013232

aaaaaaaaaaaaaaaaaa

Page 42: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

1.

∴<−=−=

202013232

07921332

det is not positive definite , nor is pesitive

semidefinite

2. )21)(21(201

0010

det −−+−=

−λλλ

λλ

λ it has a negative eigenvalue 21− ,

so the second matrix is not positive definite , neither is positive demidefinte ,,

3 the third matrix ‘s prindipal minors ,0,0,0 332211 ≥≥≥ aaaaaa `

0det0det0det0det

332313

322212

312111

3323

3222

3313

3111

2212

2111 =

=

=

=

aaaaaaaaaaaaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

that is all the principal minors of the thire matrix are zero or positive , so the matrix is positive semidefinite , 3.34 compute the singular values of the following matrices 计算下列矩阵的奇值,

−=

5222

0110

21

012101

4221

012101

)6)(1(674)5)(2()( 2 −−=+−=−−−=∆ λλλλλλλ

the eigenvalues of

0110

21

012101

are 6 and 1 , thus the singular values of

−012101

are 6 and 1 ,

=

−20665

4221

4221

)4123

225)(41

23

225(36)20)(5()( −−+−=−−−=∆ λλλλλ the eigenvalues of

−4221

4221

are 4123

22541

23

225

−+ and , thus the singular values of

Page 43: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

−4221

are 70.1)4123

225(70.4)41

23

225( 2

12

1=−=+ and

3.35 if A is symmetric , what is the ralatimship between its eigenvalues and singular values ? 对称矩阵 A 的特征值与奇异值之间有什么关系?

If A is symmetric , then 2AAAAA =′=′ LET iq be an eigenvector of A associated with

eigenvaue iλ that is , ),3,1(, niqqA iii == λ thus we have

),3,1(22 niqqAqAqA iiiiiii ==== λλλ

Which implies 2iλ is the eigenvalue of niforA ,2,12 = , (n is the order of A )

So the singular values of A are || iλ nifor ,2,1= where iλ is the eigenvalue of A

3.36 show [ ] m

n

mmn

n

n babbb

a

aa

I ∑=

+=

+1

212

1

1det

证明上式成立

let [ ]n

n

bbbB

a

aa

A 212

1

=

= A is 1×n and B is n×1

use (3.64) we can readily obtain

[ ] [ ]

∑≤

+=

+=

+

n

mmm

n

nn

n

n

ba

a

aa

bbbIbbb

a

aa

I

1

2

1

211212

1

1

detdet

3.37 show (3.65) 证明(3.65) proof: let

Page 44: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

−−

=

=

=

n

m

n

m

n

m

IsBAIsP

IsBIsQ

IsAIsN 0

0

then we have

−−

=

−=

BAsIAssIQP

sIBsABsI

NPn

m

n

m

00

because

PsPQQPPsPNNP

detdetdet)det(detdetdet)det(

====

we have det(NP)=det(QP)

And )det()det()det()det(

)det()det()det()det(

BAsISBAsIsIQPABsISsIABsINP

nm

nm

mn

nm

−=−=

−=−=

3.38 Consider yxA = , where A is nm× and has rank m is yAAA ′′ −1)( a solution ? if not ,

under what condition will it be a solution? Is yAAA 1)( −′′ a solution ?

nm× 阶矩阵 A 秩为 m , yAAA ′′ −1)( 是不是方程 yxA = 的解? 如果不是, 那么在

什么条件下, 他才会成为该方程的解? yAAA 1)( −′′ 是不是方程的解?

A is nm× and has rank m so we know that nm ≤ , and AA′ is a square matrix of mm×

rankA=m , rank( nmrankAAA ≤=≤′ ) ,

So if nm ≠ ,then rank( AA′ )<n , 1)( −′AA does mot exist m and yAAA ′′ −1)( isn’t a

solution if yxA =

If m=n , and rankA=m , so A is nonsingular , then we have rank( AA′ )=rank(A)=m , and

A yAAA ′′ −1)( =A yyAAA =′′ −− 11 )( that is yAAA ′′ −1)( is a solution ,

RankA=M

∴ Rank( AA′ )=m AA′ is monsingular and 1)( −′AA exists , so we have

yyAAAA =′′ −1)( , that is , yAAA 1)( −′′ is a solution of yxA = ,

Page 45: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

PROBLEMS OF CHAPTER 4 4.1 An oscillation can be generated by 一个振荡器可由下式描述:

XX

=0110

试证其解为:

Show that its solution is )0(cossinsincos

)( Xtttt

tX

=

Proof: )0()0()( 0110

XeXetXt

At

−== ,the eigenvalues of A are j,-j;

Let λββλ 10)( +=h .If teh λλ =)( ,then on the spectrum of A,then

tjtejjh

tjtejjhjt

jt

sincos)(

sincos)(

10

10

−==−=−

+==+=−ββ

ββ then

tt

sincos

1

0

==

ββ

so

=

+

=+=

tttt

ttAIAhcossinsincos

0110

sin1001

cos)( 10 ββ

)0(cossinsincos

)0()0()( 0110

Xtttt

XeXetXt

At

===

4.2 Use two different methods to find the unit-step response of 用两种方法求下面系统的单位阶

跃响应:

UXX

+

−−

=11

2210

[ ]XY 32=

Answer: assuming the initial state is zero state. method1:we use (3.20) to compute

−+

++=

+−

=−−

ss

ssss

AsI2

1222

122

1)( 2

11

then tAt ettt

tttAsILe −−−

−−

+=−=

sincossin2sinsincos

))(( 11 and

)22(5

)22(5)()()( 22

1

++=

++=−= −

sssssssBUAsICsY

then tety t sin5)( −= for t>=0

method2:

Page 46: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

t

tt

tt

Att tA

t tA

te

tetetete

C

BeeCABdeC

dBueCty

−−

−−

−−

=

−−−+

−−=

−==

=

∫∫

sin5

1sin3cos1sin2cos

015.01

)(

)()(

01

0

)(

0

)(

t

tt

t

t

for t>=0 4.3 Discretize the state equation in Problem 4.2 for T=1 and T=π .离散化习题 4.3 中的状态方

程,T 分别取 1 和π Answer:

][][][

][][]1[0

kDUkCXkY

kBUdekXekXT AAT

+=

+=+ ∫ αα

For T=1,use matlab: [ab,bd]=c2d(a,b,1) ab =0.5083 0.3096 -0.6191 -0.1108 bd =1.0471 -0.1821

[ ] ][32][

][1821.0

0471.1][

1108.06191.03096.05083.0

]1[

kXkY

kUkXkX

=

+

−−

=+

for T=π ,use matlab: [ab,bd]=c2d(a,b,3.1415926) ab =-0.0432 0.0000 -0.0000 -0.0432 bd =1.5648 -1.0432

[ ] ][32][

][0432.1

5648.1][

0432.0000432.0

]1[

kXkY

kUkXkX

=

+

−=+

4.4 Find the companion-form and modal-form equivalent equations of 求系统的等价友形和模式

规范形。

UXX

+

−−

−=

101

220101002

[ ]XY 011 −=

Page 47: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Answer: use [ab ,bb,cb,db,p]=canon(a,b,c,d,’companion) We get the companion form ab = 0 0 -4 1 0 -6 0 1 -4 bb = 1 0 0 cb = 1 -4 8 db =0 p =1.0000 1.0000 0 0.5000 0.5000 -0.5000

0.2500 0 -0.2500

UXX

+

−−−

=001

410601400

[ ]XY 841 −=

use use [ab ,bb,cb,db,p]=canon(a,b,c,d) we get the modal form ab = -1 1 0 -1 -1 0 0 0 -2 bb = -3.4641 0 1.4142 cb = 0 -0.5774 0.7071 db = 0 p = -1.7321 -1.7321 -1.7321 0 1.7321 0 1.4142 0 0

UXX

−+

−−−

−=

4142.104641.3

200011011

[ ]XY 7071.05774.00 −=

4.5 Find an equivalent state equation of the equation in Problem 4.4 so that all state variables have their larest magnitudes roughly equal to the largest magnitude of the output.If all signals are required to lie inside 10± volts and if the input is a step function with magnitude a,what is the permissible largest a?找出习题 4.4 中方程的等价状态方程使所有状态变量的最大量几乎等于

输出的最大值。如果所有的信号需要在 10± 伏以内,输入为大小为 a 的的阶跃函数。求所

允许的最大的 a 值。 Answer: first we use matlab to find its unit-step response .we type

Page 48: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

a=[-2 0 0;1 0 1;0 -2 -2]; b=[1 0 1]';c=[1 -1 0]; d=0; [y,x,t]=step(a,b,c,d) plot(t,y,'.',t,x(:,1),'*',t,x(:,2),'-.',t,x(:,3),'--')

0 1 2 3 4 5 6-0.6-0.5-0.4-0.3-0.2-0.1

00.10.20.30.40.50.60.70.80.9

11.11.2

x2

x1

x3

y

so from the fig above.we know max(|y|)=0.55, max(|x1|=0.5;max(|x2|)=1.05,and max(|x3|)=0.52

for unit step input.Define ,,5.0, 332211 xxxxxx === then

UXX

+

−−

−=

101

2405.005.0

002

[ ]XY 021 −=

the largest permissible a is 10/0.55=18.2

4.6 Consider Ubb

XX

+

=

2

1

00λ

λ [ ]XccY 11=

where the overbar denotes complex conjugate.Verify that the equation can be transformed into

XCyuBXAX 1=+=

with [ ])Re(2)Re(21010

11111 cbcbCBA λλλλλ

−=

=

+−

= ,by using the

transformation XQX = with

−−

=11

11

bbbb

Qλλ

。试验证以上变换成立。

Page 49: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Answer: let XQX = with

−−

=11

11

bbbb

Qλλ

,we get

Ubb

XQXQ

+

=

2

1

00λ

λ [ ] XQccY 11=

−−

−=−

11

11

11

1

)(1

bbbb

bbQ

λλλλ

so

UBXAUX

Ubbbb

Xbbbb

bbbb

bb

Ubb

bbbb

bbX

bbbb

bbbb

bb

Ubb

QXQQX

+=

+

+−

=

−−

+

−−

−−

−=

−−

−+

−−

−−

−=

+

= −−

1010

)(0

)(1

)(1

)(1

00

)(1

00

111111

11

12

12

11

11

2

1

11

11

1111

11

11

11

11

2

111

λλλλ

λλλλλλ

λλλλ

λλ

λλλλλλ

λλ

λλλλ

λλ

[ ] [ ] [ ] XCXbcbccbcbXbbbb

ccXQccY 11111111111

111111 =+−−=

−−

== λλλλ

4.7 Verify that the Jordan-form equation

[ ]Xccccccy

U

bbbbbb

XX

321321

3

2

1

3

2

1

11

01

1

=

+

=

λλ

λλ

λλ

can be transformed into

[ ]XCCCyuBBB

XAIA

IAX 3212

2

000

0=

+

=

where iCandBA ,, are defined in Problem 4.6 and 2I is the unit matrix of order 2.

试验证变换成立,其中 iCandBA ,, 是习题 4.6 中定义的形式。 2I 为二阶单位阵。

PROOF: Change the order of the state variables from [x1 x2 x3 x4 x5 x6]’ to [x1 x4 x2 x5 x3 x6]’ And then we get

Page 50: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ] [ ]XCCCXccccccy

uBBB

XAIA

IA

bbbbbb

xxxxxx

xxxxxx

X

321332211

3

2

1

2

2

3

3

2

2

1

1

6

3

5

2

4

1

6

3

5

2

4

1

000

0

11

11

==

+

=

+

=

=

λλ

λλ

λλ

4.8 Are the two sets of state equations

[ ]XyUXX 011011

100220212

−=

+

=

and

[ ]XyUXX 011011

100120112

−=

+

−=

equivalent?Are they zero-state equivalent?上面两组状态方程等价吗?它们的零状态等价吗? Answer:

[ ]

[ ]

2

22

1

11

)2(1

011

)2(00)2(2)1)(2(0)1(2)1()1)(2(

)1()2(011

011

100220212

011)()(ˆ

−=

−−−−−−−−

−−−

=

−−−−−−

−=−=

s

ssssssss

ss

ss

sBAsICsG

[ ]

[ ]

2

22

1

12

)2(1

011

)2(00)2()1)(2(0)1()1()1)(2(

)1()2(011

011

100120112

011)()(ˆ

−=

−−+−−++−

+−−

=

+−−−−−

−=−=

s

ssssssss

ss

ss

sBAsICsG

obviously, )(ˆ)(ˆ21 sGsG = ,so they are zero-state equivalent but not equivalent.

4.9 Verify that the transfer matrix in (4.33)has the following realization:

Page 51: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

U

NN

NN

X

III

IIII

X

r

r

qr

qqr

qq

qq

+

−−

−−

=

−− 1

2

1

1

2

1

00000

0000

αα

αα

[ ]XIY q 000 =

This is called the observable canonical form realization and has dimension rq.It is dual to (4.34). 验证式(4.33)具有如上的实现。这叫做能观标准型实现,维数为 rq。它与式(4.34)对偶。 Answer:

)()(

1)(

)(1,,

)(,

)(

2,2,

)]([

][)(

111

2

2

1

1

11

1

11

1

21

211

rr

qrq

r

q

r

r

ii

iq

r

iiiq

iiii

r

r

NNssd

BAsIC

then

Isd

ZIsd

sZIsd

sZ

thens

ZIZIsZ

ris

ZZriAZsZ

getweAsIZZZC

thenZZZAsIC

define

++=−

===

−=−=

==⇒==

−=

=−

−−

−−

=−

=

∑∑

αα

this satisfies (4.33). 4.10 Consider the 21× proper rational matrix 考虑如下有理正则矩阵

[ ]

[ ]42322

223

1241312

213

11

432

23

1421

1)(ˆ

ββββββββ

αααα

++++++×

+++++=

ssssssssss

ddsG

Show that its observable canonical form realization can be reduced from Problem 4.9 as 试证习题 4.9 种系统的能观标准形实现能降低维数如下表示:

+

−−−−

=

4241

3231

2221

1211

4

3

2

1

000100010001

ββββββββ

αααα

XX

[ ] [ ]UddXy 210001 +=

Answer: In this case,r=4,q=1,so

][],[],[],[,1 42414323132221212111 ββββββββ ===== NNNNI q

Page 52: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

its observable canonical form realization can be reduced from 4.9 to 4.10 4.11 Find a realization for the proper rational matrix求下面正则有理传递函数矩阵的一种实现。

+

−−−

+

−−++

=

+

+−

+−

++−

+=

++−

++−

+=

1100

2634

2322

231

1100

22

13

)2)(1(32

12

212

)2)(1(32

12

)(ˆ

2 sss

ss

sss

s

ss

ss

sss

ssG

so the realization is 4.12 Find a realization for each column of

)(ˆ sG in Problem

4.11,and then

connect them.as shown in fig4.4(a).to obtain a realization of )(ˆ sG .What is the dimension of this

realization ?Compare this dimension with the one in Problem 4.11.求习题 4.11 中 )(ˆ sG 每一列的

实现,在如图 4.4(a)所示把它们连结得到 )(ˆ sG 的一种实现。比较其与习题 4.11 的维数。

Answer:

222

222

2

111

111

1

10

2232

01

0123

10

23

22

)2)(1(1

10

2232

)2)(1(1)(ˆ

10

32

10

32

11

22

11)(ˆ

UXY

UXX

ssss

sss

sG

UXY

UXX

ssssG

C

C

+

−−−

=

+

−−=

+

−−

+

−++

=

+

−−−

++=

+

=

+−=

+

−+

=

−+

=

These two realizations can be combined as

UXY

UXX

+

−−−−−

=

+

−−

−−

=

1100

26233422

00001001

001000012030

0203

Page 53: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

UXY

UXX

+

−−−−

=

+

−−

−=

1100

223322

001001

010230

001

the dimension of the realization of 4.12 is 3,and of 4.11 is 4.

4.13 Find a realization for each row of )(ˆ sG in Problem 4.11 and then connect them,as shown in

Fig.4.4(b),to obtain a realization of )(ˆ sG .What is the dimension of this realization of this

realization?Compare this dimension with the ones in Problems 4.11 and 4.12. 求习题 4.11 中

)(ˆ sG 每一行的实现,在如图 4.4(b)所示把它们连结得到 )(ˆ sG 的一种实现。比较其与习题

4.11、4.12 的维数。 Answer:

[ ] [ ] [ ][ ]

[ ] [ ]

[ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ] 222

222

2

111

111

21

11012623

0213

112623)2)(1(

111)1(2)2(3)2)(1(

1)(ˆ

000134

220213

342223

13242)2)(1(

1)(ˆ

UXY

UXX

sss

ssss

sG

UXY

UXX

sss

ssss

sG

C

C

+=

−−−−

+

−−

=

+−−+−−++

=++−+−++

=

+=

+

−−

=

−+++

=−+++

=

These two realizations can be combined as

UXY

UXX

+

=

−−−−−

+

−−

−−

=

1100

01000001

262334

22

0200130000020013

the dimension of this realization is 4,equal to that of Problem 4.11.so the smallest dimension is of Problem 4.12.

4.14 Find a realization for

++

++−

=3432322

343)612()(ˆ

ss

sssG

Page 54: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

++

++−

=3432322

343)612()(ˆ

ss

sssG 的一种实现

Answer:

[ ] [ ]

[ ][ ]UXY

UXX

sss

sssG

3/224

9/6793/1303

34

9/6793/1303/34

13/2243432322

343)612()(ˆ

−+=

−+−=

−+

+−=

++

++−

=

4.16 Find fundamental matrices and state transition matrices for 求下列状态方程的基本矩阵

和状态转移矩阵:

Xe

XandXt

Xt

−−

=

=

101

010 2

Answer:

for the first case: 25.0

22222

10 2121

)0()()(ln

)0()()(t

t

extxtdttxdtxx

xdttxtxxx

=⇒=⇒=

+=⇒= ∫

we have

=⇒

=

=⇒

= ∫

2

2

5.00

5.0

)(10

)0(01

)(01

)0(t

t d

e

etXXandtXXtt

=

=

−−

∫∫∫

)(5.0

5.05.01

5.00

5.0

5.00

5.0

0

5.00

5.0

20

20

220

20

0 2

2

2

2

2

0

101

01

),(

01

)(

t.thusindependenlinearly are states initial twoThe

tt

t

t

ddt

t

t d

t

t d

t

t d

e

ee

e

e

e

ett

ande

etX

ttttttt

tt

for the second case:

t

tttt dttdt

tt

extxxx

exeexcdteexetx

xextxexxt

−−−

=⇒−=

+−=+∫∫=

⇒+−=+−=

∫)0()(

)0())(0(5.0])0([)(

)0()(

2222

120 21

2122

11

0

we have

−=⇒

=

=⇒

=

−−

t

ttt

eee

tXXande

tXX)(5.0

)(10

)0(0

)(01

)0(

the two initial states are linearly independent;thus

Page 55: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

−+−=

−=Φ

−=

−−−−

−−

−−

−−

tt

tttttttt

t

ttt

t

ttt

t

ttt

eeeeeeee

eeee

eeee

tt

ande

eeetX

0

0000

0

000

0)(5.0)(5.0

)(5.00

)(5.00

),(

)(5.00

)(

3

1

0

4.17 Show ).(),(/),( 00 tAttttt Φ−=∂Φ∂

试证 ).(),(/),( 00 tAttttt Φ−=∂Φ∂

Proof: first we know

)(),(/),(0

),(),()(

),(),(),(),()(

),(),(),(

),()),(),((),(

),()(),(

00

00

100

100

000

000

00

tAttttt

ttt

tttAt

tttttttttA

ttt

ttttt

ttt

ttttt

ttthen

tttAt

tt

Φ−=∂Φ∂⇒=

∂Φ∂

Φ+=∂

Φ∂Φ+ΦΦ=

∂Φ∂

Φ+Φ∂

Φ∂=

∂ΦΦ∂

=∂

Φ∂

Φ=∂

Φ∂

−−

4.18 Given

=

)()()()(

)(2221

1211

tatatata

tA ,show

+=Φ ∫ ttt daatt

t

t))()((exp),(det 22110

0

已知 A(t),试证

+=Φ ∫ ttt daatt

t

t))()((exp),(det 22110

0

Proof:

ttt

ttt

φφφφφφφφφφφφφφφφ

φφφφφφφφφφφφ

φφφφ

φφφφ

daa

daa

t

t

t

t

ettthen

cgetwe

Ittwithcett

soaaaa

aaaaaaaatt

so

aaaa

∫=Φ

=

=Φ∫=Φ

Φ+=−+=+−+++−+=

−+−=−∂∂

=Φ∂∂

=

+

+

02211

02211

))()((

0

00

))()((

0

2211122122112211

2122112112222212211121221212112221121111

122122111221221112212211

2221

1211

2221

1211

2221

1211

),(det

1

),(),(det

det)())(()()()()(

)()(det

Page 56: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

4.20 Find the state transition matrix of 求状态转移矩阵

xt

tx

−=

cos00sin.

Answer:

t

t

extxtxxextxxtx

sin2222

1cos1111

)0()(cos

)0()(sin−

=⇒−=

=⇒⋅−=

then we have

=⇒

=

=⇒

= −

+−

t

t

etXXand

etXX sin

cos1 0)(

10

)0(0

)(01

)0(

the two initial states are linearly independent;thus

=

=

+−

−−

+−

+−

+−

0

0

0

0

sinsin

coscos1

sin

cos1

sin

cos1

0

sin

cos1

00

00

00

),(

00

)(

tt

tt

t

t

t

t

t

t

ee

ee

ee

tt

ande

etX

4.21 Verify that BtAtCeetX =)( is the solution of 试验证 BtAtCeetX =)( 为下面方程的解:

CxXBAXX =+= )0(

Verify:first we know AeAeet

AtAtAt ==∂∂

,then

DEQCCeeX

XBAXBeCeCeAeCeet

X BtAtBtAtBtAt

..)0(

)()()(

00 ==

+=+=∂∂

=

4.23 Find an equivalent time-invariant state equation of the equation in Problem 4.20. 求习题 4.20 中方程的等价时不变状态方程。

Answer: let )()()(0

0)()( sin

cos11 txtPtxand

ee

tXtP t

t

=

==

−−

Then 0)(0)( == txtA

4.24 Transform a time-invariant ),,( CBA into ))(),(,0( tCtB is by a time-varying equation

transformation.求把(A,B,C)转换成 ))(),(,0( tCtB 的时变状态转移方程。

Answer: since (A,B,C)is time-invariant,then

AtetX =)(

Page 57: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

)(0

10

1

1

0)()(),(

)()()()()()(

ttA

At

At

etXtXttCetCXtC

BeBtXtBtXtP

−−

−−

==Φ

==

==

=

4.25 Find a time-varying realization and a time-invariant realization of the inpulse response

tettg λ2)( = .求冲击响应的时变实现及时不变实现。

Answer:

[ ]

−=

+−=−=−=

−−

λt

λt

λt

λλλ

λtλtλ

tt

ttttt

eee

eteet

ettettgtg

ttt

tt

2

2

22)(2

2

)2()()(),(

the time-varying realization is

[ ] )(2)(

)()(000000000

)(

2

2

txeteetty

tuet

tee

txtx

ttt

t

t

t

λλλ

λ

λ

λ

−=

+

=

[ ]xy

tuxx

nrealizatioinvianttimethegetwegusss

etLsg t

200

)(001

010001

33

:),41.4(sin33

2][)(ˆ

32

3232

=

+

−=

−−+−

==

λλλ

λλλλ

4.26 Find a realization of tt t cos)(sin),( )( −−= tettg . Is it possible to find a time-invariant

state equation realization?求 tt t cos)(sin),( )( −−= tettg 的一种实现,问能否找到一种时不变

状态方程实现。 Answer: clearly we can get the time-varying realization of

)()()cos)((sincos)(sin),( )( tttt tt NtMeteettg tt === −−− using Theorem 4.5

we get the realization.

)(sin)()(cos)()()(

txtetyttuetutNtx

t

t

−=

==

Page 58: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

but we can’t get g(t) from it,because )(),( tt −≠ tgtg ,so it’s impossible to find a

time-invariant state eqution realization.

Page 59: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

5.1 Is the network shown in Fing5.2 BIBO stable ? If not , find a bounded input that will excite an unbound output 图 5.2 的网络 BIBO 是否稳定?如果不是.请举出 一般激励无界输出的有界输入. From Fig5.2 .we can obtain that

xyyux

=−=

Assuming zero initial and applying Laplace transform then we have

1)(ˆ)(ˆ

)(ˆ2 +

==s

ssusysy

ts

sLsgLtg cos]1

[)]([)( 211 =

+== −−

because

∫ ∫ ∫ ∑∫∞ ∞ ∞

=

π+

π+

+−+==0 0

20

0

232

212

1 cos)1(cos|cos||)(|x

k

k

kk tdttdtdttdttg

=1+∑∞

=

+ π+π−π+π−0

21

231 )sin()2[sin()1(

k

k k

=1+∑∞

=

+ π−π−−0

21

231 ]sin[sin)1()1(

k

kk

=1+∑∞

=

++ −⋅−−0

1212 2)1()1(k

kk )(

=1+2∑∞

=01

k

=∞

Which is not bounded .thus the network shown in Fin5.2 is not BIBO stable ,If u(t)=sint ,then we have

y(t)= ∫ ∫ τ−τ=τττ−t t

tdt0 0

)sin(cossin)cos( τd = ∫ =τt

tttd0

sin21sin

21

we can see u(t)is bounded ,and the output excited by this input is not bounded

5.2 consider a system with an irrational function )(ˆ sy .show that a necessary condition for the system to be BIBO stable is that |g(s)| is finite for all Res≥ 0 一个系统的传递函数是 S 的非有理式。证明该系统 BIBO 稳定的一个必要条件是对所有 Res≥ 0. |g(s)|有界。 Proof let s= ,ζ+λ j then

∫∞ ζ−λ− ==ζ+λ=

0)()(ˆ)(ˆ dteetgjgsg tjt ∫ ∫

∞ ∞ λ−λ− ζ−0 0

sin)(cos)( tdtetgjtdtetg tt

If the system is BIBO stable ,we have

+∞<≤∫∞

0|)(| Mdttg . for some constant M

which implies shat ∫∞

0)( dttg is convergent .

For all Res= ,0≥λ We have

Page 60: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

|g(t) |cos te t ζλ− |)(| tg≤

|g(t0 |)(||sin tgte t ≤ζλ−

so ∫∞ λ−

0cos)( tdtetg t and ∫

∞ λ− ζ0

sin)( tdtetg t are also convergent , that is .

∫∞ λ− +∞<=ζ

0cos)( Ntetg t

∫∞ λ− +∞<=ζ

0sin)( Ltdtetg t

where N and L are finite constant. Then

| 21

2221

22 )())((|)(ˆ LNLNsg +=−+= is finite ,for all Res 0≥ .

Another Proof, If the system is BIBO stable ,we have .|)(|0

+∞<≤∫∞

Mdttg for some constant M .And

.

For all Res 0≥ . We obtain | =|)(ˆ sg ∫ ∫∞ ∞− +∞<≤≤

0 0

)(Re |0(|)(| Mdttgdtetg ts .

That is . | |)(ˆ sg is finite for all Res 0≥ 5.3

Is a system with impulse g(t)=1

1+t

BIBO stable ? how about g(t)=t te− for t ?0≥

脉冲响应为个 g(t)=1

1+t

的系统是否 BIBO 稳定? 0,)( ≥= − ttetg t 的系统又如何?

Because ∞=+=+

=+∫ ∫

∞ ∞)1ln(

11|

11|

0 0ttd

tdt

t

∫ ∫∞ ∞ ∞−−−− +∞<=−−==

0 0 0 1|)(|| tttt etedttedtte

the system with impulse response g(t)=1

1+t

is not BIBO stable ,while the system with impulse response g(t)= tte−

for 0≥t is BIBO stable.

5.4 Is a system with transfer function )1(

)(ˆ2

+=

sesg

s

BIBO stable

一个系统的传递函数为 )1(

)(ˆ2

+=

sesg

s

,问该系统是否 BIBO 稳定。

Laplace transform has the property . If ).()( atftg −= then )(ˆ)(ˆ sfesg sα−=

We know 0,]1

1[1 ≥=+

−− tes

L t . Thus 2,]1

1[ )2(1 ≥=+

−−α−− tes

eL ts

So the impulse response of the system is )2()( −−= tetg . for 2≥t

∫∫∞ −−∞

+∞<===2

)2(

01|)(| dtedttg t

the system is BIBO stable

Page 61: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

5.5 Show that negative-feedback shown in Fig . 2.5(b) is BIBO stable if and only if and the gain a has a magnitude less than 1.For a=1 ,find a bounded input )(tr that will excite an unbounded output. 证明图 2.5(b) 中的负反馈系统 BIBO 稳定当且增到 a 的模小于 1。对于 a=1 情况,找出一有界输入 r(t), 她所产

生的输出是无界的。 Poof ,If r(t)= )(tδ .then the output is the impulse response of the system and equal

+−δ−−δ−−δ= )4()3()1()( 43 taratatg =∑∞

=

+ −δ−1

1 )()1(t

ii ita

the impulse is definded as the limit of the pulse in Fig.3.2 and can be considered to be positive .thus we have

∑∞

=

−δ=1

)(|||)(|t

i itatg

and ∫ ∑ ∫ ∑∞ ∞

=

∞ ∞

=

∞+<−

==−δ=0

10

1 |)|1(||||)(|||)(|

t t aa

ii adtitadttg 1||0||

<≥

aifaif

which implies that the negative-feedback system shown in Fig.2.5(b) is BIBO stable if and only if the gain a has magitude less than 1. For 1=a .if we choose ).sin()( π= ttr clearly it is bounded the output excited by )sin()( π= ttr is

∫ ∑ ∑ ∑ ∑∞

=

+

=

=

=

++++

π−=

π−−=π−π−=π−π−=π−π−=τττ−=

1

01 1 1 1

1111

1)sin(

)sin()1()1()sin()1()sin()1()sin()1()()()(

i

t

i i i i

iiiii

t

titititdrtgty

And y(t) is not bounded

5.6 consider a system with transfer function )1()2()(ˆ

+−

=sssg 。 what are the steady-state responses by

u ( t )=3.for 0≥t .and by u ( t )=sin2t. for ?0≥t

一个系统的传递函数是)1()2()(ˆ

+−

=sssg ,分别由 0.3)( ≥= ttu 和 0.2sin)( ≥= tttu

所产生的稳态响应是什么?

The impulse response of the system is 0.3)(]1

3[`]12[)( 11 ≥−δ=

+−=

+−

= −−− tets

LssLtg t

And we have

∫ ∫∫ ∫ ∫∞ ∞ −∞ ∞ ∞ −− +∞<=+=+δ=+δ≤−δ=

0 00 0 04313)()3||)((||3)(||)(| dtedttdtetdtetdttg ttt

so the system is BIBO stable using Theorem 5.2 ,we can readily obtain the steady-state responses if u ( t )=3for 0≥t .,then as )(, tyt ∞→ approaches 6323)0(ˆ −=⋅−=⋅g if u ( t )=sin2t for ,0≥t then ,as )(. tyt ∞→ approaches

)25.1sin(26.1)3arctansin(5102)(ˆsin(|)(ˆ| +τ=+τ=τ∠+ττ ttjgtjg )

Page 62: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

5.7 consider =x ux

−+

−02

10101

y=[ -2 3] ux 2− is it BIBO stable ? 问上述状态方程描述的系统是否 BIBO 稳定? The transfer function of the system is

[ ] [ ] 202

110

)1)(1(10

11

32202

10101

32)(ˆ1

−++−=−

−≤

−+−=

s

sssssg

=1

2221

4++−

=−+ s

ss

The pole of is –1.which lies inside the left-half s-plane, so the system is BIBO stable 5.8 consider a discrete-time system with impulse response

kkkg )8.0(][ = for ,0≥k is the system BIBO stable ?

一个离散时间系统的脉冲响应序列是 kkkg )8.0(][ = , ,0≥k 。问该系统是否 BIBO 稳定? Because

∑ ∑ ∑∞

=

=

=

⋅−==0 0 0

)8.0()8.01(2.0

1)8.0(|][|k k k

kk kkkg =

∑ ∑∑∞

=

=

=

+ +∞<=−

⋅==⋅−⋅0 00

1 208.01

8.02.0

18.02.0

1])8.0()8.0([2.0

1k k

k

k

kk kk

G[k]is absolutely sumable in ∞,0[ ]. The discrete-time system is BIBO stable . 5.9 Is the state equation in problem 5.7 marginally stable? Asymptotically stable ? 题 5.7 中的状态方程

描 述的系统是否稳定?是否渐进稳定? The characteristic polynomial

)1)(1(10

101det)det()( −λ+λ=

−λ

−+λ=−λ=λ∆ AI

the eigenralue Ihas positive real part ,thus the equation is not marginally stable neither is Asymptotically stable.

5.10 Is the homogeneous stable equation xx

−=

000000101

.marginally stable ? Asymptotically stable?

Page 63: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

齐次状态方程 xx

−=

000000101

,是否限界稳定?

The characteristic polynomial is )1(00

00101

det)det()( 2 +λλ=

λλ

−+λ=−λ=λ∆ AI

And the minimal polynomial is )1()( +λλ=λψ . The matrix has eigenvalues 0 , 0 . and –1 . the eigenvalue 0 is a simple root of the minimal .thus the equation is marginally

stable The system is not asymptotically stable because the matrix has zero eigenvalues

5 。11 Is the homogeneous stable equation xx

−=

000000101

marginally stable ? asymptotically stable ?

齐次状态方程 xx

−=

000000101

是否限界稳定?是否渐进稳定?

The characteristic polynomial )( 100

10101

det)( 2 +λλ=

λ−λ−+λ

=λ∆ .

And the minimal polynomial is )1()( 2 +λλ=λψ ..the matrix has eigenvalues 0. 0. and –1 . the eigenvalue 0 is a repeated root of the minimal polymial ).(λΨ so the equation is not marginally stable ,neither is asymptotically stable . 5.12 Is the discrete-time homogeneous state equation

][100010109.0

]1[ kxkx

−−

=+

marginally stable ?Asymptotically stable ?

离散时间齐次状态方程 ][100010109.0

]1[ kxkx

−−

=+ 是否限界稳定?是否渐进稳定?

The characteristic of the system matrix is ),9.01()( 2 −λ−λ=λ∆ () .and the minimal polynomial is ),9.01()( −λ−λ=λψ () the equation is not asymptotically stable because the matrix has eigenvalues 1. whose magnitudes equal to 1 . the equation is marginally stable because the matrix has all its eigenvalues with magnitudes less than or to 1 and the eigenvalue 1 is simple root of the minimal polynomial . )(λψ .

Page 64: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

5.13 Is the discrete-time homogeneous state equation

][100010109.0

]1[ kxkx

−−

=+ marginally stable ?

asymptotically stable ?

离散时间齐次状态方程 ][100010109.0

]1[ kxkx

−−

=+ 是否稳定?是否渐进稳定?

Its characteristic polynomial is ),9.01()( 2 −λ−λ=λ∆ () and its minimal polynomial is

),9.01()( 2 −λ−λ=λψ () the matrix has eigenvalues 1 .1 .and 0.9 . the eigenvalue 1 with magnitude equal to 1 is a repeated root of the minimal polynimial )(λψ . .thus the equation is not marginally stable and is not asymptotically stable .

5.14 Use theorem 5.5 to show that all eigenvalues of

−−

=15.0

10A have negative real parts .

用定理 5.5 证明 A 的特征值都具有负实部.

Poof :For any given definite symmetric matrix N where

=

cbba

N with a>0 .and 02 >− bac

The lyapunov equation NMAMA −=+′ can be written as

−−−−

=

−−

+

−−

cbba

mmmm

mmmm

15.010

115.00

2221

1211

2221

1211

that we have

−−−−

=

−+−−−−+−

cbba

mmmmmmmmmmm

222112222111

2212112112

25.05.0)(5.0

thus

camamm

bcam

5.0

25.05.1

22

2112

11

+===

−+=

=

2221

1211

mmmm

M is the unique solution of the

lyapunor equation and M is symmetric and 0

02 >−

>

baca

⇒00

>>

ca

025.05.1

0,0)25.05.1(

0]32)2[(161)436(

161]16)6[(

161)25.05.1(

11

22

22222

>−+=⇒

>>>≥+

≥+−=−+=−+=−+∴

bcamca

bacca

acaaccaaccaacca

221122211

2221

1211 )5.)(25.05.1(det acabcammmmmmmm

−−+−+=−=

Page 65: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

0)](8)2()22[(

81

)4884(81

222

22

>−+−+−=

−−++=

bacbcba

bcabcaca

we see is positive definite because for any given positive definite symmetric matrix N, The lyapunov equation NMAMA −=+′ has a unique symmetric solution M and M is positive definite , all eigenvalues of A have negative real parts , 5.15 Use theorem 5.D5show that all eigencalues of the A in Problem 5.14 magnitudes less than 1. Poof : For any given positive definite symmetric matrix N , we try to find the solution of discrete Lyapunov equation M

NMAAM =′− Let .

=

cbba

N where a>0 and 02 >− bac

and M is assumed as

=

2221

1211

mmmm

M ,then

=

++−−+−+−

=

−−

−−

=′−

cbba

mmmmmmmmmmm

mmmm

mmmm

MAAM

211211221221

2221122211

2221

1211

2221

1211

)50)(5.025.0

15.010

115.00

(。

this bcambcammbcam5

165

125

12,52

54

54,

54

53

58

22211211 −+=−+==−+=

=

2221

1211

mmmm

M is the unique symmetric solution of the discrete Lyapunov equation

,NMAAM =′− And we have

>>

−>

++=−+

000

3296416)38(

2

222

caa

baca

accaacca

bacca 1616)38( 2 >>+⇒ 0438 >−+⇒ bca 054

53

58

11 >−+=⇒ bcam

0)](5)2()22[(54

)48534(54

])244()161212)(4(38[(251det

222

222

221122211

2221

1211

>−+−+−=

−−+++=

−+−−+−+=−=

bacbcba

bcabacbca

bcabcabammmmmmmm

Page 66: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

we see M is positive definite .use theorem 5.D5,we can conclude that all eigenvalues of A have magnitudes less than 1. 5.16 For any distinct negative real iλ and any nonzero real ia ,show that the matrix

λ−

λ+λ−

λ+λ−

λ+λ−

λ−

λ+λ−

λ+λ−

λ+λ−

λ−

=

3

23

23

23

13

13

32

32

2

22

12

12

31

31

21

21

1

21

2

2

2

aaaaa

aaaaa

aaaaa

M is positive definite .

正明上定义的矩阵 M 是正宗的 ( iλ 为相异的负实数, ia 为非零实数)。

Poof : .3,2,1, =λ ii are distinct negatire real numbers and ia are nonzero real numbers , so we have

012

),1(21 >λ

−a

(2) . )22121

22

212

21

22

21

21

22

21

2

22

12

12

21

21

1

21

)(1

41(

)(42

2detλ+λ

−λλ

=λ+λ

−λλ

=

λ−

λ+λ−

λ+λ−

λ−

aaaaaaaaa

aaa

22121

212

21

2212121

22

2121

221

)(1

414

424

λ+λ>

λλλλ>λ+λ∴

λ−λ=λλ−λλ+λ+λ=λλ−λ+λ

and)(

〉)()(

λ−

λ+λ−

λ+λ−

λ−

2

22

12

12

21

21

1

21

2

2detaaa

aaa

= 22121

22

21 )(

14

1(λ+λ

−λλ

aa ) >0

(3)

Page 67: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

λ+λλ

−λλ+λλ+λ

λ−

λ+λ

λ+λλ+λλ

−λ+λλ+λ

λ−

λ

λ+λλ+λλ

−=

λ−

λ+λ−

λ+λ−

λ+λ−

λ−

λ+λ−

λ+λ−

λ+λ−

λ−

−=

221

1

33121

1

32

3121

1

322

12

3

2

31211

23

22

21

32313

32212

31211

23

22

21

22

1))(210

))(212

210

1121

det

2111

12

11

1121

det

)((

()(

aaa

aaaM

0det

.0))(

4

,0)(

,0.04

1,021

))(4

)(1

)(41det

21

))(212

212

21det

21

3213121

1

312

1

213

1

213

1

32

23

22

21

1

3213121

12

32312

1

213

1

32

23

22

21

1

2

3121

1

322

13

1

32

12

1

2

23

22

21

1

<∴

>λ+λλ+λλ+λ

λ

>λ+λλ

λ−>

λ+λλλ

−>λ+λλ

λ−

λλ>

λ−

λ+λλ+λλ+λ

λ+

λ+λ−

λ+λλλ

−λ+λλ

λ−

λλλ−=

λ+λλ+λ

λ−

λ+λ−

λ+λλ

−λλ+λ

λ−

λλ−=

=

=

M

aaa

aaa

aaa

)()(

)()(

)()()(

))(

())(

)()(

From (1), (2) and (3) , We can conclude that M is positive definite 5.17 A real matrix M (not necessarily symmetric ) is defined to be positive definite if 0>′ XMX for any non zero X .Is it true that the matrix M is positive definite if all eigenvalues of Mare real and positive or you check its positive definiteness ? 一个实矩阵 M 被定义为正定的,如果对任意非零 X 都有 0>′ XMX 。如果 M 的所有特征值都

是正实数,是不是就有 M 正定/ 或者如果 M 的所有主子式都是正,M 是不是正定呢?如果不

是,要如何确定它的正定性呢? If all eigenvalues of M are real and positive or if all its leading pricipal minors are positive ,the matrix M may not be positive definite .the exampal following can show it .

Let

−=

1081

M , Its eigenvalues 1,1 are real and positive and all its leading pricipal minors are

positive , but for non zero [ ] ′= 21X we can see 011<−=′MXX . So M is not positive

definite .

Because MXX ′ is a real number . we have XMXXMXXMX ′=′′=′′ )( , and

Page 68: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

XMMXXMXXMXXMX )]21[

21

21 ′+′=′′+′=′

This ifonlyandifXMX ,0>′ XMMX )]21[ ′+′( >0, that is , M is positive and the matrix

)21 MM ′+( is symmetric , so we can use theorem 3.7 to cheek its positive definiteness .

5.18 show that all eigenvalues of A have real parts less than 0<µ− if and only if ,for any given positive definite symmetric matrix N , the equation NMMAMA −=µ++′ 2 has a unique symmetric solution M and M is positive definite . 证明 A 的所有特征值的实部小于 0<µ− 当且对任意给定的正定对称阵 N。方程

NMMAMA −=µ++′ 2 有唯一解 M,且 M 是正定的。 Proof : the equation can be written as NIAMIA −=µ++′µ+ )()( Let IAB µ+= , then the equation becomes NMBMB −=+′ . So all eigenvalues of B have megative parts if and only if ,for any given positive definite symmetric matrix N, the equation

NMBMB −=+′ has a unique symmetric solution m and is positive definitive . And we know IAB µ+= , so ( )AIIAIBI −µ−λ=µ−−λ=−λ )(det)det()det( , that is , all eigenvalues of A are the eigenvalues of B subtracted µ− . So all eigenvalues of A are real parts less than 0<µ− .if and only all eigenvalues of B have negative real parts , eguivalontly if and only if , for any given positive symmetric matrix N the equation NMMAMA −=µ++′ 2 has a unique symmetric solution M and M is positive definite . 5.19 show that all eigenvalues of A have magnitudes less than ρ if and only if , for any given

positive definite symmetric matrix N ,the equation NMAAM 22 ρ=′−ρ . Has a unique symmetric solution M and M is positive definite . 证明 A 的所有特征值的模都小于 ρ 当且仅当对任意给定的对称正定 N , 方程

NMAAM 22 ρ=′−ρ 有唯一解 M ,且 M 是对称正定阵。

Proof : the equation can be written as NAMcM =ρ′− − )()( 1 let AB 1−ρ= , then

).det()det()det( 11 AIAIBI −ρλρ=ρ−λ=−λ −− that is ,all eigenvalues of A are the eigenvalues B multiplied by ρ ,so all eigenvalue of B have msgritudes less than 1 . equivalently if and only if ,

for any given positive definite symmetric matrix N the equation NMAAM 22 ρ=′−ρ has a unique symmetric solution M and M is positive definite . 5.20 Is a system with impulse response ||||2),( τ−−=τ tetg , for τ≥t , BIBO stable ? how about

?cos)sin(),( )( tetg t τ−−=τ

脉冲响应为 ||||2),( τ−−=τ tetg , τ≥t , 的系统是否 BIBO 稳定? ?cos)sin(),( )( tetg t τ−−=τ 的系统是否 BIBO 稳定?

τ=τ=τ ∫∫∫ −−−−− dededet

t

tt

t

ttt

t

tt

000

||||||2||||2 || 、

Page 69: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

<<−−><−−≥−

=−

−−

−−−

00)2(00)2(0)(

02

02

02

0

0

0

tandtifeeetandtifeee

tifeee

ttt

ttt

ttt

∞+<≤ 2

)1(|sin||cos|sin||cos)sin(| 0)()( tttt ettette −τ−−τ−− −⋅≤⋅⋅=

∫ ∫ −−τ−τ−− −⋅=τ⋅=τ⋅t

t

ttt

t

tt etdeetdet0

0

0

)1(|sin||sin|)(|sin| )()(

]1,0(, 00 ∈∴≤ −ttett

∫ +∞<≤τ⋅ τ−−t

t

t sodet0

0)(|sin| )(

∫ ∫ +∞<≤⋅⋅≤τ⋅ −−−τ−−t

t

ttt

t

tt etetet0

0

0

1|sin||sin||cos)(sin| )()(

Both systems are BIBO stable .

5.21 Consider the time-varying equation xteyutx2

2 −=+τ= is the equation stable ? marginally stable ? asymptotically stable ?

时变方程 xteyutx2

2 −=+τ= 是否 BIBO 稳定 限界稳定? 渐进稳定? 22 )()0()()(20( tt etxextxttxtx =⇒=⇒= is a fundamental matrix

⇒ its stable transition matrix is 02

),( 0ttett −=φ

⇒ Its impulse response is 2222

),( τ−τ−− =⋅=τ eeetg tt

+∞<π=π⋅=τ=τ=⋅τ≤τ=ττ ∫∫ ∫∫

∞+ τ−τ−∞+

∞−

τ−τ−

222),(

0

22

0

22

0

dededededtgt

t

t

t

so the equation is BIBO stable .

00 ,|||),(| 02

02

tteett tttt ≥==φ −− is not bounded ,that is . there does not exist a finite

constant M such that .),( 0 +∞<≤φ Mtt so the equation is not marginally stable and is not asymptotically stable . 5.22 show that the equation in problem 5.21 can be transformed by using

,)( xtpx = with 2

)( tetp −= , into xyuexx t =+= − 2

.0 is the equation BIBO stable ?marginally stable ? asymptotically ? is the transformation a lyapunov transformation ?

证 明 题 5 。 21 方 程 是 可 通 过 ,)( xtpx = with 2

)( tetp −= 变 换 成

xyuexx t =+= − 2

.0 该方程是否 BIBO 稳定?界限稳定?渐进稳定?该变换是不是

lyapunov 变换 ?

proof : we have found a fundamental matrix of the equation in problem 5.21 .is .)(2tetx = so

from theorem 4.3 we know , let .)()21 tetxtp −−

==( and ,)( xtpx = , then we have

0)( =tA

0)().1))().))()2221

======= −−−tDtDeetBtCtCetBtxtB ttt (((((

and the equation can be transformed into xyuexx t =+= − 2

.0

Page 70: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

the impulse response is invariant under equivalence transformation , so is the BIBO stability . that is marginally stable . 1)()0()(.0 =⇒=⇒→= txxtxxx is a fundamental matrix ⇒ the state transition matrix is +∞<≤=φ=φ 11|),(|1),( 00 tttt so the equation is

marginally stable . 0|),(|, 0 →φ∞→ ttt (不趋于零)so the equation is not asymptotically stable . from theorem 5.7 we know the transformation is mot a lyapunov transformation

5.23 is the homogeneous equation 0001

03 ≥

−−

= − tforxe

x t

marginally stable ? asymptotically stable?

齐次方程 0,001

03 ≥

−−

= − txe

x t 是否限界稳定?渐进稳定?

=⇒

−+=

=⇒

−=−=

−−

=

−−

141

0

)0(41)0()0(

41)(

)0()(

001

4

124

12

11

13

2

113

t

t

t

t

tt

ee

x

xxextx

extx

xexxx

xe

x

is a fundamental matrix of the equation .

==Φ⇒ +−

+−−

141

0)()()(

0

0

40

1tt

tt

ee

tXtXt is the state

transition of the equation.

−+=φ −+−+−

∞000 34

0 41

411,max||),(|| ttttt eeett for all 00 ≥t

and 0tt ≥ 41

410;10 00 4 ≤≤≤≤ +−+− tttt ee soee ttt ,0

41

41;10 00 3 ≤≤−≤≤ −+−

45

41

411

43

00 34 ≤−+≤ −+− ttt ee . +∞<≤φ ∞ 45||),(|| 0tt the equation is marginally

stable .if 0tt − is fixed to some constant , then 0||),(|| 0 →φ tt (不趋于零)。 ,∞→tas so the equation is not asymptotically stable .

for all t and 0t with 0tt ≥ . we have 41

410;10 00 4 ≤≤≤≤ +−+− tttt ee . every entry of

),( 0ttφ is bounded , so the equation is marginally stable . because the (2,2)th entry of ),( 0ttφ does not approach zero as ,∞→t the equation is not

asymptotically .

Page 71: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

6.1 is the stable equation

xy

xx

]121[001

331100010

=

µ

+

−−−=

controllable ? observable ?题

述状态方程是否可控? 是否可观?

1121121

021(

001

3331

100010

(])([ 2

=

−−−ρ=

ρ

=

−−−ρ=ρ

))(

)BAABB

thus the state equation is controllable ,

but it is not observable .

6.2 is the state equation

xy

uxx

]101[000110

121100010

=

+

−−=

controllable ? observable?

述状态方程是否可控? 是否可观?

,1232.2)( =−=−=ρ nB using corollary , we have

3)020000010110

(])([ =

ρ=ρ ABB ,Thus the state equation is controllable

3)420130

101()(

2

=

−−ρ=

ρ

CACAC

. Thus the state equation is observable

6.3 Is it true that the rank of [B AB ]1BAn− equals the rank of ][ 2 BABAAB n ? If

not ,under what condition well it be true ?

ρ ( [B A ][ 2 BABAAB n B ]1BAn− ]=ρ ()是否成立?若否,问在什么条件下该成

立?

It is not true that the rank of [B AB ]1BAn− equals the rank of ][ 2 BABAAB n .

If A is nonsingular {( ρ ( ][ 2 BABAAB n )= ρ (A [B AB ]1BAn− ]= ρ ( [B

Page 72: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

AB ]1BAn− (see equation (3.62) ) then it will be true

6.4 show that the state equation uB

xAAAA

x

+

=

01

2221

1211 is controllable if and only if the pair

)( 2122 AA IS controllable 证明题述状态方程可控当且仅当 )( 2122 AA 可控?

Proof : 6.5 find a state equation to describe the network shown in fig.6.1 and then check its controllability

and observability 求图 6.1 中网络的一个状态方程,是否可控?可观?

The state variables 1x and 2x are choosen as shown ,then we have

uxyxx

uxx

20

2

22

11

+−==+=+

thus

a state equation describing the network can be es pressed as

uxx

y

Uxx

xx

2]10[

01

1001

2

1

2

1

2

1

+

−−

+

−=

checking the controllability and observability :

1)10

01()(

1)10

01(]([

=

−ρ=

ρ

=

−ρ=ρ

CAC

ABB The equation is neither controllable nor obserbable

6.6 find the controllability index and obserbability index of the state equation in problems 6,1 and 6.2 求题 6.1 和 6.2 中状态方程的可控性指数和可观性指数.

The state equation in problem 6.1 is

uxx

y

Uxx

xx

2]10[

01

1001

2

1

2

1

2

1

+

−−

+

−=

the equation is controllable ,so

we have 1)(,3.1)1,min( ===+−≤+−≤µ≤ brankpnwherepnpnnpn

333.1 =µ≤µ≤+−≤µ≤∴ iepnpn

[ ]( ) 1,12

=∴=

ρ

ρ=ρ V

ACACC

ACC

c

Page 73: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

The controllability index and cbservability index of the state eqyation in problem 6.1 are 3 and 1 ,

respectively .the state equation in problem 6.2 is

[ ]xy

uxx

101000110

120100010

+

−=

The state equation in is both controllable and observable ,so we have

1.1 +−≤ν≤+−≤µ≤∴ pnpnandpnpn

1.2)(,3 ===== crankqBrankpnwhere

3,233.223 =ν=µ≤µ≤≤µ≤∴

The controllability index and cbservabolity index of the state equation in problem 6.2 are 2 and 3 ,respectively rank(c)=n .the state equation is controllable so

1)(.1 =µ⇒==+−≤µ≤ nBrankpwherepnpn

6.7 what is the controllability index of the state equation IUXAx += WHERE I is the unit matrix ?

状态方程 IUXAx += 的可控性指数是什么?

Solution . ][][ 1212 −− == nn AAAIBABAABBC

C is an 2nn× matrix. So rank(C) n≤ . And it is clearly that the first n columns of C are

linearly independent. This rank(C) n≤ .and niforui ,1,01 ==

The controllability index of the state equation IUXAx += is 1),,,max( 21 == nuuuu

6.8 reduce the state equation xyuxx ]11[11

1341

=

+

−= . To a controllable one . is the

reduced equation observable ? 将题述状态方程可控的,降维后方程是否可观?

Solution :because [ ]( ) 21)3331

()( <=

ρ=ρ=ρ ABBC

The state equation is not controllable . choosing

== −

01111PQ and let xpx = then we

Page 74: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

have

=

== −

5043

0111

1441

11101PAPA

=

==01

11

1110

PBB . [ ] [ ]120111

111 =

== −CPC

thus the state equation can be reduced to a controllable subequation

ccc xyuxx 23 =+= and this reduced equation is observable

6.9 reduce the state equation in problem 6.5 to a controllable and observable equation . 将题 6.5 中的状

态方程降维为可控且可观方程. Solution : the state equation in problem 6.5 is

uxy

Uxx

2]10[01

1001

+−−

+

−=

it is neither controllable nor observable

from the form of the state equation ,we can reaelily obtain

uxx

y

Uxx

xx

2]10[

01

1001

2

1

2

1

2

1

+

−−

+

−=

thus the reduced controllable state equation can be independent of cx . so the equation can be further

reduced to y=2u .

6.10 reduce the state equation

[ ]xy

uxx

1011010010

00001000000000100001

2

2

1

1

1

=

+

λλ

λλ

λ

= to a controllable and

observable equation 将状态方程降维为可控可观方程。

Solution the state equation is in Jordan-form , and the state variables associated with 1λ are

independent of the state variables associated with 2λ thus we can decompose the state equation into

two independent state equations .and reduce the two state equation controllable and observable equation ,

respectively and then combine the two controllable and observable equations associated with 1λ and

Page 75: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

2λ . Into one equation ,that is we wanted .

Decompose the equation .

[ ]

[ ] 222

22

11

1

1

1

1

1010

01

110010

001001

xyuxx

xyuxx

=

+

λ

λ=

=

+

λλ

λ=

Where 212

1 , yyyxx

x +=

=

Deal with the first sub equation .c

Choosing 1111

10001010

: xpxletandPQ =

λ== − then we have

λλλ−

=

λ

λλ

λ

−== −

1

1

12

1

1

1

11

11

0002110

10001010

001001

10000101C

PPAA

=

λ−==

001

010

1000000111

11 PBB [ ] [ ]1110001010

110 11

11 λ=

== − CPCC

Thus the sub equation can be reduced to a controllable one

[ ]

211

)(

21

01

10

211

1

111

11

21

1

<=

λλλ

ρ=ρ

λ=

+

λλ−

=

O

xy

uxx

c

cc

the reduced controllable equation is not observable choosing

λ=

101 1P .and let ,

cc xpx 11 = then we have

[ ] [ ]0110

11

01

01

101

10

101

210

101

111

11

1

11

1

211

1

=

λ−λ=

=

λ=

λ

λ=

λ−

λλ−

λ=

C

B

A

Page 76: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

thus we obtain that reduced controllable and observable equation of the sub equation associated with

011

01111 :

c

cco

xyuxx

=+λ=λ

deal with the second sub equation :

2)1

10()(

22 =

λ

ρ=ρ C it is controllable

21)0

10()(

22 <=

λ

ρ=ρ O It is not observable choosing

=

0110

p and let

22 xpx = then we have

[ ] [ ]010110

10

01

10

0110

10

0110

01

0110

2

2

2

2

2

22

=

=

=

=

λ

λ=

λ

λ

=

C

B

A

thus the sub equation can be reduced to a controllable and observable

ico

icoico

xy

uxx

=

+λ=

2

2

combining the two controllable and observable state equations . we obtain the reduced controllable and observable state equation of the original equation and it is

[ ] co

coco

xy

uxx

11

11

00

2

1

=

+

λ

λ=

6.11 consider the n-dimensional state equation uoxcyuBxAx

+=+=

the rank of its controllability matrix is

assumed to be nn <1 . Let 1Q be an 1nn× matrix whose columns are any 1n linearly independent

columns of the controllability matrix let 1p be an nn ×1 matrix such that 111 InQp = ,where 1In

is the unit matrix of order 1n .show that the following 1n -dimensional state equation

Page 77: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

uDxCQyuBPxAQPx

+=+=

11

11111

is controllable and has the same transfer matrix as the original state equation

n 维状态方程uoxcyuBxAx

+=+=

。假设共可控性矩阵的秩为 nn <1 ,令 1Q 为可控性矩阵中任意 1n 个线

性无关组成的 1nn× 矩阵,而 1p 是 P 发矩阵且 111 InQp = ,其中 1In 是 1n 阶单位阵。证明下列 1n

维状态方程uDxCQy

uBPxAQPx+=

+=

11

11111

可控且与原状态方程具有相同的传函。

Let

== −

2

11 :PPQP , where 1P is an nn ×1 matrix and 2P is an nnn ×− )( 1 one ,and we

have

1

1

1

1

22

11

2212

21112211 0

0

nn

nn

nn

nn IQP

IQPisthatI

II

QPQPQPQP

PQIPQPQQP−− =

==

=

==+=

Then the equivalence trans formation xpx = will transform the original state equation into

[ ]

uB

xx

AAA

uBpBp

xx

AQPAQPAQPAQP

uBpp

xx

QQApp

xx

c

c

c

C

C

c

c

c

c

c

c

+

=

+

=

+

=

0012

2

1

2212

2111

2

121

2

1

[ ]

[ ]

[ ] uDxx

CC

uDxx

CQCQ

uDxx

QQCy

c

ccc

c

c

c

c

+

=

+

=

+

=

21

21

where 111111 ,.. nnisAandCPCBPBAQPA cCcc ×=== the reduced 1n -dimensional

state equation uDxCQy

uBPxAQPx

+=

+=

11

11111

is controllable and has the sane transfer matrix as the original

state equation

6.12 In problem 6.11 the reduction procedure reduces to solving for 1P in .11 IQP = how do you

solve 1P ?

题 6.11 中的降维过程为求解 .11 IQP = 中的 1P , 该如何求 1P ?

Solution : from the proof of problem 6.11 we can solve 1P in this way

Page 78: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

ρ (C)= ρ ][ 2 BABAAB n = nn <1

we fprm the nn < matrix ]1 1([ nn qqqQ = , where the first 1n columns are any 1n linearly

independent columns of C , and the remaining columns can aribitrarily be chosen as Q is nonsingular .

Let

== −

2

11 :PPQP , where 1P is an nn ×1 matrix and 111 InQp =

6.13 Develop a similar statement as in problem 6.11 for an unobservable state equation .对一不可观状

态方程,如题 6.11 般低哦降维为可观方程.

Solution : consider the n-dimensional state equation uDxCyuBxAx

+=+=

the rank of its observability matrix

is assumed to be nn <1 .let 1P be an nn ×1 matrix whose rows are any 1n linearly independent

rows of the observability matrix . let 1Q be an 1nn× matrix such that 111 InQp = .where 1In is

the unit matrix of order 1n , then the following 1n -dimensional state equation

uDxCQyuBPxAQPx

+=+=

11

11111

is observable and has the same transfer matrix as the original state equation 6.14 is the Jordan-form state equation controllable and observable ?

下 Jordan-form 状态方程是不是可控,可观?

uxx

−+

=

001101101123111112012

1000000010000001100000002000000020000000200000012

xy

−=

011011000021111113122

solution : 2)001101

(3)123111112

( =

ρ=

ρ and

so the state equation is controllable ,however ,it is not observable because

Page 79: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

32)110211312

( ≠=

ρ

6.15 is it possible to find a set of ijb and a set of ijc such that the state equation is

controllable ? observable ?是否可能找到一组 ijb 和一组 ijc 使如下状态方程可控?可观?

uccccccccccccccc

yu

bbbbbbbbbb

xx

=

+

=

3534333231

2524232221

1514131211

5251

4241

3231

2221

1211

1000001000011000001000011

solution : it is impossible to find a set of ijb such that the state equation is observable ,because

32(

5251

4241

2221

<≤

ρ )

bbbbbb

it is possible to find a set of ijc such that the state equation is observable .because

3(

353331

252321

151311

ρ )

CCCCCCCCC

The equality may hold for some set of ijc such as ICCCCCCCCC

=

353331

252321

151311

the state equation is

observable if and only if 3(

353331

252321

151311

=

ρ )

CCCCCCCCC

6

6.16 consider the state equation

[ ]xCCCCCy

u

bbbbb

xx

222112111

22

21

12

11

1

12

22

11

11

1

000000

0000000000

=

+

αbbα

αb−bα

λ

=

Page 80: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

it is the modal form discussed in (4.28) . it has one real eigenvalue and two pairs of complex conjugate eigenvalues . it is assumed that they are distinct , show that the state equation is

controllable if and only if 2,100;0 211 =≠≠≠ iforborbb ii it is observable if

and only if 2,100;0 211 =≠≠≠ iforcorcc ii

题中的状态方程是(4.82)中讨论的规范型。它有一个实特征值和两对复特征值,并假定它

们都是互不相同的。证明该状态方程可控当且仅当

2,100;0 211 =≠≠≠ iforborbb ii 可观当且仅当

2,100;0 211 =≠≠≠ iforcorcc ii

proof:;controllability and observability are invariant under any equivalence transformation . so we introduce a nonsingular matrix is transformed into Jordan form.

−=

−= −

ji

iip

jj

jj

p

000110000000011000001

,

5.05.00005.05.0000

005.05.00005.05.0000001

1

+−+−

==

b−αb+α

b−αb+α

λ

== −

)(5.0)(5.0)(5.0)(5.0

00000000000000000000

2221

22211

1211

1211

1

22

22

11

11

1

1

jbbjbbjbbjbb

b

PBB

JJ

JJ

PAPA

[ ]222222211211121111 jCCjCCjCCjCCCCPC −+−+== −

Using theorem 6.8 the state equation is controllable if and only if

;0)(5.0;0)(5.0;0 222112111 ≠±≠±≠ jbbjbbb equivalently if and only if

2,1;0;0;0 211 =≠≠≠ iforborbb ii

The state equation is observable if and only if

;0;0;0 2221121111 ≠±≠±≠ jccjccc equivalently , if and only if

2,100;0 211 =≠≠≠ iforcorcc ii

6.17 find two- and three-dimensional state equations to describe the network shown in fig 6.12 .

discuss their controllability and observability 找到图 6.12 所示网络的两维和三维状态方程描述。讨论它们的可控和可观性, solution: the network can be described by the following equation :

Page 81: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

321332121 ;;3;2

2xyxxxxxxxxu

=−−==−=+

they can be arranged as

213

13

12

11

221

221

223

223

112

112

xxxy

uxx

uxx

uxx

−−==

+=

+=

−−=

so we can find a two-dimensional state equation to describe the network as

following : 2132

1

2

1

223112

0223

0112

xxxyuxx

xx

−−==

−+

−=

and it is not controllable because 21)

223

112

223

112

112

()(

2

<=

−−

ρ=ρ c

however it is observable because 2)0221

11()( =

−−ρ=ρ o

we can also find a three-dimensional state equation to describe

it : [ ]xyuxxx

xxx

100

221223112

00221

00223

00112

3

2

1

3

2

1

=

+

=

and it is neither controllable nor

observable because [ ] 32)(31)(2

2 <=

ρ<=ρ

CACAC

BAABB

6.18 check controllability and observability of the state equation obtained in problem 2.19 . can uou give a physical interpretation directly from the network 检验题 2.19 中所得状态方程的可控性和可观性。能否直接从该网络给出一个物理解释? Solution : the state equation obtained in problem 2.19 is

Page 82: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ]xyuxxx

xxx

010011

110100

001

3

2

1

3

2

1

=

+

−=

It is controllable but not observable because

[ ] 2110100

010)(3

110101

111)(

2

2 ≤

−−−ρ=

ρ=

−ρ=ρ

CACAC

BAABB

A physical interpretation I can give is that from the network , we can that if 0)0(0 1 ≠== axu

and 0)0(2 =x then 0≡y that is any [ ]Tax *0)0( = and 0)( ≡tu yield the same output

0)( ≡tY thus there is no way to determine the initial state uniquely and the state equation describing

the network is not observable and the input is has effect on all of the three variables . so the state equation describing the network is controllable 6.19 continuous-time state equation in problem 4.2 and its discretized equations in problem 4.3 with sampling period T=1 and π . Discuss controllability and observability of the discretized equations . 考虑题 4.2 中的连续时间状态以及题 4.3 中它的离散化状态方程(T=1 and π). 讨论离散状态

方程的可控性和可观性

solution : the continuous-time state equation in problem 4.2 is [ ]xyuxx 3211

2210

=

+

−−

=

the discretized equation :

[ ] [ ] [ ]kueconTT

eTconTkxeTTTe

TeeTTkx

T

T

TT

TT

++

+−+

−−+

=+−

−−

−−

)sin2(1

)sin21

23(

23

)sin(cossin2sin)sin(cos

1

[ ] [ ] [ ]kxky 32=

T=1

=

−−

=1821.0

0471.11108.06191.0

3096.05083.0dd BA

T= π :

=

=

0432.15648.1

0432.0000432.0

dd BA

The xontinuous-time state equation is controllable and observable , and the sustem it describes is single-input so the drscretized equation is controllable and observable if and only if

[ ] 2,12/2|| =π≠λ−λ mformjI im whenever [ ] 0=λ−λ jR ie the eigenvalues of a are

–1+j and –1-j . so [ ] 2|| =λ−λ jI im for T=1 . 2,122 =≠π manyform .so the

Page 83: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

discretized equation is neither controllable nor observable . for T= π 2m=1 .so the descretized equation is controllable and observable .

6.20 check controllability and observabrlity of [ ]xyuxt

x 1010

010

=

+

= 检验可控性和

观性。

Solution :

−=t

MtAM1

)( 01 the determinant of the matrix [ ]

−−

=t

MM1

1010 is 1. which

is nonzero for all t . thus the state equation is controllable at every t。

Its state transition matrix is

τ−=Φ

τ∫)(5.0

5.05.0

0 20

20

22

0

1),(

tt

t

t

t

e

deett and

[ ] [ ])20

2

)20

20

22

(5.0

(5.0

5.05.0

0 00

110),()( t

t

t

t ee

deettC −τ

−τ

ττ

=

ϑ−=Φτ ∫

[ ]

τ

=

τ⋅

=

−τ

−τ−τ

de

dee

ttW

t

t t

tt

t t

1

020

2

20

21

020

2

000

00

),( )(5.0)(5.0100

We see . ),( 100 ttW is singular for all 0t and t , thus the state equation is not observable at any 0t .

6.21 check controllability and observability of [ ]xeyue

xx tt

−− =

+

= 01

1000

solution :

textxxtx −== )0()()0()( 2211 its state transition matrix is

=

==Φ +−−

00 001

001

001

)(),( 01

0 tttt eeetXtXtt )( and

[ ] [ ]0

0

20 0

001

0),()(

110

01)(),(

tt

t

tt

ee

etC

eeeBt

+τ−+τ−

−τ−τ+−

=

=τΦτ

=

=ττΦ

WE compute [ ]

−−−−

=

−−

−−

−−

− ∫∫ )()()(1

11

),(0

20

0020

00 ttettettett

deee

dee

ttW tt

tt

t tt

ttt

t tc

Its determinant is identically zero for all to and 0t , so the state equation is not controllable at any 0t

Page 84: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ] τ

= ∫∫ +τ−

+τ−+τ− d

ede

ettW

t

t ttt

t tc0 0

0

0 0 242

20 000

11

),( its determinant is identically zero for all

0t and 1t , so the state equation is not observable at any 0t .

6.22 show shat ( ))(),(( tBtA is controllable at 0t if and only if ))(),(( tBtA ′′− is observable at 0t

证明 ))(),(( tBtA 在 0t 可控当且仅当 ))(),(( tBtA ′′− 在 0t 可观。

Proof: Itttt =ΦΦ ),(),( 00 where ),( 0ttΦ is the transition matrix of ))()()( txtAtx =

0),(),()(),(),(),(),()(

),(),(),(

),(),(),(

000000

000

000

=Φ∂∂

Φ+=Φ∂∂

Φ+ΦΦ=

∂Φ∂

Φ+Φ∂

Φ∂=ΦΦ

∂∂

ttt

tttAttt

tttttttA

ttt

ttttt

tttttt

t

There we have )(),(),(

00 tAttt

tt+Φ−=

∂Φ∂

and. ),()(),(

00 tttAt

ttΦ′+′−=

∂Φ∂

So ),( 0 ttΦ′ is the transition matrix of ))()()( txtAtx ′= ))(),(( tBtA is controllable at 0t if and only

if there exists a finite 01 tt > such that ττΦ′τ′ττΦ= ∫ dtBBtttWt

tc ),()()(),(),( 1101

0

is nonsingular

))(),(( tBtA ′′− is observable at 0t if and only if there exists a finite 01 tt > such that

ττΦ′τ′ττΦ= ∫ dtBBtttWt

tc ),()()(),(),( 0001

0

is nonsingular.

For time-invariant systems , show that (A,B)is controllable if and only if (-A,B) is controllable , Is true foe time-varying systems ? 证明对时不变系统,(A,B)可控当且仅当(-A,B)可控。 对时变系统是否有相同结论? Proof: for time-invariant system (A,B) is controllable if and only if

[ ] nBAABBC n =ρ=ρ −11 )( (assuming a is nn×

(-A,B) is controllable if and only if [ ] nBAABBC n =ρ=ρ −12 )(

we know that any column of a matrix multiplied by nonzero constant does not change the rank of the

matrix . so =ρ )( 1C )( 2Cρ the conditions are identically the same , thus we conclude that (A,B)is

controllable if and only if (-A,B)is controllable .for time-systems, this is not true .

Page 85: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

7.1 Given )( 2)(1

1)( 2 +−−

=ss

ssg . Find a three-dimensional controllable realization check its

observalility

找)( 2)(1

1)( 2 +−−

=ss

ssg 的一三维可控性突现,判断其可观性。

Solution : )()( 22

12)(1

1)( 222 −−+−

+−−

=sss

sss

ssg using (7.9) we can find a

three-dimensional controllable realization as following

[ ]xyuxx 110001

010001212

−=

+

−= this realization is not observable because

(s-1)and )( 2)(12 +− ss are not coprime

7.2 find a three-dimensional observable realization for the transfer function in problem 7.1 check its controllability

找题 7.1 中 )( 2)(1

1)( 2 +−−

=ss

ssg 的一三维可控性突现,判断其可观性。

Solution : using (7.14) ,we can find a 3-dimensional observable realization for the transfer

function : [ ]xyuxx 0011

10

002101012

=

−+

−= and this tealization is not

controllable because (s-1) and )( 2)(12 +− ss are not coprime

7.3 Find an uncontrollable and unobservable realization for the transfer function in problem 7.1 find also a minimal realization 求题 7.1 中传函的一个不可控且不可观突现以及一个最小突现。

Solution : 23

1)2)(1(

12)(1

1)( 22 ++=

++=

+−−

=ssssss

ssg)(

a minimal realization is ,

[ ]xyuxx 1001

0123

=

+

−−= an uncontrollable and unobservable realization

is [ ]xyuxx 010001

100001023

=

+

−−=

Page 86: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

7.4 use the Sylvester resultant to find the degree of the transfer function in problem 7.1 用 Sylvester resultant 求题 7.1 中传函的阶 solution :

−−−−α

−−−−−

=

01000002010011020112110

001211000012

s

rank(s)=5. because all three D-columns of s are linearly independent . we conclude that s has only

two linearly independent N-columns . thus deg 2)(ˆ =sy

7.5 use the Sylvester resultant to reduce 14

122 −−

ss

to a coprime fraction 用 Sylvester resultant

将14

122 −−

ss

化简为既约分式。

Solution : ssusranks ===

−−

−−

= 11,3)(

040020041120

0011

nullT

s

−= 10

21

21)( 1 thus we have ssDssN +=⋅+=

21)(0

21)( and

121

21

21

1412

2 +=

+=

−−

ssss

7.6 form the Sylvester resultant of )( ss

ssg22)(ˆ

2 ++

= by arranging the coefficients of

)(sN and )(sD in descending powers of s and then search linearly independent columns in

order from left to right . is it true that all D-columns are linearly independent of their LHS

columns ?is it true that the degree of )(ˆ sg equals the number of linearly independent N-columns?

)( ssssg

22)( 2 +

+= 将 )(sN 和 )(sD 按 s 的降幂排列形成 Sylvester resultant ,然后从左

至右找出线性无关列。所有的 D-列是否都与其 LHS 线性无关? )(ˆ sg 的阶数是否等于线性

无关 N-列的数回?

Page 87: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Solution ; )()(:

22)(ˆ

2 sNsD

ssssg =++

=)(

1)(ˆdeg =sg

012

2

012

2

)(

)(

NSNSNsNDSDSDsD

++=

++=

from the Sylvester resultant :

=

2000122001120001

s 23)( == usrank (the number of linearly independent

N-columns

7.7 consider )()()(ˆ

212

21

sNsD

ssssg =

∂+α+β+β

=)(

and its realization

[ ]xyuxx 2121

01

01ββ=

+

α−α−=

show that the state equation is observable if and only if the Sylvester resultant of

)()( sNandsD is nonsingular . 考 虑)()()(ˆ

212

21

sNsD

ssssg =

∂+α+β+β

=)(

及 其 实 现

[ ]xyuxx 2121

01

01ββ=

+

α−α−= 证 明 该 状 态 方 程 可 观 及 其 当 且 仅 当

)()( sNandsD 的 Sylvester resultant 非奇异

proof: [ ]xyuxx 2121

01

01ββ=

+

α−α−= is a controllable canonical form realization of

)(ˆ sg from theorem 7.1 , we know the state equation is observable if and only id )()( sNandsD

are coprime

from the formation of Sylvester resultant we can conclude that )()( sNandsD are coprime if

and only if the Sylvester resultant is nonsingular thus the state equation is observable if and only if the

Sylvester resultant of )()( sNandsD is nonsingular

7.8 repeat problem 7.7 for a transfer function of degree 3 and its controllable-form realization , 对一

Page 88: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

个 3 阶传函及其可控型实现重复题 7.7

solution : a transfer function of degree 3 can be expressed as)()()(ˆ

322

13

322

13

1

sDsN

ssssss

sg =α+∂+α+β+β+β+β

=)(

where )()( sNandsD are coprime

writing )(ˆ sg as )

322

13

0320222

010 )())(ˆ

α+α+α+βα+β+βα−β+βα−β

=sss

sssg , we can obtain a controllable

canonical form realization of )(ˆ sg

[ ] uxy

uxx

0033022011

321

001

010001

β+βα−ββα−ββα−β=

+

α−α−α−=

the Sylvester resultant of )()( sNandsD is nonsingular because )()( sNandsD are

coprime , thus the state equation is observable .

7.9 verify theorem 7.7 fir 2)1(1)(ˆ+

=s

sg .对 2)1(1)(ˆ+

=s

sg 验定定理 7.7

verification : 2)1(1)(ˆ+

=s

sg is a strictly proper rational function with degree 2, and it can be

expanded into an infinite power series as

++−+−+⋅= −−−−−− 654321 54320)(ˆ sssssssg 1−s

[ ]( )( ) 2,1,.22,2)2,2(

1)1,2()2,1(00)1,1(==++=

====lkveyerforLKTT

TTTrr

rrrr

7.10 use the Markov parameters of 2)1(1)(ˆ+

=s

sg to find on irreducible companion-form realization

用马尔科夫参数求 2)1(1)(ˆ+

=s

sg 的一个不可简约的有型实现

solution 2

2110

)2,2(

5)4(3)2(0)(ˆ 654321

=

=

++−++−++⋅= −−−−−−

rrT

sssssssg

deg )(ˆ sg =2

Page 89: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ]0110

2110

0112

3221

2110

3221

)2,2()2,2(~1

1

=

=

−−

=

−=

−==∴

−−

cb

TTA

the triplet ),,( cbA is an irreducible com-panion-form realization

7.11 use the Markov parameters of 2)1(1)(ˆ+

=s

sg to find an irreducible balanced-form realization

用 )(ˆ sg 的马尔科夫参数求它的一个不可简约的均衡型实现.

Solution :

=21

10)2,2(T

Using Matlab I type

[ ] [ ][ ]

)1,1(),1,(;)(**)(

;*;*);(),(,,

32;2121;10

OccbcinvoinvA

lslcslkossqrtsltsvdlsk

ttt

===

′====−−=−=

ϑ

This yields the following balanced realization

[ ]xy

xx

5946.05946.05946.0

5946.02929.07071.0

7071.07071.1

−−=

+

−−

−=

7.12

Show that the two state equation [ ]xyuxx 2201

1012

=

+

= and

[ ]xyuxx 0221

1102

=

+

−−

= are realizations of )2()22(

2 −−+

sss , are they

minimal realizations ? are they algebraically equivalent?

证明以上两状态方程都是 )2()22(

2 −−+

sss

的突现,他们是否最小突现?是否代数等价?

Proof : 2

2)2)(1(

)1(2)2(

)22(2 −

=−+

+=

−−+

ssss

sss

Page 90: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ] [ ]

[ ] [ ]2

221

11

)2)(1(1

02

1

0221

1102

02

22

01

110

)2)(1(1

21

2201

1012

22

1

1

−=

+−+−

−=

+

−=

−−−=

−−−

ssss

ss

s

ss

ssss

s

thus the two state equations are realizations of )2()22(

2 −−+

sss the degree of the transfer function

is 1 , and the two state equations are both two-dimensional .so they are nor minimal realizations . they are not algebraically equivalent because there does not exist a nonsingular matrix p such that

[ ] [ ]0222

01

01

1102

1012

1

1

=

=

−−

=

P

P

PP

7.13 find the characteristic polynomials and degrees of the following proper rational matrices

++

++

=

131

131

ˆ1

ss

s

ss

sG

+++

+++=

)2)(1(1

21

)2)(1(1

)1(1

ˆ2

1

sss

sssG

+

++

+

++

+=

s

s

ss

s

ss

sG 15

1

41

21

23

)1(1

ˆ 2

3

note that each entry of )(ˆ sGs has different poles from other entries

求正则有理矩阵 )(ˆ1 sG , )(ˆ

2 sG 和 )(ˆ3 sG 的特征多项式和阶数.

Solution : the matrix )(ˆ1 sG has

1,

31,

13,1

++++

ss

sss

s and det )(ˆ

1 sG =0 as its minors

thus the characteristic polynomial of )(ˆ1 sG is s(s+1)(s+3) and )(ˆ

1 sG =3 the matrix )(ˆ2 sG has

2)1(1+s

,)2)(1(

1++ ss

, 2

1+s

, )2)(1(

1++ ss

. det 23

2

2 )2()1(1)(ˆ

+++−−

=sssssG as

its minors , thus the characteristic polynomial of 5)(ˆ)2()1()(ˆ2

232 =++= sGandsssG d

Every entry of )(ˆ3 sG has poles that differ from those of all other entries , so the characteristic

polynomial of )(ˆ3 sG is )5)(4()3)(2()1( 22 +++++ ssssss and 8)(ˆ

3 =sGd

Page 91: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

7.14 use the left fraction

=−

111

)(ˆ1

sss

sG to form a generalized resultant as in (7.83), and

then search its linearly independent columns in order from left to right ,what is the number of linearly

independent N-columns ?what is the degree of )(ˆ sG ? Find a right coprime fraction lf )(ˆ sG ,is the

given left fraction coprime?用 )(ˆ sG 的左分式构成(7.83)中所示的广义终结阵,然后从左到右找出其

线性无关列.线性无关的 N-列的数目是多少> )(ˆ sG 的阶是多少?求出 )(ˆ sG 的一个既约右分式.题

给的左分式是否既约?

Solution : )()(:1

11)(ˆ 1

1

sNsDss

ssG −

=

=

Thus we have

=

+

=

=

11

)(

1101

00101

)(

sN

sss

ssD

And the generalized resultant

0 1 1 0 0 00 0 -1 0 0 01 0 0 0 1 1-1 1 0 0 0 -10 0 0 1 0 00 0 0 -1 1 0

S

=

rank s=5 ,

the number of linearly independent N-colums is l. that is u=1,

[ ]1100

100001)(DNDN

snull−−

−=

So we have

1)(ˆdeg

01

)(ˆ

01

00

01

)(

10)(

1

===

=

+=

+

+=

=⋅+=

usG

ssG

sSN

SSSD

the given left fraction is not coprime . 7.15 are all D-columns in the generalized resultant in problem 7.14 linearly independent .pf their LHS

columns ?Now in forming the generalized resultant ,the coefficient matrices of )(SD and )(SN are

Page 92: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

arranged in descending powers of s , instead of ascending powers of s as in problem 7.14 .is it true that

all D-columns are linearly independent of their LHS columns? Doe’s he degree of )(ˆ sG equal the

number of linearly independent N-columns ?does theorem 7.M4hold ?题 7.14 中的广义终结阵中是否

所有的 D-列都与其 LHS 列线性无关?现将 )(SD 和 )(SN 的系数矩阵按 S得降幂.排列构成另一种

形式的广义终结阵.在这样的终结阵中是否所有的 D-列也与其 LHS 列线性无关? )(ˆ sG 的阶数是

否等于线性无关 N-列的数目?定理 7.M4 是否成立?

Solution : because ,01 ≠D ALL THE D-columns in the generalized resultant in problem7.14 are

linearly independent of their LHS columns

Now forming the generalized resultant by arranging the coefficient matrices of )(SD and )(SN in

descending powers of s :

5

100000110000011100001110000011000001

00

00

00

1100

11

=

−−

=

= Srank

NDNDND

NDS

we see the 0D -column in the second colums block is linearly dependent of its LHS columns .so it is

not true that all D-columns are linearly independent of their LHS columns .

the number of linearly independent N -columns is 2 and the degree of )(ˆ sG is I as known in problem

7.14 , so the degree of )(ˆ sG does not equal the number of linearly independent N -columns , and the

theorem 7.M4 does not hold .

7.16, use the right coprime fraction of )(ˆ sG obtained in problem 7.14 to form a generalized tesultant as

in (7.89). search its linearly independent rows in order from top to bottom , and then find a left coprime

fraction of )(ˆ sG 用题 7.14 中得到的 )(ˆ sG 的既约右分式,如式(7.89)构造一个广义终结阵, 从上至

下找出其线性无关行, 求出 )(ˆ sG 的一个既约左分式.

Solution :

==

= −

01

)()(01

)(ˆ 1 sNssDssG

The generalized resultant

Page 93: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

0,13

000010100000001010

21 ===

= γγTrankT

[ ]

[ ]′−=

′=

1001)

010100001010

(

100)000001010

(

mull

mull

[ ]

+=

=

+

=

−=−−∴

01

)(

100

0001

1000

)(

000100010001

0000

sN

sssD

DNDN

thus a left coprime fraction of

−−+

5.05.05.05.02

ssss

is

=

01

100

)(ˆ1s

sG

7.17 find a right coprime fraction of

+

++

=

sss

ss

ss

sG22

121

)(ˆ

2

23

2

snd then a minimal realization

求 )(ˆ sG 的一个既约右分式及一个最小突现]

solution : )()(:22

121

)(ˆ 1

2

23

2

SNSD

sss

ss

ss

sG −=

+

++

=

where 2

2

322

3

0021

2110

0201

22)12(1

)(

0001

1000

0000

0000

00

)(

ssss

ssssN

ssss

ssD

+

+

=

+++

=

+

+

+

=

=

Page 94: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

the generalized resultant is

=

00000000000000010000000000100000000021000001000021000010000010002100000102002100001001001000210000000200210000001001000000000000200000000000100

S

rank 1,2,9 21 === µµs

the monic null vectors of the submatrices that consist of the primary dependent 2N -columns and

1N -columns are , respectively

[ ][ ]

−−−−−−−−

=

−−−−−=

′−−−=

000015.000010005.011

5.005.25.25.005.25.0

1005.0115.005.25.0115.0005.005.25.22

2

2

1

1

0

0

DNDN

DN

ZZ

220 0 0.5 0.5 1 0 0.5 0.5

( )0.5 0.5 0 1 0 0 0.5 0.5

0.5 2.5 1 0 0.5 2.5( )

2.5 2.5 1 0 2.5 2.5

s s sD s s s

s

sN s s

s

+ = + + = − − − −

+ = + = +

thus a right coprime fraction of )(ˆ sG is

−−+

++

=5.05.0

5.05.05.25.25.25.0

)(ˆ2

ssss

ss

sG

we define

=

=

10010

)(0

0)(

2 ssL

ss

sH

Page 95: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

then we have

11

1

1 0.5 0.5 0 0( ) ( ) ( )

0 1 0 0.5 0.5

1 0.5 2.5( ) ( )

1 2.5 2.5

1 0.5 1 0.50 1 0 1

1 0.5 0.5 0 0 0.5 0.25 0.250 1 0 0.5 0.5 0 0.5 0.5

hc

hc ic

D s H s L s

N s L s

D

D D

= + − −

=

− = =

− = = − − − −

thus a minimal realization of )(ˆ sG is

0.5 0.25 0.25 1 0.51 0 0 0 00 0.5 0.5 0 1

1 0.5 2.51 2.5 2.5

x x u

y x

− − − − = +

=

Page 96: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

8.1 given [ ]xyuxx 1121

1112

=

+

=

find the state feedback gain k so that the feedback system has –1 and –2 as its eigenvalues .

compute k directly with using any equivalence transformation 对题给状态方程, 不用等价交换,

直接求状态反馈增益 k 使状态反馈系统的特征值为-1,-2.

Solution : introducing state feedback [ ]xkkru 21−= , we can obtain

[ ] rxkkxx

+

=21

21

1112

21

the new A-matrix has characteristic polynomial

)35()32(

)1)(21()21)(2()(

21212

2121

+−+−++=

−−−−+−+−=∆

kkskks

kkkskssf

the desired characteristic polynomial is 23)2)(1( 2 ++=++ ssss ,equating

332 21 =−+ kk and 235 21 =+− kk , yields

14 21 == kandk so the desired state feedback gain k is [ ]14=k

8.2 repeat problem 8.1 by using (8.13), 利用式(8.13)重解题 8.1.

solution :

[ ] [ ]

[ ] trollablecanisbAsogularnonisCCbAbD

CC

k

ssssssssss

f

),(,sin7

17

27

47

1

1241

1031

1031

1632)3(3

23)2)(1()(131)1)(2()(

1

1

2

2

−=

==

=

−=

−=−−−=

++=++=∆

+−=+−−=∆

using (8.13)

[ ] [ ]147

17

27

47

1

1031

161 =

−== −CCkk

8.3 Repeat problem 8.1 by solving a lyapunov equation 用求解 lyapunov 方程的方法重解题 8.1.

Page 97: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

solution : ),( bA is controllable

selecting [ ]1120

01=

−= kandF then

[ ] [ ]1401319

11

01319

1391

1310

1

1

=

−==

−=

=⇒=−

Tkk

TTkbTFAT

8.4 find the state foodback gain for the state equation uxx

+

−=

101

100110211

so that the resulting system has eigenvalues –2 and –1+j1 . use the method you think is the simplest by hand to carry out the design 求状态反馈增益. 使题给状态方程的状态反馈系统具

有-2 和-1+j1 特征值/

solution : ),( bA is controllable

[ ] [ ]

−−−=

−−=

=

−=

=−−−−−=

+++=−++++=∆

−+−=−=∆

121232011

111210211

100310631

100310

331537)1(436)3(4

464)11)(11)(2()(133)1()(

1

1

23

233

CC

CC

k

sssjsjssssssss

f

Using(8.13) [ ] [ ]84715121

232011

100310631

5371 −=

−−−

= −CCkk

8.4 Consider a system with transfer function )3)(2)(1(

)2)(1()(ˆ+−+

+−=

ssssssg is it possible to

change the transfer function to )3)(2(

)1()(ˆ++

−=

ssssg f by state feedback? Is the resulting

Page 98: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

system BIBO stable ?asymptotically stable?

是否能够通过状态反馈将传函 )(ˆ sg 变为 )(ˆ sg f ?所得系统是否 BIBO 稳定?是否逐渐稳定?

Solution : )3()2)2)(1(

)3)(2()1()(ˆ

2 +++−

=++

−=

ssss

ssssg f

We can easily see that it is possible to change )(ˆ sg to )(ˆ sg f by state feedback and the resulting

system is asymptotically stable and BIBO stable .

8.6 consider a system with transfer function )3)(2)(1(

)2)(1()(ˆ+−+

+−=

ssssssg is it possible to

change the transfer function to 3

1)(ˆ+

=s

sg f by state feedback ? is the resulting system BIBO

stable? Asymptotically stable ?

能否通过状态反馈将传函 )(ˆ sg 变为 )(ˆ sg f ?所得系统是否 BIBO 稳定?是否逐渐稳定?

Solution ; )3)(2)(1(

)2)(1(3

1)(ˆ++−

+−=

+=

sssss

ssg f

It is possible to change )(ˆ sg to )(ˆ sg f by state feedback and the resulting system is

asymptotically stable and BIBO stable .. however it is not asymptotically stable . 8.7 consider the continuous-time state equation

[ ]xyuxx 002101

100110211

=

+

−=

let xkpru −= , find the feedforward gain p and state feedback gain k so that the resulting

system has eigenvalues –2 and 11 j±− and will track asymptotically any step reference input

对题给连续时间状态方程, 令 xkpru −= 求前馈增益p 和状态反馈增益 k 使所得系统特

征值为-2 和 11 j±− , 并且能够渐进跟踪任意阶跃参考输入.

Solution :

Page 99: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

[ ]

[ ]84715

5.084

464)(

133882

101

1100

)1(1

110

)1(1

)1(1

)1(1

11

002)()(ˆ

3

3

23

23

2

2

232

−=

===∴

+−++=∆

−+−+−

=

−−

−−

−−−

=−=

k

P

ssss

sssss

s

ss

ssss

bAsIcsg

f

(obtained at problem 8.4) 8.8 Consider the discrete-time state equation

[ ] ][002][

][101

100110211

]1[

kxky

kuxkx

=

+

−=+

find the state feedback gain so that the resulting system has all eigenvalues at x=0 show that for any initial state the zero-input response of the feedback system becomes identically zero for

3≥k 对题给离散时间状态方程,求状态反馈增益使所得系统所有特征值都在 Z=0, 证明对任意

初始状态,反馈系统的零输入响应均为零( 3≥k )

solution ; ),( bA is controllable

[ ]

[ ] [ ]251121

232011

100310631

133

133

)(133)(

1

3

3

=

−−−

−==

−=

=∆

−+−=∆

− kCCk

k

zzzszz

f

The state feedback equation becomes

[ ]

[ ] ][002][

][101

][151

110440

][101

][251101

100110211

]1[

kxky

krkxkrkxkx

=

+

−−−

−−=

+

−=+

denoting the mew-A matrix as A , we can present the zero-mput response of the feedback system

as following ]0[][ xACkyk

zi =

Page 100: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

compute k

A

1

1

000100010

000100010

=

=

QQA

QQA

K

k

using the nilpotent property

30000100010

≥=

kfor

K

so we can readily obtain 0]0[0][ == xCkyzi for 3≥k

consider the discret-time state equation in problem 8.8 let for ][][][ kxkkprku −= where p

is a feedforward gain for the k in problem 8.8 find a gain p so that the output will track any step

reference input , show also that y[k]=r[k] for 3≥k ,thus exact tracking is achieved in a finite number of sampling periods instead of asymptotically . this is possible if all poles of the resulting system are placed at z=0 ,this is called the dead-beat design

对题8.8中的离散时间状态方程,令 ][][][ kxkkprku −= ,其中 p 是前馈增益,对题8.8中所得

k ,求一增益 p 使输出能够跟踪任意阶跃参考输入,并证明 3≥k 时 y[k]=r[k].实际的跟踪是在

无穷多采样周期中得到的,而不是渐进的. 当反馈系统的所有标点都被配置在 Z=0 时,这样的

跟踪是可以做到的,这就是所谓的最小[拍设计. Solution ;

3

2

323

2

88)(ˆ

][][][)(133

882)(ˆ

zzzpzg

kxkkprkuzzzsz

szzg

f+−

=

−==∆−+−

+−=

),( bA is controllable all poles of )(ˆ zg f can be assigned to lie inside the section in fig 8.3(b)

under this condition , if the reference input is a step function with magnitude a , then the output

y[k] will approach the constant +∞→⋅ kasag f )1(ˆ

thus in order for y[k] to track any step reference input we need 1)1(ˆ =fg

Page 101: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

5.012)1(ˆ =⇒== ppg f

the resulting system can be described as

[ ] ][002][][][

][5.0

05.0

][151

110440

][

kxkykrbkxA

krkxkx

=+=

+

−−−

−−=

the response excited by r[k] is

][]0[][1

0

1mrbACxACky

K

M

mKK∑−

=

−−+=

sokforAknowweasK

,30, ≥=

3]3[4]2[4]1[]3[]2[]1[][

2

≥−+−−−=−+−+−=

kforkrkrkrkrbAckrbAckrbcky

for any step reference input r[k]=a the response is y[k]=(1-4+4) a =a =r[k] for 3≥k

8.10 consider the uncontrollable state equation uxx

+

−−

=

1110

1000010000200012

is it possible

to find a gain k so that the equation with state feedback xkru −= has eigenvalues –2, -2 ,

-1 ,-1 ? is it possible to have eigenvalues –2, -2 ,–2 ,-1 ? how about –2 ,-2, –2 ,-2 ? is the equation

stabilizable?对题给不可控状态方程,是否可以求出一增益 k 使具有反馈 xkru −= 的方程具

有特征值-2. –2, -1, -1, ?特征值-2, -2, -2,-1?特征值-2,-2,-2,-2?该方程是否镇定? Solution: the uncontrollable state equation can be transformed into

ub

xx

AA

uxx

xx

c

c

c

c

c

c

c

c

c

+

=

+

=

000

0001

1000031000010400

Page 102: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

Where the transformation matrix is

−−

=−

1111011104210410

1P

),( cC bA is controllable and )( CA is stable , so the equation is stabilizable . the eigenvalue of

)( CA ,say –1 , is not affected by the state feedback ,while the eigenvalues of the controllable

sub-state equation can be arbitrarily assigned in pairs . so by using state feedback ,it is possible for the resulting system to have eigenvalues –2 ,-2 , -1, -1, also eigenvalues –2, -2, -2, -1. It is impossible to have –2, -2, -2, -2, as it eigenvalues because state feedback can not affect the eigenvalue –1. 8.11 design a full-dimensional and a reduced-dimensional state estimator for the state equation in

problem 8.1 select the eigenbalues of the estimators from { }223 j±−−

对题 8.1 中的状态方程, 设计一全维状态估计器和一将维估计器.估计器的特征值从

{ }223 j±−− 中选取.

Solution : the eigenvalues of the full-dimensional state estimator must be selected as 22 j±− ,

the A-, −b and −c matxices in problem 8.1 are

[ ]1121

1112

=

=

= cbA

the full-dimensional state estimator can be written as ylubxclAx ++=−= ˆ)(

let

=

2

1

ll

l then the characteristic polynomial of )(ˆ clAx −= is

1912844)2(

23)3(

)1)(1()1)(2()(

21

222121

21221

=−=⇒++=++=

−−+−++=

−+++−+−=∆′

llsss

llsllslllslss

thus a full-dimensional state estimor with eigenvalues 22 j±− has been designed as following

yuxx

−+

+

−−

=1912

21

ˆ1820

1314

designing a reduced-dimensional state estimator with eigenvalue –3 :

Page 103: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

(1) select |x| stable matrix F=-3 (2) select |x| vector L=1, (F,L) IS controllable

(3) solve T=: TA-FT= cl

let T :

[ ]

[ ] [ ] [ ]

=⇒

=+

=

214

213

1131112

2121

21

T

tttt

ttT

(4) THE l-dimensional state estimutor with eigenvalue –3 is

−=

=

++−=

zy

zy

x

yuxz

215214

214

215

11ˆ

21133

1

8.12 consider the state equation in problem 8.1 .compute the transfer function from r to y of the state feedback system compute the transfer function from r to y if the feedback gain is applied to the estimated state of the full-dimensional estimator designed in problem 8.11 compute the transfer function from r to y if the feedback gain is applied to the estimated state of the reduced-dimensional state estimator also designed in problem 8.11 are the three overall transfer functions the same ? 对题 8.1 中的状态方程,计算状态反馈系统从 r 到 y 的传送函数.若将反馈增益应用到题 8.11中所设计的全维状态估计器所估计的估计状态,计算从 r 到 y 的传送函数,若将反馈增益应用

到题 8.11 中所设计的降维状态估计器的估计状态, 计算从 r 到 y的传送函数, 这三个传送函

数是否相同? Solution

(1)

[ ])2)(1(

4321

11

)2)(1(9

02

1

11

)(ˆ 1

++−

=

+++

+=

+−=∴

−==+=−

sss

sss

s

bkbAsIcyxkruxcyubxAx

yx

Page 104: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

(2)

[ ]

[ ] [ ]

[ ]xy

rxx

xxrx

yuxx

rxx

xrxuxx

2121

19191212

ˆ2028

1210

111912

ˆ1421

21

ˆ1820

1314

1912

21

ˆ1820

1314ˆ

21

ˆ2814

1112

ˆ1421

21

1112

21

1112

=

+

−−+

−−

=

−+

+

−−

=

−+

+

−−

=

+

=

+

=

+

=

[ ]

=

+

−−−−

−−−−−

=

xx

y

rxx

xx

ˆ0011

2121

ˆ20281919

1210121228111412

[ ]

)2)(1(43

)84)(2)(1()84)(43(

163222732883

2121

202819191210121228111412

0011ˆ

2

2

234

23

1

++−

=++++

++−=

++++−++

=

+−−−

−−−−−

=∴

sss

sssssss

sssssss

s

ss

g yr

Page 105: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

(3)

[ ]

[ ] [ ]

[ ]xy

rzx

xzy

rzz

rzx

rzxx

rzy

xx

rrxxuxx

11211342

21164

21164

11)215

21414(

21133

21

12663

23211213

21

12663

112211

1112

21

215214

ˆ2814

1112

21

21

ˆ2814

1112

21

1112

=

+−

=

+

−−+−=

+

+

=

+

−−

=

+

=

+

=

+

=

[ ]

[ ]

)2)(1(43

)3)(2)(1()3)(43(

61161253

211321

4221

16421

1641262321632113

011)(ˆ

011

211321

4221

16421

1641262321631213

23

2

1

++−

=+++

+−=

+++−+

=

+

+−−

−−−

=∴

=

+

−−

=

sss

sssss

sssss

ss

ssg

zx

y

rzx

zx

yr

these three overall transfer functions are the same , which verifies the result discussed in section 8.5.

8.13 let

=

−=

20210000

0012321301000010

BA find two different constant matrices k such that

(A-BK) has eigenvalues j34 ±− and j45 ±− 求两个不同的常数阵使(A-BK)具有特征值

j34 ±− 和 j45 ±−

Page 106: Solution of Linear System Theory and Design 3ed for Chi Tsong Chen

solution : (1) select a 44× matrix

−−−

−−−

=

54004500

00430034

F

the eigenvalues of F are j34 ±− and j45 ±−

(2)if ),(,01000001

11 kFk

= is observable

−−−−==

−−−−

−−−−−

=⇒=−

2253.28747.141758.1190670.3710000.22000.140000.1682000.606

1982.02451.00043.00006.00185.01731.00714.01322.0

0191.00193.00273.00126.00042.00005.00059.00013.0

1111

1111

TKK

TKBFTAT

(3)IF

=

01001111

2K ),( 2kF is observable

−−−−==

−−−−−

=⇒=−

5853.24593.78815.595527.1852509.30893.02145.559824.252

2007.02473.00037.00048.00245.03440.00607.02036.00306.00443.00147.00399.00081.00024.00071.00046.0

1222

2222

TKK

TKBFTAT