smith & corripio, 3rd edition solution

Download Smith & Corripio, 3rd Edition Solution

If you can't read please download the document

Upload: marcos-barrios-manarez

Post on 07-Oct-2015

737 views

Category:

Documents


220 download

DESCRIPTION

Solucionario de Smith & Corripio 3ra edicion.

TRANSCRIPT

  • http://www.elsolucionario.blogspot.com

    DaladierTypewritten textLIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS

    LOS SOLUCIONARIOS CONTIENEN TODOS LOS EJERCICIOS DEL LIBRORESUELTOS Y EXPLICADOSDE FORMA CLARA

    VISITANOS PARADESARGALOS GRATIS.

  • (d) Automatic sprinkler system for fires.

    The controller is On/Off and the control i feedback with respect to temperature.,

    M, D, A: temperature element/controller TE/C. Usually a bi-metallic strip that pushes the latch on the mechanism holding the slice of bread. The bread is released and the heating element de-energized when the temperature reaches the value set by the set point. TE/CSP

    (c) Toaster.

    The controller is On/Off and the control is feedback on the temperature variable.

    M: Temperature element TE, usually a gas-filled bulb

    D: Temperature controller TC.

    A: Solenoid S that operates the heating element in the oven

    (b) Cooking oven.

    TETC

    S

    SP

    The controller is On/Off and the control is feedback.

    M: Temperature element TE in thermostat TE/C

    D: Mercury switch in thermostat TE/C

    A: Solenoid S that turns unit (AC/H) on and off. TE/C S

    AC/H

    SP

    (a) House air-conditioning/heating.

    Identificaton of the M-D-A components, controller type, instrumentation diagram, and type of control.

    Problem 1-1. Automation in daily life.

    Smith & Corripio, 3rd edition

  • Watermain

    TE/C

    M, D, A: temperature element/controller TE/C, a rod that gives to the water pressure at a set temperature, allowing the water to spray over the fire.

    The controller is On/Off with single action, and the control is feedback.

    (e) Automatic cruise speed control.

    ST

    SCSP

    S

    Air

    EngineTransmission

    M: Speed sensor and transmitter ST on the transmission

    D: Speed controller SC

    A: Damper on air intake to the engine throttles the air varying the power delivered by the engine

    Controller is regulating and control is feedback.

    (f) Refrigerator.

    TE/C SSP

    M: temperature sensor TE, usually a gas-filled bulb

    D: Temperature controller C, mechanically linked to the sensor

    A: Solenoid S that turnsd the refrigeration compressor on and off

    The controller is On/Off and the control is feedback.

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

  • Smith & Corripio, 3rd edition

    Problem 1-2. Automatic shower temperature diagram.

    TETC

    Hotwater

    Coldwater

    S

    SPM: temperature sensor TE, a gas-filled bulb

    D: temperature controller TC, mechanilly integrated to the sensor, but with a signa output

    A: solenoid operated control valve on the hot water line.

    The cold water valve is operated manually.

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

  • F s( )s

    s2 2+=

    12

    1s i

    1s i ++

    =

    s i s+ i +2 s i ( ) s i +( )=

    2 s2 s2 2+( )=

    s

    s2 2+=

    12

    1s i e

    s i ( )t 0

    1s i + e

    s i +( )t 0

    +

    =

    12 0

    te s i ( )t

    d 0

    te s i +( )t

    d+

    =

    F s( )0

    tcos t e st d=

    0

    t

    ei t e i t2

    e st

    d=f t( ) cos t=(c)

    F s( )1

    s a+=

    F s( )0

    te at e st

    d= 0

    te s a+( )t

    d=1

    s a+ es a+( )t

    0

    = 1s a+=

    where a is constantf t( ) e at=(b)

    F s( )1

    s2=

    F s( )t

    se st

    0

    1s 0

    te st

    d+= 0 01

    s2e st

    0

    = 1s2

    =

    v1s

    e st=du dt=

    dv e st dt=u t=By parts:F s( )0

    tt e st d=f t( ) t=(a)

    F s( )0

    tf t( ) e st

    d=

    Problem 2-1. Derivation of Laplace transforms from its definitionSmith & Corripio, 3rd. edition

  • (d) f t( ) e at coss t=F s( )

    0

    te at cos t e st d=

    0

    te at e

    i t e i t+2

    e st

    d=

    12 0

    te s a+ i +( )t

    d 0

    te s a+ i ( ) t

    d+

    =

    12

    1s a+ i + e

    s a+ i +( )t 0

    1s a+ i e

    s a+ i ( )t 0

    +

    =

    12

    1s a+ i +

    1s a+ i +

    =

    s a+ i s+ a+ i +2 s a+ i +( ) s a+ i ( )=

    2 s a+( )2 s a+( )2 2+

    = s a+s a+( )2 2+

    = F s( ) s a+s a+( )2 2+

    =

    All the results match results in Table 2-1.1

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

  • 1s

    1s 2++ 2

    1s 1+=

    1s

    1s 2++

    2s 1+=

    F s( )1s

    1s 2++

    2s 1+=Used the linearity property.

    (d) f t( ) u t( ) e t t e t+= F s( ) L u t( )( ) L e t( ) L t e t( )+= 1s

    1s 1+

    1

    s 1+( )2+=

    F s( )1s

    1s 1+

    1

    s 1+( )2+=Used the linearity property.

    (e) f t( ) u t 2( ) 1 e 2 t 2( ) sin t 2( ) = Let g t( ) u t( ) 1 e 2 tsin t( )= Then f t( ) g t 2( )=F s( ) e 2 s G s( )= e 2 s 1

    s1

    s 2+( )2 1+

    =

    Used the real translation theorem and linearity. F s( ) e 2 s 1s

    1

    s 2+( )2 1+

    =

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

    Smith & Corripio, 3rd editionProblem 2-2. Derive Laplace transforms from the properties and Table 2-1.1

    (a) f t( ) u t( ) 2 t+ 3 t2+= F s( ) L u t( ) 2 t+ 3 t2+( )= L u t( )( ) 2 L t( )+ 3 L t2( )+=1s

    21

    s2+ 3 2!

    s3+= F s( ) 1

    s2

    s2+ 6

    s3+=

    Used the linearity property.

    (b) f t( ) e 2 t u t( ) 2 t+ 3 t2+( )= F s( ) L u t( ) 2 t+ 3 t2+( )s 2+

    = 1s

    2

    s2+ 6

    s3+

    s 2+=

    1s 2+

    2

    s 2+( )2+ 6

    s 2+( )3+=

    F s( )1

    s 2+2

    s 2+( )2+ 6

    s 2+( )3+=Used the complex translation theorem.

    (c) f t( ) u t( ) e 2 t+ 2e t= F s( ) L u t( ) e 2 t+ 2 e t( )= L u t( )( ) L e 2 t( )+ 2 L e t( )=

  • Must apply L'Hopital's rule:

    s11

    22 s 2+( )+

    6

    3 s 2+( )2+

    1=lim

    Final value:

    te 2 t u t( ) 2 t+ 3t2+( ) 0 =lim

    0s

    s1

    s 2+2

    s 2+( )2+ 6

    s 3+( )2+

    0=lim

    L'Hopital's rule:

    t0

    2e2t2

    2e2t+ 6t

    2e2t+

    0=lim Check!

    (c) f t( ) u t( ) e 2 t+ 2e t= F s( ) 1s

    1s 2++

    2s 1+=

    Initial value:

    0tu t( ) e 2 t+ 2e t( ) 1 1+ 2( ) 0+=lim

    ss

    1s

    1s 2++

    2s 1+

    =lim

    L'Hopital's rule:

    s1

    11

    + 21

    0=lim

    Final value:

    tu t( ) e 2 t+ 2e t( ) 1 0+ 0+= 1=lim

    0ss

    1s

    1s 2++

    2s 1+

    1 0+ 0+= 1=lim

    Smith & Corripio, 3rd edition

    Problem 2-3. Initial and final value check of solutions to Problem 2-2

    (a) f t( ) u t( ) 2 t+ 3t2+= F s( ) 1s

    2

    s2+ 6

    s3+=

    Initial value:

    0tu t( ) 2t+ 3t2+( ) 1=lim

    ss

    1s

    2

    s2+ 6

    s3+

    s

    12s

    + 6s2

    +

    1=lim

    =lim

    Final value:

    tu t( ) 2t+ 3t2+( ) =lim

    0s1

    2s

    + 6s2

    +

    =lim

    Check!

    (b) f t( ) e 2 t u t( ) 2t+ 3t2+( )= F s( ) 1s 2+

    2

    s 2+( )2+ 6

    s 2+( )3+=

    Initial value:

    0te 2 t u t( ) 2t+ 3t2+( )lim

    ss

    1s 2+

    2

    s 2+( )2+ 6

    s 2+( )3+

    =lim

    1 1 0+ 0+( )= 1=

  • Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

    Check!

    0ss

    1s

    1

    s 1+( )2 1+

    1 0+= 1=lim

    t1 e 2 tsin t( ) 1=lim

    Final value:

    ss

    1s

    1

    s 1+( )2 1+

    1 0= 1=lim

    0t1 e 2 tsin t( ) 1=lim

    Initial value:

    The test of the delayed fnction is not useful. Better to test the term in brackets, g(t):

    F s( ) e 2 s 1s

    1

    s 1+( )2 1+

    =f t( ) u t 2( ) 1 e 2 t 2( ) sin t 2( ) =(e)

    Check!t1 0 1

    1 et+

    1=lim

    L'Hopital's rule:

    tu t( ) e t t e t+( ) 1 0 0+=lim

    0s1

    ss 1+

    s

    s 1+( )2+

    1 0 0+= 1=lim

    Final value: s1

    11

    12 s 1+( )+

    1 1 0+= 0=lim

    L'Hopital's rule:

    ss

    1s

    1s 1+

    1

    s 1+( )2+

    =lim0t

    u t( ) e t t e t+( ) 1 1 0 1+= 0=lim

    Initial value:

    F s( )1s

    1s 1+

    1

    s 1+( )2+=f t( ) u t( ) e t t e t+=(d)

  • Smith & Corripio, 3rd editionProblem 2-4. Laplace transform of a pulse by real translation theorem

    f t( ) H u t( ) H u t T( )=

    F s( ) H1s

    H e sT 1s

    = H 1 esT

    s= F s( ) H

    s1 e sT( )=

  • Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

    0 2 40

    2fd t( )

    t0 2 4

    0

    2f t( )

    t

    f t( ) e

    t0

    et

    := fd t( ) u t t0( ) et t0( ):=

    u t( ) 0 t 0 0:f t( ) e

    t t0( )=

    Problem 2-5. Delayed versus non-delayed function

  • Y t( ) 2.5 e t 2.5 u t( )+= (Table 2-1.1)

    (b)9

    d2 y t( )dt2

    18 d y t( )dt

    + 4 y t( )+ 8 x t( ) 4=

    Initial steady state: 4 y 0( ) 8 x 0( ) 4=Subtract:

    9d2 Y t( )

    dt2 18 d Y t( )

    dt+ 4 Y t( )+ 8 X t( )=

    Y t( ) y t( ) y 0( )= Y 0( ) 0=X t( ) x t( ) x 0( )=

    Laplace transform:9s2 Y s( ) 18s Y s( )+ 4 Y s( )+ 8 X s( )= 8 1

    s=

    Solve for Y(s): Y s( )8

    9s2 18s+ 4+1s

    = r118 182 4 9 4+

    2 9:= r1 0.255=

    r218 182 4 9 4

    2 9:= r2 1.745=

    Expand in partial fractions:Y s( )

    89 s 0.255+( ) s 1.745+( )s=

    A1s 0.255+

    A2s 1.745++

    A3s

    +=

    A10.255s

    89 s 1.745+( )s

    89 0.255 1.745+( ) 0.255( )= 2.342=lim

    =

    Smith & Corripio, 3rd editionProblem 2-6. Solution of differential equations by Laplace transformsInput function: X t( ) u t( )= X s( ) 1

    s= (Table 2-1.1)

    (a) d y t( )dt

    2 y t( )+ 5 x t( ) 3+=Initial steady state: 2 y 0( ) 5 x 0( )= 3=

    Subtract: d Y t( )dt

    2 Y t( )+ 5 X t( )= Y t( ) y t( ) y 0( )= X t( ) x t( ) x 0( )=

    Laplace transform: sY s( ) Y 0( ) 2 Y s( )+ 5 X s( )= 5 1s

    = Y 0( ) y 0( ) y 0( )= 0=

    Solve for Y(s):Y s( )

    5s 2+

    1s

    =A1

    s 2+A2s

    +=Partial fractions:

    A12s

    5s

    2.5=lim

    = A20s

    5s 2+ 2.5=lim

    =

    Y s( )5

    s 1+5s

    += Invert:

  • Y 0( ) 0=9d2 Y t( )

    dt2 12 d Y t( )

    dt+ 4 Y t( )+ 8 X t( )=Subtract initial steady state:

    9d2 y t( )

    dt2 12 d y t( )

    dt+ 4 y t( )+ 8 x t( ) 4=(d)

    Y t( ) 1 1.134i+( )e 0.5 0.441i+( )t 1 1.134i( )e 0.5 0.441i( )t+ 2 u t( )+=Invert using Table 2-1.1:

    Y s( )1 1.134i+

    s 0.5+ 0.441i1 1.134i

    s 0.5+ 0.441i++2s

    +=

    A30s

    8

    9s2 9s+ 4+2=lim

    =A2 1 1.134i=

    89 2 0.441i( ) 0.5 0.441i+( ) 1 1.134i+=A1 0.5 0.441i+s

    89 s 0.5+ 0.441i+( ) slim

    =

    A1s 0.5+ 0.441i

    A2s 0.5+ 0.441i++

    A3s

    +=

    Y s( )8

    9 s 0.5+ 0.441i( ) s 0.5+ 0.441+( )s=Solve for Y(s), expand:

    A21.745s

    89 s 0.255+( )s

    89 1.745 0.255+( ) 1.745( )= 0.342=lim

    =

    A30s

    89 s 0.255+( ) s 1.745+( )

    89 0.255( ) 1.745( )

    = 2.0=lim

    =

    Y s( )2.342

    s 0.255+0.342

    s 1.745++2s

    +=

    Invert with Table 2-1.1:Y t( ) 2.342 e 0.255 t 0.342e 1.745 t+ 2 u t( )+=

    (c) 9d2 y t( )

    dt2 9 d y t( )

    dt+ 4 y t( )+ 8 x t( ) 4=

    Subtract initial steady state:9

    d2 Y t( )dt2

    9 d Y t( )dt

    + 4 Y t( )+ 8 X t( )= Y 0( ) 0=

    Laplace transform:9s2 9s+ 4+( )Y s( ) 8 X s( )= 8 1

    s=

    r19 92 4 9 4+

    2 9:= r29 92 4 9 4

    2 9:= r1 0.5 0.441i+=Find roots:r2 0.5 0.441i=

  • A2 0.027 0.022i=3

    2 2 2.598i( ) 1 2.598i+( ) 1.5 2.598i+( ) 0.027 0.022i+=

    A11.5 2.598i+s

    32 s 1.5+ 2.598i+( ) s 0.5+( )s 0.027 0.022i+=lim

    =

    A1s 1.5+ 2.598i

    A2s 1.5+ 2.598i++

    A3s 0.5++

    A4s

    +=

    Y s( )3

    2 s 1.5+ 2.598i( ) s 1.5+ 2.598i+( ) s 0.5+( )s=Solve for Y(s) and expand:

    polyroots

    9

    21

    7

    2

    1.5 2.598i1.5 2.598i+

    0.5

    =Find roots:

    2s3 7s2+ 21s+ 9+( )Y s( ) 3 X s( )= 3 1s

    =Laplace transform:

    Y 0( ) 0=

    2d3 Y t( )

    dt3 7 d

    2 Y t( )dt2

    + 21 d Y t( )dt

    + 9 Y t( )+ 3 X t( )=Subtract initial steady state:

    2d3 y t( )

    dt3 7 d

    2 y t( )dt2

    + 21 d y t( )dt

    + 9 y t( )+ 3 x t( )=(e)

    Y t( )4

    3t 2

    e

    0.667 t 2 u t( )+=Invert using Table 2-1.1:

    A30s

    8

    9 s 0.667+( )22=lim

    =

    A20.667s

    dds

    89s

    0.667s

    89s2

    2=lim

    =lim

    =A10.667s

    89s

    43

    =lim

    =

    Y s( )8

    9 s 0.667+( )2s=

    A1

    s 0.667+( )2A2

    s 0.667++A3s

    +=Solve for Y(s) and expand:

    r2 0.667=r1 0.667=r2

    12 122 4 9 42 9:=r1

    12 122 4 9 4+2 9:=

    Find roots:

    9s2 12s+ 4+( )Y s( ) 8 X s( )= 8 1s

    =Laplace transform:

  • A30.5s

    32 s 1.5+ 2.598i( ) s 1.5+ 2.598i+( )s 0.387=lim

    =

    32 1 2.598i( ) 1 2.598i+( ) 0.5( ) 0.387= A4 0s

    3

    2s3 7s2+ 21s+ 9+13

    =lim

    =

    Y s( )0.027 0.022i+s 1.5+ 2.598i

    0.027 0.022is 1.5+ 2.598i++

    0.387s 0.5++

    13

    1s

    +=

    Invert using Table 2-1.1:

    Y t( ) 0.027 0.022i+( )e 1.5 2.598i+( )t 0.027 0.022i( )e 1.5 2.598i( )t+ 0.387e 0.5 t 13

    u t( )+=

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

  • Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

    Y t( ) u t 1( ) 83

    t 1( ) 8 e

    0.667 t 1( ) 8 e 0.333 t 1( )+=

    Apply the real translation theorem in reverse to this solution:

    Y s( )8

    31

    s 0.667+( )28

    s 0.667+8

    s 0.333++

    e s=

    The partial fraction expansion of the undelayed signal is the same:

    (Real translation theorem)

    X s( )e s

    s13

    +=X t( ) u t 1( ) e

    t 1( )3=(b) Forcing function:

    Y t( )8

    3t 8

    e

    0.667 t 8e 0.333 t+=Invert using Table 2-1.1:

    Y s( )8

    31

    s 0.667+( )28

    s 0.667++8

    s 0.333++=

    A20.667s

    dds

    89 s 0.333+( )

    0.667s

    89 s 0.333+( )2

    8=lim

    =lim

    =

    A30.333s

    8

    9 s 0.667+( )28=lim

    =A1

    0.667s8

    9 s 0.333+( )8

    3=lim

    =

    8

    9 s 0.667+( )2 s 0.333+( )=

    A1

    s 0.667+( )2A2

    s 0.667++A3

    s 0.333++=

    Y s( )8

    9s2 12s+ 4+( ) s 13

    +

    =

    X s( )1

    s13

    +=From Table 2-1.1:X t( ) e

    t3=(a) Forcing function:

    Y 0( ) 0=9 d2 Y t( )dt2

    12 d Y t( )dt

    + 4 Y t( )+ 8 X t( )=

    Problem 2-7. Solve Problem 2-6(d) with different forcing functions

    Smith & Corripio, 3rd edition

  • (Final value theorem)

    (b)9

    d2 y t( )dt2

    18 d y t( )dt

    + 4 y t( )+ 8 x t( ) 4=

    Subtract initial steady state: 9d2 Y t( )

    dt2 18 d Y t( )

    dt+ 4 Y t( )+ 8 X t( )= Y 0( ) 0=

    Laplace transform and solve for Y(s): Y s( )8

    9s2 18s+ 4+X s( )=

    Find roots: r118 182 4 9 4+

    2 9 min:= r218 182 4 9 4

    2 9 min:= r1 0.255 min1=

    r2 1.745 min 1=Invert using Table 2-1.1: Y t( ) A1 e

    0.255 t A2 e 1.745 t+=+ terms of X(s)

    The response is stable and monotonic. The domnant root is: r1 0.255 min 1=Time for the response to decay to 0.67% of its initial value: 5

    r119.6 min=

    Final steady-state value for unit step input:0s

    s8

    9s2 18s+ 4+ 1

    slim

    2(Final value theorem)

    Smith & Corripio, 3rd editionProblem 2-8. Response characteristics of the equations of Problem 2-6

    (a) d y t( )dt

    2 y t( )+ 5 x t( ) 3+=

    Initial steady state: 2 y 0( ) 5 x 0( ) 3+=Subtract: d Y t( )

    dt2 Y t( )+ 5 X t( )= Y t( ) y t( ) y 0( )= X t( ) x t( ) x 0( )=

    Laplace transform: s Y s( ) 2 Y s( )+ 5 X s( )= Y 0( ) y 0( ) y 0( )= 0=Solve for Y(s): Y s( )

    5s 2+ X s( )=

    A1s 2+= + terms of X(s)

    Invert using Table 2-1.1: Y t( ) A1 e2 t= + terms of X(t)

    The response is stable and monotonic.The dominant and only root is r 2 min 1:=Time for response to decay to within 0.67% of its initial value: 5

    r2.5 min=

    Final steady-state value for unit step input:

    0ss

    5s 2+

    1s

    lim

    52

    2.5=

  • Time for oscillations to die: 50.5 min 1

    10 min=

    Final steady state value for a unit step imput:0s

    s8

    9s2 9s+ 4+ 1

    slim

    2(Final value theorem)

    (d) 9 d2 y t( )dt2

    12 d y t( )dt

    + 4 y t( )+ 8 x t( ) 4=

    Subtract initial steady state:9

    d2 Y t( )dt2

    12 d Y t( )dt

    + 4 Y t( )+ 8 X t( )=

    Y 0( ) 0=

    Laplace transform and solve for Y(s): Y s( )8

    9s2 12s+ 4+X s( )=

    Find roots: r112 122 4 9 4+

    2 9 min:= r212 122 4 9 4

    2 9 min:= r1 0.667 min1=

    r2 0.667 min 1=Invert using Table 2-1.1: Y t( ) A1 t A2+( )e 0.667 t= + terms of X(t)

    (c) 9 d2 y t( )dt2

    9 d y t( )dt

    + 4 y t( )+ 8 x t( ) 4=

    Subtract initial steady state: 9d2 Y t( )

    dt2 9 d Y t( )

    dt+ 4 Y t( )+ 8 X t( )= Y 0( ) 0=

    Laplace transform and solve for Y(s): Y s( )8

    9s2 9s+ 4+X s( )=

    Find the roots: r19 92 4 9 4+

    2 9 min:= r29 92 4 9 4

    2 9 min:= r1 0.5 0.441i+ min1=

    r2 0.5 0.441i min 1=Invert using Table 2-3.1: Y t( ) D e 0.5 t sin 0.441t +( )= + terms of X(t)The response is stable and oscillatory. The dominant roots are r1 and r2.

    Period of the oscillations: T2

    0.441min 1:= T 14.25 min=

    Decay ratio: e 0.5 min1 T 0.00081=

  • Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

    (Final value theorem) 0ss

    3

    2s3 7s2+ 21s+ 9+ 1

    slim

    13

    Final steady state value for a unit step input:

    5r2

    10 min=Time for response to die out:e 1.5 min1 T 0.027=Decay ratio:

    T 2.42 min=T 22.598min 1

    :=The period of the oscillations is:

    r2 0.5 min1=The response is stable and oscillatory. The dominant root is

    r

    1.5 2.598i1.5 2.598i+

    0.5

    min 1=r polyroots

    9

    21

    7

    2

    min 1:=

    Find roots:

    Y s( )3

    2s3 7s2+ 21s+ 9+X s( )=Laplace transform and solve for Y(s):

    2d3 Y t( )

    dt3 7 d

    2 Y t( )dt2

    + 21 d Y t( )dt

    + 9 Y t( )+ 3 X t( )=Subtract initial steady state:

    2d3 y t( )

    dt3 7 d

    2 y t( )dt2

    + 21 d y t( )dt

    + 9 y t( )+ 3 x t( )=(e)

    (Final value theorem) 0ss

    8

    9s2 12s+ 4+ 1

    slim

    2Final steady state value for a unit step input:

    5r1

    7.5 min=Time required for the response to decay within 0.67% of its initial value:r1 0.667 min 1=The response is stable and monotonic. The dominant root is

  • Value of k: kM gy0

    := k 1.816 Nm

    =

    Laplace transform:M s2 Y s( ) k Y s( )+ F s( )=

    Solve for Y(s): Y s( )1

    M s2 k+F s( )=

    A1

    s ikM

    A2

    s ikM

    ++=

    + terms of F(s)

    0:=D 1:=

    Invert using Table 2-3.1: Y t( ) D sinkM

    t s +:= + terms of f(t)

    The mobile will oscillate forever with a period of T 2 Mk

    := T 1.043 s=

    Smith & Corripio, 3rd edition

    Problem 2-9. Second-Order Response: Bird Mobile

    -Mgf(t)

    y(t)

    -ky(t)

    y = 0

    Problem data: M 50gm:= y0 27 cm:=Solution:

    Force balance:

    Md v t( )

    dt M g k y t( ) f t( )+=

    Velocity: d y t( )dt

    v t( )=

    Initial steady state: 0 M g k y0=Subtract and substitute:

    Md2 Y t( )

    dt2 k Y t( ) f t( )+=

    Y 0( ) 0=

  • 0 2 41

    0

    1

    Y t( )

    t

    To more accurately reflect the motion of the bird mobile, we must add the resistance of the air. If we assume it to be a force proportional to the velocity:

    Md2 Y t( )

    dt2 k Y t( ) b d Y t( )

    dt f t( )+=

    With this added term the roots will have a negative real part, causing the oscillations to decay, as they do in practice:

    Y s( )1

    M s2 b s+ k+F s( )= r1

    b b2 4M k+2M

    = b2M

    ikM

    b2

    4M2+=

    Invert:b2 4M k