smart fertigation system using internet of things (iot)

24
SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT) Nur Nadiah Binti Johan Nazri Bachelor of Computer Science with Honors (Information System) 2020

Upload: others

Post on 04-Oct-2021

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

SMART FERTIGATION SYSTEM USING INTERNET OF

THINGS (IoT)

Nur Nadiah Binti Johan Nazri

Bachelor of Computer Science with Honors

(Information System)

2020

Page 2: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

ii

SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

NUR NADIAH BINTI JOHAN NAZRI

This project is submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Computer Science and Information Technology

Faculty Computer Science and Information Technology

UNIVERSITI MALAYSIA SARAWAK

2020

Page 3: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

iii

Page 4: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

i

ACKNOWLEDGEMENT

In the name of Allah, the most beneficent and merciful, it is my radiant sentiment to place on

the record of my best regards to my dearest supervisor, Assoc. Prof. Dr. Hj. Noor Alamshah

Bin Bolhassan who took time out to hear, supervise, and guide me in completing my Final Year

Project despite his hectic schedule. Prof. Alam has been a great supervisor as he always gives

me his constructive and useful suggestions to my Final Year Project. I choose this moment to

acknowledge their contribution gratefully. Without his encouragement and guidance, this

project would not have materialised. The same goes for Professor Dr. Wang Yin Chai, who has

been providing all the project guidelines and coordinating the final year project. Also, not to

forget my examiner, Madam Nurfauza Binti Jali for her advice and all the help of other lecturers

of Faculty of Computer Science and Information Technology. Aside from that, I would like to

express my heartiest gratitude to my parents and family who had supported me, encouraged me,

and never give up on me in spite of my long years of studies. Whenever I was at the edge of

giving up, they braced me up by keeping me happy and give me the strength to continue my

project.

Page 5: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

ii

ABSTRACT

Today’s technology development in our daily lives has led us to a better way of living. Internet of Things

(IoT) is one of the new trend technologies that helps to ease people doing their daily chores. IoT helps

to link physical devices around the world to link to the Internet for remote control. This application of

technology can help people in the agriculture field in many ways. Fertigation is a process in which

fertiliser is being applied with the irrigation water. The traditional way of farming often wastes a lot of

time and requires a lot of workloads. The main problem with having traditional fertigation is the user

cannot monitor their plant efficiently and can cause the plant to die due to insufficient nutrients. This is

because monitoring traditional planting is not as efficient as monitoring using sensors. The Smart

Fertigation System using IoT is proposed to solve this problem and helps users to monitor and control

their plant using sensors and mobile devices. The plant or crop that is suitable for the fertigation system

are chillies, rockmelon, tomato, brinjal, and watermelon. This proposed system is ideal for housewives,

teachers, any other full-time workers, and farmers that having a lack of time in monitoring their plants.

There are several parameters that user needs to consider such as ultrasonic sensor, soil moisture sensor,

PIR motion sensor, and photocell sensor that need to control in one time. These sensors will collect and

send data from surrounding to the Microcontroller. Methodology rapid application development (RAD)

is used to produce a working prototype of the proposed system in a shorter period. The system is

connected to the Internet by using Wi-Fi and the user can enter the parameters in the mobile application.

Then, it will transmit the data to the system over the Internet. Overall, this thesis introduces the

background of the system, methodology that is used, system design, system prototype, achievements of

the system, and the future enhancements that can be done.

Page 6: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

iii

ABSTRAK

Perkembangan teknologi pada hari ini telah membawa kita ke arah kehidupan yang lebih baik. Objek

Rangkaian Internet (IoT) merupakan salah satu teknologi trend terkini di mana dapat membantu

memudahkan manusia melakukan kerja-kerja harian. IoT membantu menghubungkan peranti fizikal

sekeliling dunia untuk dikawal secara kawalan jauh. Aplikasi teknologi ini dapat membantu mereka di

dalam bidang pertanian dengan pelbagai kaedah. Fertigasi merupakan satu proses di mana baja

disalurkan dengan irigasi air. Pertanian secara tradisional telah merugikan banyak waktu dan

memerlukan banyak tenaga kerja. Masalah utama menggunakan fertigasi tradisional ialah pengguna

tidak dapat memantau tanaman mereka dengan efisien dan boleh meyebabkan tanaman mereka mati

akibat kekurangan nutrisi. Hal ini demikian kerana, penanaman tanaman secara tradisional tidak secekap

memantau menggunakan sensor-sensor. Sistem Fertigasi Pintar menggunakan IoT dicadangkan bagi

menyelesaikan masalah tersebut dan membantu pengguna memantau dan mengawal tanaman mereka

mengunakan sensor-sensor dan peranti mudah alih. Pokok atau tanaman yang sesuai bagi system

fertigasi ini ialah cili, rock melon, tomato, terung, dan tembikai. Sistem yang dicadangkan ini sesuai

digunakan oleh suri rumah, guru-guru, pekerja sepenuh masa yang lain serta petani-petani yang

mempunyai kekurangan masa bagi memantau tanaman mereka. Terdapat beberapa parameter yang perlu

diambil kira oleh pengguna ialah sensor ultrasonic, sensor kelembapan tanah, sensor gerakan PIR, dan

sensor photocell yang perlu dikawal dalam satu masa. Sensor-sensor tersebut akan mengambil dan

menghantar data dari sekeliling kepada mikrokontroler. Metodologi Pembangunan Aplikasi Pantas

(RAD) digunakan bagi menghasilkan prototaip yang berhasil bagi system yang dicadangkan dalam

tempoh yang singkat. System tersebut dihubungkan kepada internet melalui Wi-Fi dan pengguna boleh

menggunakan parameter di dalam peranti mudah alih. Seterusnya, data tersebut akan dihantar kepada

system melalui internet. Keseluruhan projek ini ialah memperkenalkan latar belakang system,

metodologi yang digunakan, reka bentuk system, prototaip system, pencapaian sistem, dan peningkatan

yang boleh dilakukan pada masa akan datang.

Page 7: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT ....................................................................................................... i

ABSTRACT ............................................................................................................................. ii

ABSTRAK ............................................................................................................................... iii

LIST OF TABLES ............................................................................................................... viii

LIST OF FIGURES ............................................................................................................... ix

LIST OF ABBREVIATIONS .............................................................................................. xiii

1. CHAPTER 1: INTRODUCTION ................................................................................... 1

1.1 Introduction ...................................................................................................................... 1

1.2 Problem Statement ............................................................................................................ 2

1.3 Scope ................................................................................................................................ 3

1.4 Objectives ......................................................................................................................... 3

1.5 Brief Methodology ........................................................................................................... 3

1.5.1 Analysis and Quick Design ....................................................................................... 4

1.5.2 Prototype Cycles ....................................................................................................... 4

1.5.3 Testing ....................................................................................................................... 5

1.5.4 Implementation ......................................................................................................... 5

1.6 Significance of project ...................................................................................................... 5

1.7 Project schedule ................................................................................................................ 5

1.8 Expected outcome ............................................................................................................. 6

2. CHAPTER 2: LITERATURE REVIEW....................................................................... 7

2.1 Introduction ...................................................................................................................... 7

2.2 Background Study ............................................................................................................ 8

Page 8: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

v

2.3 Review on Existing Systems ............................................................................................ 8

2.3.1 Global System for Mobile Communications (GSM) Based Fertigation System ...... 9

2.3.2 Web-based Monitoring of an Automated Fertigation System ................................ 11

2.3.3 Automated Fertigation System using IoT ............................................................... 14

2.4 Comparison between Similar Existing Systems and the Proposed System.................... 16

2.5 Proposed System............................................................................................................. 17

2.6 Summary ......................................................................................................................... 17

3. CHAPTER 3: REQUIREMENT ANALYSIS & DESIGN ........................................ 18

3.1 Introduction .................................................................................................................... 18

3.2 System Development Methodology ............................................................................... 18

3.2.1 Analysis and Quick Design ..................................................................................... 19

3.2.2 Prototype Cycle ....................................................................................................... 20

3.2.2.1 Develop and assemble ....................................................................................... 20

3.2.2.2 Demonstrate ...................................................................................................... 20

3.2.2.3 Refine ................................................................................................................ 21

3.2.3 Testing ..................................................................................................................... 21

3.2.4 Implementation ....................................................................................................... 21

3.3 System Requirement Analysis ........................................................................................ 21

3.3.1 Identify the User ..................................................................................................... 22

3.3.2 Identify Requirements ............................................................................................. 22

3.3.2.1 Hardware Requirement ..................................................................................... 23

Page 9: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

vi

3.3.2.2 Software Requirement ....................................................................................... 24

3.4 System Design and General Architecture ....................................................................... 24

3.4.1 Block Diagram: ....................................................................................................... 26

3.4.2 Use Case Diagram ................................................................................................... 27

3.4.3 Sequence Diagram .................................................................................................. 31

3.4.4 Class Diagram ......................................................................................................... 32

3.4.5 System Flowchart .................................................................................................... 33

3.5 User Interface Design for the Blynk Application ........................................................... 37

3.6 Summary ......................................................................................................................... 40

4. CHAPTER 4: IMPLEMENTATION AND TESTING .............................................. 41

4.1 Introduction .................................................................................................................... 41

4.2 System Implementation .................................................................................................. 42

4.2.1 Arduino NodeMCU ESP8266 (LiLon NodeMCU V3) .......................................... 42

4.2.2 Ultrasonic Sensor .................................................................................................... 43

4.2.3 LED Light Module .................................................................................................. 44

4.2.4 Buzzer ..................................................................................................................... 44

4.2.5 Soil Moisture Sensor ............................................................................................... 45

4.2.6 PIR Motion Sensor .................................................................................................. 46

4.2.7 Photocell Sensor ...................................................................................................... 47

4.2.8 Micro Submersible Water Pump ............................................................................. 48

4.2.9 Blynk Application ................................................................................................... 48

Page 10: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

vii

4.3 Prototype Development .................................................................................................. 49

4.4 Prototype Modelling ....................................................................................................... 54

4.5 Prototype Program .......................................................................................................... 54

4.5.1 Hardware Programming .......................................................................................... 55

4.6 Prototype Testing ............................................................................................................ 56

4.6.1 Component Testing ................................................................................................. 56

4.6.1.1 Arduino IDE ...................................................................................................... 57

4.6.1.2 Ultrasonic Sensor Testing ................................................................................. 57

4.6.1.3 Soil Moisture Sensor Testing ............................................................................ 58

4.6.1.4 PIR Motion Sensor Testing ............................................................................... 58

4.6.1.5 Photocell Sensor Testing ................................................................................... 59

4.6.1.6 Pump Testing ..................................................................................................... 59

4.6.2 Full Circuit Testing ................................................................................................. 60

4.7 Summary ......................................................................................................................... 66

CHAPTER 5: CONCLUSION AND FUTURE WORK .................................................... 67

5.1 Introduction .................................................................................................................... 67

5.2 Objective Achievement .................................................................................................. 67

5.3 Limitations ...................................................................................................................... 68

5.4 Future Work .................................................................................................................... 69

5.5 Summary ......................................................................................................................... 69

REFERENCES ...................................................................................................................... 70

APPENDICES ....................................................................................................................... 72

Page 11: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

viii

LIST OF TABLES

Table 2.1: Comparison Between Similar Existing System and Proposed System ................... 16

Table 3.1: Potential Hardware Requirement for Prototype ...................................................... 23

Table 3.2: Software Requirement for Prototype ...................................................................... 24

Table 3.3: User Login Use Case Description ........................................................................... 28

Table 3.4: Ultrasonic Sensor Use Case Description ................................................................ 28

Table 3.5: Soil Moisture Sensor Use Case Description ........................................................... 29

Table 3.6: PIR Motion Sensor Use Case Description .............................................................. 29

Table 3.7: Photocell Sensor Use Case Description .................................................................. 30

Table 4.1: Hardware Programming .......................................................................................... 55

Table 4.2: Test Case for Arduino ............................................................................................. 60

Table 4.3: Test Case for Ultrasonic Sensor .............................................................................. 61

Table 4.4: Test Case for Soil Moisture Sensor......................................................................... 62

Table 4.5: Test Case for PIR Motion Sensor ........................................................................... 63

Table 4.6: Test Case for Photocell Sensor ............................................................................... 64

Table 4.7: Test Case for Water Pump ...................................................................................... 65

Table 5.1: Objective Achievement ........................................................................................... 67

Page 12: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

ix

LIST OF FIGURES

Figure 1.1: Rapid Application Development (RAD) Methodology (“What is Rapid Application

Development (RAD)?,” n.d.) ..................................................................................................... 4

Figure 2.1: Block Diagram of GSM Based Fertigation System (Egwaile & Bello, 2014) ........ 9

Figure 2.2: The location of the sensors for monitoring the whole system (Abidin & Noorjannah

Ibrahim, 2016) .......................................................................................................................... 12

Figure 2.3: GUI that shows parameters monitored in the automated fertigation system (Abidin

& Noorjannah Ibrahim, 2016). ................................................................................................. 12

Figure 2.4: Sensor node Block Diagram (Ahmed et al., 2018) ................................................ 14

Figure 2.5: Main Node block diagram (Ahmed et al., 2018) ................................................... 15

Figure 3.1: Rapid Application (RAD) Methodology (“What is Rapid Application Development

(RAD)?,” n.d.) .......................................................................................................................... 19

Figure 3.2: System Design of the Proposed System ................................................................ 24

Figure 3.3: General system architecture for Smart Fertigation System using IoT ................... 25

Figure 3.4: Block Diagram ....................................................................................................... 26

Figure 3.5: Use Case Diagram of the Proposed System .......................................................... 27

Figure 3.6: Sequence Diagram of the Proposed System .......................................................... 31

Figure 3.7: Class Diagram of the Proposed System ................................................................. 32

Figure 3.8: Ultrasonic Sensor Flowchart .................................................................................. 33

Page 13: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

x

Figure 3.9: Soil Moisture Sensor Flowchart ............................................................................ 34

Figure 3.10: PIR Motion Sensor Flowchart ............................................................................. 35

Figure 3.11: Photocell Sensor Flowchart ................................................................................. 36

Figure 3.12: Login account for a new user ............................................................................... 37

Figure 3.13: Monitor and Controller Tab ................................................................................. 38

Figure 3.14: Monitor and Controller Tab ................................................................................. 39

Figure 4.1: NodeMCU ESP8266 (“Getting Started With ESP8266(LiLon NodeMCU V3)

Complete Guide for IoT Startup With Example(as Server) : 3 Steps (with Pictures) -

Instructables,” n.d.) .................................................................................................................. 42

Figure 4.2: Ultrasonic Sensor ................................................................................................... 43

Figure 4.3: LED ........................................................................................................................ 44

Figure 4.4: Buzzer .................................................................................................................... 44

Figure 4.5: Soil Moisture Sensor .............................................................................................. 45

Figure 4.6: PIR Motion Sensor ................................................................................................ 46

Figure 4.7: Photocell Sensor .................................................................................................... 47

Figure 4.8: Water Pump ........................................................................................................... 48

Figure 4.9: The connection between NodeMCU and breadboard ............................................ 49

Figure 4.10: Ultrasonic Sensor Connected to Arduino ............................................................ 50

Page 14: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

xi

Figure 4.11: Soil Moisture Sensor Connected to Arduino ....................................................... 50

Figure 4.12: PIR Motion Sensor Connected to Arduino .......................................................... 51

Figure 4.13: Photocell Sensor Connected to Arduino .............................................................. 51

Figure 4.14: Buzzer Connected to Arduino ............................................................................. 52

Figure 4.15: LED Connected to Arduino ................................................................................. 52

Figure 4.16: Water pup Connected to the Microcontroller ...................................................... 53

Figure 4.17: Complete Circuit .................................................................................................. 53

Figure 4.18: Snippet Code in Arduino IDE .............................................................................. 54

Figure 4.19: Water Pump Code ................................................................................................ 55

Figure 4.20: Prototype Model .................................................................................................. 56

Figure 4.21: Arduino Microcontroller Testing ......................................................................... 57

Figure 4.22: Ultrasonic Sensor Testing .................................................................................... 57

Figure 4.23: Soil Moisture Testing .......................................................................................... 58

Figure 4.24: PIR Motion Testing ............................................................................................. 58

Figure 4.25: Photocell Testing ................................................................................................. 59

Figure 4.26: Water Pump Testing ............................................................................................ 59

Figure 4.27: Water pump Immersed in the Water .................................................................... 59

Figure 6.1: Gantt Chart of the Project Schedule ...................................................................... 72

Page 15: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

xii

Figure 6.2: Declaration Code ................................................................................................... 72

Figure 6.3: Buzzer & LED Code .............................................................................................. 73

Figure 6.4: Buzzer & LED Code .............................................................................................. 73

Figure 6.5: Ultrasonic Sensor Code ......................................................................................... 74

Figure 6.6: Soil Moisture Sensor Code .................................................................................... 74

Figure 6.7: PIR Motion Sensor Code ....................................................................................... 74

Figure 6.8: Declaration Code ................................................................................................... 75

Figure 6.9: Photocell Sensor Code ........................................................................................... 75

Figure 6.10: Nutrient Pump Code ............................................................................................ 75

Page 16: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

xiii

LIST OF ABBREVIATIONS

EC Electronic Conductivity

GSM Global System for Mobile Communications

I/O Input or Output

IDE Integrated Development Environment

IoT Internet of Technology

IP Internet Protocol

LED Light Emitting Diode

PIR Pyroelectric (“Passive”) InfraRed

RAD Rapid Application Development

SDLC System Development Life Cycle

USB Universal Serial Bus

Wi-Fi Wireless Fidelity

Page 17: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

1

1. CHAPTER 1: INTRODUCTION

1.1 Introduction

Fertigation is a process in which fertilisers are being applied with the irrigation water. It is

a process that combines fertilisation and irrigation and most commonly used by commercial

growers (“What Is Fertigation – How Does Fertigation Work And How To Do It,” n.d.).

Besides, the Internet of Things (IoT) refers to physical devices around the world link to the

Internet for remote control. People need to grow as fast as technology. Make use the technology

to upgrade life to another level. Farmers can make use of IoT in the agriculture field. This is

because, agriculture is one of the vital industries in Malaysia, so the user needs a very efficient

system to ease their work for enhancing product quality and volumes. One of the solutions is

by using a fertigation system with IoT. The benefits of fertigation systems include high-quality

crops, no soil-borne disease, environmentally friendly, and more efficient usage of water and

fertilisers.

Fertigation system shortcoming problems are accuracy, efficiency, and monitoring

continuously. A faulty irrigation system can distribute uneven nutrients to the crops that can

cause over-fertilisation or leaching of nutrients when excess water is applied to crops. The

changes in pH, moisture, and light intensity can affect the growth of fertigation plants. The user

also needs to monitor the plant to ensure it gets sufficient nutrients and water from time to time.

Unfortunately, the user does not always have at the crop’s place to monitor the plant even does

not know the exact condition of a healthy plant. Therefore, to solve this problem, an IoT-based

Smart Fertigation System monitoring system was introduced to help farmers or ordinary people

growing vegetables or fruits using sensors to more accurately track and monitor their plant.

Page 18: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

2

Hence, a Smart Fertigation System Using IoT is proposed mainly to help users easy to

control and monitor the growth of crops by using sensors such as ultrasonic sensors, soil

moisture sensor, PIR motion sensor, and photocell sensor. Another aim of this proposed system

is to develop a Blynk mobile application system.

In this system, will be focussing on the chilli cultivation. It has a rapidly growing period of

90 to 150 days depends on its species. The duration of transplanting to plant establishment stage

is around 10 days, flower initiation to flowering about 30 days, flowering set to fruit picking

approximately 30 days and 8 days for the alternate day from picking (“Horsticulture ::

Vegetables:: Chilli,” n.d.).

1.2 Problem Statement

Problems that occurred in agriculture are the accuracy of fertiliser and water supply to

plants. The fertilisers and water sufficiency are important for the cultivation to stay alive and

produce good quality of products. For instance, whether the plant is lack of water or fertilisers

based on data collected by sensors used. Farmers also face confusion even though the use of

the fertiliser system and wonder how much water or fertiliser needs to be supplied to the crop.

From their point of view, the water and fertiliser given are adequate as long as the plant is

adequately moist.

The main problem with having traditional fertigation is the user cannot monitor their plant

efficiently and can cause the plant to die due to insufficient nutrients. It is not as efficient as

monitoring using the sensor. The user also tends to overestimate the fertigation of their

vegetables.

Page 19: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

3

1.3 Scope

The scopes of this project are listed below:

a) Focus on a polybag of chillie that will be planted using a fertigation system.

b) This IoT based system is for monitoring the fertigation plant that places in an open

space or outdoor.

1.4 Objectives

i) To study and compare the latest techniques used in fertigation by using the Internet of

Things (IoT) that can be used to help and ease the user to monitor and control the crop

efficiently.

ii) To design and assemble an IoT based system that can help the farmer to monitor and

control the crop field efficiently.

iii) To test and evaluate the proposed framework or method for the fertigation system.

1.5 Brief Methodology

The most suitable methodology that can be used for this project is the Rapid Application

Development (RAD) methodology. The deployment phase and the maintenance phase do not

need in this project. For the deployment phase, it does not be used because it is not being

introduced to the public for general users. While the maintenance phase is not in this

methodology because there are no need replacements for hardware and software after the final

prototype is deployed. In addition, the processes for RAD are more reliable, faster, and more

stable, cheaper, and less error-free. There are four phases in this model which are analysis and

design, prototype cycles, testing, and implementation. The reasons for choosing this RAD in

Smart Fertigation System are as follows:

Page 20: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

4

Figure 1.1: Rapid Application Development (RAD) Methodology (“What is Rapid Application Development (RAD)?,” n.d.)

1.5.1 Analysis and Quick Design

Firstly, analysis and quick design phase. In order to know the specifications for this

project and how to model the process, this stage will be performed through meetings and

discussions between student and supervisor. During this stage, students need to identify the

problem, objective, and project outcome. Moreover, students need to gather all the hardware

and software requirements through brainstorming and similar literature reviews online. Then,

all requirements need to be analysed to achieve the objectives of this project.

1.5.2 Prototype Cycles

A prototype will be created in this phase where it consists of assembling,

demonstrating, and refining the project. The build is set up hardware modules of

microcontrollers and sensors. The sensors that are going to be used in this project are ultrasonic

sensors. An ultrasonic sensor is used to detect nutrient and water levels in the tank. Meanwhile,

a soil moisture sensor to read moisture reading from fertigation plant. Passive InfraRed (PIR)

motion sensor is to detect if there is any people or animal in the fertigation area. Besides, the

photocell sensor is to detect light intensity. Furthermore, Arduino received data from each

sensor and all the sensors can get its e-commerce place. The data will be shown on the mobile

application that being develop from the Blynk-based application.

Page 21: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

5

1.5.3 Testing

This testing phase will be conducted when the working model is ready or completed.

The individual user being tested to use the system at his or her farm. Testing individual unit

which is either hardware or software in order to make sure each unit is functioning well and

ready to be integrated as the whole module.

1.5.4 Implementation

Implement and integrate all units together as a completed module and keep on testing

as a completed module to make sure the whole system works efficiently. During this phase,

students will gather all the feedback from the target user. Then, the final prototype will be

finished to be used.

1.6 Significance of project

This project benefits users supplying water and fertilisers automatically during the time

required through the system. Besides, it will save their cost and time as they do not need to

focus on the growth of plants manually as the implementation of the system will help them to

monitor their plant. It will also help to reduce the plant disease from any pest attack and help to

increase product quality.

1.7 Project schedule

The project schedule consists of a list project’s terminal elements with intended start

and finish dates. The development and maintenance of project schedule are important as a guide

for developer or researchers to keep track of their tasks of the project and make sure their project

finish on time. This project schedule has been created using Microsoft Project 2010 as the

Page 22: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

6

software tool to complete the Gantt Chart to make sure the project can finish on time. The start

date of the whole project is shown in the Gantt Chart which can be found in the Appendices.

1.8 Expected outcome

The project outcome of this project is:

a. Smart Fertigation System based on IoT includes a set of system hardware that has

been developed.

b. Final year project 1 and final year project 2 reports had been documented.

c. A symposium article paper has been published.

Page 23: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

7

2. CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

A literature review is one of the vital parts of the project were research based on the

selected area of study. A literature review is a search and evaluation of the available literature

in your given subject or chosen topic area (“What is a literature review?,” n.d.). This chapter

provides a description of the existing system, comparison between the traditional fertigation

system and the proposed system using the Internet of Things (IoT) with the specifics of

hardware or tools technology in the development of the proposed system.

The traditional fertigation system has some issues that make it ineffective in agriculture.

The quantity and time of irrigation control are manual and estimate. Besides, the quantity of

added fertigation is approximate. Then, some fertiliser affects plants and productivity.

Moreover, this traditional system is highly cost of irrigation and fertilisation.

Smart Fertigation Monitoring System is a hardware and software embedded system that

helps the user to control and monitor the growth of crops by using sensors. This system is built

to achieve the following goals:

a. To study and compare the latest techniques used in fertigation by using the

Internet of Things (IoT) that can be used to help and ease the user to monitor

and control the crop efficiently.

b. To design and assemble an IoT based system that can help the farmer to monitor

and control the crop field efficiently.

c. To test and evaluate the proposed framework or method for the fertigation

system.

Page 24: SMART FERTIGATION SYSTEM USING INTERNET OF THINGS (IoT)

8

2.2 Background Study

The Internet of Things (IoT) can be thought of as a network of physical objects or

“things” that have been embedded with electronics, software, sensors, and connectivity to

enable these objects to collect and exchange data (Ahmed, Osman, & Awadalkarim, 2018).

Nowadays, IoT is a new trend technology that helps physical devices around the world link to

the Internet for remote control. There are various inventions from different industries that make

use of this IoT as their system based. The same goes to agriculture, this field is also put a lot of

effort to improve the efficiency of planting to be more reliable and more ease. Fertigation is

one of the examples of planting that requires precision control and regular monitoring to ensure

the positive rate of production. In the Smart Fertigation system based on IoT, there are a few

existing systems with different approaches that have been introduced in past years.

2.3 Review on Existing Systems

The vital task in this phase is to identify the similarities, differences, advantages and

also disadvantages of the existing system. Fertigation monitoring system has existed for years.

There are three chosen fertigation monitoring system will be studied and compares with each

other and the proposed system, Smart Fertigation Monitoring System using IoT. Those three

chosen fertigation systems are Global System for Mobile Communications (GSM) Based

Fertigation System, Web-based Monitoring of an Automated Fertigation System, and

Automated Fertigation System using IoT.